Gå till huvudinnehåll Gå till ytterligare innehåll

Visa insikter om dina träningsdata

När du lägger till dina träningsdata och kör versioner av träningen kan du komma åt insikter om hur dina data hanteras. Insikter ger information om mål och funktioner i ditt experiment, som funktioner som har släppts, inte är tillgängliga eller kommer att krypteras med specialbearbetning.

Kolumnen Insikter finns på fliken Data när du är i SchemaSchemavy. Förkortade insikter finns även i Tabell Datavy. Insikter skapas separat för varje modell som tränas i experimentet.

Kolumnen Insikter i Schemavy

Insikter visas för varje funktionskolumn i träningsdatauppsättningen

Insikter genereras:

  • Efter att du har lagt till eller ändrat träningsdata men inte ännu kört några experimentversioner.

  • Efter varje experimentversion har körts En separat uppsättning insikter skapas för varje modell som tränas.

Insikterna kan vara annorlunda före och efter att en version har körts. Det beror på att när träningen inleds kan Qlik Predict förbereda dina data och ytterligare diagnostisera problem med dina data. Mer information finns i Automatisk förberedelse och omvandling av data.

Visa insikter före träning

Innan du kör en version av experimentet kan du analysera Insikterna och se hur aktuella träningsdata tolkas. Dessa insikter kan ändras allteftersom du kör versionen.

  1. I ett experiment ska du se till att du har lagt till de träningsdata som du vill använda för experimentversionen.

  2. Öppna fliken Data.

  3. Kontrollera att du är i Tabellrader Schemavy.

  4. Analysera kolumnen Insikter. Beskrivningar ger ytterligare kontext bakom insikterna. Se Tolka datauppsättningsinsikter för ytterligare beskrivningar om vad varje insikt innebär.

Visa insikterna för en modell

Efter att modellen har slutfört träningen för en experimentversion väljer du en modell och ser över hur data har hanterats:

  1. Kör en experimentversion och öppna sedan fliken Data.

  2. Välj en modell i listrutan i det verktygsfältet.

  3. Kontrollera att du är i Tabellrader Schemavy.

  4. Analysera kolumnen Insikter. Beskrivningar ger ytterligare kontext bakom insikterna. Se Tolka datauppsättningsinsikter för ytterligare beskrivningar om vad varje insikt innebär.

Tolka datauppsättningsinsikter

Följande tabeller ger mer detaljer om de möjliga insikter som kan visas i schemat.

Allmänna insikter

Datasetinsikter — Allmänt
InsiktBetydelseKonsekvenser för konfigurationenNär insikten har fastställtsYtterligare referenser
KonstantKolumnen har samma värde för alla rader.Kolumnen kan inte användas som mål eller inkluderad funktion.Före och efter körning av versionenKardinalitet
One-hot-kodadFunktionen är kategorisk och kolumnen har färre än 14 unika värden.Ingen effekt på konfigurationen.Före och efter körning av versionenKategorisk kodning
EffektkodadFunktionstypen är kategorisk och kolumnen har 14 eller fler unika värden.Ingen effekt på konfigurationen.Före och efter körning av versionenKategorisk kodning
Hög kardinalitetKolumnen har för många unika värden och kan påverka modellens prestanda negativt om den används som funktion.Kolumnen kan inte användas som mål. Den kommer att uteslutas automatiskt som en funktion, men kan fortfarande inkluderas om det behövs.Före och efter körning av versionenKardinalitet
Gles dataKolumnen har för många nollvärden.Kolumnen kan inte användas som mål eller inkluderad funktion.Före och efter körning av versionenImputation av nullvärden
Underrepresenterad klassKolumnen har en klass med färre än tio rader.Kolumnen kan inte användas som mål, men kan ingå som en funktion.Före och efter körning av versionen-
Omvandling av egenskap misslyckadesFunktionstypen för en funktion ändrades manuellt från dess standardtyp. Med den här konfigurationen uppstod ett fel.Experimentversionen kan inte köras framgångsrikt med den här funktionstransformen. Återställ funktionstypen för funktionen till dess tidigare värde, eller exkludera funktionen från träningen.Efter körning av versionenÄndra funktionstyper

Insikter om automatisk funktionsgenerering

Datasetinsikter — Automatisk funktionsgenerering
InsiktBetydelseKonsekvenser för konfigurationenNär insikten har fastställtsYtterligare referenser
<antal> autogenererade funktionerKolumnen är den överordnade funktion som kan användas för att generera autogenererade funktioner.Om denna överordnade funktion tolkas som en datumfunktion tas den automatiskt bort från konfigurationen. Vi rekommenderar att du använder de autogenererade datumfunktionerna som kan genereras från den. Det är möjligt att åsidosätta den här inställningen och inkludera funktionen snarare än de autogenererade funktionerna.Före och efter körning av versionenAutomatisk egenskapsgenerering
autogenererad funktionKolumnen är en autogenererad funktion som kan, eller har, genererats från en överordnad datumfunktion. Den förekom inte i den ursprungliga datumuppsättningen.Du kan ta bort en eller flera av de här autogenererade funktionerna under experimentträningen. Om du växlar funktionstypen för den överordnade funktionen till kategorisk tas alla autogenererade funktioner bort.Före och efter körning av versionenAutomatisk egenskapsgenerering
Kunde inte bearbeta som ett datumKolumnen innehåller eventuellt datum- och tidsinformation, men kunde inte användas för att skapa autogenererade datumfunktioner.Funktionen tas bort från konfigurationen. Om autogenererade funktioner hade genererats tidigare från den här överordnade funktionen tas de bort från framtida experimentversioner. Du kan fortfarande använda funktionen i experimentet, men du måste ändra dess funktionstyp till kategorisk.Efter körning av versionenGenerering av datumfunktioner
Eventuell fritextKolumnen kan eventuellt vara tillgänglig för användning som en fritextfunktion.Funktionstypen fritext tilldelas till kolumnen. Du måste köra en experimentversion för att bekräfta om funktionen kan bearbetas som fritext.Före körning av versionenHantering av fritextdata
FritextKolumnen har bekräftats innehålla fritext. Den kan bearbetas som fritext.Ingen ytterligare konfigurering krävs för funktionen.Efter körning av versionenHantering av fritextdata
Kunde inte bearbeta som fritextYtterligare analys har visat att kolumnen inte kan bearbetas som fritext.Du måste välja bort funktionen för konfigurationen för nästa experimentversion. Om funktionen inte har hög kardinalitet kan du alternativt ändra funktionstypen till kategorisk.Efter körning av versionenHantering av fritextdata

Insikter om intelligent modelloptimering

Datasetinsikter — Intelligent modelloptimering
InsiktBetydelseKonsekvenser för konfigurationenNär insikten har fastställtsYtterligare referenser
MålläckageFunktionen misstänks vara påverkad av målläckage. I så fall innehåller den information om målkolumnen som du försöker förutsäga. Funktioner med målläckage kan ge en falsk känsla av säkerhet gällande modellens prestanda. I verkliga prognoser kan detta göra att modellen presterar mycket dåligt.Funktionen har inte använts för att träna modellen.Efter körning av versionenDataläckage
Låg permutationsbetydelseFunktionen har liten, eller ingen, påverkan på modellens prognoser. Tas dessa funktioner bort förbättras modellens prestanda då statistiskt brus minskas.Funktionen har inte använts för att träna modellen.Efter körning av versionenFörstå permutationsbetydelse
Stark korrelationFunktionen har stark korrelation med en eller flera andra funktioner i experimentet. Att ha funktioner med stark korrelation med varandra sänker modellen prestanda.Funktionen har inte använts för att träna modellen. Funktionen som den har stark korrelation till har inte släppts på grund av stark korrelation men kan ha släppts av annan anledning, som låg permutationsbetydelse.Efter körning av versionenKorrelation

Insikter om prognostisering av tidsserier

Datasetinsikter – Prognostisering av tidsserier
InsiktBetydelseKonsekvenser för konfigurationenNär insikten har fastställtsYtterligare referenser
Index över möjliga datumFunktionen kan eventuellt användas som ett datumindex för tidsserieexperimentet.

Om det används som ett tidsseriedatumindex, kan data i kolumnen påverka aspekter av tidsseriekonfigurationen, till exempel hur långt in i framtiden du kan prognostisera.

Värden i datumindexet måste öka med varje rad eller unikt gruppvärde med ett fast tidsintervall.

Före körning av versionen

Arbeta med tidsserieexperiment

Datumindex

Var den här sidan till hjälp för dig?

Om du stöter på några problem med den här sidan eller innehållet på den, t.ex. ett stavfel, ett saknat steg eller ett tekniskt fel – meddela oss!