Gå till huvudinnehåll Gå till ytterligare innehåll

Analysera modeller

Qlik Predict ger en omfattande visuell möjlighet att analysera modellerna som du tränar i ditt experiment. Du kan analysera viktiga modellmätvärden med ett enkelt gränssnitt som har autogenererade rekommendationer, sammanfattningar och visualiseringar. För mer detaljerad analys och jämförelse kan du använda inbäddad analys.

Innan du börjar

Innan du analyserar modeller kan det vara bra att ha en grundförståelse för koncepten för modellgranskning. Det inkluderar modellpoäng, funktionsbetydelse och algoritmer.

Se Förstå koncept för modellgranskning för information.

Snabbanalys

Med snabbanalys kan du snabbt få förståelse för hur modellträningen gick och för kvaliteten på de resulterande modellerna. Du kan också granska vilka modeller som rekommenderas till dig baserat på gemensamma krav.

Innan vi dyker ner i analys rekommenderar vi att du öppnar fliken Data där du ser hur träningsdata har hanterats. Det kan vara viktigt eftersom funktioner kan ha identifierats som inte användbara i versionen.

Öppna fliken Modeller i experimentet för en översikt över träningsresultaten. Du kan snabbt jämföra modellerna och identifiera de bästa. Information du ser på fliken beror på om du använder Intelligent modelloptimering samt problemtyp för experimentet.

Mer information finns här:

Modelljämförelse

Använd inbäddad analys för interaktiva, djupgående jämförelser av dina modeller. På fliken Jämför kan du göra dessa jämförelser.

Under modelljämförelse kan du:

  • Jämföra all tillgänglig modellmetrik för alla modeller.

  • Visa och jämföra träning och undantagna poäng för alla modeller.

  • Jämföra hyperparametervärden för alla modeller.

Se Jämförelse av modeller för en fullständig guide.

Detaljerad analys

På fliken Analysera i experimentet kan du göra detaljerad analys av en specifik modell.. Detaljerad analys görs med inbäddad analys. Du kan interaktivt filtrera data för att få bättre förståelse för modellprestanda för specifika kluster av data.

Genom detaljerad modellanalys kan du identifiera problem som orsakas av träningsdata och få mer information om modellens styrkor och svagheter-

Se Utföra detaljerad modellanalys för en fullständig guide.

Hämta träningsrapporter

Om du vill ha mer information kan du hämta träningsrapporter för modellerna i ditt experiment. En träningsrapport ger en djupgående sammanfattning av hur en modell tränades, med omfattande information om förbehandling, omvandling av funktioner, versionering av experiment och modellmätvärden. Träningsrapporter exporteras direkt till din lokala dator.

Mer information finns i Hämta ML-träningsrapporter.

Nästa steg

Dina nästa steg kan bero på hur du optimerar dina modeller.

Intelligent modelloptimering skapar i bästa fall en modell som är klar att distribuera med minimal eller ingen ytterligare förfining. Kvaliteten på modellerna beror fortfarande på kvaliteten på dina träningsdata, din experimentkonfiguration och eventuella krav specifika för ditt prognostiserade användningsfall . När du har analyserat modellerna och åtgärdat eventuella problem med datakvalitet eller experimentkonfiguration är det dags att distribuera den bästa modellen.

Om du identifierar ytterligare problem när du har kört intelligent modelloptimering eller om du har stängt av intelligent modelloptimering kan du manuellt konfigurera nya versioner av experimentet för att förbättra resulterande modeller.

Exempel på steg för att förfina är bland annat:

  • Slå på intelligent optimering efter att börjat utan den.

  • Stänga av intelligent optimering efter att kört en version med. Det ger möjlighet till finjusteringar av konfigurationen vid behov.

  • Ändra eller uppdatera träningsdata.

  • Ändra funktioner som ingår.

  • Ändra hantering av funktionsdata (exempelvis ändra funktionstyp för en funktion).

När du har nått önskade resultat kan du distribuera en eller flera modeller. Mer information finns här:

Var den här sidan till hjälp för dig?

Om du stöter på några problem med den här sidan eller innehållet på den, t.ex. ett stavfel, ett saknat steg eller ett tekniskt fel – meddela oss!