Propriétés du tFileInputParquet pour Apache Spark Batch
Ces propriétés sont utilisées pour configurer le tFileInputParquet s'exécutant dans le framework de Jobs Spark Batch.
Le composant tFileInputParquet Spark Batch appartient à la famille Fichier.
Le composant de ce framework est disponible dans tous les produits Talend avec Big Data nécessitant une souscription et dans Talend Data Fabric.
Basic settings
Define a storage configuration component |
Sélectionnez le composant de configuration à utiliser pour fournir les informations de configuration pour la connexion au système de fichiers cible, comme HDFS. Si vous laissez cette case décochée, le système de fichiers cible est le système local. Le composant de configuration à utiliser doit se trouver dans le même Job. Par exemple, si vous avez ajouté un composant tHDFSConfiguration dans votre Job, vous pouvez le sélectionner pour écrire le résultat dans un système HDFS donné. |
Property type |
Peut être Built-In ou Repository. |
Built-In : aucune propriété n'est stockée de manière centrale. |
|
Repository : Sélectionnez le fichier dans lequel sont stockées les propriétés du composant. Les propriétés sont stockées centralement sous le nœud Hadoop Cluster de la vue Repository. Les champs suivants sont alors préremplis à l'aide des données collectées. Pour plus d'informations concernant le nœud Hadoop Cluster, consultez Gérer les métadonnées Hadoop. |
|
Schema et Edit Schema |
Un schéma est une description de lignes. Il définit le nombre de champs (colonnes) à traiter et à passer au composant suivant. Lorsque vous créez un Job Spark, évitez le mot réservé line lors du nommage des champs. Créez le schéma en cliquant sur le bouton Edit Schema. Si le schéma est en mode Repository, trois options sont disponibles :
Ce composant ne supporte ni le type Object, ni le type List. Spark déduit automatiquement les types de données pour les colonnes d'un schéma PARQUET. Dans un Job Talend pour Apache Spark, le type Date est déduit et stocké en tant que int96. Ce composant offre la fonction de schéma dynamique. Cela vous permet de récupérer des colonnes inconnues de fichiers sources ou de copier des lots de colonnes d'une source sans avoir à mapper chaque colonne individuellement. Pour plus d'informations concernant les schémas dynamiques, consultez Schéma dynamique. Cette fonctionnalité de schéma dynamique est conçue pour permettre de récupérer des colonnes inconnues d'une table. Il est recommandé de l'utiliser uniquement à cet effet et non pour créer des tables. |
Built-in : le schéma est créé et conservé localement pour ce composant seulement. |
|
Repository : le schéma existe déjà et est stocké dans le Repository. Ainsi, il peut être réutilisé dans des Jobs et projets. |
|
Folder/File |
Parcourez votre système ou saisissez le chemin d'accès aux données à utiliser dans le système de fichiers. Si le chemin d'accès défini pointe vers un dossier, ce composant lit tous les fichiers stockés dans le dossier, par exemple /user/talend/in. Si les sous-dossiers existent, ils sont automatiquement ignorés, sauf si vous définissez la propriété spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive à true dans la table Advanced properties, dans l'onglet Spark configuration.
Si vous souhaitez spécifier plusieurs fichiers ou dossiers dans ce champ, séparez les chemins à l'aide d'une virgule (,). Le bouton pour parcourir votre système ne fonctionne pas en mode Local de Spark. Si vous utilisez les autres modes Yarn de Spark supportés par le Studio Talend avec votre distribution, assurez-vous d'avoir correctement configuré la connexion dans un composant de connexion dans le même Job. Utilisez le composant de configuration relatif au système de fichiers à utiliser. |
Paramètres avancés
Read binary as string |
Cochez cette case pour configurer spark.sql.parquet.binaryAsString à true, lorsque cela est nécessaire. |
Merge schema |
Cochez cette case pour permettre au Studio Talend de fusionner plusieurs fichiers Parquet avec plusieurs schémas pouvant être mutuellement compatibles. Pour plus d'informations, consultez Schema Merging (en anglais) dans la documentation Spark officielle. |
Read dates in local timezone | Cochez cette case pour utiliser le fuseau horaire local de votre session Spark. Si vous laissez cette case décochée, le fuseau horaire UTC est utilisé. |
Utilisation
Règle d'utilisation |
Ce composant est utilisé en tant que composant de début et nécessite un lien de sortie. Ce composant, ainsi que la Palette Spark Batch à laquelle il appartient, ne s'affiche que lorsque vous créez un Job Spark Batch. Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données. |
Connexion à Spark |
Dans l'onglet Spark Configuration de la vue Run, définissez la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers .jar sont transférés afin que Spark puisse accéder à ces fichiers :
Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie. |