Propriétés du tFileOutputXML pour Apache Spark Batch
Ces propriétés sont utilisées pour configurer le tFileOutputXML s'exécutant dans le framework de Jobs Spark Batch.
Le composant tFileOutputXML Spark Batch appartient aux familles Fichier et XML.
Le composant de ce framework est disponible dans tous les produits Talend avec Big Data nécessitant une souscription et dans Talend Data Fabric.
Basic settings
Define a storage configuration component |
Sélectionnez le composant de configuration à utiliser pour fournir les informations de configuration pour la connexion au système de fichiers cible, comme HDFS. Si vous laissez cette case décochée, le système de fichiers cible est le système local. Le composant de configuration à utiliser doit se trouver dans le même Job. Par exemple, si vous avez ajouté un composant tHDFSConfiguration dans votre Job, vous pouvez le sélectionner pour écrire le résultat dans un système HDFS donné. |
Property type |
Peut être Built-In ou Repository. |
|
Built-In : aucune propriété n'est stockée de manière centrale. |
Cliquez sur cette icône pour ouvrir l'assistant de connexion à la base de données et stocker les paramètres de connexion configurés dans la vue Basic settings du composant. Pour plus d'informations concernant la configuration et le stockage des paramètres de connexion à la base de données, consultez Centraliser des métadonnées de base de données. |
|
|
Repository : Sélectionnez le fichier dans lequel sont stockées les propriétés du composant. Les propriétés sont stockées centralement sous le nœud Hadoop Cluster de la vue Repository. Les champs suivants sont alors pré-remplis à l'aide des données collectées. Pour plus d'informations concernant le nœud Hadoop Cluster, consultez Gérer les métadonnées Hadoop. |
Marqueur de ligne |
Spécifiez la balise entourant les données et la structure de chaque ligne. |
Schema et Edit Schema |
Un schéma est une description de lignes. Il définit le nombre de champs (colonnes) à traiter et à passer au composant suivant. Lorsque vous créez un Job Spark, évitez le mot réservé line lors du nommage des champs. Créez le schéma en cliquant sur le bouton Edit Schema. Si le schéma est en mode Repository, trois options sont disponibles :
|
|
Built-in : le schéma est créé et conservé localement pour ce composant seulement. |
|
Repository : le schéma existe déjà et est stocké dans le Repository. Ainsi, il peut être réutilisé dans des Jobs et projets. |
Folder |
Parcourez votre système ou saisissez le chemin d'accès aux données à utiliser dans le système de fichiers. Ce chemin d'accès doit pointer vers un dossier plutôt que vers un fichier. Le bouton pour parcourir votre système ne fonctionne pas en mode Local de Spark. Si vous utilisez les autres modes Yarn de Spark supportés par le Studio Talend avec votre distribution, assurez-vous d'avoir correctement configuré la connexion dans un composant de connexion dans le même Job. Utilisez le composant de configuration relatif au système de fichiers à utiliser. |
Action |
Sélectionnez une opération pour l'écriture des données : Create : créer un fichier et écrire les données dedans. Overwrite : écraser le fichier existant dans le répertoire spécifié dans le champ Folder. L'ordre des lignes n'est pas garanti avec ce composant, lorsque vous souhaitez les trier. |
Compress the data |
Cochez la case Compress the data afin de compresser les données de sortie. |
Advanced settings
Balises racine |
Spécifiez une ou plusieurs balise(s) racine pour entourer la structure du fichier de sortie ainsi que les données. La balise racine par défaut est root. |
Output format |
Définissez le format de sortie.
Note InformationsRemarque :
Si la même colonne est sélectionnée dans la table Output format en tant qu'attribut et dans le paramètre Use dynamic grouping pour le regroupement dynamique, seul le paramètre de regroupement dynamique est pris en compte pour cette colonne. Use schema column name : par défaut, cette case est cochée pour toutes les colonnes, afin que les libellés des colonnes du schéma d'entrée soient utilisés comme balises pour entourer les données. Si vous souhaitez utiliser une balise différente de celle du schéma d'entrée pour une colonne, décochez cette case pour cette colonne et spécifiez un libellé de balise entre guillemets, dans le champ Label. |
Utiliser le regroupement dynamique |
Cochez cette case si vous souhaitez regrouper dynamiquement les colonnes de sortie. Cliquez sur le bouton [+] pour ajouter un critère de regroupement dans la table Group by. Column : sélectionnez une colonne à utiliser comme élément pour entourer les lignes de sortie groupées. Attribute label : saisissez entre guillemets un attribut de libellé pour l'élément entourant le groupe. |
Custom encoding |
Sélectionnez l'encodage à partir de la liste ou sélectionnez Custom et définissez-le manuellement. Ce champ est obligatoire pour la manipulation des données de base de données. Les encodages supportés dépendent de la JVM que vous utilisez. Pour plus d'informations, consultez https://docs.oracle.com. |
Séparateur avancé (pour les nombres) |
Cochez cette option pour modifier les séparateurs utilisés pour les nombres : Thousands separator : définissez le séparateur utilisé pour les milliers. Decimal separator : définissez le séparateur utilisé pour les décimaux. |
Use local timezone for date | Cochez cette case pour utiliser la date locale de la machine sur laquelle votre Job est exécuté. Si vous ne cochez pas cette case, UTC est automatiquement utilisé pour formater les données de type Date. |
Utilisation
Règle d'utilisation |
Ce composant est utilisé en tant que composant de fin et requiert un lien d'entrée. Ce composant, ainsi que la Palette Spark Batch à laquelle il appartient, ne s'affiche que lorsque vous créez un Job Spark Batch. Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données. |
Connexion à Spark |
Dans l'onglet Spark Configuration de la vue Run, définissez la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers .jar sont transférés afin que Spark puisse accéder à ces fichiers :
Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie. |