Accéder au contenu principal Passer au contenu complémentaire

Propriétés du tFileInputJSON pour Apache Spark Batch

Ces propriétés sont utilisées pour configurer le tFileInputJSON s'exécutant dans le framework de Jobs Spark Batch.

Le composant tFileInputJSON Spark Batch appartient à la famille Fichier.

Le composant de ce framework est disponible dans tous les produits Talend avec Big Data nécessitant une souscription et dans Talend Data Fabric.

Basic settings

Define a storage configuration component

Sélectionnez le composant de configuration à utiliser pour fournir les informations de configuration pour la connexion au système de fichiers cible, comme HDFS.

Si vous laissez cette case décochée, le système de fichiers cible est le système local.

Le composant de configuration à utiliser doit se trouver dans le même Job. Par exemple, si vous avez ajouté un composant tHDFSConfiguration dans votre Job, vous pouvez le sélectionner pour écrire le résultat dans un système HDFS donné.

Property type

Peut être Built-In ou Repository.

 

Built-In : aucune propriété n'est stockée de manière centrale.

 

Repository : Sélectionnez le fichier dans lequel sont stockées les propriétés du composant.

Les champs suivants sont alors pré-remplis à l'aide des données collectées.

Pour plus d'informations concernant le nœud File Json, consultez Centraliser les métadonnées d'un fichier JSON.

Schema et Edit Schema

Un schéma est une description de lignes. Il définit le nombre de champs (colonnes) à traiter et à passer au composant suivant. Lorsque vous créez un Job Spark, évitez le mot réservé line lors du nommage des champs.

Créez le schéma en cliquant sur le bouton Edit Schema. Si le schéma est en mode Repository, trois options sont disponibles :

  • View schema : sélectionnez cette option afin de voir uniquement le schéma.

  • Change to built-in property : sélectionnez cette option pour passer le schéma en mode Built-In et effectuer des modifications locales.

  • Update repository connection : sélectionnez cette option afin de modifier le schéma stocké dans le référentiel et décider de propager ou non les modifications à tous les Jobs.

    Si vous souhaitez propager les modifications uniquement au Job courant, cliquez sur No et sélectionnez à nouveau la métadonnée du schéma dans la fenêtre Repository Content.

 

Built-in : le schéma est créé et conservé localement pour ce composant seulement.

 

Repository : le schéma existe déjà et est stocké dans le Repository. Ainsi, il peut être réutilisé dans des Jobs et projets.

Read by

Sélectionnez un moyen d'extraire les données JSON du fichier.

  • Xpath : extrait les données JSON en se basant sur la requête XPath.

  • JsonPath : extrait les données JSON en se basant sur la requête JSONPath. Il est recommandé de lire les données via JSONPath afin d'obtenir de meilleures performances.

Dossier/Fichier

Parcourez votre système ou saisissez le chemin d'accès aux données à utiliser dans le système de fichiers.

Si le chemin saisi pointe vers un dossier, tous les fichiers de ce dossier seront lus.

Si le fichier à lire est un fichier compressé, saisissez son nom et son extension, puis tFileInputJSON décompresse automatiquement le fichier lors de l'exécution. Les formats de compression, ainsi que les extensions correspondantes, sont :

  • DEFLATE : *.deflate

  • gzip : *.gz

  • bzip2 : *.bz2

  • LZO : *.lzo

Le bouton pour parcourir votre système ne fonctionne pas en mode Local de Spark. Si vous utilisez les autres modes Yarn de Spark supportés par le Studio Talend avec votre distribution, assurez-vous d'avoir correctement configuré la connexion dans un composant de connexion dans le même Job. Utilisez le composant de configuration relatif au système de fichiers à utiliser.

Use S3 Select

Cochez cette case pour utiliser S3 Select et améliorer les performances de votre requête. Vous devez configurer les paramètres suivants, dans les champs qui correspondent :
  • Type : sélectionnez le format JSON entre Lines et Document, dans la liste déroulante.
  • Use GZIP compression : cochez cette case pour utiliser la compression GZIP sur vos fichiers.

Cette case est disponible uniquement lorsque vous utilisez un composant tS3Configuration comme composant de stockage et lorsque vous exécutez votre Job avec Spark Universal en mode YARN cluster (avec un cluster Amazon EMR) ou en mode Databricks.

Cette option est disponible uniquement si vous avez installé la mise à jour mensuelle 8.0.1-R2022-12 du Studio Talend ou une plus récente fournie par Talend. Pour plus d'informations, contactez votre administrateur ou administratrice.

Arrêter en cas d''erreur

Cochez cette case pour arrêter l'exécution du Job lorsqu'une erreur survient.

Décochez la case pour ignorer les lignes en erreur et terminer le traitement des lignes sans erreur. Lorsque les erreurs sont ignorées, vous pouvez récupérer les lignes en erreur en utilisant la connexion Row > Reject.

Loop Jsonpath query

Saisissez le JSONPath ou le XPath du nœud sur lequel se base la boucle.

Si vous avez sélectionné Xpath dans la liste déroulante Read by, le champ Loop Xpath query s'affiche.

Mapping

Renseignez cette table pour mapper les colonnes définies dans le schéma aux nœuds JSON correspondants.

  • Column : les cellules de la colonne Column sont automatiquement renseignées avec le nom des colonnes définies dans le schéma.

  • Json query/JSONPath query : spécifie le nœud JSONPath contenant les données souhaitées. Pour plus d'informations concernant les expressions JSONPath, consultez http://goessner.net/articles/JsonPath/ (en anglais).

    Cette colonne est disponible uniquement lorsque l'option JsonPath est sélectionnée dans la liste Read By.

  • XPath query : spécifie le nœud XPath contenant les données souhaitées.

    Cette colonne est disponible uniquement lorsque l'option Xpath est sélectionnée dans la liste Read By.

  • Get Nodes : cochez cette case pour extraire les données JSON de tous les nœuds ou cochez la case à côté d'un nœud spécifique pour en extraire les données.

    Cette colonne est disponible uniquement lorsque l'option Xpath est sélectionnée dans la liste Read By.

Advanced settings

Set minimum partitions

Cochez cette case pour contrôler le nombre de partitions à créer à partir des données d'entrée, pour ignorer le comportement de partitionnement par défaut de Spark.

Dans le champ qui s'affiche, saisissez, sans guillemet, le nombre minimal de partitions à obtenir.

Lorsque vous souhaitez contrôler le nombre de partitions, vous pouvez généralement configurer autant de partitions qu'il y a d'exécuteurs pour un traitement en parallèle, tout en gardant à l'esprit la mémoire disponible et l'utilisation de votre réseau par le transfert de données.

Advanced separator (for number)

Cochez cette case pour modifier le séparateur utilisé pour les nombres. Par défaut, le séparateur des milliers est une virgule (,) et le séparateur décimal est un point (.).

Encoding

Il est possible de rencontrer des problèmes d'encodage lorsque vous traitez les données stockées. Dans ce cas, cochez cette case pour afficher la liste Encoding.

Sélectionnez l'encodage à partir de la liste ou sélectionnez Custom et définissez-le manuellement.

Utilisation

Règle d'utilisation

Ce composant est utilisé en tant que composant de début et nécessite un lien de sortie.

Ce composant, ainsi que la Palette Spark Batch à laquelle il appartient, ne s'affiche que lorsque vous créez un Job Spark Batch.

Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données.

Connexion à Spark

Dans l'onglet Spark Configuration de la vue Run, définissez la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers .jar sont transférés afin que Spark puisse accéder à ces fichiers :
  • Yarn mode (Yarn Client ou Yarn Cluster) :
    • Lorsque vous utilisez Google Dataproc, spécifiez un bucket dans le champ Google Storage staging bucket de l'onglet Spark configuration.

    • Lorsque vous utilisez HDInsight, spécifiez le blob à utiliser pour le déploiement du Job, dans la zone Windows Azure Storage configuration de l'onglet Spark configuration.

    • Lorsque vous utilisez Altus, spécifiez le bucket S3 ou le stockage Azure Data Lake Storage (aperçu technique) pour le déploiement du Job, dans l'onglet Spark configuration.
    • Lorsque vous utilisez des distributions sur site (on-premises), utilisez le composant de configuration correspondant au système de fichiers utilisé par votre cluster. Généralement, ce système est HDFS et vous devez utiliser le tHDFSConfiguration.

  • Standalone mode : utilisez le composant de configuration correspondant au système de fichiers que votre cluster utilise, comme le tHDFSConfiguration Apache Spark Batch ou le tS3Configuration Apache Spark Batch.

    Si vous utilisez Databricks sans composant de configuration dans votre Job, vos données métier sont écrites directement dans DBFS (Databricks Filesystem).

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.

Cette page vous a-t-elle aidé ?

Si vous rencontrez des problèmes sur cette page ou dans son contenu – une faute de frappe, une étape manquante ou une erreur technique – faites-le-nous savoir.