メイン コンテンツをスキップする 補完的コンテンツへスキップ

実験のトレーニング

機械学習モデルのトレーニングとは、アルゴリズムにデータをフィードし、データのパターンを学習させることです。データの最初のトレーニングの後、生成されたメトリクスからモデルについて多くのことを学ぶことができます。問題なく展開できるモデルを完成させるまでには、改良と再トレーニングを何度も繰り返す必要があります。

要件と権限

ML 実験を操作するためのユーザー要件については、「実験の作業」を参照してください。

実験のトレーニングを実行する

  1. 新しい実験を作成して構成するか、カタログから実験を開きます。
  2. 画面右下の [実験を実行] をクリックして、トレーニングを開始します。

    (以降のバージョンでは、ボタンは [Run v2] (v2 を実行)、[Run v3] (v3 を実行)などと表示されます)

トレーニングが完了すると、モデル メトリクスを使用できるようになります。これで、モデルを確認して改良する準備が整いました。詳細については、「モデルのレビュー」および「モデルの改良」を参照してください。

トレーニング ジョブの管理

テナント管理者は、Administration アクティビティ センターから実験のトレーニング ジョブを停止またはキャンセルできます。詳細については、「Qlik AutoML の管理」を参照してください。

通知の構成

1 つのモデルのトレーニングが完了したとき、および実験バージョンのすべてのモデルのトレーニングが完了したときに、通知を受け取ることができます。詳細については、「AutoML の通知の構成Qlik 」を参照してください。

詳細を見る

このページは役に立ちましたか?

このページまたはコンテンツに、タイポ、ステップの省略、技術的エラーなどの問題が見つかった場合は、お知らせください。改善に役立たせていただきます。