メイン コンテンツをスキップする 補完的コンテンツへスキップ

Apache Spark StreamingのtNormalizeプロパティ

これらのプロパティは、Spark Streamingジョブのフレームワークで実行されているtNormalizeを設定するために使われます。

Spark StreamingtNormalizeコンポーネントは、変換処理ファミリーに属しています。

このコンポーネントは、Talend Real Time Big Data PlatformおよびTalend Data Fabricで利用できます。

基本設定

[Schema] (スキーマ)[Edit schema] (スキーマを編集)

スキーマとは行の説明のことです。処理して次のコンポーネントに渡すフィールド(カラム)数を定義します。Sparkジョブを作成する場合、フィールドの命名時は予約語のlineを避けます。

スキーマを変更するには[Edit schema] (スキーマを編集)をクリックします。現在のスキーマがリポジトリータイプの場合は、3つのオプションを利用できます。

  • [View schema] (スキーマを表示): スキーマのみを表示する場合は、このオプションを選択します。

  • [Change to built-in property] (組み込みのプロパティに変更): ローカルで変更を行うためにスキーマを組み込みに変更する場合は、このオプションを選択します。

  • [Update repository connection] (リポジトリー接続をアップデート): リポジトリーに保存されているスキーマに変更を加え、変更後にそのコンテンツをすべてのジョブにプロパゲートするかどうかを決める場合は、このオプションを選択します。変更を現在のジョブにのみ反映する場合は、変更後、[No] (いいえ)を選択し、[Repository Content] (リポジトリーコンテンツ)ウィンドウで再びこのスキーマのメタデータを選択します。

 

[Built-in] (組み込み): そのコンポーネントに対してのみスキーマを作成し、ローカルに保管します。

 

[Repository] (リポジトリー): スキーマは作成済みで、リポジトリーに保管されています。さまざまなプロジェクトやジョブデザインで再利用できます。

[Column to normalize] (正規化するカラム)

正規化のベースとなる入力フローからカラムを選択します。

[Item separator] (項目区切り)

入力フローのデータを区切るセパレータを入力します。

情報メモ注:

項目区切りは正規表現に基づいています。したがって、"." (正規表現用の特殊文字)は、ここでは避けるか、または注意して使用する必要があります。

詳細設定

[Use CSV parameters] (CSVパラメーターの使用)

このチェックボックスをオンにすると、[escape mode] (エスケープモード)[enclosure] (エンクロージャ)文字などCSV固有のパラメーターが含まれます。

[Discard the trailing empty strings] (後続の空の文字列を破棄)

このチェックボックスをオンにすると、後続の空の文字列が破棄されます。

[Trim resulting values] (出力される値をトリム)

このチェックボックスをオンにすると、出力されるデータから先行ホワイトスペースおよび後続ホワイトスペースがトリムされます。

情報メモ注:

[Discard the trailing empty string] (後続の空の文字列を破棄)[Trim resulting values] (出力される値をトリム)の両方のチェックボックスをオンにすると、前者が先に実行されます。

使用方法

使用ルール

このコンポーネントは、中間ステップとして使用されます。

このコンポーネントは、所属するSpark Streamingのコンポーネントのパレットと共に、Spark Streamingジョブを作成している場合にだけ表示されます。

特に明記していない限り、このドキュメントのシナリオでは、標準ジョブ、つまり従来の Talend データ統合ジョブだけを扱います。

[Spark Connection] (Spark接続)

[Run] (実行)ビューの[Spark configuration] (Spark設定)タブで、ジョブ全体でのSparkクラスターへの接続を定義します。また、ジョブでは、依存jarファイルを実行することを想定しているため、Sparkがこれらのjarファイルにアクセスできるように、これらのファイルの転送先にするファイルシステム内のディレクトリーを指定する必要があります。
  • Yarnモード(YarnクライアントまたはYarnクラスター):
    • Google Dataprocを使用している場合、[Spark configuration] (Spark設定)タブの[Google Storage staging bucket] (Google Storageステージングバケット)フィールドにバケットを指定します。

    • HDInsightを使用している場合、[Spark configuration] (Spark設定)タブの[Windows Azure Storage configuration] (Windows Azure Storage設定)エリアでジョブのデプロイメントに使用するブロブを指定します。

    • Altusを使用する場合は、[Spark configuration] (Spark設定)タブでジョブのデプロイにS3バケットまたはAzure Data Lake Storageを指定します。
    • Quboleを使用する場合は、ジョブにtS3Configurationを追加し、QuboleでS3システム内に実際のビジネスデータを書き込みます。tS3Configurationを使用しないと、このビジネスデータはQubole HDFSシステムに書き込まれ、クラスターをシャットダウンすると破棄されます。
    • オンプレミスのディストリビューションを使用する場合は、クラスターで使われているファイルシステムに対応する設定コンポーネントを使用します。一般的に、このシステムはHDFSになるため、tHDFSConfigurationを使用します。

  • [Standalone mode] (スタンドアロンモード): クラスターで使われているファイルシステム(tHDFSConfiguration Apache Spark BatchtS3Configuration Apache Spark Batchなど)に対応する設定コンポーネントを使用します。

    ジョブ内に設定コンポーネントがない状態でDatabricksを使用している場合、ビジネスデータはDBFS (Databricks Filesystem)に直接書き込まれます。

この接続は、ジョブごとに有効になります。

このページは役に立ちましたか?

このページまたはコンテンツにタイポ、ステップの省略、技術的エラーなどの問題が見つかった場合はお知らせください。