メイン コンテンツをスキップする 補完的コンテンツへスキップ

Apache Spark StreamingのtMapRStreamsInputプロパティ

これらのプロパティは、Spark Streamingジョブのフレームワークで実行されているtMapRStreamsInputを設定するために使われます。

Spark Streaming tMapRStreamsInputコンポーネントは、メッセージングファミリーに属しています。

このコンポーネントは、Talend Real Time Big Data PlatformおよびTalend Data Fabricで利用できます。

基本設定

[Schema] (スキーマ)[Edit schema] (スキーマを編集)

スキーマとは行の説明のことです。処理して次のコンポーネントに渡すフィールド(カラム)数を定義します。Sparkジョブを作成する場合、フィールドの命名時は予約語のlineを避けます。

このコンポーネントのスキーマは読み取り専用です。メッセージプロデューサーから送信されたメッセージを保管します。

[Output type] (出力タイプ)

次のコンポーネントに送信するデータのデータ型を選択します。

tMapRStreamsInputはMapR Streams byte[]メッセージをジョブが処理する文字列に自動変換できるので、通常は[String] (文字列)の使用が推奨されます。ただし、Protobufなど、tMapRStreamsInputで認識できないMapR Streamsメッセージ形式の場合は、[byte] (バイト)を選択し、次にtJavaRowなどのカスタムコードのコンポーネントを使って、同じジョブの他のコンポーネントがこれらのメッセージを処理できるようにメッセージを文字列にデシリアライズできます。

トピック名

tMapRStreamsInputがメッセージフィードを受け取るトピック名を入力します。このトピックが属するストリームの名前を入力する必要があります。構文はpath_to_the_stream:topic_nameです。

[Starting from] (開始点)

消費されるトピックメッセージの開始ポイントを選択します。

MapR Streamsでは、メッセージの増加するID番号はoffsetと呼ばれます。新しいコンシューマーグループが開始すると、このリストから[beginning] (最初から)を選択してトピック全体のうちで最も古いメッセージから消費を開始するか、[latest] (最後から)を選択して新しいメッセージを待機できます。

コンシューマグループは、オフセットコミットされた開始のメッセージのみを考慮します。

各コンシューマーグループには、消費したメッセージの位置を記憶するための独自のカウンターがあります。このため、コンシューマーグループが特定のトピックのメッセージの消費を開始すると、コンシューマグループはトピック全体ではなく、このグループが消費を停止する位置に関してのみ最新のメッセージを認識します。この原則に基づいて、次の動作が予想されます。

  • 既存のコンシューマグループを再開する場合、このオプションは、コミットされた開始点がまだない場合のみ、このコンシューマグループの開始点を決定します。それ以外の場合、このコンシューマグループは、このコミットされた開始点から開始します。たとえば、トピックに100のメッセージがあるとします。既存のコンシューマグループが50のメッセージを正しく処理し、それらのオフセットをコミットした場合、同じコンシューマグループはオフセット51から再開します。

  • 新しいコンシューマーグループを作成するか、既存のコンシューマーグループをリセットした場合(どちらの場合も、このグループがこのトピックのメッセージを消費していないことを意味します)、最新のグループから開始すると、この新しいグループが開始し、オフセット101を待機します。

各Kafaパーティションから読み取る秒当たりのレコード件数を設定

この数値を二重引用符で囲んで入力し、処理のために送信される各バッチのサイズを制限します。

たとえば、100を入力し、Spark設定タブで定義したバッチ値が2秒の場合、各バッチのパーティションからのサイズは200メッセージです。

このチェックボックスをオフにした場合、コンポーネントは、1秒間で単一のバッチに全メッセージを読み取ろうとしますが、大量のメッセージのためにジョブが応答しなくなる可能性があります。

詳細設定

コンシューマープロパティ

カスタマイズする必要があるMapR Streamsコンシューマープロパティをこのテーブルに追加します。

このテーブルで定義できるコンシューマプロパティの詳細は、MapR StreamsのドキュメンテーションでMapR Streamsの概要 (英語のみ)をご覧ください。

[Custom encoding] (カスタムエンコーディング)

保管データを処理する際、エンコーディングの問題が発生することがあります。このような場合は、チェックボックスをオンにして[Encoding] (エンコーディング)リストを表示します。

このエンコーディングは、tMapRStreamsInputが入力メッセージをデコードするために使います。

使用方法

使用ルール

このコンポーネントは、開始コンポーネントとして使用され、出力リンクを必要とします。

[Spark Connection] (Spark接続)

[Run] (実行)ビューの[Spark configuration] (Spark設定)タブで、ジョブ全体でのSparkクラスターへの接続を定義します。また、ジョブでは、依存jarファイルを実行することを想定しているため、Sparkがこれらのjarファイルにアクセスできるように、これらのファイルの転送先にするファイルシステム内のディレクトリーを指定する必要があります。
  • Yarnモード(YarnクライアントまたはYarnクラスター):
    • Google Dataprocを使用している場合、[Spark configuration] (Spark設定)タブの[Google Storage staging bucket] (Google Storageステージングバケット)フィールドにバケットを指定します。

    • HDInsightを使用している場合、[Spark configuration] (Spark設定)タブの[Windows Azure Storage configuration] (Windows Azure Storage設定)エリアでジョブのデプロイメントに使用するブロブを指定します。

    • Altusを使用する場合は、[Spark configuration] (Spark設定)タブでジョブのデプロイにS3バケットまたはAzure Data Lake Storageを指定します。
    • Quboleを使用する場合は、ジョブにtS3Configurationを追加し、QuboleでS3システム内に実際のビジネスデータを書き込みます。tS3Configurationを使用しないと、このビジネスデータはQubole HDFSシステムに書き込まれ、クラスターをシャットダウンすると破棄されます。
    • オンプレミスのディストリビューションを使用する場合は、クラスターで使われているファイルシステムに対応する設定コンポーネントを使用します。一般的に、このシステムはHDFSになるため、tHDFSConfigurationを使用します。

  • [Standalone mode] (スタンドアロンモード): クラスターで使われているファイルシステム(tHDFSConfiguration Apache Spark BatchtS3Configuration Apache Spark Batchなど)に対応する設定コンポーネントを使用します。

    ジョブ内に設定コンポーネントがない状態でDatabricksを使用している場合、ビジネスデータはDBFS (Databricks Filesystem)に直接書き込まれます。

この接続は、ジョブごとに有効になります。

前提条件

Talend Studio との操作を確実に行うには、Hadoopディストリビューションを適切にインストールする必要があります。以下のリストに、MapR関連の情報などを示します。

  • MapRクライアントは必ずStudioのあるマシンにインストールして、そのマシンのPATH変数にMapRクライアントライブラリーを追加します。MapRのドキュメンテーションによると、各OSバージョンに対応するMapRクライアントのライブラリーは、MAPR_INSTALL\ hadoop\hadoop-VERSION\lib\nativeにあります。たとえば、Windows版のライブラリーは、\lib\native\MapRClient.dllにあるMapRクライアントのjarファイルにあります。詳細は、MapRからhttp://www.mapr.com/blog/basic-notes-on-configuring-eclipse-as-a-hadoop-development-environment-for-mapr (英語のみ)をご覧ください。

    指定のライブラリーを追加しないと、no MapRClient in java.library.pathというエラーが発生する可能性があります。

  • たとえば、[Window] (ウィンドウ)メニューの[Preferences] (環境設定)ダイアログボックスにある[Run/Debug] (実行/デバッグ)ビューの[Job Run VM arguments] (ジョブ実行VMの引数)エリアで、-Djava.library.path引数を設定するために使われます。この引数により、そのMapRクライアントのネイティブライブラリーへのパスがStudioに渡されるので、サブスクリプションベースのユーザーはデータビューアーをフルに活用して、MapRに保存されたデータをStudioでローカルに表示できます。

Hadoopディストリビューションのインストール方法は、使用しているHadoopディストリビューションに対応するマニュアルをご覧ください。

このページは役に立ちましたか?

このページまたはコンテンツにタイポ、ステップの省略、技術的エラーなどの問題が見つかった場合はお知らせください。