メイン コンテンツをスキップする 補完的コンテンツへスキップ

Apache Spark BatchのtNLPPredictプロパティ

これらのプロパティは、Spark Batchジョブのフレームワークで実行されているtNLPPredictの設定で使用します。

Spark BatchtNLPPredictコンポーネントは、Natural Language Processingファミリーに属しています。

このフレームワーク内のコンポーネントは、ビッグデータ対応のTalend Platform製品すべて、およびTalend Data Fabricで利用できます。

基本設定

[Schema] (スキーマ)[Edit Schema] (スキーマを編集)

スキーマとは行の説明のことです。処理して次のコンポーネントに渡すフィールド(カラム)数を定義します。Sparkジョブを作成する場合、フィールドの命名時は予約語のlineを避けます。

ジョブで接続している先行コンポーネントからスキーマを取得するためには、[Sync columns] (カラムを同期)をクリックします。

スキーマを変更するには[Edit schema] (スキーマを編集)をクリックします。現在のスキーマがリポジトリータイプの場合は、3つのオプションを利用できます。

  • [View schema] (スキーマを表示): スキーマのみを表示する場合は、このオプションを選択します。

  • [Change to built-in property] (組み込みのプロパティに変更): ローカルで変更を行うためにスキーマを組み込みに変更する場合は、このオプションを選択します。

  • [Update repository connection] (リポジトリー接続をアップデート): リポジトリーに保存されているスキーマに変更を加え、変更後にそのコンテンツをすべてのジョブにプロパゲートするかどうかを決める場合は、このオプションを選択します。変更を現在のジョブにのみ反映する場合は、変更後、[No] (いいえ)を選択し、[Repository Content] (リポジトリーコンテンツ)ウィンドウで再びこのスキーマのメタデータを選択します。

読み取り専用カラムが出力スキーマに追加されます。

  • outputsent: このカラムには、ラベル付けされたテキストが含まれています。

  • outputlabel: このカラムには、ラベルが含まれています。

 

[Built-in] (組み込み): そのコンポーネントに対してのみスキーマを作成し、ローカルに保管します。

 

[Repository] (リポジトリー): スキーマは作成済みで、リポジトリーに保管されています。さまざまなプロジェクトやジョブデザインで再利用できます。

[Define a storage configuration component] (ストレージ設定コンポーネントを定義)

HDFSなどのターゲットファイルシステムへの接続の設定情報を提供するために使用する設定コンポーネントを選択します。

このチェックボックスをオフにすると、ターゲットファイルシステムはローカルシステムになります。

使用する接続設定は同じジョブ内にあることが必要です。たとえば、tHDFSConfigurationコンポーネントをジョブにドロップした場合は、このコンポーネントを選択して、所定のHDFSシステム内で結果を書き込むことができます。

[Original text column] (元のテキストカラム)

ラベル付けするカラムを入力スキーマから選択します。

[Token column] (トークンカラム)

機能の構築と予測に使用するカラムを選択します。

[Additional Features] (追加機能)

[Additional feature template] (追加機能のテンプレート)に機能を追加するには、このチェックボックスをオンにします。

機能を追加する時に、順序は、モデルファイルを生成するTNLPModelコンポーネントで使用する追加機能と同じにします。

[NLP model path] (NLPモデルパス)

モデルファイルの取得先とするフォルダーへのパスを設定します。

モデルが単一ファイル内に保存されている場合は、[Use the model file] (モデルファイルの使用)チェックボックスをオンにして、モデルファイルへのパスを設定します。

たとえば、"/opt/model/<model_name>"のようになります。

特定のファイルシステム(S3またはHDFSなど)にモデルを保存する場合は、ジョブで対応するコンポーネントを使用し、コンポーネントの基本設定で[Define a storage configuration component] (ストレージ設定コンポーネントの定義)チェックボックスをオンにする必要があります。

参照用のボタンはSpark Localモードでは機能しません。お使いのディストリビューションでStudioがサポートしているその他のSpark Yarnモードを使用している場合は、同じジョブ内の設定コンポーネント(tHDFSConfigurationなど)で接続を正しく設定したことを確認する必要があります。使用されるファイルシステムに応じて設定コンポーネントを使用します。

使用方法

使用ルール

このコンポーネントは、中間ステップとして使用されます。

このコンポーネントは、所属するSpark Batchのコンポーネントのパレットと共に、Spark Batchジョブを作成している場合にだけ表示されます。

[Spark Batch Connection] (Spark Batch接続)

[Run] (実行)ビューの[Spark configuration] (Spark設定)タブで、ジョブ全体でのSparkクラスターへの接続を定義します。また、ジョブでは、依存jarファイルを実行することを想定しているため、Sparkがこれらのjarファイルにアクセスできるように、これらのファイルの転送先にするファイルシステム内のディレクトリーを指定する必要があります。
  • Yarnモード(YarnクライアントまたはYarnクラスター):
    • Google Dataprocを使用している場合、[Spark configuration] (Spark設定)タブの[Google Storage staging bucket] (Google Storageステージングバケット)フィールドにバケットを指定します。

    • HDInsightを使用している場合、[Spark configuration] (Spark設定)タブの[Windows Azure Storage configuration] (Windows Azure Storage設定)エリアでジョブのデプロイメントに使用するブロブを指定します。

    • Altusを使用する場合は、[Spark configuration] (Spark設定)タブでジョブのデプロイにS3バケットまたはAzure Data Lake Storageを指定します。
    • Quboleを使用する場合は、ジョブにtS3Configurationを追加し、QuboleでS3システム内に実際のビジネスデータを書き込みます。tS3Configurationを使用しないと、このビジネスデータはQubole HDFSシステムに書き込まれ、クラスターをシャットダウンすると破棄されます。
    • オンプレミスのディストリビューションを使用する場合は、クラスターで使われているファイルシステムに対応する設定コンポーネントを使用します。一般的に、このシステムはHDFSになるため、tHDFSConfigurationを使用します。

  • [Standalone mode] (スタンドアロンモード): クラスターで使われているファイルシステム(tHDFSConfiguration Apache Spark BatchtS3Configuration Apache Spark Batchなど)に対応する設定コンポーネントを使用します。

    ジョブ内に設定コンポーネントがない状態でDatabricksを使用している場合、ビジネスデータはDBFS (Databricks Filesystem)に直接書き込まれます。

この接続は、ジョブごとに有効になります。

このページは役に立ちましたか?

このページまたはコンテンツにタイポ、ステップの省略、技術的エラーなどの問題が見つかった場合はお知らせください。