Apache Spark BatchのtNLPPredictプロパティ
これらのプロパティは、Spark Batchジョブのフレームワークで実行されているtNLPPredictの設定で使用します。
Spark BatchのtNLPPredictコンポーネントは、Natural Language Processingファミリーに属しています。
このフレームワーク内のコンポーネントは、ビッグデータ対応のTalend Platform製品すべて、およびTalend Data Fabricで利用できます。
基本設定
[Schema] (スキーマ)と[Edit Schema] (スキーマを編集) |
スキーマとは行の説明のことです。処理して次のコンポーネントに渡すフィールド(カラム)数を定義します。Sparkジョブを作成する場合、フィールドの命名時は予約語のlineを避けます。 ジョブで接続している先行コンポーネントからスキーマを取得するためには、[Sync columns] (カラムを同期)をクリックします。 スキーマを変更するには[Edit schema] (スキーマを編集)をクリックします。現在のスキーマがリポジトリータイプの場合は、3つのオプションを利用できます。
読み取り専用カラムが出力スキーマに追加されます。
|
|
[Built-in] (組み込み): そのコンポーネントに対してのみスキーマを作成し、ローカルに保管します。 |
|
[Repository] (リポジトリー): スキーマは作成済みで、リポジトリーに保管されています。さまざまなプロジェクトやジョブデザインで再利用できます。 |
[Define a storage configuration component] (ストレージ設定コンポーネントを定義) |
HDFSなどのターゲットファイルシステムへの接続の設定情報を提供するために使用する設定コンポーネントを選択します。 このチェックボックスをオフにすると、ターゲットファイルシステムはローカルシステムになります。 使用する接続設定は同じジョブ内にあることが必要です。たとえば、tHDFSConfigurationコンポーネントをジョブにドロップした場合は、このコンポーネントを選択して、所定のHDFSシステム内で結果を書き込むことができます。 |
[Original text column] (元のテキストカラム) |
ラベル付けするカラムを入力スキーマから選択します。 |
[Token column] (トークンカラム) |
機能の構築と予測に使用するカラムを選択します。 |
[Additional Features] (追加機能) |
[Additional feature template] (追加機能のテンプレート)に機能を追加するには、このチェックボックスをオンにします。 機能を追加する時に、順序は、モデルファイルを生成するTNLPModelコンポーネントで使用する追加機能と同じにします。 |
[NLP model path] (NLPモデルパス) |
モデルファイルの取得先とするフォルダーへのパスを設定します。 モデルが単一ファイル内に保存されている場合は、[Use the model file] (モデルファイルの使用)チェックボックスをオンにして、モデルファイルへのパスを設定します。 たとえば、"/opt/model/<model_name>"のようになります。 特定のファイルシステム(S3またはHDFSなど)にモデルを保存する場合は、ジョブで対応するコンポーネントを使用し、コンポーネントの基本設定で[Define a storage configuration component] (ストレージ設定コンポーネントの定義)チェックボックスをオンにする必要があります。 参照用のボタンはSpark Localモードでは機能しません。お使いのディストリビューションでStudioがサポートしているその他のSpark Yarnモードを使用している場合は、同じジョブ内の設定コンポーネント(tHDFSConfigurationなど)で接続を正しく設定したことを確認する必要があります。使用されるファイルシステムに応じて設定コンポーネントを使用します。 |
使用方法
使用ルール |
このコンポーネントは、中間ステップとして使用されます。 このコンポーネントは、所属するSpark Batchのコンポーネントのパレットと共に、Spark Batchジョブを作成している場合にだけ表示されます。 |
[Spark Batch Connection] (Spark Batch接続) |
[Run] (実行)ビューの[Spark configuration] (Spark設定)タブで、ジョブ全体でのSparkクラスターへの接続を定義します。また、ジョブでは、依存jarファイルを実行することを想定しているため、Sparkがこれらのjarファイルにアクセスできるように、これらのファイルの転送先にするファイルシステム内のディレクトリーを指定する必要があります。
この接続は、ジョブごとに有効になります。 |