メイン コンテンツをスキップする 補完的コンテンツへスキップ

Apache Spark BatchのtLibraryLoadのプロパティ

これらのプロパティは、Spark Batchジョブのフレームワークで実行されているtLibraryLoadを設定するために使われます。

Spark BatchtLibraryLoadコンポーネントは、カスタムコードファミリーに属しています。

このフレームワーク内のコンポーネントは、ビッグデータ対応のTalend 製品すべて、およびTalend Data Fabricで使用できます。

基本設定

ライブラリー

[...]ボタンをクリックして、使用するライブラリをインポートできる[Module] (モジュール)ダイアログボックスを開きます。

詳細については、外部ライブラリーをインポートする (英語のみ)をご覧ください。

詳細設定

[Import] (インポート)

必要に応じて、Map/ReduceジョブのtJavaMRなどのコンポーネントの[Basic settings] (基本設定)タブのコード編集フィールドで使用する外部ライブラリーをインポートするために必要なJavaコードを入力します。

使用方法

使用ルール

このコンポーネントは、他のコンポーネントに接続せずに使用されます。

このコンポーネントは、所属するSpark Batchのコンポーネントのパレットと共に、Spark Batchジョブを作成している場合にだけ表示されます。

特に明記していない限り、このドキュメントのシナリオでは、標準ジョブ、つまり従来の Talend データ統合ジョブだけを扱います。

[Spark Connection] (Spark接続)

[Run] (実行)ビューの[Spark configuration] (Spark設定)タブで、ジョブ全体でのSparkクラスターへの接続を定義します。また、ジョブでは、依存jarファイルを実行することを想定しているため、Sparkがこれらのjarファイルにアクセスできるように、これらのファイルの転送先にするファイルシステム内のディレクトリーを指定する必要があります。
  • Yarnモード(YarnクライアントまたはYarnクラスター):
    • Google Dataprocを使用している場合、[Spark configuration] (Spark設定)タブの[Google Storage staging bucket] (Google Storageステージングバケット)フィールドにバケットを指定します。

    • HDInsightを使用している場合、[Spark configuration] (Spark設定)タブの[Windows Azure Storage configuration] (Windows Azure Storage設定)エリアでジョブのデプロイメントに使用するブロブを指定します。

    • Altusを使用する場合は、[Spark configuration] (Spark設定)タブでジョブのデプロイにS3バケットまたはAzure Data Lake Storageを指定します。
    • Quboleを使用する場合は、ジョブにtS3Configurationを追加し、QuboleでS3システム内に実際のビジネスデータを書き込みます。tS3Configurationを使用しないと、このビジネスデータはQubole HDFSシステムに書き込まれ、クラスターをシャットダウンすると破棄されます。
    • オンプレミスのディストリビューションを使用する場合は、クラスターで使われているファイルシステムに対応する設定コンポーネントを使用します。一般的に、このシステムはHDFSになるため、tHDFSConfigurationを使用します。

  • [Standalone mode] (スタンドアロンモード): クラスターで使われているファイルシステム(tHDFSConfiguration Apache Spark BatchtS3Configuration Apache Spark Batchなど)に対応する設定コンポーネントを使用します。

    ジョブ内に設定コンポーネントがない状態でDatabricksを使用している場合、ビジネスデータはDBFS (Databricks Filesystem)に直接書き込まれます。

この接続は、ジョブごとに有効になります。

制限事項

ライブラリーはローカルにロードされます。

このページは役に立ちましたか?

このページまたはコンテンツにタイポ、ステップの省略、技術的エラーなどの問題が見つかった場合はお知らせください。