メイン コンテンツをスキップする 補完的コンテンツへスキップ

Apache Spark BatchのtElasticSearchOutputプロパティ

これらのプロパティは、Spark Batchジョブのフレームワークで実行されているtElasticSearchOutputを設定するために使われます。

Spark BatchtElasticSearchOutputコンポーネントは、ElasticSearchファミリーに属しています。

このフレームワーク内のコンポーネントは、ビッグデータ対応のTalend 製品すべて、およびTalend Data Fabricで使用できます。

基本設定

[Schema] (スキーマ)[Edit schema] (スキーマを編集)

スキーマとは行の説明のことです。処理して次のコンポーネントに渡すフィールド(カラム)数を定義します。Sparkジョブを作成する場合、フィールドの命名時は予約語のlineを避けます。

 

[Built-in] (組み込み): そのコンポーネントに対してのみスキーマを作成し、ローカルに保管します。

 

[Repository] (リポジトリー): スキーマは作成済みで、リポジトリーに保管されています。さまざまなプロジェクトやジョブデザインで再利用できます。

 

スキーマを変更するには[Edit schema] (スキーマを編集)をクリックします。現在のスキーマがリポジトリータイプの場合は、3つのオプションを利用できます。

  • [View schema] (スキーマを表示): スキーマのみを表示する場合は、このオプションを選択します。

  • [Change to built-in property] (組み込みのプロパティに変更): ローカルで変更を行うためにスキーマを組み込みに変更する場合は、このオプションを選択します。

  • [Update repository connection] (リポジトリー接続をアップデート): リポジトリーに保存されているスキーマに変更を加え、変更後にそのコンテンツをすべてのジョブにプロパゲートするかどうかを決める場合は、このオプションを選択します。変更を現在のジョブにのみ反映する場合は、変更後、[No] (いいえ)を選択し、[Repository Content] (リポジトリーコンテンツ)ウィンドウで再びこのスキーマのメタデータを選択します。

[Use an existing configuration] (既存の設定を使用)

定義済みの接続の詳細を再利用する場合は、このチェックボックスをオンにして、[Component List] (コンポーネントリスト)ドロップダウンリストから、目的の接続コンポーネントを選択します。

[Nodes] (ノード)

使用するElasticsearchシステムをホストしているクラスターのロケーションを入力します。

Index

ドキュメントを書き込むインデックスの名前を入力します。

インデックスは、Elastisearchシステム内のストレージにおける最大のユニットです。

Type (タイプ)

書き込むドキュメントが属するタイプの名前を入力します。

たとえば、blogpost_enblogpost_frをそれぞれ、指定された英語のブログ投稿とフランス語のブログ投稿を表す2つのタイプにできます。

ドキュメントタイプとする指定カラムの値を動的に使うことができます。そうする必要がある場合は、そのカラムの名前を波かっこ({})内に入力します(サンプル: {blog_author})。

[Output document] (出力ドキュメント)

ドキュメントをElasticsearchに書き込む方法を選択します。

  • [JAVABEAN]: このオプションを選択すると、tElasticsearchOutputは入力スキーマを直接使って、書き込むJSON文字列を構成します。

    たとえば、レコードとそのスキーマが次のようになっている場合
    id name age
    1  user 18
    この[JAVABEAN]オプションによって出力されるドキュメントは、{"id":1,"name":"user","age":18}です。
  • JSON: このオプションでは、読み取り専用の[json_document]カラムが、先行コンポーネントからJSON文字列(Elasticsearchに関するドキュメント)を受け取る出力スキーマに自動的に追加されます。したがって、tElasticsearchOutputに出力する前に、同じジョブでtWriteJSONFieldを使ってJSON文字列を構成する必要があります。スキーマのその他のカラムは、これらのJSONドキュメントのメタデータとして使えます。

    tWriteJSONFieldを使うと複雑さの異なるJSONツリーを構成できるため、書き込まれるJSON文字列をどのようにするかを管理できます。

詳細設定

[Document metadata] (ドキュメントメタデータ)

このテーブルを完成して、各ドキュメントのメタデータを提供するために使う入力カラムを選択します。このテーブルは通常、[Basic settings] (基本設定)ビュー内の[Output document] (出力ドキュメント)ドロップダウンリストのjson_documentオプションと共に使われます。

[Column] (カラム)カラムには、入力スキーマのカラムが自動的に入力されます。続いて、[As metadata] (メタデータとして)カラムで、使うカラムに対応するチェックボックスをオンにする必要があります。

[Metadata type] (メタデータ型)カラムで、各カラムを使って提供するドキュメントメタデータのタイプを選択します。

Elasticsearchドキュメントのメタデータ型については、https://www.elastic.co/guide/en/elasticsearch/guide/current/_document_metadata.html (英語のみ)をご覧ください。

SSL/TLSの使用

SSLまたはTLS暗号化接続を有効にする場合は、このチェックボックスを選択します。

次に、同じジョブ内のtSetKeyStoreコンポーネントを使用して暗号化情報を指定する必要があります。

設定

アクションをさらにカスタマイズするには、Elasticsearchで受け入れられているパラメーターを追加します。

たとえば、es.mapping.id[Key] (キー)カラムに、true[Value] (値)カラムに入力して、ドキュメントのフィールド/プロパティ名がドキュメントIDを含むようにします。入力する情報は二重引用符で囲む必要があります。

使えるパラメーターのリストは、https://www.elastic.co/guide/en/elasticsearch/hadoop/master/configuration.html (英語のみ)をご覧ください。

使用方法

使用ルール

このコンポーネントは、終了コンポーネントとして使用され、入力リンクを必要とします。

tElasticSearchConfigurationコンポーネントを同じジョブにドロップして、ElasticSearchに接続させます。次に、[Use an existing configuration] (既存の設定を使う)チェックボックスをオンにして、使用するtElasticSearchConfigurationコンポーネントを選択する必要があります。
  • Sparkジョブ用のコンポーネントは、Talendバージョン6.4.2までのElasticsearchをサポートしています。

このコンポーネントは、所属するSpark Batchのコンポーネントのパレットと共に、Spark Batchジョブを作成している場合にだけ表示されます。

特に明記していない限り、このドキュメントのシナリオでは、標準ジョブ、つまり従来の Talend データ統合ジョブだけを扱います。

[Spark Connection] (Spark接続)

[Run] (実行)ビューの[Spark configuration] (Spark設定)タブで、ジョブ全体でのSparkクラスターへの接続を定義します。また、ジョブでは、依存jarファイルを実行することを想定しているため、Sparkがこれらのjarファイルにアクセスできるように、これらのファイルの転送先にするファイルシステム内のディレクトリーを指定する必要があります。
  • Yarnモード(YarnクライアントまたはYarnクラスター):
    • Google Dataprocを使用している場合、[Spark configuration] (Spark設定)タブの[Google Storage staging bucket] (Google Storageステージングバケット)フィールドにバケットを指定します。

    • HDInsightを使用している場合、[Spark configuration] (Spark設定)タブの[Windows Azure Storage configuration] (Windows Azure Storage設定)エリアでジョブのデプロイメントに使用するブロブを指定します。

    • Altusを使用する場合は、[Spark configuration] (Spark設定)タブでジョブのデプロイにS3バケットまたはAzure Data Lake Storageを指定します。
    • Quboleを使用する場合は、ジョブにtS3Configurationを追加し、QuboleでS3システム内に実際のビジネスデータを書き込みます。tS3Configurationを使用しないと、このビジネスデータはQubole HDFSシステムに書き込まれ、クラスターをシャットダウンすると破棄されます。
    • オンプレミスのディストリビューションを使用する場合は、クラスターで使われているファイルシステムに対応する設定コンポーネントを使用します。一般的に、このシステムはHDFSになるため、tHDFSConfigurationを使用します。

  • [Standalone mode] (スタンドアロンモード): クラスターで使われているファイルシステム(tHDFSConfiguration Apache Spark BatchtS3Configuration Apache Spark Batchなど)に対応する設定コンポーネントを使用します。

    ジョブ内に設定コンポーネントがない状態でDatabricksを使用している場合、ビジネスデータはDBFS (Databricks Filesystem)に直接書き込まれます。

この接続は、ジョブごとに有効になります。

このページは役に立ちましたか?

このページまたはコンテンツにタイポ、ステップの省略、技術的エラーなどの問題が見つかった場合はお知らせください。