メイン コンテンツをスキップする 補完的コンテンツへスキップ

Apache Spark BatchのtRedshiftConfigurationプロパティ

これらのプロパティは、Spark Batchのジョブのフレームワークで実行されているtRedshiftConfigurationを設定するために使われます。

Spark BatchtRedshiftConfigurationコンポーネントは、ストレージファミリーとデータベースファミリーに属しています。

このフレームワーク内のコンポーネントは、ビッグデータ対応のTalend 製品すべて、およびTalend Data Fabricで使用できます。

基本設定

[Property type] (プロパティタイプ)

[Built-in] (組み込み)[Repository] (リポジトリー)のいずれかです。

[Built-In] (組み込み): 一元的に保存されるプロパティデータはありません。

[Repository] (リポジトリー): プロパティが保存されているリポジトリーファイルを選択します。

[Host] (ホスト)

Redshiftで、接続する必要のあるデータベースのエンドポイントを入力します。

[Port] (ポート)

Redshiftで、接続する必要のあるデータベースのポート番号を入力します。

関連情報は、RedshiftのWebコンソールの[Cluster Database Properties] (クラスターデータベースプロパティ)エリアにあります。

詳細は、Managing clusters console (英語のみ)をご覧ください。

[Username] (ユーザー名)[Password] (パスワード)

接続先とする必要のあるRedshiftデータベースに認証情報を入力します。

パスワードを入力するには、パスワードフィールドの横にある[...]ボタンをクリックし、ポップアップダイアログボックスにパスワードを二重引用符の間に入力し、OKをクリックして設定を保存します。

[Database] (データベース)

Redshiftで、接続する必要のあるデータベースの名前を入力します。

関連情報は、RedshiftのWebコンソールの[Cluster Database Properties] (クラスターデータベースプロパティ)エリアにあります。

詳細は、Managing clusters console (英語のみ)をご覧ください。

使用するバケットとRedshiftデータベースは、Amazon上の同じリージョンに存在している必要があります。これにより、Amazonで既知のS3ServiceExceptionエラーが回避できる可能性があります。これらのエラーについては、S3ServiceExceptionエラー (英語のみ)をご覧ください。

スキーマ

Redshiftで使用するデータベーススキーマの名前を入力します。デフォルトスキーマはPUBLICという名前です。

Redshiftに関するスキーマは、オペレーティングシステムのディレクトリーと似ています。Redshiftのスキーマについては、Schemas (英語のみ)をご覧ください。

[Additional JDBC Parameters] (追加のJDBCパラメーター)

作成する接続の追加のJDBCプロパティを指定します。プロパティはアンパサンド(&)で区切られ、各プロパティはキー-値ペアです。たとえば、ssl=true & sslfactory=com.amazon.redshift.ssl.NonValidatingFactoryになります。これは、SSLを使用して接続が作成されることを意味します。

[S3 configuration] (S3設定)

S3に接続するための設定の詳細をSparkに使用させるtS3Configurationコンポーネントを選択します。

使用するtS3Configuration[S3 configuration] (S3設定)リストに表示されるように、このtS3Configurationコンポーネントと共にtRedshiftConfigurationを同じジョブにドロップする必要があります。

[S3 temp path] (S3一時パス)

Redshiftと送受信するデータの一時的な保存先にするS3内の場所を入力します。

このパスは、tS3Configuration[Basic settings] (基本設定)タブで設定する必要のある一時パスからは独立しています。

使用方法

使用ルール

このコンポーネントは、他のコンポーネントに接続せずに使用されます。

設定がランタイムにジョブ全体で使用されるように、tRedshiftConfiguration、および同じジョブで実行する他のRedshiftに関わるサブジョブをドロップする必要があります。

Redshiftでは一時データの保存にS3が使用されるので、S3設定が実行時にジョブ全体によって使用されるように、tS3Configurationコンポーネントと共にtRedshiftConfigurationを同じジョブにドロップする必要があります。

このコンポーネントは、所属するSpark Batchのコンポーネントのパレットと共に、Spark Batchジョブを作成している場合にだけ表示されます。

特に明記していない限り、このドキュメントのシナリオでは、標準ジョブ、つまり従来の Talend データ統合ジョブだけを扱います。

[Spark Connection] (Spark接続)

[Run] (実行)ビューの[Spark configuration] (Spark設定)タブで、ジョブ全体でのSparkクラスターへの接続を定義します。また、ジョブでは、依存jarファイルを実行することを想定しているため、Sparkがこれらのjarファイルにアクセスできるように、これらのファイルの転送先にするファイルシステム内のディレクトリーを指定する必要があります。
  • Yarnモード(YarnクライアントまたはYarnクラスター):
    • Google Dataprocを使用している場合、[Spark configuration] (Spark設定)タブの[Google Storage staging bucket] (Google Storageステージングバケット)フィールドにバケットを指定します。

    • HDInsightを使用している場合、[Spark configuration] (Spark設定)タブの[Windows Azure Storage configuration] (Windows Azure Storage設定)エリアでジョブのデプロイメントに使用するブロブを指定します。

    • Altusを使用する場合は、[Spark configuration] (Spark設定)タブでジョブのデプロイにS3バケットまたはAzure Data Lake Storageを指定します。
    • Quboleを使用する場合は、ジョブにtS3Configurationを追加し、QuboleでS3システム内に実際のビジネスデータを書き込みます。tS3Configurationを使用しないと、このビジネスデータはQubole HDFSシステムに書き込まれ、クラスターをシャットダウンすると破棄されます。
    • オンプレミスのディストリビューションを使用する場合は、クラスターで使われているファイルシステムに対応する設定コンポーネントを使用します。一般的に、このシステムはHDFSになるため、tHDFSConfigurationを使用します。

  • [Standalone mode] (スタンドアロンモード): クラスターで使われているファイルシステム(tHDFSConfiguration Apache Spark BatchtS3Configuration Apache Spark Batchなど)に対応する設定コンポーネントを使用します。

    ジョブ内に設定コンポーネントがない状態でDatabricksを使用している場合、ビジネスデータはDBFS (Databricks Filesystem)に直接書き込まれます。

この接続は、ジョブごとに有効になります。

このページは役に立ちましたか?

このページまたはコンテンツにタイポ、ステップの省略、技術的エラーなどの問題が見つかった場合はお知らせください。