Accéder au contenu principal

Utiliser des Jobs Amazon Kinesis et Big Data Streaming

Ce scénario vous explique comment utiliser des Jobs Amazon Kinesis et Big Data Streaming dans le framework Spark Streaming.

Ce scénario s'applique uniquement à Talend Real-Time Big Data Platform et à Talend Data Fabric.

Cet exemple utilise Talend Real-Time Big Data Platform 6.1 ainsi que les produits sous licence fournis par Amazon suivants : Amazon EC2, Amazon Kinesis et Amazon EMR.

Dans cet exemple, vous allez construire le Job suivant, afin de lire et écrire des données dans un flux Amazon Kinesis, puis d'afficher les résultats dans la console.

Le tHDFSConfiguration est utilisé dans ce scénario par Spark afin de se connecter au système HDFS où sont transférés les fichiers Jar dépendant du Job.

Dans l'onglet Spark Configuration de la vue Run, définissez la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers .jar sont transférés afin que Spark puisse accéder à ces fichiers :
  • Yarn mode (Yarn Client ou Yarn Cluster) :
    • Lorsque vous utilisez Google Dataproc, spécifiez un bucket dans le champ Google Storage staging bucket de l'onglet Spark configuration.

    • Lorsque vous utilisez HDInsight, spécifiez le blob à utiliser pour le déploiement du Job, dans la zone Windows Azure Storage configuration de l'onglet Spark configuration.

    • Lorsque vous utilisez Altus, spécifiez le bucket S3 ou le stockage Azure Data Lake Storage (aperçu technique) pour le déploiement du Job, dans l'onglet Spark configuration.
    • Lorsque vous utilisez des distributions sur site (on-premises), utilisez le composant de configuration correspondant au système de fichiers utilisé par votre cluster. Généralement, ce système est HDFS et vous devez utiliser le tHDFSConfiguration.

  • Standalone mode : utilisez le composant de configuration correspondant au système de fichiers que votre cluster utilise, comme le tHDFSConfiguration Apache Spark Batch ou le tS3Configuration Apache Spark Batch.

    Si vous utilisez Databricks sans composant de configuration dans votre Job, vos données métier sont écrites directement dans DBFS (Databricks Filesystem).

Cette page vous a-t-elle aidé ?

Si vous rencontrez des problèmes sur cette page ou dans son contenu – une faute de frappe, une étape manquante ou une erreur technique – faites-le-nous savoir.