Skip to main content Skip to complementary content

tFileInputJSON MapReduce properties (deprecated)

Availability-noteDeprecated

These properties are used to configure tFileInputJSON running in the MapReduce Job framework.

The MapReduce tFileInputJSON component belongs to the MapReduce family.

The component in this framework is available in all Talend products with Big Data and Talend Data Fabric.

Availability-noteDeprecated
The MapReduce framework is deprecated from Talend 7.3 onwards. Use Talend Jobs for Apache Spark to accomplish your integration tasks.

Basic settings

Property type

Either Built-In or Repository.

 

Built-In: No property data stored centrally.

 

Repository: Select the repository file where the properties are stored.

The fields that come after are pre-filled in using the fetched data.

For further information about the File Json node, see the section about setting up a JSON file schema in Talend Studio User Guide.

Schema et Edit Schema

A schema is a row description. It defines the number of fields (columns) to be processed and passed on to the next component. When you create a Spark Job, avoid the reserved word line when naming the fields.

Click Edit schema to make changes to the schema. If the current schema is of the Repository type, three options are available:

  • View schema: choose this option to view the schema only.

  • Change to built-in property: choose this option to change the schema to Built-in for local changes.

  • Update repository connection: choose this option to change the schema stored in the repository and decide whether to propagate the changes to all the Jobs upon completion. If you just want to propagate the changes to the current Job, you can select No upon completion and choose this schema metadata again in the Repository Content window.

 

Built-In: You create and store the schema locally for this component only.

 

Repository: You have already created the schema and stored it in the Repository. You can reuse it in various projects and Job designs.

Read by

Select a way of extracting the JSON data in the file.

  • Xpath: Extracts the JSON data based on the XPath query.

  • JsonPath: Extracts the JSON data based on the JSONPath query. Note that it is recommended to read the data by JSONPath in order to gain better performance.

Folder/File

Enter the path to the file or folder on HDFS from which the data will be extracted.

If the path you entered points to a folder, all files stored in that folder will be read.

If the file to be read is a compressed one, enter the file name with its extension; then tFileInputJSON automatically decompresses it at runtime. The supported compression formats and their corresponding extensions are:

  • DEFLATE: *.deflate

  • gzip: *.gz

  • bzip2: *.bz2

  • LZO: *.lzo

Note that you need to ensure you have properly configured the connection to the Hadoop distribution to be used in the Hadoop configuration tab in the Run view.

Die on error

Select the check box to stop the execution of the Job when an error occurs.

Clear the check box to skip any rows on error and complete the process for error-free rows. When errors are skipped, you can collect the rows on error using a Row > Reject link.

Loop Jsonpath query

Enter the Jsonpath or XPath of the node on which the loop is based.

Note if you have selected Xpath from the Read by drop-down list, the Loop Xpath query field is displayed instead.

Mapping

Complete this table to map the columns defined in the schema to the corresponding JSON nodes.

  • Column: The Column cells are automatically filled with the defined schema column names.

  • Json query/JSONPath query: Specify the JSONPath node that holds the desired data. For more information about JSONPath expressions, see http://goessner.net/articles/JsonPath/.

    This column is available only when JsonPath is selected from the Read By list.

  • XPath query: Specify the XPath node that holds the desired data.

    This column is available only when Xpath is selected from the Read By list.

  • Get Nodes: Select this check box to extract the JSON data of all the nodes or select the check box next to a specific node to extract the data of that node.

    This column is available only when Xpath is selected from the Read By list.

Advanced settings

Advanced separator (for number)

Select this check box to change the separator used for numbers. By default, the thousands separator is a comma (,) and the decimal separator is a period (.).

Validate date

Select this check box to check the date format strictly against the input schema.

Encoding

Select the encoding from the list or select Custom and define it manually.

Global Variables

Global Variables

ERROR_MESSAGE: the error message generated by the component when an error occurs. This is an After variable and it returns a string. This variable functions only if the Die on error check box is cleared, if the component has this check box.

A Flow variable functions during the execution of a component while an After variable functions after the execution of the component.

To fill up a field or expression with a variable, press Ctrl + Space to access the variable list and choose the variable to use from it.

For further information about variables, see Talend Studio User Guide.

Usage

Usage rule

In a Talend Map/Reduce Job, it is used as a start component and requires a transformation component as output link. The other components used along with it must be Map/Reduce components, too. They generate native Map/Reduce code that can be executed directly in Hadoop.

Once a Map/Reduce Job is opened in the workspace, tFileInputJSON as well as the MapReduce family appears in the Palette of the Studio.

For further information about a Talend Map/Reduce Job, see the sections describing how to create, convert and configure a Talend Map/Reduce Job of the Talend Big Data Getting Started Guide .

Note that in this documentation, unless otherwise explicitly stated, a scenario presents only Standard Jobs, that is to say traditional Talend data integration Jobs, and non Map/Reduce Jobs.

Hadoop Connection

You need to use the Hadoop Configuration tab in the Run view to define the connection to a given Hadoop distribution for the whole Job.

This connection is effective on a per-Job basis.

Prerequisites

The Hadoop distribution must be properly installed, so as to guarantee the interaction with Talend Studio . The following list presents MapR related information for example.

  • Ensure that you have installed the MapR client in the machine where the Studio is, and added the MapR client library to the PATH variable of that machine. According to MapR's documentation, the library or libraries of a MapR client corresponding to each OS version can be found under MAPR_INSTALL\ hadoop\hadoop-VERSION\lib\native. For example, the library for Windows is \lib\native\MapRClient.dll in the MapR client jar file. For further information, see the following link from MapR: http://www.mapr.com/blog/basic-notes-on-configuring-eclipse-as-a-hadoop-development-environment-for-mapr.

    Without adding the specified library or libraries, you may encounter the following error: no MapRClient in java.library.path.

  • Set the -Djava.library.path argument, for example, in the Job Run VM arguments area of the Run/Debug view in the Preferences dialog box in the Window menu. This argument provides to the Studio the path to the native library of that MapR client. This allows the subscription-based users to make full use of the Data viewer to view locally in the Studio the data stored in MapR.

For further information about how to install a Hadoop distribution, see the manuals corresponding to the Hadoop distribution you are using.

Did this page help you?

If you find any issues with this page or its content – a typo, a missing step, or a technical error – please let us know!