Skip to main content Skip to complementary content

tRedshiftLookupInput properties for Apache Spark Streaming

These properties are used to configure tRedshiftLookupInput running in the Spark Streaming Job framework.

The Spark Streaming tRedshiftLookupInput component belongs to the Databases family.

The component in this framework is available in Talend Real Time Big Data Platform and in Talend Data Fabric.

Basic settings

Property type

Either Built-In or Repository.

Built-In: No property data stored centrally.

Repository: Select the repository file where the properties are stored.

Use an existing connection

Select this check box and in the Component List drop-down list, select the desired connection component to reuse the connection details you already defined.

Host

Enter the endpoint of the database you need to connect to in Redshift.

Port

Enter the port number of the database you need to connect to in Redshift.

The related information can be found in the Cluster Database Properties area in the Web console of your Redshift.

For further information, see Managing clusters console.

Username and Password

Enter the authentication information to the Redshift database you need to connect to.

To enter the password, click the [...] button next to the password field, and then in the pop-up dialog box enter the password between double quotes and click OK to save the settings.

Database

Enter the name of the database you need to connect to in Redshift.

The related information can be found in the Cluster Database Properties area in the Web console of your Redshift.

For further information, see Managing clusters console.

Schema

Enter the name of the database schema to be used in Redshift. The default schema is called PUBLIC.

A schema in terms of Redshift is similar to a operating system directory. For further information about a Redshift schema, see Schemas.

Additional JDBC Parameters

Specify additional JDBC properties for the connection you are creating. The properties are separated by ampersand & and each property is a key-value pair. For example, ssl=true & sslfactory=com.amazon.redshift.ssl.NonValidatingFactory, which means the connection will be created using SSL.

Schema and Edit Schema

A schema is a row description. It defines the number of fields (columns) to be processed and passed on to the next component. When you create a Spark Job, avoid the reserved word line when naming the fields.

 

Built-In: You create and store the schema locally for this component only.

 

Repository: You have already created the schema and stored it in the Repository. You can reuse it in various projects and Job designs.

 

Click Edit schema to make changes to the schema. If the current schema is of the Repository type, three options are available:

  • View schema: choose this option to view the schema only.

  • Change to built-in property: choose this option to change the schema to Built-in for local changes.

  • Update repository connection: choose this option to change the schema stored in the repository and decide whether to propagate the changes to all the Jobs upon completion. If you just want to propagate the changes to the current Job, you can select No upon completion and choose this schema metadata again in the Repository Content window.

Table name

Enter the name of the table from which the data will be read.

Query Type and Query

Specify the database query statement paying particularly attention to the properly sequence of the fields which must correspond to the schema definition.

The result of the query must contain only records that match join key you need to use in tMap. In other words, you must use the schema of the main flow to tMap to construct the SQL statement here in order to load only the matched records into the lookup flow.

This approach ensures that no redundant records are loaded into memory and outputted to the component that follows.

Guess Query

Click the Guess Query button to generate the query which corresponds to your table schema in the Query field.

Guess schema

Click the Guess schema button to retrieve the table schema.

Advanced settings

Trim all the String/Char columns

Select this check box to remove leading whitespace and trailing whitespace from all String/Char columns.

Trim column

This table is filled automatically with the schema being used. Select the check box(es) corresponding to the column(s) to be trimmed.

Connection pool

In this area, you configure, for each Spark executor, the connection pool used to control the number of connections that stay open simultaneously. The default values given to the following connection pool parameters are good enough for most use cases.

  • Max total number of connections: enter the maximum number of connections (idle or active) that are allowed to stay open simultaneously.

    The default number is 8. If you enter -1, you allow unlimited number of open connections at the same time.

  • Max waiting time (ms): enter the maximum amount of time at the end of which the response to a demand for using a connection should be returned by the connection pool. By default, it is -1, that is to say, infinite.

  • Min number of idle connections: enter the minimum number of idle connections (connections not used) maintained in the connection pool.

  • Max number of idle connections: enter the maximum number of idle connections (connections not used) maintained in the connection pool.

Evict connections

Select this check box to define criteria to destroy connections in the connection pool. The following fields are displayed once you have selected it.

  • Time between two eviction runs: enter the time interval (in milliseconds) at the end of which the component checks the status of the connections and destroys the idle ones.

  • Min idle time for a connection to be eligible to eviction: enter the time interval (in milliseconds) at the end of which the idle connections are destroyed.

  • Soft min idle time for a connection to be eligible to eviction: this parameter works the same way as Min idle time for a connection to be eligible to eviction but it keeps the minimum number of idle connections, the number you define in the Min number of idle connections field.

Usage

Usage rule

This component is used as a start component and requires an output link.

This component should use a tRedshiftConfiguration component present in the same Job to connect to Redshift. You need to drop a tRedshiftConfiguration component alongside this component and configure the Basic settings of this component to use tRedshiftConfiguration.

This component, along with the Spark Streaming component Palette it belongs to, appears only when you are creating a Spark Streaming Job.

Note that in this documentation, unless otherwise explicitly stated, a scenario presents only Standard Jobs, that is to say traditional Talend data integration Jobs.

Spark Connection

In the Spark Configuration tab in the Run view, define the connection to a given Spark cluster for the whole Job. In addition, since the Job expects its dependent jar files for execution, you must specify the directory in the file system to which these jar files are transferred so that Spark can access these files:
  • Yarn mode (Yarn client or Yarn cluster):
    • When using Google Dataproc, specify a bucket in the Google Storage staging bucket field in the Spark configuration tab.

    • When using HDInsight, specify the blob to be used for Job deployment in the Windows Azure Storage configuration area in the Spark configuration tab.

    • When using Altus, specify the S3 bucket or the Azure Data Lake Storage for Job deployment in the Spark configuration tab.
    • When using Qubole, add a tS3Configuration to your Job to write your actual business data in the S3 system with Qubole. Without tS3Configuration, this business data is written in the Qubole HDFS system and destroyed once you shut down your cluster.
    • When using on-premises distributions, use the configuration component corresponding to the file system your cluster is using. Typically, this system is HDFS and so use tHDFSConfiguration.

  • Standalone mode: use the configuration component corresponding to the file system your cluster is using, such as tHDFSConfiguration Apache Spark Batch or tS3Configuration Apache Spark Batch.

    If you are using Databricks without any configuration component present in your Job, your business data is written directly in DBFS (Databricks Filesystem).

This connection is effective on a per-Job basis.

Did this page help you?

If you find any issues with this page or its content – a typo, a missing step, or a technical error – please let us know!