다중 클래스 분류 모델 채점
다중 클래스 분류는 이진 분류에서와 같이 단일 불연속 결과를 예측하려고 하지만 클래스가 세 개 이상인 경우 사용합니다. 다중 클래스 분류 모델은 서로 다른 F1 평균으로 채점됩니다.
매크로 F1
Macro F1은 가중치 없이 각 클래스에 대한 평균 F1 값입니다. 즉, 모든 클래스가 동등하게 처리됩니다.
마이크로 F1
Micro F1은 전체 confusion matrix에서 계산된 F1 값입니다. 전체 진양성, 가음성 및 가양성이 계산됩니다. Micro F1 점수를 계산하는 것은 전체 precision 또는 전체 recall을 계산하는 것과 같습니다.
가중치 적용된 F1
Weighted F1은 이진 분류 F1에 해당합니다. 각 클래스에 대해 계산된 다음 각 클래스의 레코드 수를 고려하여 가중 평균으로 결합됩니다.
정확도
정확도는 모델이 평균적으로 올바른 예측을 한 빈도를 측정합니다. 정확히 일치하는 예측 수를 샘플 수로 나눈 값으로 계산됩니다.