Préparation d'un échantillon de texte dans le but d'apprendre un modèle
Ce scénario s'applique uniquement aux produits Talend Platform avec Big Data et à Talend Data Fabric.
Pour plus de technologies supportées par Talend, consultez Composants Talend.
Ce Job utilise un tNLPPreprocessing afin de diviser un texte en termes individuels. Ensuite, ces termes individuels sont convertis au format CoNLL à l'aide du tNormalize. Vous pourrez utiliser ces fichiers au format CoNLL dans le but d'apprendre un modèle pour extraire des entités nommées à partir de données textuelles.
-
Préparation d'un échantillon de texte en le divisant en termes individuels. Ces termes individuels seront utilisés pour l'apprentissage d'un modèle de classification.
-
Apprentissage d'un modèle de classification, création des caractéristiques et évaluation du modèle.
Pour un exemple de génération d'un modèle de classification à l'aide du tNLPModel, consultez Génération d'un modèle de classification.
Vous trouverez un exemple de génération d'un modèle de reconnaissance d'entités nommées sur Talend Help Center(https://help.talend.com (uniquement en anglais)).
-
Application du modèle à l'ensemble du texte afin d'en extraire les entités nommées à l'aide du tNLPPredict.
Pour un exemple d'extraction d'entités nommées à l'aide d'un modèle de classification, consultez Extraction d'entités nommées à l'aide d'un modèle de classification.
Vous trouverez un exemple d'extraction d'entités nommées à l'aide d'un modèle de classification sur Talend Help Center (https://help.talend.com (uniquement en anglais)).
Pour plus d'informations concernant le traitement du langage naturel, consultez Traiter du langage naturel à l'aide du Studio Talend.
Vous trouverez plus d'informations concernant le traitement du langage naturel sur Talend Help Center (https://help.talend.com (uniquement en anglais)).
Le tHDFSConfiguration est utilisé dans ce scénario par Spark afin de se connecter au système HDFS où sont transférés les fichiers Jar dépendant du Job.
-
Yarn mode (Yarn Client ou Yarn Cluster) :
-
Lorsque vous utilisez Google Dataproc, spécifiez un bucket dans le champ Google Storage staging bucket de l'onglet Spark configuration.
-
Lorsque vous utilisez HDInsight, spécifiez le blob à utiliser pour le déploiement du Job, dans la zone Windows Azure Storage configuration de l'onglet Spark configuration.
- Lorsque vous utilisez Altus, spécifiez le bucket S3 ou le stockage Azure Data Lake Storage (aperçu technique) pour le déploiement du Job, dans l'onglet Spark configuration.
- Lorsque vous utilisez Qubole, ajoutez tS3Configuration à votre Job pour écrire vos données métier dans le système S3 avec Qubole. Sans tS3Configuration, ces données métier sont écrites dans le système Qubole HDFS et détruites une fois que vous arrêtez votre cluster.
-
Lorsque vous utilisez des distributions sur site (on-premises), utilisez le composant de configuration correspondant au système de fichiers utilisé par votre cluster. Généralement, ce système est HDFS et vous devez utiliser le tHDFSConfiguration (en anglais).
-
-
Standalone mode : utilisez le composant de configuration correspondant au système de fichiers que votre cluster utilise, comme le tHDFSConfiguration Apache Spark Batch ou le tS3Configuration Apache Spark Batch (en anglais).
Si vous utilisez Databricks sans composant de configuration dans votre Job, vos données métier sont écrites directement dans DBFS (Databricks Filesystem).