Propriétés du tSqlRow pour Apache Spark Streaming
Ces propriétés sont utilisées pour configurer le tSqlRow s'exécutant dans le framework de Jobs Spark Streaming.
Le composant tSqlRow Spark Streaming appartient à la famille Processus en cours.
Ce composant est disponible dans Talend Real Time Big Data Platform et dans Talend Data Fabric.
Basic settings
Schema et Edit schema |
Un schéma est une description de lignes. Il définit le nombre de champs (colonnes) à traiter et à passer au composant suivant. Lorsque vous créez un Job Spark, évitez le mot réservé line lors du nommage des champs.
Créez le schéma en cliquant sur le bouton Edit Schema.
Note InformationsRemarque : Si vous effectuez des modifications, le schéma passe automatiquement en type built-in.
|
SQL context |
Sélectionnez les langages de requête que vous souhaitez que le tSqlRow utilise.
|
Query |
Saisissez votre requête en faisant particulièrement attention à l'ordre des champs afin de correspondre à la définition du schéma. Le composant tSqlRow utilise le libellé de son lien d'entrée pour nommer la table enregistrée stockant les jeux de données depuis le même lien d'entrée. Par exemple, si un lien d'entrée est nommé row1, ce row1 est automatiquement le nom de la table dans laquelle effectuer les requêtes. |
Advanced settings
Register UDF jars |
Ajoutez les .jar Spark SQL ou Hive SQL UDF (user-defined function, fonction personnalisée) que vous souhaitez que le tSqlRow utilise. Si vous ne souhaitez pas appeler votre fonction personnalisée à l'aide de son nom de classe entièrement qualifié, vous devez définir un alias de fonction pour cette fonction personnalisée, dans la table Temporary UDF functions et utiliser cet alias. Il est recommandé d'utiliser l'approche de l'alias, car un alias est souvent pratique pour appeler une fonction personnalisée à partir d'une requête. Une fois cette ligne ajoutée à la table, cliquez dessus pour afficher le bouton [...], puis cliquez sur ce bouton pour afficher l'assistant d'import de .jar. Via cet assistant, importez les fichiers .jar des fonctions personnalisées que vous souhaitez utiliser. |
Temporary UDF functions |
Renseignez cette table pour donner à chaque classe de fonction personnalisée importée un nom de fonction temporaire à utiliser dans la requête, dans le tSqlRow. Si vous avez sélectionné SQL Spark Context dans la liste SQL context, la colonne UDF output type s'affiche. Dans cette colonne, vous devez sélectionner le type de données de sortie de la fonction personnalisée Spark SQL à utiliser. |
Utilisation
Règle d'utilisation |
Ce composant est utilisé comme étape intermédiaire. Ce composant, ainsi que les composants Spark Streaming de la Palette à laquelle il appartient, s'affichent uniquement lorsque vous créez un Job Spark Streaming. Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données. |
Connexion à Spark |
Dans l'onglet Spark Configuration de la vue Run, définissez la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers .jar sont transférés afin que Spark puisse accéder à ces fichiers :
Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie. |