Accéder au contenu principal Passer au contenu complémentaire

Propriétés du tCacheOut pour Apache Spark Streaming

Ces propriétés sont utilisées pour configurer le tCacheOut s'exécutant dans le framework de Jobs Spark Streaming.

Le composant tCacheOut Spark Streaming appartient à la famille Processus en cours.

Ce composant est disponible dans Talend Real Time Big Data Platform et dans Talend Data Fabric.

Basic settings

Schema et Edit schema

Un schéma est une description de lignes. Il définit le nombre de champs (colonnes) à traiter et à passer au composant suivant. Lorsque vous créez un Job Spark, évitez le mot réservé line lors du nommage des champs.

Créez le schéma en cliquant sur le bouton Edit Schema. Si le schéma est en mode Repository, trois options sont disponibles :

  • View schema : sélectionnez cette option afin de voir uniquement le schéma.

  • Change to built-in property : sélectionnez cette option pour passer le schéma en mode Built-In et effectuer des modifications locales.

  • Update repository connection : sélectionnez cette option afin de modifier le schéma stocké dans le référentiel et décider de propager ou non les modifications à tous les Jobs. Si vous souhaitez propager les modifications uniquement au Job courant, cliquez sur No et sélectionnez à nouveau la métadonnée du schéma dans la fenêtre Repository Content.

 

Built-in : le schéma est créé et conservé localement pour ce composant seulement.

 

Repository : le schéma existe déjà et est stocké dans le Repository. Ainsi, il peut être réutilisé dans des Jobs et projets.

Niveau de stockage

Dans la liste déroulante Storage level affichée, sélectionnez comment stocker les RDD en cache, dans la mémoire uniquement, ou dans la mémoire et sur le disque.

Pour plus d'informations concernant chaque niveau de stockage, consultez https://spark.apache.org/docs/latest/programming-guide.html#rdd-persistence (uniquement en anglais) (en anglais).

Utilisation

Règle d'utilisation

Ce composant est utilisé en tant que composant de fin et requiert un lien d'entrée.

Ce composant rend des jeux de données persistants et est étroitement lié au tCacheIn. De manière itérative, le tCacheOut stocke des données d'entrée en cache, afin que le tCacheIn lise le cache sans avoir à calculer à nouveau le modèle Spark DAG (Directed Acyclic Graph, le modèle utilisé par Spark pour ordonnancer les actions Spark).

À un moment donné, le tCacheOut stocke un seul micro-batch en mémoire.

Ce composant, ainsi que la Palette Spark Batch à laquelle il appartient, ne s'affiche que lorsque vous créez un Job Spark Batch.

Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données.

Connexion à Spark

Dans l'onglet Spark Configuration de la vue Run, définissez la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers .jar sont transférés afin que Spark puisse accéder à ces fichiers :
  • Yarn mode (Yarn Client ou Yarn Cluster) :
    • Lorsque vous utilisez Google Dataproc, spécifiez un bucket dans le champ Google Storage staging bucket de l'onglet Spark configuration.

    • Lorsque vous utilisez HDInsight, spécifiez le blob à utiliser pour le déploiement du Job, dans la zone Windows Azure Storage configuration de l'onglet Spark configuration.

    • Lorsque vous utilisez Altus, spécifiez le bucket S3 ou le stockage Azure Data Lake Storage (aperçu technique) pour le déploiement du Job, dans l'onglet Spark configuration.
    • Lorsque vous utilisez Qubole, ajoutez tS3Configuration à votre Job pour écrire vos données métier dans le système S3 avec Qubole. Sans tS3Configuration, ces données métier sont écrites dans le système Qubole HDFS et détruites une fois que vous arrêtez votre cluster.
    • Lorsque vous utilisez des distributions sur site (on-premises), utilisez le composant de configuration correspondant au système de fichiers utilisé par votre cluster. Généralement, ce système est HDFS et vous devez utiliser le tHDFSConfiguration (en anglais).

  • Standalone mode : utilisez le composant de configuration correspondant au système de fichiers que votre cluster utilise, comme le tHDFSConfiguration Apache Spark Batch ou le tS3Configuration Apache Spark Batch (en anglais).

    Si vous utilisez Databricks sans composant de configuration dans votre Job, vos données métier sont écrites directement dans DBFS (Databricks Filesystem).

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.

Cette page vous a-t-elle aidé ?

Si vous rencontrez des problèmes sur cette page ou dans son contenu – une faute de frappe, une étape manquante ou une erreur technique – faites-le-nous savoir.