透過盒狀圖視覺化數字資料的範圍和分佈
此範例使用每日溫度量值,顯示如何讓盒狀圖視覺化數字資料的範圍和分佈。
資料集
在此範例中,我們將使用下列天氣資料。
- Location: Sweden > Gällivare Airport
- Date range: all data from 2010 to 2017
- Measurement: Average of the 24 hourly temperature observations in degrees Celsius
載入的資料集包含 2010 至 2017 年期間來自瑞典北方天氣測站的每日平均溫度量值。
量值
我們透過名稱 Temperature degrees Celsius 建立主項目中的量值,以使用資料集中的平均溫度量值作為量值以及運算式 Avg([Average of the 24 hourly temperature observations in degrees Celsius])。
視覺化
我們將盒狀圖新增至工作表並設定下列資料屬性:
- 維度:Date (日期) 和 Year (年)。順序十分重要;Date 必須是第一個維度。
- 量值:Temperature degrees Celsius;作為主項目建立的量值。
在此範例中,我們使用預設盒狀圖預設,亦即標準 (Tukey),其鬚值長度為 1.5 四分位距。
探索
盒狀圖視覺化每日溫度測量的分佈。視覺化以平均溫度順序排序。每年的平均溫度由每個方塊的中間線表示。方塊從第一個四分位延伸到第三個四分位,而鬚值延伸 1.5 四分位距。也有一些異常值,亦即位於鬚值之外的點。您可以將滑鼠游標暫留在異常值點上方,檢視詳細資訊。
在盒狀圖中,我們可以看見年份 2010 具有較長的方塊和鬚值。這顯示年份 2010 具有較大的溫度量值分佈。這似乎也是平均最冷的年份。
2017 年的範圍很小,因為資料集只包含該年第一個月的測量值。