STL_Residual - 차트 함수
STL_Residual은 시계열 분해 함수입니다. STL_Seasonal 및 STL_Trend와 함께 이 함수는 시계열을 계절성, 추세 및 잔차 구성 요소로 분해하는 데 사용됩니다. STL 알고리즘 컨텍스트에서 시계열 분해는 입력 메트릭 및 기타 매개 변수가 주어지면 반복되는 계절성 패턴과 일반적인 추세를 식별하는 데 사용됩니다. 이 작업을 수행할 때 입력 메트릭의 변동 중 일부는 계절성 구성 요소나 추세 구성 요소에 맞지 않으며 잔여 구성 요소로 정의됩니다. STL_Residual 차트 함수는 계산의 이 부분을 캡처합니다.
세 가지 STL 함수는 간단한 합계를 통해 입력 메트릭과 관련되어 있습니다.
STL_Trend + STL_Seasonal + STL_Residual = 입력 메트릭
STL(Loess를 사용한 계절성 및 추세 분해)은 데이터 스무딩 기술을 사용하며 입력 매개 변수를 통해 사용자가 수행하는 계산의 주기성을 조정할 수 있습니다. 이 주기성은 분석에서 입력 메트릭(측정값)의 시간 차원이 분할되는 방식을 결정합니다.
시계열 분해는 주로 데이터의 계절성과 일반적인 변동을 찾기 때문에 잔여의 정보는 세 가지 구성 요소 중 가장 덜 중요한 것으로 간주됩니다. 그러나 왜곡되거나 주기적인 잔여 구성 요소는 잘못된 주기 설정과 같은 계산 문제를 식별하는 데 도움이 될 수 있습니다.
최소한 STL_Residual은 입력 메트릭(target_measure)과 해당 period_int에 대한 정수 값을 사용하여 부동 소수점 값을 반환합니다. 입력 메트릭은 시간 차원에 따라 달라지는 집계 형식입니다. 선택적으로 매끄러운 알고리즘을 조정하기 위해 seasonal_smoother 및 trend_smoother에 대한 값을 포함할 수 있습니다.
구문:
STL_Residual(target_measure, period_int [,seasonal_smoother [,trend_smoother]])
반환 데이터 유형: dual
인수 | 설명 |
---|---|
target_measure |
계절성 및 추세 구성 요소로 분해할 측정값입니다. 이는 시간 차원에 따라 변하는 Sum(Sales) 또는 Sum(Passengers)와 같은 측정값이어야 합니다. 이는 상수 값이 아니어야 합니다. |
period_int |
데이터 집합의 주기성입니다. 이 매개 변수는 신호의 한 주기 또는 계절성 주기를 구성하는 불연속 단계의 수를 나타내는 정수 값입니다. 예를 들어 시계열이 연도의 각 분기에 대해 하나의 섹션으로 분할되는 경우 주기성을 연도로 정의하려면 period_int 값을 4로 설정해야 합니다. |
seasonal_smoother |
계절성 스무더의 길이. 이 값은 홀수 정수여야 합니다. 계절성 스무더는 여러 기간에 걸쳐 계절성 변동의 특정 단계에 대한 데이터를 사용합니다. 각 기간에서 시간 차원의 하나의 불연속 단계가 사용됩니다. 계절성 스무더는 스무딩에 사용된 기간 수를 나타냅니다. 예를 들어 시간 차원이 월별로 분할되고 기간이 연도(12)인 경우 계절성 구성 요소가 계산되므로 각 연도의 특정 월이 해당 연도와 인접 연도 모두에서 같은 달의 데이터에서 계산됩니다. seasonal_smoother 값은 스무딩에 사용된 년 수입니다. |
trend_smoother |
추세 스무더의 길이. 이 값은 홀수 정수여야 합니다. 추세 스무더는 period_int 매개 변수와 동일한 시간 배율을 사용하며 해당 값은 스무딩에 사용되는 과립의 수입니다. 예를 들어 시계열이 월별로 분할된 경우 추세 스무더는 스무딩에 사용된 월 수가 됩니다. |
STL_Residual 차트 함수는 종종 다음 함수와 함께 사용됩니다.
함수 | 상호 작용 |
---|---|
STL_Seasonal - 차트 함수 | 시계열의 계절성 구성 요소를 계산하는 데 사용되는 함수입니다. |
STL_Trend - 차트 함수 | 시계열의 추세 구성 요소를 계산하는 데 사용되는 함수입니다. |