Round - script and chart function
Round() returns the result of rounding a number up or down to the nearest multiple of step shifted by the offset number.
If the number to round is exactly in the middle of an interval, it is rounded upwards.
Syntax:
Round(x[, step[, offset]])
Return data type: numeric
Arguments:
Argument | Description |
---|---|
x | Input number. |
step | Interval increment. The default value is 1. |
offset |
Defines the base of the step interval. The default value is 0. |
Examples and results:
Examples | Results |
---|---|
Round(3.8 ) |
Returns 4 In this example, the size of the step is 1 and the base of the step interval is 0. The intervals are ...0 <= x <1, 1 <= x < 2, 2<= x <3, 3<= x <4... |
Round(3.8,4 ) |
Returns 4 |
Round(2.5 ) |
Returns 3. Rounded up because 2.5 is exactly half of the default step interval. |
Round(2,4 ) |
Returns 4. Rounded up because 2 is exactly half of the step interval of 4. In this example, the size of the step is 4 and the base of the step interval is 0. The intervals are ...0 <= x <4, 4 <= x <8, 8<= x <12... |
Round(2,6 ) |
Returns 0. Rounded down because 2 is less than half of the step interval of 6. In this example, the size of the step is 6 and the base of the step interval is 0. The intervals are ...0 <= x <6, 6 <= x <12, 12<= x <18... |
Round(3.88 ,0.1) |
Returns 3.9 In this example, the size of the step is 0.1 and the base of the step interval is 0. The intervals are ... 3.7 <= x <3.8, 3.8 <= x <3.9, 3.9 <= x < 4.0... |
Round(3.88 ,5) |
Returns 5 |
Round(1.1 ,1,0.5) |
Returns 1.5 In this example, the size of the step is 1 and the base of the step interval is 0.5. The intervals are ...0.5 <= x <1.5, 1.5 <= x <2.5, 2.5<= x <3.5... |
Did this page help you?
If you find any issues with this page or its content – a typo, a missing step, or a technical error – let us know how we can improve!