メイン コンテンツをスキップする 補完的コンテンツへスキップ

Spark Universalでスタンドアロン接続パラメーターを定義

このタスクについて

Talend StudioはSparkが有効になったクラスターに接続し、そのクラスターからジョブを実行します。

手順

  1. デザインワークスペースの下にある[Run] (実行)ビューをクリックした後に、[Spark configuration] (Spark設定)ビューをクリックします。
  2. [Property type] (プロパティタイプ)ドロップダウンリストから[Built-in] (組み込み)を選択します。
    Hadoop接続を一元管理で説明されているとおり、既に[Repository] (リポジトリー)で接続パラメーターが設定されている場合は簡単に再利用できます。再利用するためには、[Property type] (プロパティタイプ)ドロップダウンリストから[Repository] (リポジトリー)を選択し、[...]ボタンをクリックし、[Repository Content] (リポジトリーコンテンツ)ダイアログボックスを開いて、使用するHadoop接続を選択します。
    情報メモヒント: [Repository] (リポジトリー)で接続を設定すると、ジョブの[Spark configuration] (Spark設定)ビューで必要になるたびにその接続を設定しなくても済みます。フィールドが自動的に入力されます。
  3. [Distribution] (ディストリビューション)ドロップダウンリストからUniversalを、[Version] (バージョン)ドロップダウンリストからSparkバージョンを、[Runtime mode/environment] (ランタイムモード/環境)ドロップダウンリストから[Standalone] (スタンドアロン)をそれぞれ選択します。
  4. [Standalone] (スタンドアロン)設定情報を入力します:
    パラメーター 使用方法
    [Standalone master] (スタンドアロンマスター) Sparkジョブを送信するマスターのサーバーを入力します。
    [Configure executors] (エグゼキューターを設定) このチェックボックスをオンにして、エグゼキューターを設定します:
    • [Executors memory] (エグゼキューターメモリ): 各Sparkエグゼキューターによって使用されるメモリの割り当て量を入力します。
    • [Executors core] (エグゼキューターコア): 各エグゼキューターが使用するコアの数を入力します。

    このチェックボックスをオフにすると、Sparkのデフォルト値が使用され、エグゼキューターメモリには1g、エグゼキューターコアには1が使用されます。詳細については、Sparkの公式ドキュメンテーション (英語のみ)をご覧ください。

  5. WindowsからSparkジョブを起動する必要がある場合は、使用されるwinutils.exeプログラムの保管場所を指定します。
    • 使用するwinutils.exeファイルの保管場所がわかっている場合、[Define the Hadoop home directory] (Hadoopホームディレクトリーの指定)チェックボックスをオンにし、winutils.exeが保存されているディレクトリーを入力します。

    • 逆に、[Define the Hadoop home directory] (Hadoopホームディレクトリーの指定)チェックボックスをオフにすると、Talend Studioによってディレクトリーが作成され、このジョブで自動的に使用されます。

  6. 設定の基本情報を入力します:
    パラメーター 使用方法
    [Use local timezone] (ローカルタイムゾーンを使用) このチェックボックスをオンにすると、Sparkはシステムで指定されているローカルタイムゾーンを使用します。
    情報メモ注:
    • このチェックボックスをオフにすると、SparkはUTCタイムゾーンを使用します。
    • コンポーネントによっては[Use local timezone for date] (日付にローカルタイムゾーンを使用)チェックボックスもあります。コンポーネントのチェックボックスをオフにすると、Spark設定からのタイムゾーンが継承されます。
    [Use dataset API in migrated components] (移行したコンポーネントでデータセットAPIを使用) このチェックボックスを選択し、コンポーネントにResilient Distribued Dataset (RDD) APIの代わりにDataset (DS) APIを使用させます:
    • チェックボックスを選択する場合は、ジョブ内のコンポーネントは、DSで実行されて、パフォーマンスが向上します。
    • チェックボックスをオフにする場合は、ジョブ内のコンポーネントはRDDで実行されて、変更されていない状態のままです。これにより、下位互換性が保証されます。

    このチェックボックスはデフォルトで選択されていますが、7.3以降のジョブをインポートした場合、これらのジョブはRDDで実行されるため、チェックボックスはクリアされます。

    情報メモ重要: ジョブにtDeltaLakeInputコンポーネントとtDeltaLakeOutputコンポーネントが含まれている場合は、このチェックボックスを選択する必要があります。
    [Use timestamp for dataset components] (データセットコンポーネントにタイムスタンプを使用) このチェックボックスをオンにすると、日付でjava.sql.Timestamp使われます。
    情報メモ注: このチェックボックスをオフのままにしておくと、パターンに応じてjava.sql.Timestampjava.sql.Dateが使われます。
  7. [Spark "scratch" directory] (Spark "scratch"ディレクトリー)フィールドに、jarファイルを転送するなどTalend Studioがローカルシステムに一時ファイルを保存するディレクトリーを入力します。Windowsでジョブを起動する場合、デフォルトのディスクはC:です。このフィールドを/tmpのままにすると、このディレクトリーはC:/tmpになります。
  8. ジョブを耐障害性にする必要がある場合は、[Activate checkpointing] (チェックポイントを有効化)チェックボックスをオンにしてSparkチェックポイントオペレーションを有効にします。[Checkpoint directory] (チェックポイントディレクトリー)フィールドのクラスターのファイルシステム内に、Sparkが保存するディレクトリー、計算のコンテキストデータ(メタデータやなど)、その計算から生成されたRDDを入力します。
  9. [Advanced properties] (詳細プロパティ)テーブルに、Talend Studioによって使用されるデフォルトのプロパティを上書きするために必要なSparkプロパティを追加します。

タスクの結果

これで接続詳細が完全なものになったので、Sparkジョブの実行をスケジュールしたり、すぐに実行したりできます。

このページは役に立ちましたか?

このページまたはコンテンツにタイポ、ステップの省略、技術的エラーなどの問題が見つかった場合はお知らせください。