Skip to main content Skip to complementary content

Supported Cloud Big Data platform distribution versions for Talend Jobs

Cloud Hadoop distributions

Talend supports the following cloud platforms for Big Data. Click your cloud platform to see the Big data support information.

Old versions of the supported Big Data platforms are being retired by their vendors. Talend ceases to support a version once this version reaches its date of end of support set by its vendor.

Talend and its community provide you with the convenience to keep using a version its vendor ceases to support in Talend products. For this reason, this version can be still listed in the following tables and available in the products but Talend stops providing support for this version.

Talend supports the minor versions of the platform versions listed in the following tables.

Amazon EMR
Amazon EMR version Supported frameworks Supported Hadoop elements in Spark batch
Supported Hadoop elements in Spark streaming
Supported Hadoop elements in Standard
v4.5.0 (Hadoop 2.7.2)

Standard

Spark v1.6 (Deprecated)

HBase

HDFS

HCatalog

Hive

HBase

HDFS

HCatalog

Hive

HBase

HDFS

HCatalog

Hive

Sqoop

v4.6.0 (Hadoop 2.7.2)

Standard

Spark v1.6 (Deprecated)

HBase

HDFS

HCatalog

Hive

HBase

HDFS

HCatalog

Hive

HBase

HDFS

HCatalog

Hive

Sqoop

v5.0.0 (Hadoop 2.7.2)

Standard

Spark v2.0 (deprecated)

HBase

HDFS

HCatalog

Hive

HBase

HDFS

HCatalog

Hive

HBase

HDFS

HCatalog

Hive

Sqoop

v5.5.0 (Hadoop 2.7.3)

Standard

Spark v2.1 (deprecated)

HBase

HDFS

HCatalog

Hive

HBase

HDFS

HCatalog

Hive

HBase

HDFS

HCatalog

Hive

Sqoop

v5.8.0 (Hadoop 2.7.3)

Standard

Spark v2.2 (deprecated)

HBase

HDFS

HCatalog

Hive

HBase

HDFS

HCatalog

Hive

HBase

HDFS

HCatalog

Hive

Sqoop

v5.15.0 (Hadoop 2.8.3)

Standard

Spark v2.3 (deprecated)

HBase

HDFS

HCatalog

Hive

HBase

HDFS

HCatalog

Hive

HBase

HDFS

HCatalog

Hive

Sqoop

v5.29.0 (Hadoop 2.8.5)

Standard

Spark v2.4

HBase

HDFS

HCatalog

Hive

HBase

HDFS

HCatalog

Hive

HBase

HDFS

HCatalog

Hive

Sqoop

v6.2.0 (Hadoop 3.2.1)

Standard

Spark v3.0

HBase

HDFS

HCatalog

Hive

HBase

HDFS

HCatalog

Hive

HBase

HDFS

HCatalog

Hive

Sqoop

The supported Amazon EMR versions for the tAmazonEMRManage component are 4.5.0, 4.6.0, 4.9.2, 5.11.0, 5.15.0 and 5.29.0.

Cloudera Altus on AWS for Big Data
Cloudera version Supported frameworks Supported elements in Spark batch
Supported elements in Spark streaming
Supported elements in Standard
CDH5.11 (deprecated) Spark v2.1 (deprecated) S3

Redshift

DynamoDB

S3

Kinesis

Redshift

DynamoDB

 
Cloudera Altus on Azure for Big Data
Cloudera version Supported frameworks Supported elements in Spark batch
Supported elements in Spark streaming
Supported elements in Standard
CDH5.11 (deprecated) Spark v2.1 (deprecated) ADLS Gen1

Azure Blob Storage

HDFS

ADLS Gen1

Azure Blob Storage

HDFS

 
Databricks on AWS for Big Data
Databricks on AWS version Supported frameworks Supported elements in Spark batch
Supported elements in Spark streaming
Supported elements in Standard
3.5 LTS (deprecated) Standard

Spark v2.2 (deprecated)

Hive

S3

DynamoDB

Hive

S3

DynamoDB

Kinesis

DBFS
5.5 LTS Standard

Spark v2.4

Hive

S3

DynamoDB

Snowflake

MongoDB

TDM components as beta

tDataprepRun

Hive

S3

DynamoDB

Kinesis

Snowflake

MongoDB

TDM components as beta

tDataprepRun

DBFS
6.4 Standard

Spark v2.4.5

Azure Blob Storage

ADLS Gen2

Snowflake

DeltaLake

Azure Blob Storage

ADLS Gen2

DBFS
7.3 LTS Standard

Spark v3.0.1

Hive

S3

DynamoDB

Snowflake

MongoDB

DeltaLake

ADLS Gen2

Azure Blob Storage

Hive

S3

DynamoDB

Snowflake

MongoDB

DeltaLake

ADLS Gen2

Kinesis

Azure Blob Storage

DBFS
Databricks on Azure for Big Data
Databricks on Azure version Supported frameworks Supported elements in Spark batch
Supported elements in Spark streaming
Supported elements in Standard
3.5 LTS (deprecated) Standard

Spark v2.2 (deprecated)

Hive

Azure Blob Storage

ADLS Gen1

Hive

Azure Blob Storage

ADLS Gen1

DBFS
5.5 LTS Standard

Spark v2.4

Hive

Azure Blob Storage

ADLS Gen1

ADLS Gen2

Snowflake

DeltaLake

MongoDB

TDM components as beta

tDataprepRun

Hive

Azure Blob Storage

ADLS Gen1

ADLS Gen2

Snowflake

DeltaLake

MongoDB

TDM components as beta

tDataprepRun

DBFS
6.4 Standard

Spark v2.4.5

Azure Blob Storage

ADLS Gen2

Snowflake

DeltaLake

Azure Blob Storage

ADLS Gen2

DBFS
7.3 LTS Standard

Spark v3.0.1

Hive

S3

DynamoDB

Snowflake

MongoDB

DeltaLake

ADLS Gen1

ADLS Gen2

Azure Blob Storage

Hive

S3

DynamoDB

Snowflake

MongoDB

DeltaLake

ADLS Gen1

ADLS Gen2

Azure Blob Storage

DBFS
Google Dataproc for Big Data
Google Dataproc version Supported frameworks Supported elements in Spark batch
Supported elements in Spark streaming
Supported elements in Standard
v1.1 (deprecated) Standard

Spark v2.0 (deprecated)

Hive

BigQuery

Google Storage

Avro

Delimited

Parquet

Positional

XML

JSON

Hive

BigQuery

Google Storage

Avro

Delimited

Parquet

Positional

XML

JSON

Google PubSub

Hive
v1.4 (deprecated) Standard

Spark v2.4

Hive

BigQuery

Google Storage

Avro

Delimited

Parquet

Positional

XML

JSON

Hive

BigQuery

Google Storage

Avro

Delimited

Parquet

Positional

XML

JSON

Google PubSub

Hive
Microsoft HD Insight for Big Data
Microsoft HD Insight version Supported frameworks Supported elements in Spark batch
Supported elements in Spark streaming
Supported elements in Standard
3.4 (deprecated) Spark v1.6 (deprecated) Hive Hive -
3.6 (deprecated) Spark v2.1 (deprecated) Hive Hive -
4.0 Spark v2.3 (deprecated) and v2.4 ADLS Gen2

Azure Blob Storage

Hive

ADLS Gen2

Azure Blob Storage

Hive

ADLS Gen2

Azure Blob Storage

Hive

Qubole on AWS for Big Data
Qubole version Supported frameworks Supported elements in Spark batch
Supported elements in Spark streaming
Supported elements in Standard
Qubole Spark 2 (deprecated) Standard

Spark v2.2 (deprecated)

Redshift

S3

DynamoDB

Redshift

S3

DynamoDB

Kinesis

S3

Hive

Did this page help you?

If you find any issues with this page or its content – a typo, a missing step, or a technical error – please let us know!