Script syntax and chart functions

Qlik Sense’
August 2023
Copyright © 1993-2024 QlikTech International AB. All rights reserved.

TAYeAY

HELP.QLIK.COM Qlik Q

© 2024 QlikTech International AB. All rights reserved. All company and/or product names may be trade names,
trademarks and/or registered trademarks of the respective owners with which they are associated.

Contents

1 Whatis QUK SeNSE? . 16
1.1 What canyou do in Qlik Sense? 16
1.2 How does Qlik SENSE WOTK? . 16

The app Model 16
The associative @XPerienCe 16
Collaboration and mobility 16
1.3 How can you deploy Qlik SENSe? 16
QUK SENSE DESKEOD ... 16
Qlik Sense ENterprise .. o 17
1.4 How to administer and manage a Qlik Sense site ... 17
1.5 Extend Qlik Sense and adapt it for your own purposes ... 17
Building extensions and mashups ... 17
Building clients ... 17
Building server tools 17
Connecting to other data soUrcesl 17

2 Script SYNtaX OVerVIeW 18
2.1 Introduction to sCript SYNtax 18
2.2 What is Backus-Naur formalism? 18

2 Script statements and keywords ... 20
2.3 Script control statements 20

Script control statements OVEIVIEW 20
Call 22
D0, 00D 23
BN 24
B Xt 24
EXIt SCIIPt 24
F Ol Xt 24
FOr @aCh . neXt L 26
If.then..elseif..else..end if . .. 29
N X 30
SUb.eNd SUD L 30
Switch..case..default..end sWitCh 31
O 32
2.4 SCript PrefiXes o 32
Script prefixes OVerview 32
A 36
BUI O 38
CONCatENate L. 39
CroSStable L. 44
FIrSt 54
GO 56
HirarCny 62
HierarchyBelongsTo 64
0] 1= SR 65
IntervalMatch . 66
JOIN 69
KD 79

Script syntax and chart functions - Qlik Sense, August 2023 3

Contents

LIt 80
VPPN 81
B 83
NoCoNCateNate 87
ONlY 96
DU T 96
Partial reload 97
REPIACE . 100
BRIt 102
SAMIPlE 103
SN C L. 106
NS 110
N 116
2.5 Scriptregular statements 122
Script regular statements OVerVIEW 122
AL S 128
AUTONUMD T 129
BNy 132
Comment field ... L 133
Comment table ... 134
CONNECE L 134
DEClarE 136
DIV 138
DireCt QUEIY 139
DT O Oy 144
DS CONNECT . 145
D O 146
DO table 147
EXOCUT 148
FIld FieldS oo 149
FlUSHLOg . 149
FOCE 149
Lo o 151
L0ad 151
Lt 168
Loosen Table ... 168
] o P 169
NULASNULL 170
NUASY U 170
QUALITY 171
RO 172
RENAME 173
SN TN 174
SOt ON 175
SO 175
SOt 178
S OO 178
SO 179

Script syntax and chart functions - Qlik Sense, August 2023 4

Contents

SQLCOIUMNS 179
SQLTableS 180
SO Y PSS 181

] -] S 182

S O 183
Table/Tables . 185
T 186
TG 186
UMD L 187
UNQUAlITY 187
UN A 188
2.6 Working dirCtOry .. . 189
Qlik Sense Desktop working directory ... 189
Qlik Sense working direCtory 189

2 Working with variables in the data load editor ... 190
2.7 OVRIVIBW o 190
2.8 Defining avariable 190
2.9 Deleting avariable 191
2.10 Loading avariable value as afield value 191
2.11 Variable calculation 191
2.12 System variables ... 192
System variables overview .. 192
CreateSearchindexOnReload 195
HidePrefix .. 195
Hide S U IX L 195
INCIUAE 196
OpenUIlTimeOUt . 197
S P COMIM NS 197
Verbatim 198
2.13 Value handling variables 198
Value handling variables overview 198
NUL D S P laY . 199
NUIIN e P Ot 199
NULVAlUE 199
OtherSymbol . 199
2.14 Number interpretation variables 200
Currency formatting ... 200
Number formatting 200
Time formatting . 201
BroKeNWEEKS . 202
DateF OrmMat . 203
DaYNaAMES 209
LM S D . 214
First W KDY . 216
LoNgDayNamMES . 220
LoNgMONthNaMES 223
MONEY DEC Ml D . 227

Script syntax and chart functions - Qlik Sense, August 2023 5

Contents

MONEY O at L 231
MoNEY ThOUSANA SO 235
MONthINAMES . 239
NumericalAbbreviation 244
RETEIENCEDAY .. . 245
TOUSANA S O 250
TIMEFOIM At 256
TimestampRormat L. . 256
2.15 Direct Discovery variables 259
Direct Discovery system variables 259
Teradata query banding variables 260
Direct Discovery character variables 261
Direct Discovery number interpretation variables 262
2.16 Error variables ... 263
Error variables overview 263
ErrOr MO e 263
SO EITOr 264
SO P EITOrC OUNE 265
SCriPtErTO ISt 265

2 SCHIPt @XPIESSIONS 266
3 Chart eXPreSSIONS 267
3.1 Defining the aggregation sCopel 267
302 St ANalY SIS L. 269
St OXPIESS ONS 270
EXAMIDLOS 271
NatUral SEtS L 271
Setidentifiers . 273
St OPEratOrS 274
Set MOdIfi OIS . 275
Inner and outer Set eXPreSSIONS 296
Tutorial - Creating @ set eXPresSiON 298
SyNtaX fOr St @XPrESSIONS .. . 308
3.3 General syntax for chart eXpressions 308
3.4 General syntax for aggregations 309
A PO At O S . 310
4L Bt OPeratOrS 310
4.2 Logical OPerators oo 311
4.3 NUMIIC OPeratOrS 311
4.4 Relational 0perators 312
45 StrNG OPEratOrS 313
& 314
K 314

5 Scriptand chart functions 315
5.1 Analytic connections for server-side extensions (SSE) ... 315
5.2 Aggregation fUNCHIONS .. . 315
Using aggregation functions in a data load script ... 316

Script syntax and chart functions - Qlik Sense, August 2023 6

Contents

Using aggregation functions in chart expressions 316
How aggregations are calculated 316
Aggregation of key fields 316
Basic aggregation funCtions 317
Counter aggregation fUNCtiONS 339
Financial aggregation functions 356
Statistical aggregation functions 383
Statistical test functions 448
String aggregation functions ... 511
Synthetic dimension functions ... 524
Nested aggregations 527
5.3 Aggr-chart function 527
Examples: Chart expressions USING AGEI 530
5.4 Color fUNCHIONS .. 533
Pre-defined color functions 535
ARG B 536
RGO B 537
HO L 539
5.5 Conditional functions 539
Conditional fuNCtions OVerVIEW 539
Al 540
ClaSS 541
€0l C . 543
1 OO O R OROROREPREPPRPRR 544
MatCN 547
MIXMAECN 550
PICK 553
WildmatCh 554
5.6 Counter fUNCHiONS . .. 557
Counter fuNCtioNs OVEIVIEW 557
AU ONUMID Y 558
autonumberhashl28 . . 561
autonumberhash256 ... 563
RO OO 565
RN 566
ROWN O 567
RowNo - chart function 568
5.7 Date and time functions 570
Date and time functions overview ... 571
addmoONntnS 579
AAAY IS 589
A 596
converttolocaltime ... 598
aY 602
Jayend 608
daylightsaving 616
daYNamME 616
daynumberofqUarter .. 618

Script syntax and chart functions - Qlik Sense, August 2023 7

Contents

daynUMberOfY ar 624
Ay S art 631
firstworkdate ... 638
GO 640
N 644
I 647
INAaYtOtiME 655
INUNAIWEEK 665
inlunarweektodate 677
IO 688
INMONENS 696
Inmonthstodate 709
INMONThtOdate L 722
IV QUM T 732
InqQUartertodate .. . 745
K 757
inweektodatel 773
Y AT 787
INyeartodate . 799
lastworkdate .. . 812
loCaltime L 821
lUnarWeeKeNd .. . 825
UNarWEEKNAME . 836
lunarweekstart . 849
Makedate ... 861
MaKEEIME 867
Makeweekdate 874
U 882
MO N 887
MONtN N 893
MONtNAME 903
MONTNSENG 910
MONENSNAME 923
MONtRSS At 936
MONtNS It L 949
NEtWOT KA Y S 958
PO 968
QUM EIEN 975
QUAN O A 988
QUANTErST At 1000
SECONA 1011
SetdateY Al 1016
setdateyearmonth 1018
HIMEZONE 1020
O o 1020
UG 1025
WBEK 1026
WEEKAAY . 1042

Script syntax and chart functions - Qlik Sense, August 2023 8

Contents

WEEKENG 1050
WEEKNAMIE 1063
WEEKS AT . 1077
WY AT 1089
L L SR 1099
YNNG 1105
YEAMMAIMIE 1117
YA S A 1130
Yeartodate L.l 1142
5.8 Exponential and logarithmic functions 1157
5.9 Field fUNCtioNs ... 1158
Count fUNCHIONS .. 1158
Field and selection fUNCtiONS 1159
GetAlternativeCount - chart function 1159
GetCurrentSelections - chart function 1160
GetExcludedCount - chart function ... 1162
GetFieldSelections - chart function 1163
GetNotSelectedCount - chart function ... 1165
GetObjectDimension - chart function 1166
GetObjectField - chart function 1166
GetObjectMeasure - chart function 1167
GetPossibleCount - chart function 1168
GetSelectedCount - chart function 1169
5.10 File funCtions ... 1170
File functions overview 1170
A DULE 1172
CONNECE S NG 1179
FileBaseName .. . 1180
Bl 1180
FIleEX NS ON 1181
FIleNaMIE 1181
FilePath 1181
FIleSiZe 1182
Bl eTime 1182
GetFolderPath 1183
QVACrEatETIME 1184
QAR ElANAME 1185
QVANOOTFT IS .. 1186
QUANOOTRECOIAS ... o 1187
QVATablENAMIE . 1188
5.11 Financial functions 1189
Financial functions OVervieW 1189
BlackANdSchole 1190
BN 1191
NP O 1192
P 1193
PV 1194
RatE 1194

Script syntax and chart functions - Qlik Sense, August 2023 9

Contents

5.12 Formatting functions 1195
Formatting functions overview 1196
APPLYCOdOPaAEE . 1197
Date 1198
DUl L 1199
INEEIVAl L 1201
MON Y 1202
N U 1203
TN 1206
TS M 1207

5.13 General numeric functions 1208
General numeric funCtions OVervieW 1208
Combination and permutation functions ... 1209
Modulo fUNCIONS .. 1209
Parity FUNCHIONS L 1210
Rounding fUNCHiONS ... 1210
Bt OUNE L 1210
Ceil Ll 1211
COMIDIN L 1212
3 1212
BV N 1213
FaDS 1213
Bt 1214
FlOO 1214
BN 1215
FraC 1216
MO 1217
Odd 1218
P UL 1218
ROUNG 1219
S M 1220

5.14 Geospatial fUNCLIONS ... 1221
Geospatial fUNCLiONS OVeIVIEW 1221
GeOAEEIGEOM Ty 1223
GeoBoUNdINGBOX 1224
GEOCOUNTY I TEX . 1224
GeoGEetBOUNAINGBOX ... 1225
GeOoGetPOlYgONC N T 1225
GeolNVProJeCtGEOM Y . . 1226
GeOMaKEPOINt .. 1226
GO0 O 1227
GeOPIOJeCtGEOMEIY 1228
GEOREAUCEGROM Y 1228

5.15 Interpretation fUNCHIONS 1229
Interpretation fuNCtions OVerVIeW 1230
DAt 1231
INtErValH 1232
MO Y 1232

Script syntax and chart functions - Qlik Sense, August 2023 10

Contents

NUME 1234
Xt 1234
T O 1235
TS M D 1236
5.16 Inter-record fUNCtiONS 1237
ROW fUNCHIONS . 1237
Column fUNCEIONS L 1238
Field funCtions ... 1239
Pivot table functions 1239
Inter-record functions in the data load script 1240
Above - chart function 1240
Below - chart function ... 1245
Bottom - chart function 1248
Column - chart fUNCHION ... 1253
Dimensionality - chart function 1255
EXISES 1256
FleldInNdeX ..o 1260
FieldValue .. o 1261
FieldValueCount ... 1263
LOOKU D . 1265
NoOfRows - chart function 1267
PO 1269
P OV OUS 1276
Top - chart fUNCHION L 1277
SecondaryDimensionality - chart function ... 1281
After - chart fUNCHION . 1281
Before - chart function 1282
First - chart function 1284
Last - chart function ... 1285
ColumnNo - chart fUNCtiON ... 1286
NoOfColumns - chart function 1286
5.17 Logical fUNCHIONS .. 1287
5.18 Mapping fuNCtions 1288
Mapping fUNCLiONS OVEIVIEW 1288
AP M aD 1288
MapPSUDSEIN G 1290
5.19 Mathematical functions 1292
5.20 NULL fUNCHIONS .o 1292
NULL funCtions OVervieWw 1293
Bty SNULL 1293
LSNULL 1293
NULL o 1294
5.21 RaNge fUNCHIONS .. 1295
Basic range fuNCtioNs 1295
Counter range fUNCLIONS 1296
Statistical range fUNCLiONS 1297
Financial range funCtions 1297
RaAN gAY G 1298

Script syntax and chart functions - Qlik Sense, August 2023 11

Contents

RANEEC O Ol 1300
RaANGECOUNt L 1302
RangeFractile 1305
RaANGEIR R 1307
RaNgEKU 0SS . 1308
RaN G aX 1309
RaNEEMaX S IN G 1311
RaANEEMIN 1312
RaNgeMINS NG 1314
RangeMissiNngCOUNT 1316
RANGEMOE .. . 1317
RaANGEN PV 1319
RaNGENUICOUNt 1320
RangeNumericCOUNT 1322
RaANGEONY ..o 1323
RAN GO S K OW 1324
RAN GO S OV . 1325
RaAN GO S UM L 1327
RaNgeT eXtCOUNT . 1329
RaANGEXIRR 1330
RaANGEXN PV 1332
5.22 Relational functionsl 1334
RaNKINg FUNCHIONS L. 1334
Clustering fUNCHIONS . 1335
Time series decomposition fuNctions ... 1336
Rank - chart FUNCHION .. 1337
HRank - chart function 1340
Optimizing with k-means: A real-world example 1342
KMeans2D - chart function 1351
KMeansND - chart fUNCHiON 1366
KMeansCentroid2D - chart function 1381
KMeansCentroidND - chart function 1382
STL_Trend - chart function 1383
STL_Seasonal - chart funCtion 1385
STL_Residual - chart function 1387
Tutorial - Time series decomposition in Qlik Sense 1389
5.23 Statistical distribution functions ... 1393
Statistical distribution functions overview ... 1393
BOtADONSIEY ...ttt 1396
BetaD St . 1396
BetalnNy 1396
BINOM DSt L 1397
BiNOMFreqUENCY . 1397
BiNOMINV 1398
G D NS Y . 1398
G DSt 1399
GV 1399
B NS Y 1400

Script syntax and chart functions - Qlik Sense, August 2023 12

Contents

B DSt 1400
BNV 1401
GammMaD NS Y .. 1402
GamMaaDiSt L 1402
GaMMaAINY 1403
N O DSt . 1403
NIV 1404
POISSONDISt .. 1405
POISSONFreqQUENCY . 1405
P OIS ONINY . 1405
T NS Y Lo 1406
DSt 1406
TNV 1407
5.24 String fUNCHIONS .. 1408
String fUNCLIONS OVEIVIEW . 1408
CaPItaliZe o 1411
CT 1412
EValUate .o 1413
FINdONeO L 1413
Hash 28 1415
HashLB0 .o 1415
Hash256 . 1416
X 1417
IS SO 1418
JSON GOt 1419
JSON S Ot 1420
KD O 1421
LIt 1422
=T o 1423
LevenshteinDist 1424
O T 1426
LTI 1427
M 1428
O 1429
PUIE O 1430
R At 1431
REPlACE 1432
RIGNE 1432
R 1433
SUBF el 1434
SUBStIINGCOUNE . 1438
TeXtBetWeEN 1438
I 1439
U DDl 1440
5.25 System fUNCHIONS .. 1441
System fuNCLioNS OVErVIEW 1441
ENginNeVersion 1444
InObject - chart function ... 1444

Script syntax and chart functions - Qlik Sense, August 2023 13

Contents

IsPartialReload 1448
Objectld - chart fUNCHION 1448
ProdUCEVISION 1451
StateName - chart function 1452
5.26 Table funCtions 1452
Table fuNCtioNs OVeIVIEW ... 1452
FieldName .. 1454
FleldNUMD T 1455
NOOTFIElAS o 1455
NOOTROWS . 1456
5.27 Trigonometric and hyperbolic functions 1456
6 File system access restriction 1459
6.1 Security aspects when connecting to file based ODBC and OLE DB data connections 1459
6.2 Limitations in standard mode 1459
SyStemM Variables . 1459
Regular script statements .. . 1461
Script control statements 1462
File fUNCHIONS L o 1462
SYSteM fUNCHIONS 1464
6.3 Disabling standard mode 1464
QUK SENSE . 1465
Qlik SeNse DeSKOP ... 1465

6 Chartlevel scripting 1466
6.4 Control statements 1466
Chart modifier control statements overview 1466
Call 1468
D0, 00D 1469
B 1469

E X 1469
EXIt SO Pt 1469
FOr Xt 1470
For each. neXt . 1471
If.then..elseif..else..end if 1474

N Xt 1475
SUD..eNd SUD L 1475
Switch..case..default..end switch 1476
O 1477
6.5 PrefiXes 1477
Chart modifier prefixes OVerVieW 1477
A 1478
REPlACE 1478
6.6 Regular statements 1478
Chart modifier regular statements overview ... 1479
L0ad . 1479
LBt 1483
SO 1484
UL 1484

Script syntax and chart functions - Qlik Sense, August 2023 14

Contents

HOValUE 1485

7 QlikView functions and statements not supported in Qlik Sense 1486
7.1 Script statements not supported in Qlik Sense 1486
7.2 Functions not supported in Qlik Sense 1486
7.3 Prefixes not supported in QliK SENSE 1486

8 Functions and statements not recommended in Qlik Sense .. 1487
8.1 Script statements not recommended in Qlik Sense 1487
8.2 Script statement parameters not recommended in Qlik Sense 1487
8.3 Functions not recommended in Qlik Sense 1488
ALL qUalifier L 1489

Script syntax and chart functions - Qlik Sense, August 2023 15

1 What is Qlik Sense?

1 What is Qlik Sense?

Qlik Sense is a platform for data analysis. With Qlik Sense you can analyze data and make data discoveries on
your own. You can share knowledge and analyze data in groups and across organizations. Qlik Sense lets you
ask and answer your own questions and follow your own paths to insight. Qlik Sense enables you and your
colleagues to reach decisions collaboratively.

1.1 What can you do in Qlik Sense?

Most Business Intelligence (BI) products can help you answer questions that are understood in advance. But
what about your follow-up questions? The ones that come after someone reads your report or sees your
visualization? With the Qlik Sense associative experience, you can answer question after question after
question, moving along your own path to insight. With Qlik Sense you can explore your data freely, with just
clicks, learning at each step along the way and coming up with next steps based on earlier findings.

1.2 How does Qlik Sense work?

Qlik Sense generates views of information on the fly for you. Qlik Sense does not require predefined and static
reports or you being dependent on other users - you just click and learn. Every time you click, Qlik Sense
instantly responds, updating every Qlik Sense visualization and view in the app with a newly calculated set of
data and visualizations specific to your selections.

The app model

Instead of deploying and managing huge business applications, you can create your own Qlik Sense apps that
you can reuse, modify and share with others. The app model helps you ask and answer the next question on
your own, without having to go back to an expert for a new report or visualization.

The associative experience

Qlik Sense automatically manages all the relationships in the data and presents information to you using a
green/white/gray metaphor. Selections are highlighted in green, associated data is represented in white, and
excluded (unassociated) data appears in gray. This instant feedback enables you to think of new questions
and continue to explore and discover.

Collaboration and mobility

Qlik Sense further enables you to collaborate with colleagues no matter when and where they are located. All
Qlik Sense capabilities, including the associative experience and collaboration, are available on mobile
devices. With Qlik Sense, you can ask and answer your questions and follow-up questions, with your
colleagues, wherever you are.

1.3 How can you deploy Qlik Sense?

There are two versions of Qlik Sense to deploy, Qlik Sense Desktop and Qlik Sense Enterprise.

Qlik Sense Desktop

This is an easy-to-install single user version that is typically installed on a local computer.

Script syntax and chart functions - Qlik Sense, August 2023 16

1 What is Qlik Sense?

Qlik Sense Enterprise

This version is used to deploy Qlik Sense sites. A site is a collection of one or more server machines connected
to a common logical repository or central node.

1.4 How to administer and manage a Qlik Sense site

With the Qlik Management Console you can configure, manage and monitor Qlik Sense sites in an easy and
intuitive way. You can manage licenses, access and security rules, configure nodes and data source
connections and synchronize content and users among many other activities and resources.

1.5 Extend Qlik Sense and adapt it for your own purposes
Qlik Sense provides you with flexible APIs and SDKs to develop your own extensions and adapt and integrate

Qlik Sense for different purposes, such as:

Building extensions and mashups

Here you can do web development using JavaScript to build extensions that are custom visualization in Qlik
Sense apps, or you use a mashups APIs to build websites with Qlik Sense content.

Building clients

You can build clients in .NET and embed Qlik Sense objects in your own applications. You can also build native
clients in any programming language that can handle WebSocket communication by using the Qlik Sense
client protocol.

Building server tools

With service and user directory APIs you can build your own tool to administer and manage Qlik Sense sites.

Connecting to other data sources

Create Qlik Sense connectors to retrieve data from custom data sources.

Script syntax and chart functions - Qlik Sense, August 2023 17

2 Script syntax overview

2 Script syntax overview

2.1 Introduction to script syntax

In a script, the name of the data source, the names of the tables, and the names of the fields included in the
logic are defined. Furthermore, the fields in the access rights definition are defined in the script. A script
consists of a number of statements that are executed consecutively.

The Qlik Sense command line syntax and script syntax are described in a notation called Backus-Naur
Formalism, or BNF code.

The first lines of code are already generated when a new Qlik Sense file is created. The default values of these
number interpretation variables are derived from the regional settings of the OS.

The script consists of a number of script statements and keywords that are executed consecutively. All script
statements must end with a semicolon, ";".

You can use expressions and functions in the LOAD-statements to transform the data that has been loaded.

For a table file with commas, tabs or semicolons as delimiters, a LOAD-statement may be used. By default a
LOAD-statement will load all fields of the file.

General databases can be accessed through ODBC or OLE DBdatabase connectors. . Here standard SQL
statements are used. The SQL syntax accepted differs between different ODBC drivers.

Additionally, you can access other data sources using custom connectors.

2.2 What is Backus-Naur formalism?

The Qlik Sense command line syntax and script syntax are described in a notation called
Backus-Naur formalism, also known as BNF code.

The following table provides a list of symbols used in BNF code, with a description of how they are

interpreted:
Symbols
Symbol Description
| Logical OR: the symbol on either side can be used.
() Parentheses defining precedence: used for structuring the BNF syntax.
[] Square brackets: enclosed items are optional.
{} Braces: enclosed items may be repeated zero or more times.
Symbol A non-terminal syntactic category, that: can be divided further into other symbols. For
example, compounds of the above, other non-terminal symbols, text strings, and so on.
= Marks the beginning of a block that defines a symbol.
LOAD A terminal symbol consisting of a text string. Should be written as it is into the script.

Script syntax and chart functions - Qlik Sense, August 2023 18

2 Script syntax overview

All terminal symbols are printed in a bold face font. For example, "(" should be interpreted as a parenthesis
defining precedence, whereas "(" should be interpreted as a character to be printed in the script.

Example:

The description of the alias statement is:
alias fieldname as aliasname { , fieldname asaliasname}

This should be interpreted as the text string "alias", followed by an arbitrary field name, followed by the text
string "as", followed by an arbitrary alias name. Any number of additional combinations of "fieldname as
alias" may be given, separated by commas.

The following statements are correct:

alias a as first;
alias a as first, b as second;
alias a as first, b as second, c as third;

The following statements are not correct:

alias a as first b as second;
alias a as first { , b as second };

Script syntax and chart functions - Qlik Sense, August 2023 19

2 Script statements and keywords

2 Script statements and keywords

The Qlik Sense script consists of a number of statements. A statement can be either a regular script statement
or a script control statement. Certain statements can be preceded by prefixes.

Regular statements are typically used for manipulating data in one way or another. These statements may be

written over any number of lines in the script and must always be terminated by a semicolon, ";".

Control statements are typically used for controlling the flow of the script execution. Each clause of a control
statement must be kept inside one script line and may be terminated by a semicolon or the end-of-line.

Prefixes may be applied to applicable regular statements but never to control statements. The when and
unless prefixes can however be used as suffixes to a few specific control statement clauses.

In the next subchapter, an alphabetical listing of all script statements, control statements and prefixes, are
found.

All script keywords can be typed with any combination of lower case and upper case characters. Field and
variable names used in the statements are however case sensitive.

2.3 Script control statements

The Qlik Sense script consists of a number of statements. A statement can be either a regular script statement
or a script control statement.

Control statements are typically used for controlling the flow of the script execution. Each clause of a control
statement must be kept inside one script line and may be terminated by semicolon or end-of-line.

Prefixes are never applied to control statements, with the exceptions of the prefixes when and unless which
may be used with a few specific control statements.

All script keywords can be typed with any combination of lower case and upper case characters.

Script control statements overview

Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Call
The call control statement calls a subroutine which must be defined by a previous sub statement.

Call name ([paramlist 1)

Do..loop
The do..loop control statement is a script iteration construct which executes one or several statements until a
logical condition is met.

Do..loop [(while | until) condition] [statements]
[exit do [(when | unless) condition] [statements]

loop [(while | until) condition]

Script syntax and chart functions - Qlik Sense, August 2023 20

2 Script statements and keywords

Exit script
This control statement stops script execution. It may be inserted anywhere in the script.

Exit script|[(when | unless) condition]

For each ..next

The for each..next control statement is a script iteration construct which executes one or several statements
for each value in a comma separated list. The statements inside the loop enclosed by for and next will be
executed for each value of the list.

For each. .next var in list

[statements]

[exit for [(when | unless) condition]
[statements]

next [var]

For..next

The for..next control statement is a script iteration construct with a counter. The statements inside the loop
enclosed by for and next will be executed for each value of the counter variable between specified low and
high limits.

For..next counter = exprl to expr2 [stepexpr3]
[statements]

[exit for [(when | unless) condition]
[statements]

Next [counter]

If..then
The if..then control statement is a script selection construct forcing the script execution to follow different
paths depending on one or several logical conditions.

Since the if..then statement is a control statement and as such is ended with either a semicolon or
end-of-line, each of its four possible clauses (if..then, elseif..then, else and end if) must not cross a
line boundary.

If..then. .elseif. .else..end if condition then
[statements]

{ elseif condition then
[statements] }

[else
[statements]]

end if

Sub
The sub..end sub control statement defines a subroutine which can be called upon from a call statement.

Sub. .end sub name [(paramlist)] statements end sub

Script syntax and chart functions - Qlik Sense, August 2023 21

2 Script statements and keywords

Switch
The switch control statement is a script selection construct forcing the script execution to follow different
paths, depending on the value of an expression.

Switch. .case..default. .end switch expression {case valuelist [statements]}

[default statements] end switch

Call

The call control statement calls a subroutine which must be defined by a previous sub
statement.

Syntax:
Call name ([paramlist 1)

Arguments:
Arguments
Argument Description
name The name of the subroutine.
paramlist A comma separated list of the actual parameters to be sent to the

subroutine. Each item in the list may be a field name, a variable, or an
arbitrary expression.

The subroutine called by a call statement must be defined by a sub encountered earlier during script
execution.

Parameters are copied into the subroutine and, if the parameter in the call statement is a variable and not an
expression, copied back out again upon exiting the subroutine.

Limitations:

¢ Since the call statement is a control statement and as such is ended with either a semicolon or end-of-
line, it must not cross a line boundary.

¢ When you define a subroutine with sub..end sub inside a control statement, for example if. .then,
you can only call the subroutine from within the same control statement.

Example:

This example lists all Qlik related files in a folder and its subfolders, and stores file information in a table. It is
assumed that you have created a data connection named Apps to the folder .

The DoDir subroutine is called with the reference to the folder, 'lib://Apps', as parameter. Inside the
subroutine, there is a recursive call, cal1l pobir (pir), that makes the function look for files recursively in
subfolders.

Script syntax and chart functions - Qlik Sense, August 2023 22

2 Script statements and keywords

sub DoDir (Root)

For Each Ext in 'qww', 'gqvo', 'qvs', 'qvt', 'qvd', 'qvc', 'qvf'
For Each File in filelist (Root&'*.' &Ext)
LOAD

'$(File)' as Name,
FileSize('"$(File)') as Size,
FileTime('"$(File)') as FileTime
autogenerate 1;
Next File
Next EXt
For Each Dir in dirlist (Root&'*')
call pobir (Dir)
Next Dir
End Sub

call pobir ('Tib://Apps')

Do..loop

The do..loop control statement is a script iteration construct which executes one or several
statements until a logical condition is met.

Syntax:

Do [(while | until) condition] [statements]

[exit do [(when | unless) condition] [statements]
loop[(while | until) condition]

Since the do..loop statement is a control statement and as such is ended with either a semicolon or
end-of-line, each of its three possible clauses (do, exit do and loop) must not cross a line boundary.

Arguments:
Arguments
Argument Description
condition A logical expression evaluating to True or False.
statements Any group of one or more Qlik Sense script statements.
while / until The while or until conditional clause must only appear once in any do..loop statement,
i.e. either after do or after loop. Each condition is interpreted only the first time it is
encountered but is evaluated for every time it encountered in the loop.
exit do If an exit do clause is encountered inside the loop, the execution of the script will be
transferred to the first statement after the loop clause denoting the end of the loop. An
exit do clause can be made conditional by the optional use of a when or unless suffix.
Example:

// LOAD files filel.csv..file9.csv

Script syntax and chart functions - Qlik Sense, August 2023

2 Script statements and keywords

Set a=1;

Do while a<10

LOAD * from file$(a).csv;
Let a=a+l;

Loop

End

The End script keyword is used to close If, Sub and Switch clauses.

Exit

The Exit script keyword is part of the Exit Script statement, but can also be used to exit Do, For
or Sub clauses.

Exit script

This control statement stops script execution. It may be inserted anywhere in the script.

Syntax:

Exit Script [(when | unless) condition]

Since the exit script statement is a control statement and as such is ended with either a semicolon or end-of-
line, it must not cross a line boundary.

Arguments:
Arguments
Argument Description
condition A logical expression evaluating to True or False.
when An exit script statement can be made conditional by the optional use of
/ unless when or unless clause.
Examples:

//EXit script
Exit Script;

//Exit script when a condition is fulfilled
Exit Script when a=1

For..next

The for..next control statement is a script iteration construct with a counter. The statements
inside the loop enclosed by for and next will be executed for each value of the counter variable
between specified low and high limits.

Script syntax and chart functions - Qlik Sense, August 2023 24

2 Script statements and keywords

Syntax:

For counter = exprl to expr2 [step expr3]
[statements]

[exit for [(when | unless) condition]
[statements]

Next [counter]

The expressions exprl, expr2 and expr3 are only evaluated the first time the loop is entered. The value of the
counter variable may be changed by statements inside the loop, but this is not good programming practice.

If an exit for clause is encountered inside the loop, the execution of the script will be transferred to the first
statement after the next clause denoting the end of the loop. An exit for clause can be made conditional by
the optional use of a when or unless suffix.

Since the for..next statement is a control statement and as such is ended with either a semicolon or
end-of-line, each of its three possible clauses (for..to..step, exit for and next) must not cross a line

boundary.
Arguments:
Arguments
Argument Description
counter A variable name. If counter is specified after next it must be the same variable name as the

one found after the corresponding for.

exprl An expression which determines the first value of the counter variable for which the loop
should be executed.

expr2 An expression which determines the last value of the counter variable for which the loop
should be executed.

expr3 An expression which determines the value indicating the increment of the counter variable
each time the loop has been executed.

condition a logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

Example 1: Loading a sequence of files
// LOAD files filel.csv..file9.csv
for a=1 to 9

LOAD * from file$(a).csv;

next

Script syntax and chart functions - Qlik Sense, August 2023 25

2 Script statements and keywords

Example 2: Loading a random number of files

In this example, we assume there are data files x1.csv, x3.csv, x5.csv, x7.csv and x9.csv. Loading is stopped at a
random point using the if rand()<0.5 then condition.

for counter=1 to 9 step 2

set filename=x$(counter).csv;
if rand()<0.5 then

exit for unless counter=1

end if
LOAD a,b from $(filename);

next

For each..next

The for each..next control statement is a script iteration construct which executes one or
several statements for each value in a comma separated list. The statements inside the loop
enclosed by for and next will be executed for each value of the list.

Syntax:
Special syntax makes it possible to generate lists with file and directory names in the current directory.

for each var in list

[statements]

[exit for [(when | unless) condition]
[statements]

next [var]

Arguments:
Arguments
Argument Description
var A script variable sname which will acquire a new value from list for each loop execution. If

var is specified after next it must be the same variable name as the one found after the
corresponding for each.

The value of the var variable may be changed by statements inside the loop, but this is not good
programming practice.

If an exit for clause is encountered inside the loop, the execution of the script will be transferred to the first
statement after the next clause denoting the end of the loop. An exit for clause can be made conditional by
the optional use of a when or unless suffix.

Script syntax and chart functions - Qlik Sense, August 2023 26

2 Script statements and keywords

Since the for each..next statement is a control statement and as such is ended with either a

semicolon or end-of-line, each of its three possible clauses (for each, exit for and next) must not

cross a line boundary.

Syntax:
list
item :

item { , item }

constant | (expression) | filelist mask | dirlist mask |

fieldvaluelist mask

Argument

constant

expression

mask

condition
statements

filelist mask

dirlist mask

fieldvaluelist
mask

Arguments

Description

Any number or string. Note that a string written directly in the script must be enclosed by
single quotes. A string without single quotes will be interpreted as a variable, and the
value of the variable will be used. Numbers do not need to be enclosed by single quotes.

An arbitrary expression.

A filename or folder name mask which may include any valid filename characters as well
as the standard wildcard characters, * and ?2.

You can use absolute file paths or lib:// paths.
A logical expression evaluating to True or False.
Any group of one or more Qlik Sense script statements.

This syntax produces a comma separated list of all files in the current directory matching
the filename mask.

This argument supports only library connections in standard mode.

This syntax produces a comma separated list of all folders in the current folder matching
the folder name mask.

This argument supports only library connections in standard mode.

This syntax iterates through the values of a field already loaded into Qlik Sense.

The Qlik Web Storage Provider Connectors and other DataFiles connections do not support filter
masks that use wildcard (* and ?) characters.

Script syntax and chart functions - Qlik Sense, August 2023 27

2 Script statements and keywords

Example 1: Loading a list of files

// LOAD the files 1.csv, 3.csv, 7.csv and xyz.csv
for each a in 1,3,7, 'xyz'

LOAD * from file$(a).csv;
next

Example 2: Creating a list of files on disk

This example loads a list of all Qlik Sense related files in a folder.

sub DoDir (Root)
for each Ext in 'qww', 'qgva', 'qvo', 'qvs', 'qvc', 'qvf', 'qvd'

for each File in filelist (Root&'/*.' &Ext)

LOAD
'$(File)' as Name,
Filesize('$(File)') as Size,
FileTime('$(File)') as FileTime
autogenerate 1;

next File

next EXt
for each Dir in dirlist (Root&'/*')

call poDir (Dir)
next Dir
end sub
call pobir ('lib://DataFiles')

Example 3: Iterating through a the values of a field

This example iterates through the list of loaded values of FIELD and generates a new field, NEWFIELD. For
each value of FIELD, two NEWFIELD records will be created.

Toad * inTline [
FIELD

one

two

three

1;

FOR Each a in FieldvalueList('FIELD')
LOAD '$(a)' &'-'&RecNo() as NEWFIELD AutoGenerate 2;
NEXT a

The resulting table looks like this:

Script syntax and chart functions - Qlik Sense, August 2023 28

2 Script statements and keywords

Example table

NEWFIELD
one-1
one-2
two-1
two-2
three-1

three-2

If..then..elseif..else..end if

The if..then control statement is a script selection construct forcing the script execution to
follow different paths depending on one or several logical conditions.

Control statements are typically used to control the flow of the script execution. In a chart expression, use the
if conditional function instead.

Syntax:

If condition then
[statements]

{ elseif condition then
[statements] }

[else
[statements]]

end if

Since the if..then statement is a control statement and as such is ended with either a semicolon or end-of-
line, each of its four possible clauses (if..then, elseif..then, else and end if) must not cross a line boundary.

Arguments:
Arguments
Argument Description
condition A logical expression which can be evaluated as True or False.
statements Any group of one or more Qlik Sense script statements.

Example 1:

if a=1 then

LOAD * from abc.csv;
SQL SELECT e, f, g from tabl;

end if

Script syntax and chart functions - Qlik Sense, August 2023 29

2 Script statements and keywords

Example 2:
if a=1 then; drop table xyz; end if;
Example 3:

if x>0 then

LOAD * from pos.csv;
elseif x<0 then

LOAD * from neg.csv;
else

LOAD * from zero.txt;

end if

Next

The Next script keyword is used to close For loops.

Sub..end sub

The sub..end sub control statement defines a subroutine which can be called upon from a call
statement.

Syntax:

Sub name [(paramlist)] statements end sub

Arguments are copied into the subroutine and, if the corresponding actual parameter in the call statement is
a variable name, copied back out again upon exiting the subroutine.

If a subroutine has more formal parameters than actual parameters passed by a call statement, the extra
parameters will be initialized to NULL and can be used as local variables within the subroutine.

Arguments:
Arguments
Argument Description
name The name of the subroutine.
paramlist A comma separated list of variable names for the formal parameters of the
subroutine. These can be used as any variable inside the subroutine.
statements Any group of one or more Qlik Sense script statements.

Script syntax and chart functions - Qlik Sense, August 2023 30

2 Script statements and keywords

Limitations:

¢ Since the sub statement is a control statement and as such is ended with either a semicolon or end-of-
line, each of its two clauses (sub and end sub) must not cross a line boundary.

¢ When you define a subroutine with sub..end sub inside a control statement, for example if. .then,
you can only call the subroutine from within the same control statement.

Example 1:

Sub INCR (I,3)
I=1I+1

Exit Sub when I < 10
J=31+1

End Sub

call INCR (X,Y)

Example 2: - parameter transfer

Sub ParTrans (A,B,C)

A=A+1

B=B+1

C=C+1

End Sub

A=1

X=1

c=1

call parTrans (A, (X+1)*2)

The result of the above will be that locally, inside the subroutine, A will be initialized to 1, B will be initialized

to 4 and C will be initialized to NULL.

When exiting the subroutine, the global variable A will get 2 as value (copied back from subroutine). The
second actual parameter “(X+1)*2” will not be copied back since it is not a variable. Finally, the global variable
C will not be affected by the subroutine call.

Switch..case..default..end switch

The switch control statement is a script selection construct forcing the script execution to
follow different paths, depending on the value of an expression.

Syntax:
Switch expression {case valuelist [statements]} [default statements] end
switch

Since the switch statement is a control statement and as such is ended with either a semicolon or
end-of-line, each of its four possible clauses (switch, case, default and end switch) must not cross a
line boundary.

Script syntax and chart functions - Qlik Sense, August 2023 31

2 Script statements and keywords

Arguments:
Arguments
Argument Description
expression An arbitrary expression.
valuelist A comma separated list of values with which the value of expression will be compared.
Execution of the script will continue with the statements in the first group encountered
with a value in valuelist equal to the value in expression. Each value in valuelist may be an
arbitrary expression. If no match is found in any case clause, the statements under the
default clause, if specified, will be executed.
statements Any group of one or more Qlik Sense script statements.
Example:
Switch I
Case 1
LOAD '$(I): CASE 1' as case autogenerate 1;
Case 2
LOAD '$(I): CASE 2' as case autogenerate 1;
Default
LOAD '$(I): DEFAULT' as case autogenerate 1;
End Switch
To

The To script keyword is used in several script statements.

2.4 Script prefixes

Prefixes may be applied to applicable regular statements but never to control statements. The when and
unless prefixes can however be used as suffixes to a few specific control statement clauses.

All script keywords can be typed with any combination of lower case and upper case characters. Field and
variable names used in the statements are however case sensitive.

Script prefixes overview

Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Add

The Add prefix can be added to any LOAD or SELECT statement in the script to specify that it should add
records to another table. It also specifies that this statement should be run in a partial reload. The Add prefix
can also be used in a Map statement.

Add [only] [Concatenate|[(tablename)]] (loadstatement | selectstatement)
Add [Only] mapstatement

Script syntax and chart functions - Qlik Sense, August 2023 32

2 Script statements and keywords

Buffer

QVD files can be created and maintained automatically via the buffer prefix. This prefix can be used on most
LOAD and SELECT statements in script. It indicates that QVD files are used to cache/buffer the result of the
statement.

Buffer| (option [, option])] (loadstatement | selectstatement)
option::= incremental | stale [after] amount [(days | hours)]
Concatenate

If two tables that are to be concatenated have different sets of fields, concatenation of two tables can still be
forced with the Concatenate prefix.

Concatenate|[(tablename)] (loadstatement | selectstatement)

Crosstable

The crosstable load prefix is used to transpose “cross table” or “pivot table” structured data. Data structured
this way is commonly encountered when working with spreadsheet sources. The output and aim of the
crosstable load prefix is to transpose such structures into a regular column-oriented table equivalent, as this
structure is generally better suited for analysis in Qlik Sense.

Crosstable (attribute field name, data field name [, n]) (loadstatement |

selectstatement)

First
The First prefix to a LOAD or SELECT (SQL) statement is used for loading a set maximum number of records
from a data source table.

First n(loadstatement | selectstatement)

Generic

The Generic load prefix allows for conversion of entity-attribute-value modeled data (EAV) into a traditional,
normalized relational table structure. EAV modeling is alternatively referred to as "generic data modeling" or
"open schema".

Generic (loadstatement | selectstatement)

Hierarchy

The hierarchy prefix is used to transform a parent-child hierarchy table to a table that is useful in a Qlik Sense
data model. It can be put in front of a LOAD or a SELECT statement and will use the result of the loading
statement as input for a table transformation.

Hierarchy (NodeID, ParentID, NodeName, [ParentName], [PathSource],
[PathName], [PathDelimiter], [Depth]) (loadstatement | selectstatement)

HierarchBelongsTo

This prefix is used to transform a parent-child hierarchy table to a table that is useful in a Qlik Sense data
model. It can be put in front of a LOAD or a SELECT statement and will use the result of the loading statement
as input for a table transformation.

Script syntax and chart functions - Qlik Sense, August 2023 33

2 Script statements and keywords

HierarchyBelongsTo (NodeID, ParentID, NodeName, AncestorID, AncestorName,
[DepthDiff]) (loadstatement | selectstatement)

Inner
The join and keep prefixes can be preceded by the prefix inner.

If used before join it specifies that an inner join should be used. The resulting table will thus only contain
combinations of field values from the raw data tables where the linking field values are represented in both
tables. If used before keep, it specifies that both raw data tables should be reduced to their common
intersection before being stored in Qlik Sense.

Inner (Join | Keep) [(tablename)] (loadstatement |selectstatement)

IntervalMatch
The IntervalMatch prefix is used to create a table matching discrete numeric values to one or more numeric
intervals, and optionally matching the values of one or several additional keys.

IntervalMatch (matchfield) (loadstatement | selectstatement)
IntervalMatch (matchfield, keyfieldl [, keyfield2, ... keyfield5])
(loadstatement | selectstatement)

Join
The join prefix joins the loaded table with an existing named table or the last previously created data table.

[Inner | Outer | Left | Right] Join [(tablename)] (loadstatement |

selectstatement)

Keep

The keep prefix is similar to the join prefix. Just as the join prefix, it compares the loaded table with an
existing named table or the last previously created data table, but instead of joining the loaded table with an
existing table, it has the effect of reducing one or both of the two tables before they are stored in Qlik Sense,
based on the intersection of table data. The comparison made is equivalent to a natural join made over all the
common fields, i.e. the same way as in a corresponding join. However, the two tables are not joined and will
be kept in Qlik Sense as two separately named tables.

(Inner | Left | Right) Keep [(tablename)] (loadstatement | selectstatement
)

Left
The Join and Keep prefixes can be preceded by the prefix left.

If used before join it specifies that a left join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented in the first
table. If used before keep, it specifies that the second raw data table should be reduced to its common
intersection with the first table, before being stored in Qlik Sense.

Left (Join | Keep) [(tablename)] (loadstatement |selectstatement)

Script syntax and chart functions - Qlik Sense, August 2023 34

2 Script statements and keywords

Mapping
The mapping prefix is used to create a mapping table that can be used to, for example, replacing field values
and field names during script execution.

Mapping (loadstatement | selectstatement)

Merge
The Merge prefix can be added to any LOAD or SELECT statement in the script to specify that the loaded table
should be merged into another table. It also specifies that this statement should be run in a partial reload.

Merge [only] [(SequenceNoField [, SequenceNoVar])] On ListOfKeys [Concatenate
[(TableName)]] (loadstatement | selectstatement)

NoConcatenate
The NoConcatenate prefix forces two loaded tables with identical field sets to be treated as two separate
internal tables, when they would otherwise be automatically concatenated.

NoConcatenate (loadstatement | selectstatement)

Outer

The explicit Join prefix can be preceded by the prefix Outer to specify an outer join. In an outer join, all
combinations between the two tables are generated. The resulting table will thus contain combinations of
field values from the raw data tables where the linking field values are represented in one or both tables. The
Outer keyword is optional and is the default join type used when a join prefix is not specified.

Outer Join [(tablename)] (loadstatement |selectstatement)

Partial reload
A full reload always starts by deleting all tables in the existing data model, and then runs the load script.

A Partial reload (page 97) will not do this. Instead it keeps all tables in the data model and then executes only
Load and Select statements preceded by an Add, Merge, or Replace prefix. Other data tables are not affected
by the command. The only argument denotes that the statement should be executed only during partial
reloads, and should be disregarded during full reloads. The following table summarizes statement execution
for partial and full reloads.

Replace

The Replace prefix can be added to any LOAD or SELECT statement in the script to specify that the loaded
table should replace another table. It also specifies that this statement should be run in a partial reload. The
Replace prefix can also be used in a Map statement.

Replace [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)
Replace [only] mapstatement

Right
The Join and Keep prefixes can be preceded by the prefix right.

Script syntax and chart functions - Qlik Sense, August 2023 35

2 Script statements and keywords

If used before join it specifies that a right join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented in the
second table. If used before keep, it specifies that the first raw data table should be reduced to its common
intersection with the second table, before being stored in Qlik Sense.

Right (Join | Keep) [(tablename)] (loadstatement |selectstatement)

Sample
The sample prefix to a LOAD or SELECT statement is used for loading a random sample of records from the
data source.

Sample p (loadstatement | selectstatement)

Semantic

Tables containing relations between records can be loaded through a semantic prefix. This can for example
be self-references within a table, where one record points to another, such as parent, belongs to, or
predecessor.

Semantic (loadstatement | selectstatement)

Unless
The unless prefix and suffix is used for creating a conditional clause which determines whether a statement or
exit clause should be evaluated or not. It may be seen as a compact alternative to the full if..end if statement.

(Unless condition statement | exitstatement Unless condition)

When
The when prefix and suffix is used for creating a conditional clause which determines whether a statement or
exit clause should be executed or not. It may be seen as a compact alternative to the full if..end if statement.

(When condition statement | exitstatement when condition)

Add

The Add prefix can be added to any LOAD or SELECT statement in the script to specify that it should add
records to another table. It also specifies that this statement should be run in a partial reload. The Add prefix
can also be used in a Map statement.

For partial reload to work properly, the app must be opened with data before a partial reload is
triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Syntax:
Add [only] [Concatenate|[(tablename)]] (loadstatement | selectstatement)

Add [only] mapstatement
During a normal (non-partial) reload, the Add LOAD construction will work as a normal LOAD statement.
Records will be generated and stored in a table.

Script syntax and chart functions - Qlik Sense, August 2023 36

2 Script statements and keywords

If the Concatenate prefix is used, or if there exists a table with the same set of fields, the records will be
appended to the relevant existing table. Otherwise, the Add LOAD construction will create a new table.

A partial reload will do the same. The only difference is that the Add LOAD construction will never create a

new table. There always exists a relevant table from the previous script execution to which the records should

be appended.

No check for duplicates is performed. Therefore, a statement using the Add prefix will often include either a

distinct qualifier or a where clause guarding duplicates.

The Add Map...Using statement causes mapping to take place also during partial script execution.

Arguments:

Argument Description

only

Arguments

An optional qualifier denoting that the statement should be executed only

during partial reloads. It should be disregarded during normal (non-partial)

reloads.

Examples and results:
Example

Tabl:

LOAD Name, Number FROM
Persons.csv;

Add LOAD Name, Number
FROM newPersons.csv;

Tabl:

SQL SELECT Name,
FROM Persons.csv;
Add LOAD Name, Number
FROM NewPersons.csv
where not exists(Name);

Number

Tabl:

LOAD Name, Number FROM
Persons.csv;

Add oOnly LOAD Name,
Number FROM
NewPersons.csv where not
exists(Name);

Result

During normal reload, data is loaded from Persons.csv and stored in the Qlik
Sense table Tabl. Data from NewPersons.csv is then concatenated to the
same Qlik Sense table.

During partial reload, data is loaded from NewPersons.csv and appended to
the Qlik Sense table Tabl. No check for duplicates is made.

A check for duplicates is made by means of looking if Name exists in the
previously loaded table data.

During normal reload, data is loaded from Persons.csv and stored in the Qlik
Sense table Tab1l. Data from NewPersons.csv is then concatenated to the
same Qlik Sense table.

During partial reload, data is loaded from NewPersons.csv which is
appended to the Qlik Sense table Tab1. A check for duplicates is made by
means of seeing if Name exists in the previously loaded table data.

During normal reload, data is loaded from Persons.csv and stored in the Qlik
Sense table Tabl. The statement loading NewPersons.csv is disregarded.

During partial reload, data is loaded from NewPersons.csv which is
appended to the Qlik Sense table Tab1l. A check for duplicates is made by
means of seeing if Name exists in the previously loaded table data.

Script syntax and chart functions - Qlik Sense, August 2023 37

2 Script statements and keywords

Buffer

QVD files can be created and maintained automatically via the buffer prefix. This prefix can be
used on most LOAD and SELECT statements in script. It indicates that QVD files are used to
cache/buffer the result of the statement.

Syntax:

Buffer [(option [, option])] (loadstatement | selectstatement)
option::= incremental | stale [after] amount [(days | hours)]

If no option is used, the QVD buffer created by the first execution of the script will be used indefinitely.

The buffer file is stored in the Buffers sub-folder, typically C:\ProgramData\Qlik\Sense\Engine\Buffers (server
installation) or C:\Users\{user}\Documents\Qlik\Sense\Buffers (Qlik Sense Desktop).

The name of the QVD file is a calculated name, a 160-bit hexadecimal hash of the entire following LOAD or
SELECT statement and other discriminating info. This means that the QVD buffer will be rendered invalid by
any change in the following LOAD or SELECT statement.

QVD buffers will normally be removed when no longer referenced anywhere throughout a complete script
execution in the app that created it or when the app that created it no longer exists.

Arguments:

Arguments

Argument Description

incremental The incremental option enables the ability to read only part of an
underlying file. Previous size of the file is stored in the XML header in the
QVD file. This is particularly useful with log files. All records loaded at a
previous occasion are read from the QVD file whereas the following new
records are read from the original source and finally an updated QVD-file is
created.

The incremental option can only be used with LOAD statements and text
files. Incremental load cannot be used where old data is changed or
deleted.

stale [after] amount is a number specifying the time period. Decimals may be used. The

amount [(days unitis assumed to be days if omitted.

| hours)] The stale after option is typically used with DB sources where there is no
simple timestamp on the original data. Instead you specify how old the
QVD snapshot can be to be used. A stale after clause simply states a time
period from the creation time of the QVD buffer after which it will no
longer be considered valid. Before that time the QVD buffer will be used as
source for data and after that the original data source will be used. The
QVD buffer file will then automatically be updated and a new period starts.

Script syntax and chart functions - Qlik Sense, August 2023 38

2 Script statements and keywords

Limitations:

Numerous limitations exist, most notable is that there must be either a file LOAD or a SELECT statement at
the core of any complex statement.

Example 1:

Buffer SELECT * from MyTable;

Example 2:

Buffer (stale after 7 days) SELECT * from MyTable;
Example 3:

Buffer (incremental) LOAD * from MyLog.log;

Concatenate

concatenate is a script load prefix that enables a dataset to be appended to an already existing
in-memory table. It is often used to append different sets of transactional data to a single
central fact table, or to build up common reference datasets of a specific type that originate
from multiple sources. It is similar in functionality to a SQL UNION operator.

The resulting table from a concatenate operation will contain the original dataset with the new rows of data
appended to the bottom of that table. The source and target tables may have different fields present. Where
fields are different, the resulting table will be widened to represent the combined result of all fields present in
both the source table and the target table.

Syntax:
Concatenate|[(tablename)] (loadstatement | selectstatement)
Arguments
Argument Description
tablename The name of an existing table. The named table will be the target of

the concatenate operation and any records of data loaded will be
appended to that table. If the tablename parameter isn't used, the
target table will be the last loaded table before this statement.

loadstatement/selectstatement The Toadstatement/selectstatement argument that follows the
tablename argument will be concatenated to the specified table.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may

Script syntax and chart functions - Qlik Sense, August 2023 39

2 Script statements and keywords

be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Function example

Example Result
Concatenate The data loaded in the load statement below the concatenate prefix will be
(Transactions)

appended to the existing in-memory table named Transactions (assuming that a

Load ... ; table named Transactions has been loaded prior to this point in the load script.

Example 1 - Appending multiple sets of data to a target table with Concatenate load
prefix

Load script and results

Overview

In this example you will load two scripts in sequential order.

e The first load script contains an initial dataset with dates and amounts that is sent to a table named

Transactions.
¢ The second load script contains:

¢ Asecond dataset that is appended to the initial dataset by using the concatenate prefix. This
dataset has an additional field, type, that is not in the initial dataset.

e The concatenate prefix.

Open the data load editor and add the load script below to a new tab.
First load script

Transactions:
Load * Inline [

id, date, amount

3750, 08/30/2018, 23.56
3751, 09/07/2018, 556.31
3752, 09/16/2018, 5.75
3753, 09/22/2018, 125.00
3754, 09/22/2018, 484.21
3756, 09/22/2018, 59.18
3757, 09/23/2018, 177.42
1;

Script syntax and chart functions - Qlik Sense, August 2023 40

2 Script statements and keywords

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e id
e date

e amount

First load script results table

id date amount
3750 08/30/2018 23.56
3751 09/07/2018 556.31
3752 09/16/2018 5.75
3753 09/22/2018 125.00
3754 09/22/2018 484.21
3756 09/22/2018 59.18

3757 09/23/2018 177.42

The table shows the initial dataset.

Second load script

Open the data load editor and add the load script below .

Concatenate(Transactions)
Load * InTline [
id, date, amount, type

3758, 10/01/2018, 164.27, Internal
3759, 10/03/2018, 384.00, External
3760, 10/06/2018, 25.82, Internal

3761, 10/09/2018, 312.00, Internal

3762, 10/15/2018, 4.56, Internal

3763, 10/16/2018, 90.24, Internal
3764, 10/18/2018, 19.32, External

1;

Results

Load the data and go to the sheet. Create this field as a dimension.

o type

Script syntax and chart functions - Qlik Sense, August 2023 41

2 Script statements and keywords

Second load script results table

id date amount type
3750 08/30/2018 23.56 -
3751 09/07/2018 556.31 -
3752 09/16/2018 5.75 -
3753 09/22/2018 125.00 -
3754 09/22/2018 484.21 -
3756 09/22/2018 59.18 -

3757 09/23/2018 177.42 -

3758 10/01/2018 164.27 Internal
3759 10/03/2018 384.00 External
3760 10/06/2018 25.82 Internal
3761 10/09/2018 312.00 Internal
3762 10/15/2018 4.56 Internal
3763 10/16/2018 90.24 Internal
3764 10/18/2018 19.32 External

Note the null values in the type field for the first seven records loaded where type had not been defined.

Example 2 - Appending multiple sets of data to a target table using implicit
concatenation

Load script and results

Overview

A typical use case for implicitly appending data is when you load several files of identically structured data
and want to append them all to a target table.

For example, by using wildcards in file names with syntax such as:

myTable:
Load * from [myFile_*.qvd] (qvd);

or in loops using constructs such as:
for each file in filelist('myFile_*.qvd')

myTable:
Load * from [$(file)] (qvd);

next file

Script syntax and chart functions - Qlik Sense, August 2023 42

2 Script statements and keywords

Implicit concatenation will take place between any two tables that are loaded with identically
named fields, even if they aren't defined after one another in the script. This can lead to data being

unintentionally appended to tables. If you don't want a secondary table with identical fields to be
appended in this way, use the NoConcatenate load prefix. Renaming the table with an alternate
table name tag is not sufficient to prevent implicit concatenation to occur. For more information, see
NoConcatenate (page 87).

In this example you will load two scripts in sequential order.

e The first load script contains an initial dataset with four fields that is sent to a table named

Transactions.

¢ The second load script contains a dataset with the same fields as the first dataset.

Open the data load editor and add the load script below to a new tab.

First load script

Transactions:
Load * Inline [
id, date, amount,
3758, 10/01/2018,
3759, 10/03/2018,
3760, 10/06/2018,
3761, 10/09/2018,
3762, 10/15/2018,
3763, 10/16/2018,
3764, 10/18/2018,
1;

Results

type

164.27, Internal
384.00, External
25.82, Internal
312.00, Internal
4.56, Internal
90.24, Internal
19.32, External

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e 1id

e date

e amount

e type

First load script results table

id date type amount
3758 10/01/2018 Internal 164.27
3759 10/03/2018 External 384.00
3760 10/06/2018 Internal 25.82
3761 10/09/2018 Internal 312.00
3762 10/15/2018 Internal 4.56
Script syntax and chart functions - Qlik Sense, August 2023 43

2 Script statements and keywords

id date type amount
3763 10/16/2018 Internal 90.24
3764 10/18/2018 External 19.32

The table shows the initial dataset.

Second load script

Open the data load editor and add the load script below .

Load * InTline [

id, date, amount, type

3765, 11/03/2018, 129.40, Internal
3766, 11/05/2018, 638.50, External
1;

Results

Load the data and go to the sheet.

Second load script results table

id date type amount
3758 10/01/2018 Internal 164.27
3759 10/03/2018 External 384.00
3760 10/06/2018 Internal 25.82
3761 10/09/2018 Internal 312.00
3762 10/15/2018 Internal 4.56
3763 10/16/2018 Internal 90.24
3764 10/18/2018 External 19.32
3765 11/03/2018 Internal 129.40
3766 11/05/2018 External 638.50

The second dataset was implicitly concatenated onto the initial dataset because they had identical fields.

Crosstable

The crosstable load prefix is used to transpose “cross table” or “pivot table” structured data.
Data structured this way is commonly encountered when working with spreadsheet sources. The
output and aim of the crosstable load prefix is to transpose such structures into a regular
column-oriented table equivalent, as this structure is generally better suited for analysis in Qlik
Sense.

Script syntax and chart functions - Qlik Sense, August 2023 44

2 Script statements and keywords

Example of data structured as a crosstable and its equivalent structure after a crosstable transformation

DATASETS OPERATION QuUTPUT
Source Table CROSSTABLE Output Table
. —

Area Lisa lames Sharon e Sales Person Target

APAC 1500 1750 1850 APAC Lisa 1500

EMEA 1350 950 2050 APAC e 1750
APAC Sharon 1850

NA 1800 1200 1350 .
EMEA Lisa 1350
EMEA James 950
EMEA Sharon 2050
NA Lisa 1800

Key

Unchanged dimensions NA James 1200

Dimension attributes

Dimension data MA Sharon 1350

Syntax:

crosstable (attribute field name, data field name [, n]) (loadstatement |

selectstatement)

Arguments
Argument Description
attribute The desired output field name describing the horizontally oriented dimension that is to be
field name transposed (the header row).
data field The desired output field name which describes the horizontally oriented data of the
name dimension that is to be transposed (the matrix of data values beneath the header row).
n The number of qualifier fields, or unchanged dimensions preceding the table to be

transformed to generic form. The default value is 1.

This scripting function is related to the following functions:

Related functions

Function Interaction
Generic A transformation load prefix which takes an entity-attribute-value structured data set and
(page 56) transforms it into a regular relational table structure, separating each attribute encountered

into a new field or column of data.

Script syntax and chart functions - Qlik Sense, August 2023 45

2 Script statements and keywords

Example 1 - Transforming pivoted sales data (simple)

Load scripts and results

Overview

Open the Data load editor and add the first load script below to a new tab.

The first load script contains a dataset to which the crosstable script prefix will be applied later, with the
section applying crosstable commented out. This means that comment syntax was used to disable this
section in the load script.

The second load script is the same as the first, but with the application of crosstable uncommented (enabled
by removing the comment syntax). The scripts are shown this way to highlight the value of this scripting
function in transforming data.

First load script (function not applied)

tmpData:

//Crosstable (MonthText, Sales)

Load * inTline [

Product, Jan 2021, Feb 2021, Mar 2021, Apr 2021, May 2021, Jun 2021
A, 100, 98, 103, 63, 108, 82

B, 284, 279, 297, 305, 294, 292

c, 50, 53, 50, 54, 49, 51];

//Final:

//Load Product,

//Date(Date#(MonthText, '"MMM YYYY'), 'MMM YYYY') as Month,
//Sales

//Resident tmpData;
//Drop Table tmpData;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Product

e Jan 2021
e Feb 2021
e Mar 2021
e Apr 2021
e May 2021
e Jun 2021

Script syntax and chart functions - Qlik Sense, August 2023 46

2 Script statements and keywords

Results table

Jun
Product Jan 2021 Feb 2021 Mar 2021 Apr 2021 May 2021 2021
A 100 98 103 63 108 82
B 284 279 297 305 294 292
C 50 53 50 54 49 51

This script allows the creation of a crosstable with one column for each month and one row per product. In its
current format, this data is not easy to analyze. It would be much better to have all numbers in one field and
all months in another, in a three-column table. The next section explains how to do this transformation to the
crosstable.

Second load script (function applied)

Uncomment the script by removing the //. The load script should look like this:

tmpData:

Crosstable (MonthText, Sales)

Load * inline [

Product, Jan 2021, Feb 2021, Mar 2021, Apr 2021, May 2021, Jun 2021
A, 100, 98, 103, 63, 108, 82

B, 284, 279, 297, 305, 294, 292

c, 50, 53, 50, 54, 49, 51];

Final:

Load Product,

Date(Date#(MonthText, '"MMM YYYY'),'MMM YYYY') as Month,
Ssales

Resident tmpData;

Drop Table tmpData;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Product

e Month

e Sales

Results table

Product Month Sales
A Jan 2021 100
A Feb 2021 98
A Mar 2021 103

Script syntax and chart functions - Qlik Sense, August 2023 47

2 Script statements and keywords

Product Month Sales
A Apr 2021 63
A May 2021 108
A Jun 2021 82
B Jan 2021 284
B Feb 2021 279
B Mar 2021 297
B Apr 2021 305
B May 2021 294
B Jun 2021 292
C Jan 2021 50
C Feb 2021 53
C Mar 2021 50
C Apr 2021 54
C May 2021 49
c Jun 2021 51

Once the script prefix has been applied, the crosstable is transformed into a straight table with one column for
Month and another for sales. This improves the readability of the data.

Example 2 - Transforming pivoted sales target data into a vertical table structure
(intermediate)

Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

* Adataset which is loaded into a table named Targets.

e The crosstable load prefix, which transposes the pivoted sales person names into a field of its own,
labeled sales Person.

e The associated sales target data, which is structured into a field called Target.
Load script

SalesTargets:
CROSSTABLE([Sales Person],Target,1)

Script syntax and chart functions - Qlik Sense, August 2023 48

2 Script statements and keywords

LOAD

%

INLINE [
Area, Lisa, James, Sharon

APAC, 1500, 1750, 1850

EMEA, 1350, 950, 2050
NA, 1800, 1200, 1350
]

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Area

Sales Person

Add this measure:

=sum(Target)

Area
APAC
APAC
APAC
EMEA
EMEA
EMEA
NA
NA

NA

Results table

Sales Person
James

Lisa

Sharon
James

Lisa

Sharon
James

Lisa

Sharon

=Sum(Target)

1750

1500

1850

950

1350

2050

1200

1800

1350

If you want to replicate the display of data as the pivoted input table, you can create an equivalent pivot table
in a sheet.

Do the

Wb

following:

Copy and paste the table you have just created into the sheet.

Drag the Pivot table chart object on top of the newly created table copy. Select Convert.

Click ¥ Done editing.

Drag the sales Person field from the vertical column shelf to the horizontal column shelf.

The following table shows the data in its initial table form, as it is displayed in Qlik Sense:

Script syntax and chart functions - Qlik Sense, August 2023 49

2 Script statements and keywords

Original results table, as shown in Qlik Sense

Area
Totals
APAC
APAC
APAC
EMEA
EMEA
EMEA
NA

NA

NA

Sales Person
James

Lisa

Sharon
James

Lisa

Sharon
James

Lisa

Sharon

=Sum(Target)
13800

1750

1500

1850

950

1350

2050

1200

1800

1350

The equivalent pivot table looks similar to the following, with the column for each sales person's name being
contained within the larger row for sales Person:

Equivalent pivot table with the sales person
field pivoted horizontally

Area
APAC
EMEA

NA

James Lisa
1750 1500
950 1350
1350 1350

Sharon
1850
2050

1350

Example of data displayed as a table and an equivalent pivot table with the Sales Person field pivoted horizontally

Table

Area

Totals

Q. Sales Person

Pivot table
(Sum{Target))
L - Area O Sales Person O
13800
750]] 5
850 £y

Script syntax and chart functions - Qlik Sense, August 2023 50

2 Script statements and keywords

Example 3 - Transforming pivoted sales and target data into a vertical table
structure (advanced)

Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

* A dataset representing sales and targets data, organized by area and month of the year. This is loaded
into a table called salesandTargets.

e The crosstable load prefix. This is used to unpivot the Month vear dimension into a dedicated field,
as well as to transpose the matrix of sales and target amounts into a dedicated field called Amount.

¢ A conversion of the Month Year field from text to a proper date, using the text-to-date conversion
function date#. This date-converted month Year field is joined back onto the salesAndTarget table via
a Join load prefix.

Load script
SalesAndTargets:
CROSSTABLE(MonthYyearAsText,Amount,2)
LOAD
*
INLINE [
Area Type Jan-22 Feb-22 Mar-22 Apr-22 May-22 Jun-22 Jul-22 Aug-22 Sep-22 0ct-22 Nov-22
APAC Target 425 425 425 425 425 425 425 425 425 425 425
APAC Actual 435 434 397 404 458 447 413 458 385 421 448

EMEA Target 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5
EMEA Actual 363.5 359.5 337.5 361.5 341.5 337.5 379.5 352.5 327.5 337.5 360.5
NA Target 375 375 375 375 375 375 375 375 375 375 375
NA Actual 378 415 363 356 403 343 401 365 393 340 360

1 (delimiter is '\t');

tmp:
LOAD DISTINCT MonthYearAsText,date#(MonthyearAsText, 'MMM-YY') AS [Month Year]

RESIDENT SalesAndTargets;

JOIN (SalesAndTargets)
LOAD * RESIDENT tmp;

DROP TABLE tmp;
DROP FIELD MonthYearAsText;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, August 2023 51

Dec-22
425
397
362.5
334.5
375
405

2 Script statements and keywords

e Area

e Month Year
Create the following measure, with the label Actual:
=sum({<Type={'Actual'}>} Amount)
Also create this measure, with the label Target:
=sum({<Type={'Target'}>} Amount)

Results table (cropped)

Area Month Year Actual Target
APAC Jan-22 435 425
APAC Feb-22 434 425
APAC Mar-22 397 425
APAC Apr-22 404 425
APAC May-22 458 425
APAC Jun-22 447 425
APAC Jul-22 413 425
APAC Aug-22 458 425
APAC Sep-22 385 425
APAC Oct-22 421 425
APAC Nov-22 448 425
APAC Dec-22 397 425
EMEA Jan-22 363.5 362.5
EMEA Feb-22 359.5 362.5

If you wish to replicate the display of data as the pivoted input table, you can create an equivalent pivot table
in a sheet.

Do the following:

Copy and paste the table you have just created into the sheet.

Drag the Pivot table chart object on top of the newly created table copy. Select Convert.

1

2

3. Click ¥ Done editing.

4. Dragthe month vear field from the vertical column shelf to the horizontal column shelf.
5

Drag the values item from the horizontal column shelf to the vertical column shelf.

The following table shows the data in its initial table form, as it is displayed in Qlik Sense:

Script syntax and chart functions - Qlik Sense, August 2023 52

2 Script statements and keywords

Original results table (cropped), as shown in Qlik

Sense
Area Month Year Actual Target
Totals - 13812 13950
APAC Jan-22 435 425
APAC Feb-22 434 425
APAC Mar-22 397 425
APAC Apr-22 404 425
APAC May-22 458 425
APAC Jun-22 447 425
APAC Jul-22 413 425
APAC Aug-22 458 425
APAC Sep-22 385 425
APAC Oct-22 421 425
APAC Nov-22 448 425
APAC Dec-22 397 425
EMEA Jan-22 363.5 362.5
EMEA Feb-22 359.5 362.5

The equivalent pivot table looks similar to the following, with the column for each individual month of the
year being contained within the larger row for Month vear:

Equivalent pivot table (cropped) with the Month vear field pivoted horizontally

Area

(Val Jan- Feb- Mar- Apr- May- Jun- Jul- Aug- Sep- Oct- Nov- Dec-
alue

) 22 22 22 22 22 22 22 22 22 22 22 22
s

APAC - 435 434 397 404 458 447 413 458 385 421 448 397
Actual

APAC - 425 425 425 425 425 425 425 425 425 425 425 425
Target

EMEA - 363.5 3595 3375 361.5 3415 3375 379.5 3525 3275 337.5 360.5 3345
Actual

EMEA- 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625
Target

NA - 378 415 363 356 403 343 401 365 393 340 360 405
Actual

Script syntax and chart functions - Qlik Sense, August 2023 53

2 Script statements and keywords

Area

(Val Jan- Feb- Mar- Apr- May- Jun- Jul- Aug- Sep- Oct- Nov- Dec-
alue

) 22 22 22 22 22 22 22 22 22 22 22 22
s

NA - 375 375 375 375 375 375 375 375 375 375 375 375
Target

Example of data displayed as a table and an equivalent pivot table with the Month Year field pivoted horizontally

Table Pivot table

2 A Honth Yea et Area Q Month Year Q

APAC oct22 a21 25
APAC Nov-22 ass 25

First

The First prefix to a Loap or seLecT (SQL) statement is used for loading a set maximum number
of records from a data source table. A typical use case for using the rirst prefix is when you
want to retrieve a small subset of records from a large and/or slow data load step. As soon as
the defined “n” number of records has been loaded, the load step terminates prematurely, and
the rest of the script execution continues as normal.

Syntax:
First n (loadstatement | selectstatement)

Arguments

Argument Description

n An arbitrary expression that evaluates to an integer indicating the maximum
number of records to be read. n can also be enclosed in parentheses: (n).

loadstatement | The Toad statement/select statement that follows the n argument will define the
selectstatement specified table that must be loaded with the set maximum number of records.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use

Script syntax and chart functions - Qlik Sense, August 2023 54

2 Script statements and keywords

Swedish regional settings for dates, time, and currency. These regional format settings are not related to the

language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the

browser you are using.

Example

FIRST 10 LOAD * from abc.csv;

FIRST (1) SQL SELECT * from

orders;

Function examples

Result
This example will retrieve the first ten lines from an excel file.

This example will retrieve the first selected line from the orders
dataset.

Example - Load the first five rows

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

¢ A dataset of dates from the first two weeks of 2020.

e The First variable that instructs the application to only load the first five records.

Load script

Sales:

FIRST 5

LOAD

Inline [
date,sales
01/01/2020,6000
01/02/2020,3000
01/03/2020,6000
01/04/2020,8000
01/05/2020,5000
01/06/2020,7000
01/07/2020,3000
01/08/2020,5000
01/09/2020,9000
01/10/2020, 5000
01/11/2020,7000
01/12/2020,7000
01/13/2020,7000
01/14/2020,7000
1;

Results

Load the data and open a sheet. Create a new table and add pate as a field and sum(sales) as a measure:

Script syntax and chart functions - Qlik Sense, August 2023 55

2 Script statements and keywords

Results table

Date sum(sales)
01/01/2020 6000
01/02/2020 3000
01/03/2020 6000
01/04/2020 8000
01/05/2020 5000

The script only loads the first five records of the sales table.

Generic

The Generic load prefix allows for conversion of entity-attribute-value modeled data (EAV) into
a traditional, normalized relational table structure. EAV modeling is alternatively referred to as
"generic data modeling" or "open schema".

Example of EAV modeled data and an equivalent denormalized relational table

Product ID Attribute Value
13 Status Discontinued
productiD | satus | Colour | Size |

13 Colour Brown

) 13 Discontinued Brown 13-15
20 Colour White -
. 20 White 16-18
13 Size 13-15
20 Size 16-18

Example of EAV modeled data and an equivalent set of normalized relational tables

Product D | staus

Status Discontinued /

13 Colour Brown m

20 Colour White — 13 Brown

13 Size 13-15 \ 20 White

20 Size 16-18
ProductiD |Size |
13 13-15
20 16-18

Script syntax and chart functions - Qlik Sense, August 2023 56

2 Script statements and keywords

While it is technically possible to load and analyze EAV modeled data in Qlik, it is often easier to work with an
equivalent traditional relational data structure.

Syntax:
Generic(loadstatement | selectstatement)

These topics may help you work with this function:

Related topics

Topic Description
Crosstable The crosstable load prefix transforms data that is horizontally-oriented into vertically-
(page 44) oriented data. From a purely functional perspective, it performs the opposite

transformation to the Generic load prefix, although the prefixes typically serve entirely
different use cases.

Generic EAV structured data models are further described here.
databases in
Manage data

Example 1 - Transforming EAV structured data with the Generic load prefix

Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains a dataset which is loaded into a table named Transactions. The dataset includes a
date field. The default monthNames definition is used.

Load script

Products:

Generic

Load * inline [

Product ID, Attribute, value
13, Status, Discontinued
13, color, Brown

20, color, White

13, size, 13-15

20, Size, 16-18

2, Status, Discontinued
5, Color, Brown

2, Color, White

44, color, Brown

45, Size, 16-18

45, color, Brown

1;

Script syntax and chart functions - Qlik Sense, August 2023 57

2 Script statements and keywords

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: color.

Add this measure:
=Count([Product ID])

Now you can inspect the number of products by color.

Results table

Color =Count([Product ID])
Brown 4
White 2

Note the shape of the data model, where each attribute has been broken out into a separate table named
according to the original target table tag Product.Each table has the attribute as a suffix. One example of this
is Product.color. The resulting Product Attribute output records are associated by the product ID.

Data model viewer representation of the results

Preducts.Size
Proeducts.Stakus

Products.Calour

o e 4

Resulting table of
records: Products.Status

Product ID Status
13 Discontinued

2 Discontinued

Script syntax and chart functions - Qlik Sense, August 2023 58

2 Script statements and keywords

Resulting table of
records: Products.Size

Product ID Size

13 13-15
20 16-18
45 16-18

Resulting table of
records: Products.Color

Product ID Color

13 Brown
5 Brown
44 Brown
45 Brown
20 White
2 White

Example 2 - Analyzing EAV structured data without the Generic load prefix

Load script and chart expression

Overview

This example shows how to analyze EAV structured data in its original form.

Open the Data load editor and add the load script below to a new tab.

The load script contains a dataset which is loaded into a table named Products in an EAV structure.

In this example, we are still counting products by color attribute. In order to analyze data structured in this
way, you will need to apply expression-level filtering of products carrying the Attribute value color.

Furthermore, individual attributes are not available to select as dimensions or fields, making it harder to

determine how to build effective visualizations.
Load script

Products:

Load * InTine

[

Product ID, Attribute, value
13, Status, Discontinued

13, color, Brown

20, color, White

Script syntax and chart functions - Qlik Sense, August 2023 59

2 Script statements and keywords

13, Size, 13-15

20, size, 16-18

2, Status, Discontinued
5, color, Brown

2, Color, White

44, color, Brown

45, Size, 16-18

45, color, Brown

1;

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: value.

Create the following measure:

=Count({<Attribute={'Color'}>} [Product ID])
Now you can inspect the number of products by color.

Resulting table of records: Products.Status

Value =Count({<Attribute={'Color'}>} [Product ID])
Brown 4
White 2

Example 3 - Denormalizing the resulting output tables from a Generic load
(advanced)

Load script and chart expression

Overview

In this example, we show how the normalised data structure produced by the Generic load prefix can be
denormalised back into a consolidated product dimension table. This is an advanced modeling technique
which can be employed as part of data model performance tuning.

Open the Data load editor and add the load script below to a new tab.
Load script

Products:

Generic

Load * inTline [

Product ID, Attribute, value
13, status, Discontinued

13, color, Brown

20, color, white

13, size, 13-15

20, size, 16-18

Script syntax and chart functions - Qlik Sense, August 2023 60

2 Script statements and keywords

2, Status, Discontinued
5, color, Brown
2, Color, White
44, color, Brown
45, Size, 16-18
45, color, Brown

1;

RENAME TABLE Products.Color TO Products;

OUTER JOIN (Products)
LOAD * RESIDENT Products.Size;

OUTER JOIN (Products)
LOAD * RESIDENT Products.Status;

DROP TABLES Products.Size,Products.Status;

Results

Open the Data model viewer and note the shape of the resulting data model. Only one denormalized table is

present. It is a combination of the three intermediary output tables: Products.size, Products.Status, and

Products.Color.

Resulting
internal data
model

Products
Product ID
Status
Color

Size

Resulting table of records: Products

Product ID Status Color Size
13 Discontinued Brown 13-15
20 - White 16-18
2 Discontinued White -

5 - Brown -

44 - Brown -

45 - Brown 16-18

Load the data and open a sheet. Create a new table and add this field as a dimension: color.

Add this measure:

Script syntax and chart functions - Qlik Sense, August 2023 61

2 Script statements and keywords

=Count([Product ID])

Results table

Color =Count([Product ID])
Brown 4
White 2

Hierarchy

The hierarchy prefix is used to transform a parent-child hierarchy table to a table that is useful
in a Qlik Sense data model. It can be put in front of a LOAD or a SELECT statement and will use
the result of the loading statement as input for a table transformation.

The prefix creates an expanded nodes table, which normally has the same number of records as the input
table, but in addition each level in the hierarchy is stored in a separate field. The path field can be used in a
tree structure.

Syntax:
Hierarchy (NodeID, ParentID, NodeName, [ParentName, [PathSource, [PathName,
[PathDelimiter, Depth]]]]) (loadstatement | selectstatement)

The input table must be an adjacent nodes table. Adjacent nodes tables are tables where each record
corresponds to a node and has a field that contains a reference to the parent node. In such a table the node is
stored on one record only but the node can still have any number of children. The table may of course contain
additional fields describing attributes for the nodes.

The prefix creates an expanded nodes table, which normally has the same number of records as the input
table, but in addition each level in the hierarchy is stored in a separate field. The path field can be used in a
tree structure.

Usually the input table has exactly one record per node and in such a case the output table will contain the
same number of records. However, sometimes there are nodes with multiple parents, i.e. one node is
represented by several records in the input table. If so, the output table may have more records than the input
table.

All nodes with a parent id not found in the node id column (including nodes with missing parent id) will be
considered as roots. Also, only nodes with a connection to a root node - direct or indirect - will be loaded, thus
avoiding circular references.

Additional fields containing the name of the parent node, the path of the node and the depth of the node can
be created.

Script syntax and chart functions - Qlik Sense, August 2023 62

2 Script statements and keywords

Arguments:

Argument
NodelD

ParentID

NodeName

ParentName

ParentSource

PathName

PathDelimiter

Depth

Example:

Hierarchy(NodelD,
inline [

NodeID, ParentID,
1, 4, London

2, 3, Munich

3, 5, Germany
4, 5, UK

5, , Europe
1;

Nodel Parent

D ID
1 4
2 3
3 5
4 5
5

Arguments

Description
The name of the field that contains the node id. This field must exist in the input table.

The name of the field that contains the node id of the parent node. This field must exist
in the input table.

The name of the field that contains the name of the node. This field must exist in the
input table.

A string used to name the new ParentName field. If omitted, this field will not be
created.

The name of the field that contains the name of the node used to build the node path.
Optional parameter. If omitted, NodeName will be used.

A string used to name the new Path field, which contains the path from the root to the
node. Optional parameter. If omitted, this field will not be created.

A string used as delimiter in the new Path field. Optional parameter. If omitted, '/* will
be used.

A string used to name the new Depth field, which contains the depth of the node in the
hierarchy. Optional parameter. If omitted, this field will not be created.

ParentID, NodeName, ParentName, NodeName, PathName, '\', Depth) LOAD *

NodeName

NodeNa NodeNa NodeNa NodeNa ParentNa PathName Dept

me mel me2 me3 me h

London Europe UK London UK Europe\UK\Londo 3
n

Munich Europe Germany Munich Germany Europe\Germany\ 3
Munich

German Europe Germany - Europe Europe\Germany 2

y

UK Europe UK - Europe Europe\UK 2

Europe Europe - - - Europe 1

Script syntax and chart functions - Qlik Sense, August 2023 63

2 Script statements and keywords

HierarchyBelongsTo

This prefix is used to transform a parent-child hierarchy table to a table that is useful in a Qlik
Sense data model. It can be put in front of a LOAD or a SELECT statement and will use the result
of the loading statement as input for a table transformation.

The prefix creates a table containing all ancestor-child relations of the hierarchy. The ancestor fields can then
be used to select entire trees in the hierarchy. The output table in most cases contains several records per
node.

Syntax:
HierarchyBelongsTo (NodeID, ParentID, NodeName, AncestorID, AncestorName,
[DepthDiff]) (loadstatement | selectstatement)

The input table must be an adjacent nodes table. Adjacent nodes tables are tables where each record
corresponds to a node and has a field that contains a reference to the parent node. In such a table the node is
stored on one record only but the node can still have any number of children. The table may of course contain
additional fields describing attributes for the nodes.

The prefix creates a table containing all ancestor-child relations of the hierarchy. The ancestor fields can then
be used to select entire trees in the hierarchy. The output table in most cases contains several records per
node.

An additional field containing the depth difference of the nodes can be created.

Arguments:
Arguments

Argument Description

NodelD The name of the field that contains the node id. This field must exist in the input table.

ParentID The name of the field that contains the node id of the parent node. This field must exist
in the input table.

NodeName The name of the field that contains the name of the node. This field must exist in the
input table.

AncestorID A string used to name the new ancestor id field, which contains the id of the ancestor
node.

AncestorName A string used to name the new ancestor field, which contains the name of the ancestor
node.

DepthDiff A string used to name the new DepthDiff field, which contains the depth of the node in

the hierarchy relative the ancestor node. Optional parameter. If omitted, this field will
not be created.

Script syntax and chart functions - Qlik Sense, August 2023 64

2 Script statements and keywords

Example:

HierarchyBelongsTo (NodeID, AncestorID, NodeName, AncestorID, AncestorName, DepthDiff) LOAD *
inline [

NodeID, AncestorID, NodeName

1, 4, London

2, 3, Munich

3, 5, Germany

4, 5, UK

5, , Europe

1;

Results

NodelD AncestorID NodeName AncestorName DepthDiff
1 1 London London 0
1 4 London UK 1
1 5 London Europe 2
2 2 Munich Munich 0
2 3 Munich Germany 1
2 5 Munich Europe 2
3 3 Germany Germany 0
3 5 Germany Europe 1
4 4 UK UK 0
4 5 UK Europe 1
5 5 Europe Europe 0

Inner

The join and keep prefixes can be preceded by the prefix inner. If used before join it specifies
that an inner join should be used. The resulting table will thus only contain combinations of
field values from the raw data tables where the linking field values are represented in both
tables. If used before keep, it specifies that both raw data tables should be reduced to their
common intersection before being stored in Qlik Sense.

Syntax:
Inner (Join | Keep) [(tablename)] (loadstatement |selectstatement)

Script syntax and chart functions - Qlik Sense, August 2023 65

2 Script statements and keywords

Arguments:
Arguments
Argument Description
tablename The named table to be compared to the loaded table.
loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.
Example
Load script

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Tablel:

Load * inTline [
columnl, column2
A, B

1, aa

2, cc

3, ee];

Table2:
Inner Join Load * inline [
columnl, column3

A, C

1, xx

4, yy 1;

Result

Resulting table

Column1l Column2 Column3
A B C

1 aa XX
Explanation

This example demonstrates the Inner Join output where only values present in both the first (left) and the
second (right) tables are joined.
IntervalMatch

The IntervalMatch prefix is used to create a table matching discrete numeric values to one or
more numeric intervals, and optionally matching the values of one or several additional keys.

Syntax:
IntervalMatch (matchfield) (loadstatement | selectstatement)
IntervalMatch (matchfield,keyfieldl [, keyfield2, ... keyfield5])

(loadstatement | selectstatement)

Script syntax and chart functions - Qlik Sense, August 2023 66

2 Script statements and keywords

The IntervalMatch prefix must be placed before a LOAD or a SELECT statement that loads the intervals. The
field containing the discrete data points (Time in the example below) and additional keys must already have
been loaded into Qlik Sense before the statement with the IntervalMatch prefix. The prefix does not by itself
read this field from the database table. The prefix transforms the loaded table of intervals and keys to a table
that contains an additional column: the discrete numeric data points. It also expands the number of records
so that the new table has one record per possible combination of discrete data point, interval and value of the
key field(s).

The intervals may be overlapping and the discrete values will be linked to all matching intervals.

When the IntervalMatch prefix is extended with key fields, it is used to create a table matching discrete
numeric values to one or more numeric intervals, while at the same time matching the values of one or
several additional keys.

In order to avoid undefined interval limits being disregarded, it may be necessary to allow NULL values to map
to other fields that constitute the lower or upper limits to the interval. This can be handled by the
NullAsValue statement or by an explicit test that replaces NULL values with a numeric value well before or
after any of the discrete numeric data points.

Arguments:
Arguments
Argument Description
matchfield The field containing the discrete numeric values to be linked to intervals.
keyfield Fields that contain the additional attributes that are to be matched in the
transformation.
loadstatement Must result in a table, where the first field contains the lower limit of each interval,

orselectstatement the second field contains the upper limit of each interval, and in the case of using key
matching, the third and any subsequent fields contain the keyfield(s) present in the
IntervalMatch statement. The intervals are always closed, i.e. the end points are
included in the interval. Non-numeric limits render the interval to be disregarded
(undefined).

Example 1:

In the two tables below, the first one lists a number of discrete events and the second one defines the start
and end times for the production of different orders. By means of the IntervalMatch prefix it is possible to
logically connect the two tables in order to find out e.g. which orders were affected by disturbances and which
orders were processed by which shifts.

EventLog:

LOAD * InTine [

Time, Event, Comment
00:00, 0, start of shift 1
01:18, 1, Line stop

02:23, 2, Line restart 50%

Script syntax and chart functions - Qlik Sense, August 2023 67

2 Script statements and keywords

04:15, 3, Line speed 100%
08:00, 4, start of shift 2
11:43, 5, End of production
1;

orderLog:

LOAD * INLINE [
Start, End, Order
01:00, 03:35, A

02:30, 07:58, B
03:04, 10:27, C
07:23, 11:43, D
1;

//Link the field Time to the time intervals defined by the fields Start and End.
Inner Join IntervalMatch (Time)

LOAD Start, End

Resident OrderLog;

The table OrderLog contains now an additional column: Time. The number of records is also expanded.

Table with additional column

Time Start End Order
00:00 - - -
01:18 01:00 03:35 A
02:23 01:00 03:35 A
04:15 02:30 07:58 B
04:15 03:04 10:27 C
08:00 03:04 10:27 C
08:00 07:23 11:43 D
11:43 07:23 11:43 D

Example 2: (using keyfield)

Same example than above, adding ProductionLine as a key field.

EventLog:

LOAD * InTline [

Time, Event, Comment, ProductionLine
00:00, 0, start of shift 1, Pl
01:00, 0, start of shift 1, P2

01:18, 1, Line stop, Pl

02:23, 2, Line restart 50%, Pl
04:15, 3, Line speed 100%, Pl
08:00, 4, start of shift 2, Pl
09:00, 4, start of shift 2, P2
11:43, 5, End of production, Pl
11:43, 5, End of production, P2
1;

Script syntax and chart functions - Qlik Sense, August 2023 68

2 Script statements and keywords

orderLog:

LOAD * INLINE [

Start, End, Order, ProductionLine
01:00, 03:35, A, P1

02:30, 07:58, B, P1

03:04, 10:27, c, P1

07:23, 11:43, b, P2

1;

//Link the field Time to the time intervals defined by the fields start and End and match the
values

// to the key ProductionLine.

Inner Join

IntervalMatch (Time, ProductionLine)

LOAD Start, End, ProductionLine

Resident OrderLog;

A table box could now be created as below:

Tablebox example

ProductionLine Time Event Comment Order Start End
P1 00:00 0 Start of shift 1 - - -

P2 01:00 0 Start of shift 1 - - -

P1 01:18 1 Line stop A 01:00 03:35
P1 02:23 2 Line restart 50% A 01:00 03:35
P1 04:15 3 Line speed 100% B 02:30 07:58
P1 04:15 3 Line speed 100% C 03:04 10:27
P1 08:00 4 Start of shift 2 C 03:04 10:27
P2 09:00 4 Start of shift 2 D 07:23 11:43
P1 11:43 5 End of production = - - -

P2 11:43 5 End of production D 07:23 11:43

Join

The join prefix joins the loaded table with an existing named table or the last previously created
data table.

The effect of joining data is to extend the target table by an additional set of fields or attributes, namely ones
not already present in the target table. Any common field names between the source data set and the target
table are used to work out how to associate the new incoming records. This is commonly referred to as a
“natural join”. A Qlik join operation can lead to the resulting target table having more or fewer records than it
started with, depending on the uniqueness of the join association and the type of join employed.

There are four types of joins:

Script syntax and chart functions - Qlik Sense, August 2023 69

2 Script statements and keywords

Left join

Left joins are the most common join type. For example, if you have a transaction data set and would like to
combine it with a reference data set, you would typically use a Left Join. You would load the transaction
table first, then load the reference data set while joining it via a Left Join prefix onto the already loaded
transaction table. A Left Join would keep all transactions as-is and add on the supplementary reference data
fields where a match is found.

Inner join

When you have two data sets where you only care about any results where there is a matching association,
consider using an Inner Join. This will eliminate all records from both the source data loaded and the target
table if no match is found. As a result, this may leave your target table with fewer records than before the join
operation took place.

Outer join

When you need to keep both the target records and all of the incoming records, use an outer Join. Where no
match is found, each set of records is still kept while the fields from the opposite side of the join will remain
unpopulated (null).

If the type keyword is omitted, the default join type is an outer join.
Right join

This join type keeps all the records about to be loaded, while reducing the records in the table targeted by the
join to only those records where there is an association match in the incoming records. This is a niche join
type that is sometimes used as a means of trimming down an already pre-loaded table of records to a
required subset.

Script syntax and chart functions - Qlik Sense, August 2023 70

2 Script statements and keywords

Example results sets from different types of join operations

DATASETS OPERATION OUTPUT
Target Table LEFT JOIN TradeID |AssetClass |
— 101533 Fixed Income LSE
101533 Fixed Income 606601 Commaodities
606601 Commodities
INNER JOIN TradeiD |AssetClass | |
— 101533 Fixed Income LSE

Incoming Dataset Trade D __|AssetClass |

OUTER JOIN 101533 Fixed Income LSE
— g commei
101533 LSE 79052 Hong Kong
79052 Hong Kong
— 101533 Fixed Income LSE
79052 Hong Kong

If there are no field names in common between the source and target of a join operation, the join
will result in a cartesian product of all rows - this is called a “cross join™.

Example result set from a "cross join" operation

DATASETS OPERATION QUTPUT

Target Table

Trade ID mm JOIN (any type) Trade ID | Base Amount | Target
Currency
EUR 1.08

101533 EUR 1250 — LTSNy
606601 EUR 1650 101533 1250 usD
101533 EUR 1250 GBP 0.84
606601 EUR 1650 usD 1.08
Incoming Dataset 606601 EUR 1650 GBP 0.84
usD 1.08
GBP 0.84
Syntax:
[inner | outer | left | right]Join [(tablename)] (loadstatement |
selectstatement)

Script syntax and chart functions - Qlik Sense, August 2023 71

2 Script statements and keywords

Arguments
Argument Description
tablename The named table to be compared to the loaded table.
loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

These topics may help you work with this function:
Related topics
Topic Description

Combining tables This topic provides further explanation of the concepts of “joining” and “keeping”
with Join and Keep data sets.
in Manage data

Keep (page 79) The keep load prefix is similar to the Join prefix, but it does not combine the
source and target datasets. Instead, it trims each dataset according to the type of
operation adopted (inner, outer, left, or right).

Example 1 - Left join: Enriching a target table with a reference data set

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset representing change records, which is loaded into a table named changes. It includes a
Status ID key field.

¢ Asecond dataset representing change statuses, which is loaded and combined with the original
change records by joining it with a left Join load prefix.

This left join ensures that the change records remain intact while adding on status attributes where a match in
the incoming status records is found based on a common Status ID.

Load script

Changes:

Load * inTline [

Change 1ID Status ID Scheduled Start Date Scheduled End Date Business Impact
10030 4 19/01/2022 23/02/2022 None

10015 3 04/01/2022 15/02/2022 Low

10103 1 02/04/2022 29/05/2022 Medium

10185 2 23/06/2022 08/09/2022 None

10323 1 08/11/2022 26/11/2022 High

10326 2 11/11/2022 05/12/2022 None

Script syntax and chart functions - Qlik Sense, August 2023 72

2 Script statements and keywords

10138 2 07/05/2022 03/08/2022 None
10031 3 20/01/2022 25/03/2022 Low
10040 1 29/01/2022 22/04/2022 None
10134 1 03/05/2022 08/07/2022 Low
10334 2 19/11/2022 06/02/2023 Low
10220 2 28/07/2022 06/09/2022 None
10264 1 10/09/2022 17/10/2022 Med1ium
10116 1 15/04/2022 24/04/2022 None
10187 2 25/06/2022 24/08/2022 Low

] (delimiter is '\t');

Status:
Left Join (Changes)
Load * inTline [

Status ID Status Sub Status
1 Open Not Started

2 Open Started

3 Closed Completed

4 Closed cancelled

5 Closed Obsolete

] (deTimiter is '"\t');

Results

Open the Data model viewer and note the shape of the data model. Only one denormalized table is present. It
is a combination of all the original change records, with the matching status attributes joined onto each
change record.

Resulting internal data
model

Changes

Change ID

Status ID

Scheduled Start Date
Scheduled End Date
Business Impact
Status

Sub Status

If you expand the preview window in the Data model viewer, you will see a portion of this full result set
organized into a table:

Script syntax and chart functions - Qlik Sense, August 2023 73

2 Script statements and keywords

Preview of Changes table in the Data model viewer

Change Status Scheduled Start Scheduled End Business
Status Sub Status

ID ID Date Date Impact

10030 4 19/01/2022 23/02/2022 None Closed Cancelled
10031 3 20/01/2022 25/03/2022 Low Closed Completed
10015 3 04/01/2022 15/02/2022 Low Closed Completed
10103 1 02/04/2022 29/05/2022 Medium Open Not Started
10116 1 15/04/2022 24/04/2022 None Open Not Started
10134 1 03/05/2022 08/07/2022 Low Open Not Started
10264 1 10/09/2022 17/10/2022 Medium Open Not Started
10040 1 29/01/2022 22/04/2022 None Open Not Started
10323 1 08/11/2022 26/11/2022 High Open Not Started
10187 2 25/06/2022 24/08/2022 Low Open Started
10185 2 23/06/2022 08/09/2022 None Open Started
10220 2 28/07/2022 06/09/2022 None Open Started
10326 2 11/11/2022 05/12/2022 None Open Started
10138 2 07/05/2022 03/08/2022 None Open Started
10334 2 19/11/2022 06/02/2023 Low Open Started

Since the fifth row in the Status table (Status ID: '5', Status: 'Closed', Sub Status: 'Obsolete') does not
correspond to any of the records in the Changes table, the information in this row does not appear in the
result set above.

Return to the Data load editor. Load the data and open a sheet. Create a new table and add this field as a
dimension: status.

Add this measure:

=Count([Change ID])
Now you can inspect the number of Changes by Status.

Results table

Status =Count([Change ID])
Open 12
Closed 3

Script syntax and chart functions - Qlik Sense, August 2023 74

2 Script statements and keywords

Example 2 - Inner join: Combining matching records only

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset representing change records, which is loaded into a table named changes.

¢ Asecond dataset representing change records originating from the source system 1IrRA.This is loaded
and combined with the original records by joining it with an Inner 3Join load prefix.

This Inner 3Join ensures that only the five change records which are found in both datasets are kept.

Load script

Changes:

Load * inline [

Change ID Status ID Scheduled Start Date Scheduled End Date Business Impact
10030 4 19/01/2022 23/02/2022 None
10015 3 04/01/2022 15/02/2022 Low
10103 1 02/04/2022 29/05/2022 Medium
10185 2 23/06/2022 08/09/2022 None
10323 1 08/11/2022 26/11/2022 High
10326 2 11/11/2022 05/12/2022 None
10138 2 07/05/2022 03/08/2022 None
10031 3 20/01/2022 25/03/2022 Low
10040 1 29/01/2022 22/04/2022 None
10134 1 03/05/2022 08/07/2022 Low
10334 2 19/11/2022 06/02/2023 Low
10220 2 28/07/2022 06/09/2022 None
10264 1 10/09/2022 17/10/2022 Medium
10116 1 15/04/2022 24/04/2022 None
10187 2 25/06/2022 24/08/2022 Low

1 (delimiter is '\t');

JIRA_changes:

Inner Join (Changes)

Load
[Ticket ID] AS [Change ID],
[Source System]

inTline

[

Ticket ID Source System

10000 3JIRA

10030 3JIRA

10323 JIRA

10134 JIRA

10334 JIRA

10220 3JIRA

Script syntax and chart functions - Qlik Sense, August 2023 75

2 Script statements and keywords

20000 TFS
] (delimiter is '\t');

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Source System
e Change ID

e Business Impact

Now you can inspect the five resulting records. The resultant table from an Inner Join will only include
records with matching information in both datasets.

Results table

Source System Change ID Business Impact

JIRA 10030 None
JIRA 10134 Low
JIRA 10220 None
JIRA 10323 High
JIRA 10334 Low

Example 3 - Outer join: Combining overlapping record sets

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

* A dataset representing change records, which is loaded into a table named changes.

¢ Asecond dataset representing change records originating from the source system J1rA, which is
loaded and combined with the original records by joining it with an outer 3Join load prefix.

This ensures that all the overlapping change records from both datasets are kept.

Load script

// 8 Change records

Changes:
Load * inTline [
Change 1ID Status ID Scheduled Start Date Scheduled End Date Business Impact

Script syntax and chart functions - Qlik Sense, August 2023 76

2 Script statements and keywords

10030 4 19/01/2022 23/02/2022 None
10015 3 04/01/2022 15/02/2022 Low
10138 2 07/05/2022 03/08/2022 None
10031 3 20/01/2022 25/03/2022 Low
10040 1 29/01/2022 22/04/2022 None
10134 1 03/05/2022 08/07/2022 Low
10334 2 19/11/2022 06/02/2023 Low
10220 2 28/07/2022 06/09/2022 None

] (delimiter is '\t');
// 6 Change records

JIRA_changes:

outer Join (Changes)

Load
[Ticket ID] AS [Change ID],
[Source System]

inTline

[

Ticket ID Source System

10030 JIRA

10323 JIRA

10134 JIRA

10334 JIRA

10220 3JIRA

10597 JIRA

] (deTimiter is '"\t');

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Source System
e Change ID

e Business Impact

Now you can inspect the 10 resulting records.

Results table

Source System Change ID Business Impact

JIRA 10030 None
JIRA 10134 Low
JIRA 10220 None
JIRA 10323 -
JIRA 10334 Low
JIRA 10597 -

Script syntax and chart functions - Qlik Sense, August 2023 7

2 Script statements and keywords

Source System Change ID Business Impact

- 10015 Low
- 10031 Low
- 10040 None
- 10138 None

Example 4 - Right join: Trimming down a target table by a secondary master dataset

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset representing change records, which is loaded into a table named changes.

¢ Asecond dataset representing change records originating from the source system Teamwork. This is
loaded and combined with the original records by joining it with a Right Join load prefix.

This ensures that only Teamwork change records are kept, while not losing any Teamwork records if the target
table does not have a matching change 1D.

Load script

Changes:

Load * inline [

Change 1ID Status ID Scheduled Start Date Scheduled End Date Business Impact
10030 4 19/01/2022 23/02/2022 None
10015 3 04/01/2022 15/02/2022 Low
10103 1 02/04/2022 29/05/2022 Medium
10185 2 23/06/2022 08/09/2022 None
10323 1 08/11/2022 26/11/2022 High
10326 2 11/11/2022 05/12/2022 None
10138 2 07/05/2022 03/08/2022 None
10031 3 20/01/2022 25/03/2022 Low
10040 1 29/01/2022 22/04/2022 None
10134 1 03/05/2022 08/07/2022 Low
10334 2 19/11/2022 06/02/2023 Low
10220 2 28/07/2022 06/09/2022 None
10264 1 10/09/2022 17/10/2022 Medium
10116 1 15/04/2022 24/04/2022 None
10187 2 25/06/2022 24/08/2022 Low

1 (delimiter is '"\t');

Teamwork_changes:
Right Join (Changes)
Load

Script syntax and chart functions - Qlik Sense, August 2023 78

2 Script statements and keywords

[Ticket ID] AS [Change ID],
[Source System]

inTline

[

Ticket ID Source System

10040 Teamwork

10015 Teamwork

10103 Teamwork

10031 Teamwork

50231 Teamwork

] (deTimiter is '"\t');

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Source System
e Change ID

e Business Impact

Now you can inspect the five resulting records.

Results table

Source System Change ID Business Impact

Teamwork 10015 Low

Teamwork 10031 Low

Teamwork 10040 None

Teamwork 10103 Medium

Teamwork 50231 -
Keep

The keep prefix is similar to the join prefix. Just as the join prefix, it compares the loaded table with an
existing named table or the last previously created data table, but instead of joining the loaded table with an
existing table, it has the effect of reducing one or both of the two tables before they are stored in Qlik Sense,
based on the intersection of table data. The comparison made is equivalent to a natural join made over all the
common fields, i.e. the same way as in a corresponding join. However, the two tables are not joined and will
be kept in Qlik Sense as two separately named tables.

Syntax:
(inner | left | right) keep [(tablename)](loadstatement | selectstatement
)

The keep prefix must be preceded by one of the prefixes inner, left or right.

Script syntax and chart functions - Qlik Sense, August 2023 79

2 Script statements and keywords

The explicit join prefix in Qlik Sense script language performs a full join of the two tables. The result is one
table. In many cases such joins will result in very large tables. One of the main features of Qlik Sense is its
ability to make associations between multiple tables instead of joining them, which greatly reduces memory
usage, increases processing speed and offers enormous flexibility. Explicit joins should therefore generally be
avoided in Qlik Sense scripts. The keep functionality was designed to reduce the number of cases where
explicit joins needs to be used.

Arguments:
Arguments
Argument Description
tablename The named table to be compared to the loaded table.
loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.
Example:

Inner Keep LOAD * from abc.csv;
Left Keep SELECT * from tablel;
tabl:

LOAD * from filel.csv;

tab2:

LOAD * from file2.csv;

Left Keep (tabl) LOAD * from file3.csv;
Left
The Join and Keep prefixes can be preceded by the prefix left.

If used before join it specifies that a left join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented in the first
table. If used before keep, it specifies that the second raw data table should be reduced to its common
intersection with the first table, before being stored in Qlik Sense.

Were you looking for the string function by the same name? See: Left (page 1422)

Syntax:
Left (Join | Keep) [(tablename)] (loadstatement | selectstatement)

Arguments:
Arguments
Argument Description
tablename The named table to be compared to the loaded table.
loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

Script syntax and chart functions - Qlik Sense, August 2023 80

2 Script statements and keywords

Example

Load script

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Tablel:

Load * inTline [
columnl, Column2
A, B

1, aa

2, cc
3, ee];
Table2:

Left Join Load * inline [
columnl, Column3

A, C
1, xx

4, yy 15

Result

Resulting table

Columnl Column2 Column3
A B C

1 aa XX

2 cc -

3 ee -
Explanation

This example demonstrates the Left Join output where only values present in the first (left) table are joined.

Mapping
The mapping prefix is used to create a mapping table that can be used to, for example,
replacing field values and field names during script execution.

Syntax:
Mapping (loadstatement | selectstatement)

The mapping prefix can be put in front of a LOAD or a SELECT statement and will store the result of the
loading statement as a mapping table. Mapping provides an efficient way to substituting field values during
script execution, e.g. replacing US, U.S. or America with USA. A mapping table consists of two columns, the
first containing comparison values and the second containing the desired mapping values. Mapping tables are
stored temporarily in memory and dropped automatically after script execution.

Script syntax and chart functions - Qlik Sense, August 2023 81

2 Script statements and keywords

The content of the mapping table can be accessed using e.g. the Map ... Using statement, the Rename Field
statement, the Applymap() function or the Mapsubstring() function.

Example:

In this example we load a list of salespersons with a country code representing their country of residence. We
use a table mapping a country code to a country to replace the country code with the country name. Only
three countries are defined in the mapping table, other country codes are mapped to 'Rest of the world'.

// Load mapping table of country codes:
mapl:
mapping LOAD
Inline [
CCode, Country

Sw, Sweden

Dk, Denmark

No, Norway

1

// Load 1list of salesmen, mapping country code to country

// If the country code is not in the mapping table, put Rest of the world
Salespersons:

LOAD *,

ApplyMap('mapl', CCode, 'Rest of the world') As Country

Inline [

CCode, Salesperson

Sw, John

Sw, Mary

Sw, Per

Dk, Preben

Dk, Olle

No, Ole

sf, Risttu] ;

// We don't need the CCode anymore

Drop Field 'CCode';

The resulting table looks like this:

o

Mapping table

Salesperson Country

John Sweden

Mary Sweden

Per Sweden

Preben Denmark

Olle Denmark

Ole Norway

Risttu Rest of the world

Script syntax and chart functions - Qlik Sense, August 2023 82

2 Script statements and keywords

Merge

The Merge prefix can be added to any LOAD or SELECT statement in the script to specify that
the loaded table should be merged into another table. It also specifies that this statement
should be run in a partial reload.

The typical use case is when you load a change log and want to use this to apply inserts, updates, and deletes

to an existing table.

For partial reload to work properly, the app must be opened with data before a partial reload is
triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Syntax:
Merge [only] [(SequenceNoField [, SequenceNoVar])] On ListOfKeys [Concatenate
[(TableName)]] (loadstatement | selectstatement)

Arguments:
Arguments

Argument Description

only An optional qualifier denoting that the statement should be executed
only during partial reloads. The statement is disregarded during
normal (non-partial) reloads.

SequenceNoField The name of the field containing a timestamp or a sequence number
that defines the order of the operations.

SequenceNoVar The name of the variable that gets assigned the maximum value for
SequenceNoField of the table being merged.

ListOfKeys A comma separated list of field names specifying the primary key.

Operation The first field of the load statement must contain the operation as a
text string: 'Insert’, 'Update’, or 'Delete’. ‘i’, ‘u’ and ‘d’ are also
accepted.

General functionality

During a normal (non-partial) reload, the Merge LOAD construction works as a normal Load statement but
with the additional functionality of removing older obsolete records and records marked for deletion. The first
field of the Load statement must hold information about the operation: Insert, Update, or Delete.

For each loaded record, the record identifier is compared with previously loaded records, and only the latest
record (according to the sequence number) will be kept. If the latest record is marked with Delete, none will
be kept.

Script syntax and chart functions - Qlik Sense, August 2023 83

2 Script statements and keywords

Target table

Which table to modify is determined by the set of fields. If a table with the same set of fields (except the first
field; the operation) already exists, this will be the relevant table to modify. Alternatively, a Concatenate
prefix can be used to specify the table. If the target table is not determined, the result of the Merge LOAD
construction is stored in a new table.

If the Concatenate prefix is used, the resulting table has a set of fields corresponding to the union of the
existing table and the input to the merge. Hence, the target table may get more fields than the change log that
is used as input to the merge.

A partial reload does the same as a full reload. One difference is that a partial reload rarely creates a new
table. Unless you have used the Only clause, a target table with the same set of fields from the previous script
execution always exists.

Sequence number

If the loaded change log is an accumulated log, that is, it contains changes that already have been loaded, the
parameter SequenceNoVar can be used in a Where clause to limit the amount of input data. The Merge LOAD
could then be made to only load records where the field SequenceNoField is greater than SequenceNoVar.
Upon completion, the Merge LOAD assigns a new value to the SequenceNoVar with the maximum value seen
in the SequenceNofField field.

Operations

The Merge LOAD can have fewer fields than the target table. The different operations treat missing fields
differently:

Insert: Fields missing in the Merge LOAD, but existing in the target table, get a NULL in the target table.
Delete: Missing fields do not affect the result. The relevant records are deleted anyway.

Update: Fields listed in the Merge LOAD are updated in the target table. Missing fields are not changed. This
means that the two following statements are not identical:

¢ Merge on Key Concatenate Load 'U' as Operation, Key, F1, Null() as F2 From ...;

¢ Merge on Key Concatenate Load 'U' as Operation, Key, F1 From ...;

The first statement updates the listed records and changes F2 to NULL. The second does not change F2, but
instead, leaves the values in the target table.

Examples

Example 1: Simple merge with specified table
In this example, an inline table named Persons is loaded with three rows. Merge then changes the table as

follows:

¢ Adds the row, Mary, 4 .
¢ Deletes the row, Steven, 3.

* Assigns the number 5 to Jake .

Script syntax and chart functions - Qlik Sense, August 2023 84

2 Script statements and keywords

The LastChangeDate variable is set to the maximum value in the ChangeDate column after Merge is executed.

Load script

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Set DateFormat='D/M/YYYY';
Persons:

load * inTline [

Name, Number

Jake, 3
Ji11, 2
Steven, 3
1;

Merge (ChangeDate, LastChangeDate) on Name Concatenate(Persons)
LOAD * inTline [

Operation, ChangeDate, Name, Number
Insert, 1/1/2021, Mary, 4
Delete, 1/1/2021, Steven,

Update, 2/1/2021, Jake, 5

]

Result

Prior to the Merge Load, the resulting table appears as follows:

Resulting table

Name
Jake
Jill

Steven

Number
3
2

3

Following the Merge Load, the table appears as follows:

ChangeDate

2/1/2021

1/1/2021

When the data is loaded, the Data load progress dialog box shows the operations that are performed:

Data load progress dialog box

Resulting table

Name
Jake
Jill

Mary

Number

Script syntax and chart functions - Qlik Sense, August 2023

85

2 Script statements and keywords

Data load progress

Data losd Is complete

Example 2: Data load script with missing fields

In this example, the same data as above is loaded, but now with an ID for each person.

Merge changes the table as follows:

¢ Adds the row, Mary, 4.
¢ Deletes the row, Steven, 3.
¢ Assigns the number 5 to Jake.

¢ Assigns the number 6 to Jill.

Load script

Here we use two Merge Load statements, one for ‘Insert’ and ‘Delete’, and a second one for the ‘Update’.

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a

sheet in your app.

Set DateFormat='D/M/YYYY';
Persons:

Load * Inline [

PersonID, Name, Number

1, Jake, 3
2, Jil11, 2
3, Steven, 3
1;

Script syntax and chart functions - Qlik Sense, August 2023

86

2 Script statements and keywords

Merge (ChangeDate, LastChangeDate) on PersonID Concatenate(Persons)
Load * InTline [

Operation, ChangeDate, PersonID, Name, Number
Insert, 1/1/2021, 4, Mary, 4
Delete, 1/1/2021, 3, Steven,

1;

Merge (ChangeDate, LastChangeDate) on PersonID Concatenate(Persons)
Load * InTline [

Operation, ChangeDate, PersonID, Number
Update, 2/1/2021, 1, 5
Update, 3/1/2021, 2, 6

1;

Result

Following the Merge Load statements, the table appears as follows:

Resulting table

PersonID ChangeDate Name Number
1 2/1/2021 Jake 5
2 3/1/2021 Jill 6
4 1/1/2021 Mary 4

Note that the second Merge statement does not include the field Name, and as a consequence, the names
have not been changed.

Example 3: Data load script - Partial reload using a Where-clause with ChangeDate

In the following example, the Only argument specifies that the Merge command is only executed during a
partial reload. Updates are filtered based on the previously captured LastChangeDate. After Merge is finished,
LastChangeDate variable is assigned the maximum value of the ChangeDate column processed during the
merge.

Load script

Merge Only (ChangeDate, LastChangeDate) on Name Concatenate(Persons)
LOAD Operation, ChangeDate, Name, Number

from [1ib://ChangeFilesFolder/BulkChangesInPersonsTable.csv] (txt)
where ChangeDate >='$(LastChangeDate)';

NoConcatenate

The NoConcatenate prefix forces two loaded tables with identical field sets to be treated as two
separate internal tables, when they would otherwise be automatically concatenated.

Syntax:

NoConcatenate (loadstatement | selectstatement)

By default, if a table is loaded that contains an identical number of fields and matching field names to a table
loaded earlier in the script, Qlik Sense will auto concatenate these two tables. This will happen even if the
second table is named differently.

Script syntax and chart functions - Qlik Sense, August 2023 87

2 Script statements and keywords

However, if the script prefix NoConcatenate is included before the load statement or select statement of the
second table, then these two tables will be loaded separately.

A typical use case for NoConcatenate is when you may need to create a temporary copy of a table to perform
some temporary transformations on that copy, while retaining a copy of the original data. NoCconcatenate
ensures that you can make that copy without implicitly adding it back onto the source table.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Function example

Example Result
source: LOAD A,B from A table with A and B as measures is loaded. A second table with the
filel.csv;

same fields is loaded separately by using the Noconcatenate variable.
CopyofSource: NoConcatenate

LOAD A,B resident Source;

Example 1 - Implicit concatenation

Load script and results

Overview

In this example, you will add two load scripts in sequential order.
Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ An initial dataset with dates and amounts that is sent to a table named Transactions.
First load script

Transactions:

LOAD

Inline [

id, date, amount

1, 08/30/2018, 23.56
2, 09/07/2018, 556.31

Script syntax and chart functions - Qlik Sense, August 2023 88

2 Script statements and keywords

—_ N O VbW

09/16/2018, 5.75
09/22/2018, 125.00
09/22/2018, 484.21
09/22/2018, 59.18
09/23/2018, 177.42

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

7

e id
e date

e amount

First results table

date

08/30/2018
09/07/2018
09/16/2018
09/22/2018
09/22/2018
09/22/2018
09/23/2018

Second load script

amount
23.56
556.31
575
125.00
484.21
59.18

177.42

Open the Data load editor and add the load script below to a new tab.

The load script contains:

sal

¢ A second dataset with identical fields is sent to a table named sales.

es:

LOAD

%

Inl
id,
8,

9,

10,
11,
12,
13,
14,
1;

ine [

date, amount
10/01/2018, 164.27
10/03/2018, 384.00
10/06/2018, 25.82

10/09/2018, 312.00

10/15/2018, 4.56
10/16/2018, 90.24
10/18/2018, 19.32

Script syntax and chart functions - Qlik Sense, August 2023 89

2 Script statements and keywords

Results

Load the data and go to the table.

10
11
12
13

14

Second results table

date

08/30/2018
09/07/2018
09/16/2018
09/22/2018
09/22/2018
09/22/2018
09/23/2018
10/01/2018
10/03/2018
10/06/2018
10/09/2018
10/15/2018
10/16/2018

10/18/2018

amount

23.56
556.31
5.75
125.00
484.21
59.18
177.42
164.27
384.00
25.82
312.00
4.56
90.24

19.32

When the script runs, the sales table is implicitly concatenated onto the existing Transactions table due to
the two datasets sharing an identical number of fields, with identical field names. This happens despite the

second table name tag attempting to name the result set ‘sales’.

You can see that the Sales dataset is implicitly concatenated by looking at the Data load progress log.

Script syntax and chart functions - Qlik Sense, August 2023 90

2 Script statements and keywords

Data load progress log showing Transactions data being implicitly concatenated.

Data load progress

Data load is complete.

Started loading data

App saved
Finished successfully

-lose when successfully finished Close

Example 2 - Use case scenario

Load script and results

Overview

In this use case scenario you have:

* Atransactions dataset with:

e id

e date

¢ amount (in GBP)
e A currency table with:

e Conversion rates for USD to GBP
* Asecond transactions dataset with:

e id

Script syntax and chart functions - Qlik Sense, August 2023 91

2 Script statements and keywords

date
amount (in USD)

You will load five scripts in sequential order.

The first load script contains an initial dataset with dates and amounts in GBP that is sent to a table

named Transactions.
The second load script contains:
* Asecond dataset with dates and amounts in USD that is sent to a table named Transactions_
in_usD.
¢ The noconcatenate prefix which is placed before the load statement of the Transactions_in_
usD dataset to prevent implicit concatenation.
The third load script contains the join prefix which will be used create a currency exchange rate
between GBP and USD in the Transactions_in_usp table.
The fourth load script contains the concatenate prefix which will add the Transactions_in_usbp to the
initial Transactions table.
The fifth load script contains the drop table statement which will remove the Transactions_in_usb
table its data has been concatenated to the Transactions table.

First load script

Transactions:

Load * Inline [
id, date, amount
1, 12/30/2018, 23.56

2, 12/07/2018, 556.31
3, 12/16/2018, 5.75
4, 12/22/2018, 125.00
5, 12/22/2018, 484.21
6, 12/22/2018, 59.18
7, 12/23/2018, 177.42
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

id
1
2

id
date

amount

First load script results
date amount

12/30/2018 23.56

12/07/2018 556.31

Script syntax and chart functions - Qlik Sense, August 2023 92

2 Script statements and keywords

id date amount
3 12/16/2018 5.75

4 12/22/2018 125.00
5 12/22/2018 484.21
6 12/22/2018 59.18

7 12/23/2018 177.42

The table shows the initial dataset with amounts in GBP.
Second load script

Transactions_in_uUsD:
NoConcatenate

Load * InTline [

id, date, amount

8, 01/01/2019, 164.27
9, 01/03/2019, 384.00
10, 01/06/2019, 25.82
11, 01/09/2019, 312.00
12, 01/15/2019, 4.56
13, 01/16/2019, 90.24
14, 01/18/2019, 19.32
1;

Results

Load the data and go to the table.

Second load script results

id date amount
1 12/30/2018 23.56

2 12/07/2018 556.31
3 12/16/2018 5.75

4 12/22/2018 125.00
5 12/22/2018 484.21
6 12/22/2018 59.18

7 12/23/2018 177.42
8 01/01/2019 164.27
9 01/03/2019 384.00

10 01/06/2019 25.82

11 01/09/2019 312.00

Script syntax and chart functions - Qlik Sense, August 2023 93

2 Script statements and keywords

id date amount
12 01/15/2019 4.56
13 01/16/2019 90.24

14 01/18/2019 19.32

You will see that the second dataset from the Transactions_in_usD table has been added.

Third load script

This load script joins a currency exchange rate from USD to GBP to the Transactions_in_usp table.

Join (Transactions_in_usD)
Load * InTline [

rate

0.7

1;

Results

Load the data and go to the Data model viewer. Select the Transactions_in_usb table and you will see that
every existing record has a 'rate' field value of 0.7.

Fourth load script

Using resident load, this load script will concatenate the Transactions_in_usD table to the Transactions
table after converting the amounts into USD.

Concatenate (Transactions)
LOAD

id,

date,

amount * rate as amount
Resident Transactions_in_USD;

o

Results

Load the data and go to the table. You will see new entries with amounts in GBP from lines eight to fourteen.

Fourth load script results

id date amount
1 12/30/2018 23.56

2 12/07/2018 556.31
3 12/16/2018 5.75

4 12/22/2018 125.00
5 12/22/2018 484.21

Script syntax and chart functions - Qlik Sense, August 2023 94

2 Script statements and keywords

id date amount
6 12/22/2018 59.18

7 12/23/2018 177.42
8 01/01/2019 114.989
8 01/01/2019 164.27
9 01/03/2019 268.80
9 01/03/2019 384.00

10 01/06/2019 18.074
10 01/06/2019 25.82
11 01/09/2019 218.40
11 01/09/2019 312.00
12 01/15/2019 3.192
12 01/15/2019 4.56
13 01/16/2019 63.168
13 01/16/2019 90.24
14 01/18/2019 13.524

14 01/18/2019 19.32

Fifth load script

This load script will drop the duplicate entries from the fourth load script results table, leaving only entries
with amounts in GBP.

drop tables Transactions_in_USD;
Results

Load the data and go to the table.

Fifth load script results

id date amount
1 12/30/2018 23.56

2 12/07/2018 556.31
3 12/16/2018 5.75

4 12/22/2018 125.00
5 12/22/2018 484.21
6 12/22/2018 59.18

Script syntax and chart functions - Qlik Sense, August 2023 95

2 Script statements and keywords

id date amount
7 12/23/2018 177.42
8 01/01/2019 114.989
9 01/03/2019 268.80

10 01/06/2019 18.074
11 01/09/2019 218.40
12 01/15/2019 3.192

13 01/16/2019 63.168

14 01/18/2019 13.524

After loading the fifth load script, the results table shows all fourteen transactions that existed in both
transaction datasets; however, transactions 8-14 have had their amounts converted to GBP.

If we remove the NoConcatenate prefix that was used before the Transactions_in_usb in the second load
script, the script will fail with the error:“Table 'Transactions_in_usp' not found”. This is because the
Transactions_in_usD table would have been auto concatenated onto the original Transactions table.

Only

The Only script keyword is used as an aggregation function, or as part of the syntax in partial reload prefixes
Add, Replace, and Merge.

Outer

The explicit Join prefix can be preceded by the prefix Outer to specify an outer join. In an outer join, all
combinations between the two tables are generated. The resulting table will thus contain combinations of
field values from the raw data tables where the linking field values are represented in one or both tables. The
Outer keyword is optional and is the default join type used when a join prefix is not specified.

Syntax:

Outer Join [(tablename)] (loadstatement |selectstatement)

Arguments:
Arguments
Argument Description
tablename The named table to be compared to the loaded table.
loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

Script syntax and chart functions - Qlik Sense, August 2023 96

2 Script statements and keywords

Example

Load script
Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Tablel:

Load * inTline [
columnl, Column2
A, B

1, aa

2, cc
3, ee];
Table2:

outer Join Load * inline [
columnl, Column3

A, C
1, xx

4, yy 1;

Resulting table

Columnil Column2 Column3
A B C

1 aa XX

2 cc -

3 ee -

4 - yy
Explanation

In this example, the two tables, Tablel and Table2, are merged into a single table labeled Tablel. In cases like
this, the outer prefix is often used to join several tables into a single table to perform aggregations over the
values of a single table.

Partial reload

A full reload always starts by deleting all tables in the existing data model, and then runs the
load script.

A partial reload will not do this. Instead it keeps all tables in the data model and then executes only Load and
Select statements preceded by an Add, Merge, or Replace prefix. Other data tables are not affected by the
command. The only argument denotes that the statement should be executed only during partial reloads, and
should be disregarded during full reloads. The following table summarizes statement execution for partial and
full reloads.

Script syntax and chart functions - Qlik Sense, August 2023 97

2 Script statements and keywords

Partial
Statement Full reload

reload
Load ... Statement will run Statement

will not run
Add/Replace/Merge Load ... Statement will run Statement

will run
Add/Replace/Merge Only Load ... Statement will not run Statement

will run

Partial reloads have several benefits compared to full reloads:

* Faster, because only data recently changed needs to be loaded. With large data sets the difference is
significant.
e Less memory is consumed, because less data is loaded.

¢ More reliable, because queries to source data run faster, reducing the risk of network problems.

For partial reload to work properly, the app must be opened with data before a partial reload is
triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Limitations

A partial reload will fail if there are commands with references to tables that existed during full reload, but not
during partial reload.

Example

Example commands

LEFT JOIN(<Table_removed_after_full_reload>)
CONCATENATE (<Table_removed_after_full_reload>)

Where <Table_removed_after_full_reload> is a table that existed in full reload, but not in partial reload.

Workaround

As a workaround you can surround the command with following if-statement:

IF NOT IsPartialReload() THEN ... ENDIF.

A partial reload can remove values from the data. However, this will not be reflected in the list of distinct
values, which is a table maintained internally. So, after a partial reload, the list will contain all distinct values
that have existed in the field since the last full reload, which may be more than what currently exists after the
partial reload. This affects the output of the FieldValueCount() and the FieldValue() functions. The
FieldValueCount() could potentially return a number greater than the current number of field values.

Script syntax and chart functions - Qlik Sense, August 2023 98

2 Script statements and keywords

Example
Example 1

Load script

Add the example script to your app and do a partial reload. To see the result, add the fields listed in the
results column to a sheet in your app.

T1:
Add only Load distinct recno()+10 as Num autogenerate 10;

Result
Resulting table

Num Count(Num)

11 1

12 1

13 1

14 1

15 1

16 1

17 1

18 1

19 1

20 1
Explanation

The statement is only executed during a partial reload. If the "distinct" prefix is omitted, the count of the Num
field will increase with each subsequent partial reload.

Example 2

Load script

Add the example script to your app. Do a full reload and view the result. Next, do a partial reload and view the
result. To see the results, add the fields listed in the results column to a sheet in your app.

T1:
Load recno() as ID, recno() as value autogenerate 10;

T1:
Replace only Load recno() as ID, repeat(recno(),3) as value autogenerate 10;

Script syntax and chart functions - Qlik Sense, August 2023 99

2 Script statements and keywords

Result
Output table after full reload
ID Value
1 1
2 2
3 3
4 4
5 5
6 6
7 I
8 8
9 9
10 10
Output table after partial reload
ID Value
1 111
2 222
3 333
4 444
5 555
6 666
7 T
8 888
9 999
10 101010
Explanation

The first table is loaded during a full reload and the second table simply replaces the first table during a
partial reload.

Replace

The Replace script keyword is used as a string function, or as a prefix in partial reload.

Script syntax and chart functions - Qlik Sense, August 2023 100

2 Script statements and keywords

Replace

The Replace prefix can be added to any LOAD or SELECT statement in the script to specify that the loaded
table should replace another table. It also specifies that this statement should be run in a partial reload. The
Replace prefix can also be used in a Map statement.

For partial reload to work properly, the app must be opened with data before a partial reload is
triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Syntax:
Replace [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)

Replace [only] mapstatement

During a normal (non-partial) reload, the Replace LOAD construction will work as a normal LOAD statement
but be preceded by a Drop Table. First the old table will be dropped, then records will be generated and
stored as a new table.

If the Concatenate prefix is used, or if there exists a table with the same set of fields, this will be the relevant
table to drop. Otherwise, there is no table to drop and the Replace LOAD construction will be identical to a
normal LOAD.

A partial reload will do the same. The only difference is that there is always a table from the previous script
execution to drop. The Replace LOAD construction will always first drop the old table, then create a new one.

The Replace Map...Using statement causes mapping to take place also during partial script execution.

Arguments:
Arguments
Argument Description
only An optional qualifier denoting that the statement should be executed only during partial

reloads. It should be disregarded during normal (non-partial) reloads.

Examples and results:
Example Result

Tabl: During both normal and partial reload, the Qlik Sense table Tabl is initially dropped.

Rep]ac? LOAD * Thereafter new data is loaded from Filel.csv and stored in Tab1.
from Filel.csv;

Script syntax and chart functions - Qlik Sense, August 2023 101

2 Script statements and keywords

Example

Tabl:
Replace only
LOAD * from
Filel.csv;

Tabl:

LOAD a,b,c from
Filel.csv;
Replace LOAD
a,b,c from
File2.csv;

Tabl:

LOAD a,b,c from
Filel.csv;
Replace only
LOAD a,b,c from
File2.csv;

Right

Result

During normal reload, this statement is disregarded.

During partial reload, any Qlik Sense table previously named Tabl is initially
dropped. Thereafter new data is loaded from Filel.csv and stored in Tabl.

During normal reload, the file Filel.csv is first read into the Qlik Sense table Tabl, but
then immediately dropped and replaced by new data loaded from File2.csv. All data
from Filel.csv is lost.

During partial reload, the entire Qlik Sense table Tabl is initially dropped. Thereafter
it is replaced by new data loaded from File2.csv.

During normal reload, data is loaded from Filel.csv and stored in the Qlik Sense table
Tabl. File2.csv is disregarded.

During partial reload, the entire Qlik Sense table Tabl is initially dropped. Thereafter
itis replaced by new data loaded from File2.csv. All data from Filel.csv is lost.

The Join and Keep prefixes can be preceded by the prefix right.

If used before join it specifies that a right join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented in the
second table. If used before keep, it specifies that the first raw data table should be reduced to its common

intersection with the second table, before being stored in Qlik Sense.

Were you looking for the string function by the same name? See: Right (page 1432)

Syntax:
Right (Join |

Arguments:

Argument

tablename

loadstatement or selectstatement

Example

Load script

Keep)

[(tablename)] (loadstatement |selectstatement)

Arguments

Description
The named table to be compared to the loaded table.

The LOAD or SELECT statement for the loaded table.

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a

sheet in your app.

Script syntax and chart functions - Qlik Sense, August 2023 102

2 Script statements and keywords

Tablel:

Load * inTline [
columnl, Column2
A, B

1, aa

2, cc

3, ee];

Table2:

Right Join Load * inline [
columnl, Column3

A, C

1, xx

4, yy 1;

Result

Resulting table

Columnil Column2 Column3
A B C

1 aa XX

4 - yy
Explanation

This example demonstrates the Right Join output where only values present in the second (right) table are
joined.

Sample

The sample prefix to a LOAD or SELECT statement is used for loading a random sample of
records from the data source.

Syntax:

Sample p (loadstatement | selectstatement)

The expression that is evaluated does not define the percentage of records from the dataset that will be
loaded into the Qlik Sense application, but the probability of each record that is read to be loaded into the
application. In other words, specifying a value p = 0.5 does not mean that 50% of the total number of records
will be loaded, but instead that for each record there will be a 50% chance that it is loaded into the Qlik Sense
application.

Arguments

Argument Description

p An arbitrary expression which valuates to a number larger than 0 and lower or equal to 1.
The number indicates the probability for a given record to be read.

All records will be read but only some of them will be loaded into Qlik Sense.

Script syntax and chart functions - Qlik Sense, August 2023 103

2 Script statements and keywords

When to use it

Sample is useful when you would like to sample data coming from a large table, to understand the nature of
data, distribution or field contents. As it brings a subset of data, the data loads are faster, allowing faster
testing of scripts. Unlike First, the sample function brings data from the whole table, instead of being limited
to the first few rows. This can provide a more accurate representation of the data in some cases.

The following examples show two possible uses of the sampTe script prefix:

SampTle 0.15 SQL SELECT * from Longtable;
SampTle(0.15) LOAD * from Longtab.csv;

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - Sample from an inline table

Load script and results

Overview

In this example, the script loads a sample set of data from a dataset containing seven records into a table
named Transactions from an inline table.

Load script

Transactions:

SAMPLE 0.3

LOAD

Inline [

id, date, amount

1, 08/30/2018, 23.56
, 09/07/2018, 556.31
, 09/16/2018, 5.75

, 09/22/2018, 125.00
09/22/2018, 484.21
09/22/2018, 59.18
, 09/23/2018, 177.42

— N OV WwN

Script syntax and chart functions - Qlik Sense, August 2023 104

2 Script statements and keywords

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:
e id
e amount
Add the following the measure:
=sum(amount) 8
Results table
id date =Sum(amount)
2 09/07/2018 556.31
4 09/22/2018 125
1 08/30/2018 23.56

3 09/16/2018 5.75

In the iteration of the load used in this example, all seven records were read, but only four records were
loaded into the data table. Any re-run load could result in a different number, and a different set of records
being loaded into the application.

Example 2 - Sample from an autogenerated table

Load script and results

Overview

In this example, using Autogenerate, a dataset of 100 records is created with the fields date, id, and amount.
However, the sample prefix is used, with a value of 0.1.

Load script

SampleData:

SampTle 0.1

LOAD

RecNo() AS 1id,

MakeDate (2013, ceil(Rand() * 12), cCeil(Rand() * 29)) as date,
Rand() * 1000 AS amount

Autogenerate(100);

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, August 2023 105

2 Script statements and keywords

e id

e amount

Add the following the measure:

Results table

id date =Sum(amount)
48 9/28/2013 763

20 5/15/2013 752

19 11/8/2013 657

25 3/24/2013 522

27 8/23/2013 389

81 6/1/2013 53

100 8/15/2013 17

In the iteration of the load used in this example, seven records were loaded from the created dataset. Once
again, any re-run load could result in a different number, and a different set of records being loaded into the
application.

Semantic

The semantic load prefix creates a special type of field that can be used in Qlik Sense to connect
and manage relational data, such as tree structures, self-referencing parent-child structured
data and/or data that can be described as a graph.

Note that the semantic load can function similarly to the Hierarchy (page 62) and
HierarchyBelongsTo (page 64) prefixes. All three prefixes can be used as building blocks in
effective front-end solutions for traversing relational data.

Syntax:

Semantic(loadstatement | selectstatement)

A semantic load expects an input that is exactly three or four fields wide with a strict definition of what each
ordered field represents, as shown in the table below:

Semantic load fields

Field

Field description
name
1st This tag is a representation of the first of two objects between which there is a relationship.
Field:
2nd This tag will be used to describe the “forward” relationship between the first and second
Field: object. If the first object is a child and the second object is a parent, you can create a

relationship tab that states “parent” or “parent of” as if you are following the relationship from

Script syntax and chart functions - Qlik Sense, August 2023 106

2 Script statements and keywords

Field

: Field description
name

child to parent.

3rd This tag is a representation of the second of two objects between which there is a relationship.
Field:
4th This field is optional. This tag describes the “backward” or “inverse” relationship between the
Field: first and second object. If the first object is a child and the second object is a parent, a

relationship tab could state “child” or “child of” as if you are following the relationship from
parent to child. If you do not add a fourth field, then the second field tag will be used to
describe the relationship in either direction. In that case, an arrow symbol is automatically
added as part of the tag.

The following code is an example of the semantic prefix.

Semantic

Load

Object,

‘Parent’ AS Relationship,
Neighbouringobject AS Object,
‘Child’ AS Relationship

from graphdata.csv;

It is allowed and typical practice to label the third field the same as the first field. This creates a self-
referencing lookup, so that you can follow object(s) to the related object(s) one relationship step
away at a time. If the 3rd field does not carry the same name, then the end result will be a simple
lookup from an object(s) to its direct relational neighbor(s) one step away only, which is an output of
little practical use.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Related functions
Functions Interaction

Hierarchy (page 62) The Hierarchy load prefix is used to divide and organize nodes in parent-child and
other graph-like data structures and transform them into tables.

Script syntax and chart functions - Qlik Sense, August 2023 107

2 Script statements and keywords

Functions Interaction

HierarchyBelongsTo The HierarchyBelongsTo load prefix is used to locate and organize the ancestors

(page 64) of parent-child and other graph-like data structures and transform them into
tables.

Example - Creating a special field for connecting relationships using the semantic
prefix

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

* A dataset representing geography relation records which is loaded into a table named GeographyTree.
e Each entry has an ID at the beginning of the line and a ParentID at the end of the line.

* The semantic prefix which will add one special behavior field labeled, ReTation.
Load script

GeographyTree:
LOAD
D,
Geography,
if(ParentiD="",nul1(),ParentID) AS ParentID

INLINE [
ID,Geography,ParentID
1,world
2,Europe,1l
3,Asia,l

4,North America,l
5,South America,l
6,UK,?2
7,Germany, 2
8,Sweden, 2
9,South Korea,3
10,North Korea,3
11,china,3
12,London,6
13,Birmingham, 6
1;

SemanticTable:

Semantic Load
ID as ID,
'Parent' as Relation,
ParentID as ID,

Script syntax and chart functions - Qlik Sense, August 2023 108

2 Script statements and keywords

'Child"' as Relation
resident GeographyTree;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions.

e Id

e Geography

Then, create a filter pane with Relation as a dimension. Click Done editing.

10
11
12

13

Relation

Child

Parent

Results table

Geography
World

Europe

Asia

North America
South America
UK

Germany
Sweden

South Korea
North Korea
China

London

Birmingham

Filter pane

Click Europe from the Geography dimension in the table and click Child from the Relation dimension in the
filter pane. Note the expected result in the table:

Script syntax and chart functions - Qlik Sense, August 2023 109

2 Script statements and keywords

Results table showing
"children" of Europe

Id Geography

6 UK
7 Germany
8 Sweden

Clicking Child again will show places that are "children" of the UK, one step further down.

Results table showing
"children" of UK

Id Geography

12 London
13 Birmingham
Unless

The unless prefix and suffix is used for creating a conditional clause which determines whether
a statement or exit clause should be evaluated or not. It may be seen as a compact alternative
to the full if..end if statement.

Syntax:
(Unless condition statement | exitstatement Unless condition)
The statement or the exitstatement will only be executed if condition is evaluated to False.

The unless prefix may be used on statements which already have one or several other statements, including
additional when or unless prefixes.

Arguments
Argument Description
condition A logical expression evaluating to True or False.
statement Any Qlik Sense script statement except control statements.
exitstatement An exit for, exit do or exit sub clause or an exit script statement.

When to use it

The unless statement returns a Boolean result. Typically, this type of function will be used as a condition
when the user would like to conditionally load or exclude parts of the script.

The following lines show three examples of how the unless function may be used:

exit script unless A=1;
unless A=1 LOAD * from myfile.csv;
unless A=1 when B=2 drop table Tabl;

Script syntax and chart functions - Qlik Sense, August 2023 110

2 Script statements and keywords

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - Unless prefix

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ The creation of variable A, which is given a value of 1.

¢ A dataset which is loaded into a table named Transactions, unless the variable A= 2.
Load script
LET A = 1;
UNLESS A = 2

Transactions:

LOAD

Inline [

id, date, amount

1, 08/30/2018, 23.56

2, 09/07/2018, 556.31
3, 09/16/2018, 5.75
4, 09/22/2018, 125.00
5, 09/22/2018, 484.21
6, 09/22/2018, 59.18
7, 09/23/2018, 177.42
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, August 2023 111

2 Script statements and keywords

e id
e date

e amount

Results table

id date

1 08/30/2018
2 09/07/2018
3 09/16/2018
4 09/22/2018
5 09/22/2018
6 09/22/2018

7 09/23/2018

amount

23.56

556.31

5.75

125.00

484.21

59.18

177.42

Because the variable A is assigned the value of 1 at the start of the script, the condition following the unless

prefix is evaluated, returning a result of FALSE. As a result, the script continues to run the Load statement. In

the results table, all the records from the Transactions table can be seen.

If this variable value is set to equal to 2, no data will be loaded into the data model.

Example 2 - Unless suffix

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script starts by loading an initial dataset into a table named Transactions. The script is then
terminated unless there are less than 10 records in the Transactions table.

If this condition does not result in a termination of the script, a further set of transactions is concatenated into

the Transactions table and this process is repeated.

Load script

Transactions:
LOAD

Inline [

id, date, amount

1, 08/30/2018, 23.56
2, 09/07/2018, 556.31
3, 09/16/2018, 5.75
4, 09/22/2018, 125.00
5, 09/22/2018, 484.21

Script syntax and chart functions - Qlik Sense, August 2023 112

2 Script statements and keywords

6, 09/22/2018, 59.18
7, 09/23/2018, 177.42
1;

exit script unless NoOfRows('Transactions') < 10 ;

Concatenate

LOAD

Inline [

id, date, amount

8, 10/01/2018, 164.27
9, 10/03/2018, 384.00
10, 10/06/2018, 25.82
11, 10/09/2018, 312.00
12, 10/15/2018, 4.56
13, 10/16/2018, 90.24
14, 10/18/2018, 19.32
1;

exit script unless NoOfRows('Transactions') < 10 ;

Concatenate

LOAD

Inline [

id, date, amount

15, 10/01/2018, 164.27
16, 10/03/2018, 384.00
17, 10/06/2018, 25.82
18, 10/09/2018, 312.00
19, 10/15/2018, 4.56
20, 10/16/2018, 90.24
21, 10/18/2018, 19.32
1;

exit script unless NoOfRows('Transactions') < 10 ;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e id
e date
e amount
Results table
id date amount
1 08/30/2018 23.56

Script syntax and chart functions - Qlik Sense, August 2023 113

2 Script statements and keywords

id date amount
2 09/07/2018 556.31
3 09/16/2018 5.75

4 09/22/2018 125.00
5 09/22/2018 484.21

6 09/22/2018 59.18

7 09/23/2018 177.42
8 10/01/2018 164.27
9 10/03/2018 384.00

10 10/06/2018 25.82
11 10/09/2018 312.00
12 10/15/2018 4.56
13 10/16/2018 90.24

14 10/18/2018 19.32

There are seven records in each of the three datasets of the load script.

The first dataset (with transaction id 1 through 7) is loaded into the application. The unless condition
evaluates whether there are less than 10 rows in the Transactions table. This evaluates to TRUE, and
therefore the second dataset (with transaction id 8 through 14) is loaded into the application. The second
unless condition evaluates if there are less than 10 records in the Transactions table. This evaluates to
FALSE, and so the script terminates.

Example 3 - Multiple Unless prefixes

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

In this example, a dataset containing one transaction is created as a table called Transactions. A 'for' loop is
then triggered, in which two nested unless statements evaluate:

1. Unless there are more than 100 records in the Transactions table

2. Unless the number of records in the Transactions table is a multiple of 6

If these conditions are FALSE, a further seven records are generated and concatenated onto the existing
Transactions table. This process is repeated until one of the two transactions returns a value of TRUE.

Script syntax and chart functions - Qlik Sense, August 2023 114

2 Script statements and keywords

Load script

Transactions:
Load

0 as id
Autogenerate 1;

For i = 1 to 100
unless NoOfRows('Transactions') > 100 unless mod(NoOfRows('Transactions'),6) = 0
Concatenate
Load
if(isnull(Peek(id)),1,peek(id)+1) as id
Autogenerate 7;
next i

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:id.

Results table
id

4
5

+30 more rows

The nested unless statements that occur in the 'for' loop evaluate the following:

1. Are there more than 100 rows in the Transactions table?

2. Is the total number of records in the Transactions table a multiple of 67

Whenever both unless statements return a value of FALSE, a further seven records are generated and
concatenated onto the existing Transactions table.

These statements return a value of FALSE five times, at which point there are a total of 36 rows of data in the

Transactions table

After this, the second unless statement returns a value of TRUE, and therefore the load statement following
this will no longer be executed.

Script syntax and chart functions - Qlik Sense, August 2023 115

2 Script statements and keywords

When

The when prefix and suffix is used for creating a conditional clause which determines whether a
statement or exit clause should be executed or not. It may be seen as a compact alternative to
the full if..end if statement.

Syntax:
(when condition statement | exitstatement when condition)

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.
The statement or the exitstatement will only be executed if condition is evaluated to TRUE.

The when prefix may be used on statements which already have one or several other statements, including
additional when or unless prefixes.

When to use it

The when statement returns a Boolean result. Typically, this type of function will be used as a condition when
the user would like to load or exclude parts of a script.

Arguments
Argument Description
condition A logical expression evaluating to TRUE or FALSE
statement Any Qlik Sense script statement except control statements.
exitstatement An exit for, exit do or exit sub clause or an exit script statement.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Script syntax and chart functions - Qlik Sense, August 2023 116

2 Script statements and keywords

Example

exit script when A=1;

when A=1 LOAD * from

myfile.csv;

when A=1 unless B=2
drop table Tabl;

Function examples

Result
When the statement A=1 is evaluated to be TRUE, the script will stop.

When the statement A=1 is evaluated to be TRUE, the myfile.csv will be
loaded.

When the statement A=1 is evaluated to be TRUE, and if B=2 is evaluated to be
FALSE, than the Tabl table will be dropped.

Example 1 - When prefix

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

¢ A dataset with dates and amounts that is sent to a table named ‘Transactions’.

¢ The Let statement which states that the variable A is created and has the value of 1.

e The when condition which provides the condition that if A equals 1, then the script will continue to

load.
Load script
LET A = 1;
WHEN A = 1

Transactions:

LOAD

Inline [

id, date, amount

1, 08/30/2018, 23.56

2, 09/07/2018, 556.31
3, 09/16/2018, 5.75
4, 09/22/2018, 125.00
5, 09/22/2018, 484.21
6, 09/22/2018, 59.18
7, 09/23/2018, 177.42
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, August 2023 117

2 Script statements and keywords

e id
e date

e amount

Results table

id date

1 08/30/2018
2 09/07/2018
3 09/16/2018
4 09/22/2018
5 09/22/2018
6 09/22/2018

7 09/23/2018

amount

23.56

556.31

5.75

125.00

484.21

59.18

177.42

Because the variable A is assigned the value of 1 at the start of the script, the condition following the when

prefix is evaluated and returns a result of TRUE. Because it returns a TRUE result, the script continues to run

the load statement. All the records from the results table can be seen.

If this variable value was set to any value not equal to 1, no data would be loaded into the data model.

Example 2 - When suffix

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

¢ Three datasets with dates and amounts that are sent to a table named ‘Transactions’.

¢ The first dataset contains transactions 1-7.

¢ The second dataset contains transactions 8-14.

¢ The third dataset contains transactions 15-21.

¢ Awhen condition which determines whether the ‘Transactions’ table contains more than ten rows. If

any of the when statements are evaluated to be TRUE, the load script will stop. This condition is placed

at the end of each of the three datasets.

Load script

Transactions:
LOAD

Inline [

id, date, amount

Script syntax and chart functions - Qlik Sense, August 2023 118

2 Script statements and keywords

08/30/2018, 23.56
09/07/2018, 556.31
09/16/2018, 5.75
09/22/2018, 125.00
09/22/2018, 484.21
09/22/2018, 59.18
, 09/23/2018, 177.42

—_H N OV W N

exit script when NoOfRows('Transactions') > 10 ;

Concatenate

LOAD

Inline [

id, date, amount

8, 10/01/2018, 164.27
9, 10/03/2018, 384.00
10, 10/06/2018, 25.82
11, 10/09/2018, 312.00
12, 10/15/2018, 4.56
13, 10/16/2018, 90.24
14, 10/18/2018, 19.32
1;

exit script when NoOfRows('Transactions') > 10 ;

Concatenate

LOAD

Inline [

id, date, amount

15, 10/01/2018, 164.27
16, 10/03/2018, 384.00
17, 10/06/2018, 25.82
18, 10/09/2018, 312.00
19, 10/15/2018, 4.56
20, 10/16/2018, 90.24
21, 10/18/2018, 19.32
1;

exit script when NoOfRows('Transactions') > 10 ;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:
e id
e date

e amount

Script syntax and chart functions - Qlik Sense, August 2023 119

2 Script statements and keywords

Results table

id date amount
1 08/30/2018 23.56

2 09/07/2018 556.31
3 09/16/2018 5.75

4 09/22/2018 125.00
5 09/22/2018 484.21

6 09/22/2018 59.18

7 09/23/2018 177.42
8 10/01/2018 164.27
9 10/03/2018 384.00

10 10/06/2018 25.82
11 10/09/2018 312.00
12 10/15/2018 4.56
13 10/16/2018 90.24

14 10/18/2018 19.32

There are seven transactions in each of the three datasets. The first dataset contains transaction 1-7 and is
loaded into the application. The when condition following this load statement is evaluated as FALSE because
there are less than ten rows in the ‘Transactions’ table. The load script continues to the next dataset.

The second dataset contains transaction 8-14 and is loaded into the application. The second when condition
evaluates as TRUE because there are more than ten rows in the ‘Transactions’ table. Therefore, the script
terminates.

Example 3 - Multiple When prefixes

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

* A dataset containing a single transaction is created as a table called 'Transactions'.
* A For loop which is triggered contains two nested when conditions which evaluate whether:
1. There are less than 100 records in the 'Transactions' table.

2. The number of records in the 'Transactions' table is not a multiple of 6.

Script syntax and chart functions - Qlik Sense, August 2023 120

2 Script statements and keywords

Load script

Transactions:
Load

0 as id
Autogenerate 1;

For i = 1 to 100
when NoOfRows('Transactions') < 100 when mod(NoOfRows('Transactions'),6) <> 0
Concatenate
Load
if(isnull(Peek(id)),1,peek(id)+1) as id
Autogenerate 7;
next i

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:
o id
The results table only shows the first five transaction IDs but the load script creates 36 rows and then

terminates once the when condition is fulfilled.

Results table
id

5

+30 more rows

The nested when conditions in the For loop evaluate the following questions:

¢ Are there less than 100 rows in the 'Transactions' table?

¢ |s the total number of records in the 'Transactions' table not a multiple of six?

Whenever both when conditions return a value of TRUE, a further seven records are generated and
concatenated onto the existing ‘Transactions’ table.

The when conditions return a TRUE value five times. At that point there are a total of 36 rows of data in the

‘Transactions’ table.

When 36 rows of data are created in the 'Transactions' table, the second when statement returns a value of
FALSE and therefore the load statement following this will no longer be executed.

Script syntax and chart functions - Qlik Sense, August 2023 121

2 Script statements and keywords

2.5 Script regular statements

Regular statements are typically used for manipulating data in one way or another. These statements may be
written over any number of lines in the script and must always be terminated by a semicolon, ";".

All script keywords can be typed with any combination of lower case and upper case characters. Field and
variable names used in the statements are however case sensitive.

Script regular statements overview

Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Alias
The alias statement is used for setting an alias according to which a field will be renamed whenever it occurs
in the script that follows.

Alias fieldname as aliasname {,fieldname as aliasname}

Autonumber
This statement creates a unique integer value for each distinct evaluated value in a field encountered during
the script execution.

AutoNumber fields [Using namespace]]

Binary
The binary statement is used for loading the data from another QlikView document, including section access
data.

Binary [path] filename

comment
Provides a way of displaying the field comments (metadata) from databases and spreadsheets. Field names
not present in the app will be ignored. If multiple occurrences of a field name are found, the last value is used.

Comment field *fieldlist using mapname
Comment field fieldname with comment

comment table
Provides a way of displaying the table comments (metadata) from databases or spreadsheets.

Comment table tablelist using mapname
Comment table tablename with comment

Connect

This functionality is not available in Qlik Sense Saas.

Script syntax and chart functions - Qlik Sense, August 2023 122

2 Script statements and keywords

The CONNECT statement is used to define Qlik Sense access to a general database through the OLE DB/ODBC
interface. For ODBC, the data source first needs to be specified using the ODBC administrator.

ODBC Connect TO connect-string [(access_info)]
OLEDB CONNECT TO connect-string [(access info)]
CUSTOM CONNECT TO connect-string [(access info)]
LIB CONNECT TO connection

Declare

The Declare statement is used to create field definitions, where you can define relations between fields or
functions. A set of field definitions can be used to automatically generate derived fields, which can be used as
dimensions. For example, you can create a calendar definition, and use that to generate related dimensions,
such as year, month, week and day, from a date field.

definition name:

Declare [Field[s]] Definition [Tagged tag list]
[Parameters parameter list]

Fields field list

[Groups group list]

<definition name>:

Declare [Field][s] Definition
Using <existing definition>
[With <parameter assignment>]

Derive

The Derive statement is used to generate derived fields based on a field definition created with a Declare
statement. You can either specify which data fields to derive fields for, or derive them explicitly or implicitly
based on field tags.

Derive [Field[s]] From [Field[s]] field list Using definition
Derive [Field[s]] From Explicit [Tag[s]] (tag list) Using definition
Derive [Field[s]] From Implicit [Tag[s]] Using definition

Direct Query
The DIRECT QUERY statement allows you to access tables through an ODBC or OLE DB connection using the
Direct Discovery function.

Direct Query |[path]

Directory
The Directory statement defines which directory to look in for data files in subsequent LOAD statements, until
a new Directory statement is made.

Directory [path]

Disconnect
The Disconnect statement terminates the current ODBC/OLE DB/Custom connection. This statement is
optional.

Disconnect

Script syntax and chart functions - Qlik Sense, August 2023 123

2 Script statements and keywords

drop field

One or several Qlik Sense fields can be dropped from the data model, and thus from memory, at any time
during script execution, by means of a drop field statement. The "distinct" property of a table is removed
after a drop field statement.

Both drop field and drop fields are allowed forms with no difference in effect. If no table is
specified, the field will be dropped from all tables where it occurs.

Drop field fieldname [, fieldname2 ...] [from tablenamel [, tablename2
.11

drop fields fieldname [, fieldname2 ...] [from tablenamel [, tablename2
.11

drop table

One or several Qlik Sense internal tables can be dropped from the data model, and thus from memory, at any
time during script execution, by means of a drop table statement.

The forms drop table and drop tables are both accepted.

Drop table tablename [, tablename2 ...]
drop tables|[tablename [, tablename2 ...]
Execute

The Execute statement is used to run other programs while Qlik Sense is loading data. For example, to make
conversions that are necessary.

Execute commandline

FlushLog
The FlushLog statement forces Qlik Sense to write the content of the script buffer to the script log file.

FlushLog

Force

The force statement forces Qlik Sense to interpret field names and field values of subsequent LOAD and
SELECT statements as written with only upper case letters, with only lower case letters, as always capitalized
or as they appear (mixed). This statement makes it possible to associate field values from tables made
according to different conventions.

Force (capitalization | case upper | case lower | case mixed)

LOAD

The LOAD statement loads fields from a file, from data defined in the script, from a previously loaded table,
from a web page, from the result of a subsequent SELECT statement or by generating data automatically. It is
also possible to load data from analytic connections.

Load [distinct] *fieldlist
[(from file [format-spec] |

Script syntax and chart functions - Qlik Sense, August 2023 124

2 Script statements and keywords

from field fieldassource [format-spec]

inline data [format-spec] |

resident table-label |

autogenerate size)]

[where criterion | while criterion]

[group by groupbyfieldlist]

[order by orderbyfieldlist]

[extension pluginname.functionname (tabledescription)]

Let

The let statement is a complement to the set statement, used for defining script variables. The let statement,
in opposition to the set statement, evaluates the expression on the right side of the ' =" at script run time
before it is assigned to the variable.

Let variablename=expression

Loosen Table

One or more Qlik Sense internal data tables can be explicitly declared loosely coupled during script execution
by using a Loosen Table statement. When a table is loosely coupled, all associations between field values in
the table are removed. A similar effect could be achieved by loading each field of the loosely coupled table as
independent, unconnected tables. Loosely coupled can be useful during testing to temporarily isolate
different parts of the data structure. A loosely coupled table can be identified in the table viewer by the dotted
lines. The use of one or more Loosen Table statements in the script will make Qlik Sense disregard any
setting of tables as loosely coupled made before the script execution.

tablename [, tablename2 ...]
Loosen Tables tablename [, tablename2 ...]

Map ... using
The map ... using statement is used for mapping a certain field value or expression to the values of a specific
mapping table. The mapping table is created through the Mapping statement.

Map *fieldlist Using mapname

NullAsNull
The NullAsNull statement turns off the conversion of NULL values to string values previously set by a
NullAsValue statement.

NullAsNull *fieldlist

NullAsValue
The NullAsValue statement specifies for which fields that NULL should be converted to a value.

NullAsValue *fieldlist

Qualify
The Qualify statement is used for switching on the qualification of field names, i.e. field names will get the
table name as a prefix.

Qualify *fieldlist

Script syntax and chart functions - Qlik Sense, August 2023 125

2 Script statements and keywords

Rem

The rem statement is used for inserting remarks, or comments, into the script, or to temporarily deactivate
script statements without removing them.

Rem string

Rename Field

This script function renames one or more existing Qlik Sense field(s) after they have been loaded.
Rename field (usingmapname |oldname to newname{ , oldname to newname })
Rename Fields (using mapname | oldname to newname{ , oldname to newname })

Rename Table

This script function renames one or more existing Qlik Sense internal table(s) after they have been loaded.

Rename table (using mapname | oldname to newname{ , oldname to newname })

Rename Tables (using mapname | oldname to newname{ , oldname to newname })

Section

With the section statement, it is possible to define whether the subsequent LOAD and SELECT statements
should be considered as data or as a definition of the access rights.

Section (access | application)

Select

The selection of fields from an ODBC data source or OLE DB provider is made through standard SQL SELECT
statements. However, whether the SELECT statements are accepted depends on the ODBC driver or OLE DB
provider used.

Select [all | distinct | distinctrow | top n [percent]] *fieldlist
From tablelist

[Where criterion]

[Group by fieldlist [having criterion] |

[Order by fieldlist [asc | desc]]

[(Inner | Left | Right | Full)Join tablename on fieldref = fieldref |

Set

The set statement is used for defining script variables. These can be used for substituting strings, paths,
drives, and so on.

Set variablename=string

Sleep
The sleep statement pauses script execution for a specified time.

Sleep n

Script syntax and chart functions - Qlik Sense, August 2023 126

2 Script statements and keywords

SQL
The SQL statement allows you to send an arbitrary SQL command through an ODBC or OLE DB connection.

SQL sgl command

SQLColumns
The sqlcolumns statement returns a set of fields describing the columns of an ODBC or OLE DB data source,
to which a connect has been made.

SQLColumns

SQLTables
The sqltables statement returns a set of fields describing the tables of an ODBC or OLE DB data source, to
which a connect has been made.

SQLTables

SQLTypes
The sqltypes statement returns a set of fields describing the types of an ODBC or OLE DB data source, to
which a connect has been made.

SQLTypes

Star
The string used for representing the set of all the values of a field in the database can be set through the star
statement. It affects the subsequent LOAD and SELECT statements.

Star is [string]

Store
The Store statement creates a QVD, Parquet, CSV, or TXT file.

Store [*fieldlist from] table into filename [format-spec];

Tag

This script statement provides a way to assign tags to one or more fields or tables. If an attempt to tag a field
or table not present in the app is made, the tagging will be ignored. If conflicting occurrences of a field or tag
name are found, the last value is used.

Tag[field|fields] fieldlist with tagname
Tag [field|fields] fieldlist using mapname
Tag table tablelist with tagname

Trace

The trace statement writes a string to the Script Execution Progress window and to the script log file, when
used. It is very useful for debugging purposes. Using $-expansions of variables that are calculated prior to the
trace statement, you can customize the message.

Trace string

Script syntax and chart functions - Qlik Sense, August 2023 127

2 Script statements and keywords

Unmap
The Unmap statement disables field value mapping specified by a previous Map ... Using statement for
subsequently loaded fields.

Unmap *fieldlist

Unqualify
The Unqualify statement is used for switching off the qualification of field names that has been previously
switched on by the Qualify statement.

Unqualify *fieldlist

Untag
This script statement provides a way to remove tags from fields or tables. If an attempt to untag a field or
table not present in the app is made, the untagging will be ignored.

Untag[field|fields] fieldlist with tagname
Tag [field|fields] fieldlist using mapname
Tag table tablelist with tagname

Alias

The alias statement is used for setting an alias according to which a field will be renamed
whenever it occurs in the script that follows.

Syntax:
alias fieldname as aliasname {,fieldname as aliasname}

Arguments:
Arguments
Argument Description
fieldname The name of the fieldin your source data
aliasname An alias name you want to use instead
Examples and results:
Example Result
Alias ID_N as
NameID;
Alias A as The name changes defined through this statement are used on all subsequent SELECT
NamE, B as and LOAD statements. A new alias can be defined for a field name by a new alias
Number, C as . .
Date: statement at any subsequent position in the script.

Script syntax and chart functions - Qlik Sense, August 2023 128

2 Script statements and keywords

AutoNumber

This statement creates a unique integer value for each distinct evaluated value in a field encountered during
the script execution.

You can also use the autonumber (page 558) function inside a LOAD statement, but this has some limitations
when you want to use an optimized load. You can create an optimized load by loading the data from a QVD
file first, and then using the AutoNumber statement to convert values to symbol keys.

Syntax:
AutoNumber *fieldlist [Using namespace]]

Arguments:
Arguments

Argument Description

*fieldlist A comma-separated list of the fields where the values should be replaced by a unique
integer value.
You can use wildcard characters ? and * in the field names to include all fields with
matching names. You can also use * to include all fields. You need to quote field names
when wildcards are used.

namespace Using namespace is optional. You can use this option if you want to create a

namespace, where identical values in different fields share the same key.

If you do not use this option, all fields will have a separate key index.

Limitations:

When you have several LOAD statements in the script, you need to place the AutoNumber statement after the
final LOAD statement.

Example - script with AutoNumber

Script example

In this example, the data is first loaded without the AutoNumber statement. The AutoNumber statement is
then added to show the effect.

Data used in the example

Load the following data as an inline load in the data load editor to create the script example below. Leave the
AutoNumber statement commented out for now.

RegionSales:

LOAD *,

Region &'|'& Year &'|'& Month as KeyToOtherTable
INLINE

[Region, Year, Month, Sales

Script syntax and chart functions - Qlik Sense, August 2023 129

2 Script statements and keywords

North, 2014, May, 245
North, 2014, May, 347
North, 2014, June, 127
South, 2014, June, 645

South, 2013, May, 367
South, 2013, May, 221
1;

Budget:

LOAD Budget,
Region &'|'& Year &'|'& Month as KeyToOtherTable

INLINE

[Region, Year, Month, Budget
North, 2014, May, 200
North, 2014, May, 350

North, 2014, June, 150
South, 2014, June, 500
South, 2013, May, 300
South, 2013, May, 200
1;

//AutoNumber KeyToOtherTable;

Create visualizations

Create two table visualizations in a Qlik Sense sheet. Add KeyToOtherTable, Region, Year, Month, and Sales
as dimensions to the first table. Add KeyToOtherTable, Region, Year, Month, and Budget as dimensions to
the second table.

Result
RegionSales table
KeyToOtherTable Region Year Month Sales
North|2014|June North 2014 June 127
North|2014|May North 2014 May 245
North|2014|May North 2014 May 347
South|2013|May South 2013 May 221
South|2013|May South 2013 May 367
South|2014|June South 2014 June 645
Budget table

KeyToOtherTable Region Year Month Budget
North|2014|June North 2014 June 150

Script syntax and chart functions - Qlik Sense, August 2023 130

2 Script statements and keywords

KeyToOtherTable Region Year Month Budget

North|2014|May North 2014 May 200

North|2014|May North 2014 May 350

South|2013|May South 2013 May 200

South|2013|May South 2013 May 300

South|2014|June South 2014 June 500
Explanation

The example shows a composite field KeyToOtherTable that links the two tables. AutoNumber is not used.
Note the length of the KeyToOtherTable values.

Add AutoNumber statement

Uncomment the AutoNumber statement in the load script:

AutoNumber KeyToOtherTable;

Result
RegionSales table
KeyToOtherTable Region Year Month Sales
1 North 2014 June 127
1 North 2014 May 245
2 North 2014 May 347
3 South 2013 May 221
4 South 2013 May 367
4 South 2014 June 645
Budget table

KeyToOtherTable Region Year Month Budget
1 North 2014 June 150

1 North 2014 May 200

2 North 2014 May 350

3 South 2013 May 200

4 South 2013 May 300

4 South 2014 June 500

Script syntax and chart functions - Qlik Sense, August 2023 131

2 Script statements and keywords

Explanation

The KeyToOtherTable field values have been replaced with unique integer values and, as a result, the length
of the field values has been reduced, thus conserving memory. The key fields in both tables are affected by
AutoNumber and the tables remain linked. The example is brief for demonstration purposes, but would be
meaningful with a table containing a large number of rows.

Binary

The binary statement is used for loading the data from another Qlik Sense app or QlikView
document, including section access data. Other elements of the app are not included, for
example, sheets, stories, visualizations, master items or variables.

Only one binary statement is allowed in the script. The binary statement must be the first statement of the
script, even before the SET statements usually located at the beginning of the script.

Syntax:
binary [path] filename

Arguments:
Arguments
Argument Description
path The path to the file which should be a reference to a folder data connection. This is
required if the file is not located in the Qlik Sense working directory.
Example: 'lib://Table Files/’
In legacy scripting mode, the following path formats are also supported:
* absolute
Example: c:\data|
* relative to the app containing this script line.
Example: data|
filename The name of the file, including the file extension .qvw or .qvf.
Limitations:

You cannot use binary to load data from an app on the same Qlik Sense Enterprise deployment by referring to
the app ID. You can only load from a .qvf file.

Script syntax and chart functions - Qlik Sense, August 2023 132

2 Script statements and keywords

Examples
String

Binary 1ib://DataFolder/customer.qvw;

Binary customer.qvf;

Binary c:\qv\customer.qvw;

Comment field

Description

In this example, the file must be in located in the Folder
data connection. This may be, for example, a folder that
your administrator creates on the Qlik Sense server. Click
Create new connection in the data load editor and then
select Folder under File locations.

In this example, the file must be in located in the Qlik Sense
working directory.

This example using an absolute file path will only work in
legacy scripting mode.

Provides a way of displaying the field comments (metadata) from databases and spreadsheets.
Field names not present in the app will be ignored. If multiple occurrences of a field name are

found, the last value is used.

Syntax:

comment [fields] *fieldlist using mapname

comment [field] fieldname with comment

The map table used should have two columns, the first containing field names and the second the comments.

Arguments:
Arguments
Argument Description
*fieldlist A comma separated list of the fields to be commented. Using * as field list indicates all

fields. The wildcard characters * and ? are allowed in field names. Quoting of field names

may be necessary when wildcards are used.

mapname The name of a mapping table previously read in a mapping LOAD or mapping SELECT

statement.
fieldname The name of the field that should be commented.
comment The comment that should be added to the field.
Example 1:
commentmap:
mapping LOAD * inline [
a,b

Alpha,This field contains text values
Num,This field contains numeric values

1;

Script syntax and chart functions - Qlik Sense, August 2023 133

2 Script statements and keywords

comment fields using commentmap;
Example 2:

comment field Alpha with AFieldContainingCharacters;
comment field Num with '*A field containing numbers';
comment Gamma with 'Mickey Mouse field';

Comment table

Provides a way of displaying the table comments (metadata) from databases or spreadsheets.

Table names not present in the app are ignored. If multiple occurrences of a table name are found, the last
value is used. The keyword can be used to read comments from a data source.

Syntax:
comment [tables] tablelist using mapname
comment [table] tablename with comment

Arguments:
Arguments
Argument Description
tablelist (table{,table})

mapname The name of a mapping table previously read in a mapping LOAD or mapping SELECT

statement.
tablename The name of the table that should be commented.
comment The comment that should be added to the table.
Example 1:
Commentmap:
mapping LOAD * inline [
a,b

Main,This is the fact table
currencies, Currency helper table
1;

comment tables using Commentmap;
Example 2:
comment table Main with 'Main fact table';

Connect

The CONNECT statement is used to define Qlik Sense access to a general database through the
OLE DB/ODBC interface. For ODBC, the data source first needs to be specified using the ODBC
administrator.

Script syntax and chart functions - Qlik Sense, August 2023 134

2 Script statements and keywords

This functionality is not available in Qlik Sense Saas.

This statement supports only folder data connections in standard mode.

Syntax:

ODBC CONNECT TO connect-string
OLEDB CONNECT TO connect-string
CUSTOM CONNECT TO connect-string
LIB CONNECT TO connection

Arguments:

Arguments
Argument Description

connect- connect-string ::= datasourcename { ; conn-spec-item }
string The connection string is the data source name and an optional list of one or
more connection specification items. If the data source name contains
blanks, or if any connection specification items are listed, the connection

string must be enclosed by quotation marks.

datasourcename must be a defined ODBC data source or a string that
defines an OLE DB provider.

conn-spec-item ::=DBQ=database_specifier |DriverID=driver_

specifier |UID=userid |PWD=password

The possible connection specification items may differ between different
databases. For some databases, also other items than the above are
possible. For OLE DB, some of the connection specific items are mandatory
and not optional.

connection The name of a data connection stored in the data load editor.

If the ODBC is placed before CONNECT, the ODBC interface will be used; else, OLE DB will be used.

Using LIB CONNECT TO connects to a database using a stored data connection that was created in the data
load editor.

Example 1:

ODBC CONNECT TO 'Sales
DBQ=C:\Program Files\Access\Samples\Sales.mdb';

The data source defined through this statement is used by subsequent Select (SQL) statements, until a new
CONNECT statement is made.

Script syntax and chart functions - Qlik Sense, August 2023 135

2 Script statements and keywords

Example 2:

LIB CONNECT TO 'DataConnection';

Connect32

This statement is used the same way as the CONNECT statement, but forces a 64-bit system to use a 32-bit
ODBC/OLE DB provider. Not applicable for custom connect.

Connect64

This statement is used the same way as the as the CONNECT statement, but forces use of a 64-bit provider.
Not applicable for custom connect.

Declare

The Declare statement is used to create field definitions, where you can define relations between fields or
functions. A set of field definitions can be used to automatically generate derived fields, which can be used as
dimensions. For example, you can create a calendar definition, and use that to generate related dimensions,
such as year, month, week and day, from a date field.

You can use Declare to either set up a new field definition, or to create a field definition based on an already
existing definition.

Setting up a new field definition

Syntax:

definition name:

Declare [Field[s]] Definition [Tagged tag list]
[Parameters parameter list]

Fields field list

Arguments:
Argument Description
definition_ Name of the field definition, ended with a colon.
name

Do not use autoCalendar as name for field definitions, as this name is reserved
for auto-generated calendar templates.

Example:

Calendar:

Script syntax and chart functions - Qlik Sense, August 2023 136

2 Script statements and keywords

Argument

tag_list

parameter_
list

field_list

Example:

Calendar:

Description

A comma separated list of tags to apply to fields derived from the field definition. Applying
tags is optional, but if you do not apply tags that are used to specify sort order, such as
Sdate, Snumeric or $text, the derived field will be sorted by load order as default.

Example:

'$date'Thank you for bringing this to our attention, and apologies for the
inconvenience.

A comma separated list of parameters. A parameter is defined in the form name=value and
is assigned a start value, which can be overridden when a field definition is re-used.
Optional.

Example:

first_month_of_year = 1

A comma separated list of fields to generate when the field definition is used. A field is
defined in the form <expression> As field name tagged tag. Use $1 to reference the
data field from which the derived fields should be generated.

Example:

Year($1l) As Year tagged ('$numeric')

DECLARE FIELD DEFINITION TAGGED '$date'’

Parameters

first_month_of_year = 1

Fields

Year($1l) As Year Tagged ('$numeric'),

Month($1) as Month Tagged ('$numeric'),

Date($1) as Date Tagged ('$date'),

week($1) as week Tagged ('$numeric'),

weekday($1) as weekday Tagged ('S$numeric'),

DayNumberofyvear($1l, first_month_of_year) as DayNumberofyear Tagged ('$numeric')

The calendar is now defined, and you can apply it to the date fields that have been loaded, in this case
OrderDate and ShippingDate, using a Derive clause.

Re-using an existing field definition

Syntax:

<definition name>:

Declare [Field][s] Definition

Using <existing definition>

[With <parameter assignment>]

Script syntax and chart functions - Qlik Sense, August 2023 137

2 Script statements and keywords

Arguments:
Argument Description
definition_ Name of the field definition, ended with a colon.
name
Example:
MyCalendar:
existing_ The field definition to re-use when creating the new field definition. The new field
definition definition will function the same way as the definition it is based on, with the exception if
you use parameter_assignment to change a value used in the field expressions.
Example:
Using Calendar
parameter_ A comma separated list of parameter assignments. A parameter assignment is defined in
assignment the form name=value and overrides the parameter value that is set in the base field
definition. Optional.
Example:
first_month_of_year = 4
Example:

In this example we re-use the calendar definition that was created in the previous example. In this case we
want to use a fiscal year that starts in April. This is achieved by assigning the value 4 to the first_month_of_
year parameter, which will affect the DayNumberOfYear field that is defined.

The example assumes that you use the sample data and field definition from the previous example.

MyCalendar:
DECLARE FIELD DEFINITION USING Calendar WITH first_month_of_year=4;

DERIVE FIELDS FROM FIELDS OrderDate,ShippingDate USING MyCalendar;

When you have reloaded the data script, the generated fields are available in the sheet editor, with names
OrderDate.MyCalendar.* and ShippingDate.MyCalendar.*.

Derive

The Derive statement is used to generate derived fields based on a field definition created with a Declare
statement. You can either specify which data fields to derive fields for, or derive them explicitly or implicitly
based on field tags.

Syntax:
Derive [fields]] From [Field[s]] field list Using definition
Derive [Field[s]] From Explicit [Tag[s]] tag list Using definition

Script syntax and chart functions - Qlik Sense, August 2023 138

2 Script statements and keywords

Derive [Field[s]] From Implicit [Tag[s]] Using definition

Arguments:
Arguments
Argument Description
definition Name of the field definition to use when deriving fields.
Example: calendar
field_list A comma separated list of data fields from which the derived fields should be generated,
based on the field definition. The data fields should be fields you have already loaded in the
script.
Example: orderpate, Shippingbate
tag_list A comma separated list of tags. Derived fields will be generated for all data fields with any
of the listed tags. The list of tags should be enclosed by round brackets.
Example: ('$date', '$timestamp')
Examples:

 Derive fields for specific data fields.

In this case we specify the OrderDate and ShippingDate fields.
DERIVE FIELDS FROM FIELDS OrderDate,ShippingDate USING Calendar;

« Derive fields for all fields with a specific tag.

In this case we derive fields based on Calendar for all fields with a $date tag.
DERIVE FIELDS FROM EXPLICIT TAGS ('$date') USING Calendar;

 Derive fields for all fields with the field definition tag.
In this case we derive fields for all data fields with the same tag as the Calendar field definition, which

in this case is $date.
DERIVE FIELDS FROM IMPLICIT TAG USING Calendar;

Direct Query

The DIRECT QUERY statement allows you to access tables through an ODBC or OLE DB connection using the
Direct Discovery function.

Syntax:

DIRECT QUERY DIMENSION fieldlist [MEASURE fieldlist] [DETAIL fieldlist] FROM
tablelist

[WHERE where clause]

The DIMENSION, MEASURE, and DETAIL keywords can be used in any order.

The DIMENSION and FROM keyword clauses are required on all DIRECT QUERY statements. The FROM
keyword must appear after the DIMENSION keyword.

Script syntax and chart functions - Qlik Sense, August 2023 139

2 Script statements and keywords

The fields specified directly after the DIMENSION keyword are loaded in memory and can be used to create
associations between in-memory and Direct Discovery data.

The DIRECT QUERY statement cannot contain DISTINCT or GROUP BY clauses.

Using the MEASURE keyword you can define fields that Qlik Sense is aware of on a “meta level”. The actual
data of a measure field resides only in the database during the data load process, and is retrieved on an ad
hoc basis driven by the chart expressions that are used in a visualization.

Typically, fields with discrete values that will be used as dimensions should be loaded with the DIMENSION
keyword, whereas numbers that will be used in aggregations only should be selected with the MEASURE
keyword.

DETAIL fields provide information or details, like comment fields, that a user may want to display in a drill-to-
details table box. DETAIL fields cannot be used in chart expressions.

By design, the DIRECT QUERY statement is data-source neutral for data sources that support SQL. For that
reason, the same DIRECT QUERY statement can be used for different SQL databases without change. Direct
Discovery generates database-appropriate queries as needed.

Native data-source syntax can be used when the user knows the database to be queried and wants to exploit
database-specific extensions to SQL. Native data-source syntax is supported:

* As field expressions in DIMENSION and MEASURE clauses
¢ As the content of the WHERE clause

Examples:

DIRECT QUERY

DIMENSION Diml, Dim2
MEASURE

NATIVE ('X % Y') AS X_MOD_Y

FROM TableName
DIRECT QUERY

DIMENSION Diml, Dim2

MEASURE X, Y

FROM TableName

WHERE NATIVE ('EMAIL MATCHES "*.EDU"')

The following terms are used as keywords and so cannot be used as column or field names without
being quoted: and, as, detach, detail, dimension, distinct, from, in, is, like, measure, native, not, or,
where

Script syntax and chart functions - Qlik Sense, August 2023 140

2 Script statements and keywords

Arguments:

Argument

fieldlist

tablelist

where_
clause

Example:

Description

A comma-separated list of field specifications, fieldname {, fieldname}. A field
specification can be a field name, in which case the same name is used for the database
column name and the Qlik Sense field name. Or a field specification can be a "field alias," in
which case a database expression or column name is given a Qlik Sense field name.

A list of the names of tables or views in the database from which data will be loaded.
Typically, it will be views that contain a JOIN performed on the database.

The full syntax of database WHERE clauses is not defined here, but most SQL "relational
expressions" are allowed, including the use of function calls, the LIKE operator for strings,
IS NULL and IS NOT NULL, and IN. BETWEEN is not included.

NOT is a unary operator, as opposed to a modifier on certain keywords.

Examples:

WHERE x > 100 AND "Region Code" IN ('south', 'west')
WHERE Code IS NOT NULL and Code LIKE '%prospect'
WHERE NOT X in (1,2,3)

The last example can not be written as:

WHERE X NOT 1in (1,2,3)

In this example, a database table called TableName, containing fields Dim1, Dim2, Num1, Num2 and Num3, is
used.Dim1 and Dim2 will be loaded into the Qlik Sense dataset.

DIRECT QUERY DIMENSTION Diml, Dim2 MEASURE Numl, Num2, Num3 FROM TableName ;

Dim1 and Dim2 will be available for use as dimensions. Num1, Num2 and Num3 will be available for
aggregations. Dim1 and Dim2 are also available for aggregations. The type of aggregations for which Dim1 and
Dim2 can be used depends on their data types. For example, in many cases DIMENSION fields contain string
data such as names or account numbers.Those fields cannot be summed, but they can be counted: count

(Diml).

Script syntax and chart functions - Qlik Sense, August 2023 141

2 Script statements and keywords

DIRECT QUERY statements are written directly in the script editor. To simplify construction of
DIRECT QUERY statements, you can generate a SELECT statement from a data connection, and then
edit the generated script to change it into a DIRECT QUERY statement.

For example, the SELECT statement:

SQL SELECT
SalesorderiD,
RevisionNumber,
orderDate,
SubTotal,
TaxAmt
FROM MyDB.Sales.SalesOrderHeader;

could be changed to the following DIRECT QUERY statement:

DIRECT QUERY
DIMENSION

SalesorderiD,

RevisionNumber

MEASURE
SubTotal,
TaxAmt

DETAIL
orderbate

FROM MyDB.Sales.SalesOrderHeader;

Direct Discovery field lists

A field list is a comma-separated list of field specifications, fieldname {, fieldname}. A field
specification can be a field name, in which case the same name is used for the database column
name and the field name. Or a field specification can be a field alias, in which case a database
expression or column name is given a Qlik Sense field name.

Field names can be either simple names or quoted names. A simple name begins with an alphabetic Unicode
character and is followed by any combination of alphabetic or numeric characters or underscores. Quoted
names begin with a double quotation mark and contain any sequence of characters. If a quoted name
contains double quotation marks, those quotation marks are represented using two adjacent double
quotation marks.

Qlik Sense field names are case-sensitive. Database field names may or may not be case-sensitive, depending
on the database. A Direct Discovery query preserves the case of all field identifiers and aliases. In the following
example, the alias "MyState" is used internally to store the data from the database column "STATEID".

DIRECT QUERY Dimension STATEID as MyState Measure AMOUNT from SALES_TABLE;

Script syntax and chart functions - Qlik Sense, August 2023 142

2 Script statements and keywords

This differs from the result of an SQL Select statement with an alias. If the alias is not explicitly quoted, the
result contains the default case of column returned by the target database. In the following example, the SQL
Select statement to an Oracle database creates "MYSTATE," with all upper case letters, as the internal Qlik
Sense alias even though the alias is specified as mixed case. The SQL Select statement uses the column name
returned by the database, which in the case of Oracle is all upper case.

SQL Select STATEID as MyState, STATENAME from STATE_TABLE;

To avoid this behavior, use the LOAD statement to specify the alias.

Load STATEID as MyState, STATENAME;
SQL Select STATEID, STATEMENT from STATE_TABLE;

In this example, the "STATEID" column is stored internally byQlik Sense as "MyState".

Most database scalar expressions are allowed as field specifications. Function calls can also be used in field
specifications. Expressions can contain constants that are boolean, numeric, or strings contained in single
quotation marks (embedded single quotation marks are represented by adjacent single quotation marks).

Examples:

DIRECT QUERY
DIMENSION
SalesOorderID, RevisionNumber
MEASURE
SubTotal AS "Sub Total"

FROM Adventureworks.Sales.SalesOrderHeader;

DIRECT QUERY
DIMENSION
"Salesorderib” AS "Sales Order ID"
MEASURE
SubTotal,TaxAmt, (SubTotal-TaxAmt) AS "Net Total"

FROM Adventureworks.Sales.SalesOrderHeader;

DIRECT QUERY
DIMENSION
(2*Radius*3.14159) As Circumference,

Molecules/6.02e23 AS Moles

Script syntax and chart functions - Qlik Sense, August 2023 143

2 Script statements and keywords

MEASURE
Numl AS numA

FROM TableName;

DIRECT QUERY
DIMENSION
concat(region, 'code') AS region_code
MEASURE
Numl AS NumA
FROM TableName;

Direct Discovery does not support using aggregations in LOAD statements. If aggregations are used, the
results are unpredictable. A LOAD statement such as the following should not be used:

DIRECT QUERY DIMENSION stateid, SuM(amount*7) AS MultiFirst MEASURE amount FROM sales_table;
The SUM should not be in the LOAD statement.

Direct Discovery also does not support Qlik Sense functions in Direct Query statements. For example, the
following specification for a DIMENSION field results in a failure when the "Mth" field is used as a dimension
in a visualization:

month(ModifiedDate) as Mth

Directory
The Directory statement defines which directory to look in for data files in subsequent LOAD

statements, until a new Directory statement is made.

Syntax:
Directory[path]

If the Directory statement is issued without a path or left out, Qlik Sense will look in the Qlik Sense working
directory.

Script syntax and chart functions - Qlik Sense, August 2023 144

2 Script statements and keywords

Arguments:
Arguments
Argument Description
path A text that can be interpreted as the path to the data file.
The path is the path to the file, either:
* absolute
Example: c:\datal
* relative to the Qlik Sense app working directory.
Example: data|
* URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.
Example: http://www.qlik.com
Examples:

DIRECTORY C:\userfiles\data; // OR -> DIRECTORY data\

LOAD * FROM

[datal.csv] // ONLY THE FILE NAME CAN BE SPECIFIED HERE (WITHOUT THE FULL PATH)
(ansi, txt, delimiter is ',', embedded labels);

LOAD * FROM

[data2.txt] // ONLY THE FILE NAME CAN BE SPECIFIED HERE UNTIL A NEW DIRECTORY STATEMENT IS
MADE
(ansi, txt, delimiter is '\t', embedded Tlabels);

Disconnect

The Disconnect statement terminates the current ODBC/OLE DB/Custom connection. This statement is
optional.

Syntax:
Disconnect

The connection will be automatically terminated when a new connect statement is executed or when the
script execution is finished.

Example:

Disconnect;

Script syntax and chart functions - Qlik Sense, August 2023 145

2 Script statements and keywords

Drop

The Drop script keyword can be used to drop tables or fields from the database.

Drop field

One or several Qlik Sense fields can be dropped from the data model, and thus from memory, at any time
during script execution, by means of a drop field statement. The "distinct" property of a table is removed
after a drop field statement.

Both drop field and drop fields are allowed forms with no difference in effect. If no table is
specified, the field will be dropped from all tables where it occurs.

Syntax:

Drop field fieldname { , fieldname2 ...} [from tablenamel { , tablename2
1]

Drop fields fieldname { , fieldname2 ...} [from tablenamel { , tablename2

.- b

Examples:

Drop field A;

prop fields A,B;

prop field A from X;

Drop fields A,B from X,Y;

Drop table

One or several Qlik Sense internal tables can be dropped from the data model, and thus from
memory, at any time during script execution, by means of a drop table statement.

Syntax:
drop table tablename {, tablename2 ...}
drop tables tablename {, tablename2 ...}

The forms drop table and drop tables are both accepted.

The following items will be lost as a result of this:

¢ The actual table(s).
« All fields which are not part of remaining tables.

¢ Field values in remaining fields, which came exclusively from the dropped table(s).

Script syntax and chart functions - Qlik Sense, August 2023 146

2 Script statements and keywords

Examples and results:
Example Result

drop table Orders, salesmen, T456a; This line results in three tables being dropped
from memory.

Tabl: Once the table Tab2 is created, the table Tabl is
Load * Inline [

Customer, Items, UnitPrice
Bob, 5, 1.50

1;

dropped.

Tab2:

LOAD Customer, Sum(Items * UnitPrice) as Sales
resident Tabl

group by Customer;

drop table Tabl;

Drop table

One or several Qlik Sense internal tables can be dropped from the data model, and thus from
memory, at any time during script execution, by means of a drop table statement.

Syntax:
drop table tablename {, tablename2 ...}
drop tables tablename {, tablename2 ...}

The forms drop table and drop tables are both accepted.

The following items will be lost as a result of this:

¢ The actual table(s).
* All fields which are not part of remaining tables.

* Field values in remaining fields, which came exclusively from the dropped table(s).
Examples and results:

Example Result

drop table Orders, salesmen, T456a; This line results in three tables being dropped
from memory.

Script syntax and chart functions - Qlik Sense, August 2023 147

2 Script statements and keywords

Example

Tabl:

Load * Inline [

Customer, Items, UnitPrice
Bob, 5, 1.50

1;

Tab2:

LOAD Customer, Sum(Items *

resident Tabl
group by Customer;

drop table Tabl;

Execute

Result

Once the table Tab2 is created, the table Tabl is
dropped.

UnitPrice) as Sales

The Execute statement is used to run other programs while Qlik Sense is loading data. For

example, to make conversions that are necessary.

This functionality is not available in Qlik Sense Saas.

This statement is not supported in standard mode.

Syntax:
execute commandline

Arguments:
Arguments
Argument Description
commandline A text that can be interpreted by the operating system as a command line.

You can refer to an absolute file path or a lib:// folder path.

If you want to use Execute the following conditions need to be met:

¢ You must run in legacy mode (applicable for Qlik Sense and Qlik Sense Desktop).

* You need to set OverrideScriptSecurity to 1 in Settings.ini (applicable for Qlik Sense).
Settings.ini is located in C:\ProgramData\Qlik\Sense\Engine\ and is generally an empty file.

If you set OverrideScriptSecurity to enable Execute, any user can execute files on the server. For
example, a user can attach an executable file to an app, and then execute the file in the data load

script.

Script syntax and chart functions - Qlik Sense, August 2023 148

2 Script statements and keywords

Do the following:

Make a copy of Settings.ini and open it in a text editor.
Check that the file includes [Settings 7] in the first line.
Insert a new line and type OverrideScriptSecurity=1.
Insert an empty line at the end of the file.

Save the file.

Substitute Settings.ini with your edited file.

Restart Qlik Sense Engine Service (QES).

N oo~ w N

If Qlik Sense is running as a service, some commands may not behave as expected.

Example:

Execute C:\Program Files\officel2\Excel.exe;
Execute Tib://win\notepad.exe // win is a folder connection referring to c:\windows

Field/Fields

The Field and Fields script keywords are used in Declare, Derive, Drop, Comment, Rename and Tag/Untag
statements.

FlushLog
The FlushLog statement forces Qlik Sense to write the content of the script buffer to the script log file.

Syntax:
FlushlLog

The content of the buffer is written to the log file. This command can be useful for debugging purposes, as you
will receive data that otherwise may have been lost in a failed script execution.

Example:

FlushLog;

Force

The force statement forces Qlik Sense to interpret field names and field values of subsequent
LOAD and SELECT statements as written with only upper case letters, with only lower case
letters, as always capitalized or as they appear (mixed). This statement makes it possible to
associate field values from tables made according to different conventions.

Syntax:
Force (capitalization | case upper | case lower | case mixed)

Script syntax and chart functions - Qlik Sense, August 2023 149

2 Script statements and keywords

If nothing is specified, force case mixed is assumed. The force statement is valid until a new force statement is

made.

The force statement has no effect in the access section: all field values loaded are case insensitive.
Examples and results

Example

This example shows how to force
capitalization.

FORCE Capitalization;
Capitalization:

LOAD * Inline [

ab

cd

eF

GH

1;

This example shows how to force case upper.

FORCE Case Upper;
CaseUpper:

LOAD * Inline [
ab

cd

eF

GH

1;

This example shows how to force case lower.

FORCE Case Lower;
CaselLower:

LOAD * InTline [
ab

cd

eF

GH

1;

This example shows how to force case mixed.

FORCE Case Mixed;
CaseMixed:

LOAD * InTline [
ab

cd

eF

GH

1;

Result
The Capitalization table contains the following values:

Ab
cd
Ef
Gh

All values are capitalized.

The CaseUpper table contains the following values:

AB
(@)
EF
GH

All values are upper case.

The CaseLower table contains the following values:

ab
cd
ef
gh
All values are lower case.

The CaseMixed table contains the following values:

ab
cd
eF
GH

All values are as they appear in the script.

Script syntax and chart functions - Qlik Sense, August 2023 150

2 Script statements and keywords

See also:

From

The From script keyword is used in Load statements to refer to a file, and in Select statements to refer to a
database table or view.

Load

The LOAD statement loads fields from a file, from data defined in the script, from a previously
loaded table, from a web page, from the result of a subsequent SELECT statement or by
generating data automatically. It is also possible to load data from analytic connections.

Syntax:

LOAD [distinct] fieldlist

[(from file [format-spec] |

from field fieldassource [format-spec]|
inline data [format-spec] |

resident table-label |

autogenerate size) |extension pluginname.functionname ([script]
tabledescription)]

[where criterion | while criterion]

[group by groupbyfieldlist]

[order by orderbyfieldlist]

Arguments:
Arguments
Argument Description
distinct You can use distinct as a predicate if you only want to load unique records. If

there are duplicate records, the first instance will be loaded.

If you are using preceding loads, you need to place distinct in the first load
statement, as distinct only affects the destination table.

Script syntax and chart functions - Qlik Sense, August 2023 151

2 Script statements and keywords

Argument

fieldlist

Description

fieldlist ::= (* | field{, * | field })
A list of the fields to be loaded. Using * as a field list indicates all fields in the
table.
field ::= (fieldref | expression) [as aliasname]
The field definition must always contain a literal, a reference to an existing
field, or an expression.
fieldref ::= (fieldname |@fieldnumber |@startpos:endpos [I|U|R|B|T])
fieldname is a text that is identical to a field name in the table. Note that the field
name must be enclosed by straight double quotation marks or square brackets if
it contains e.g. spaces. Sometimes field names are not explicitly available. Then a
different notation is used:

@fieldnumber represents the field number in a delimited table file. It must be a
positive integer preceded by "@". The numbering is always made from 1 and up to
the number of fields.

@startpos:endpos represents the start and end positions of a field in a file with
fixed length records. The positions must both be positive integers. The two
numbers must be preceded by "@" and separated by a colon. The numbering is
always made from 1 and up to the number of positions. In the last field, n is used
as end position.

o |If @startpos:endpos is immediately followed by the characters I or U, the
bytes read will be interpreted as a binary signed (1) or unsigned (U) integer
(Intel byte order). The number of positions read must be 1, 2 or 4.

o If @startpos:endpos is immediately followed by the character R, the bytes
read will be interpreted as a binary real number (IEEE 32-bit or 64 bit
floating point). The number of positions read must be 4 or 8.

o |If @startpos:endpos is immediately followed by the character B, the bytes

read will be interpreted as a BCD (Binary Coded Decimal) numbers
according to the COMP-3 standard. Any number of bytes may be specified.

expression can be a numeric function or a string function based on one or several
other fields in the same table. For further information, see the syntax of
expressions.

as is used for assigning a new name to the field.

Script syntax and chart functions - Qlik Sense, August 2023 152

2 Script statements and keywords

Argument Description
from from is used if data should be loaded from a file using a folder or a web file data
connection

file ::= [path] filename

Example: 'lib://Table Files/’

If the path is omitted, Qlik Sense searches for the file in the directory specified by
the Directory statement. If there is no Directory statement, Qlik Sense searches
in the working directory, C:\Users\{user}\Documents\Qlik\Sense\Apps.

In a Qlik Sense server installation, the working directory is specified in
Qlik Sense Repository Service, by default it is
C:\ProgramData\Qlik\Sense\Apps.

The filename may contain the standard DOS wildcard characters (* and ?). This
will cause all the matching files in the specified directory to be loaded.
format-spec ::= (fspec-item {, fspec-item })

The format specification consists of a list of several format specification items,
within brackets.

Legacy scripting mode

In legacy scripting mode, the following path formats are also supported:

e absolute

Example: c:\data|
* relative to the Qlik Sense app working directory.

Example: datal

¢ URL address (HTTP or FTP), pointing to a location on the Internet or an
intranet.

Example: http://www.qlik.com

Script syntax and chart functions - Qlik Sense, August 2023 153

2 Script statements and keywords

Argument

from_field

inline

resident

autogenerate

Description

from_field is used if data should be loaded from a previously loaded field.
fieldassource::=(tablename, fieldname)

The field is the name of the previously loaded tablename and fieldname.
format-spec ::= (fspec-item {, fspec-item })

The format specification consists of a list of several format specification items,
within brackets. For more information, see Format specification items (page 161).

from_field only supports commas as the list delimiter in when
separating fields in tables.

inline is used if data should be typed within the script, and not loaded from a file.
data ::= [text |

Data entered through an inline clause must be enclosed by double quotation
marks or by square brackets. The text between these is interpreted in the same
way as the content of a file. Hence, where you would insert a new line in a text file,
you should also do it in the text of an inline clause, i.e. by pressing the Enter key
when typing the script. The number of columns are defined by the first line.
format-spec ::= (fspec-item {, fspec-item })

The format specification consists of a list of several format specification items,
within brackets. For more information, see Format specification items (page 161).

resident is used if data should be loaded from a previously loaded table.
table label is a label preceding the LOAD or SELECT statement(s) that created the
original table. The label should be given with a colon at the end.

autogenerate is used if data should be automatically generated by Qlik Sense.
size ::= number

Number is an integer indicating the number of records to be generated.

The field list must not contain expressions which require data from an external
data source or a previously loaded table, unless you refer to a single field value in
a previously loaded table with the Peek function.

Script syntax and chart functions - Qlik Sense, August 2023 154

2 Script statements and keywords

Argument

extension

where

while

Description

You can load data from analytic connections. You need to use the extension
clause to call a function defined in the server-side extension (SSE) plugin, or
evaluate a script.

You can send a single table to the SSE plugin, and a single data table is returned.
If the plugin does not specify the names of the fields that are returned, the fields
will be named Field1, Field2, and so on.

Extension pluginname.functionname (tabledescription);

¢ Loading data using a function in an SSE plugin
tabledescription ::= (table { ,tablefield})
If you do not state table fields, the fields will be used in load order.

¢ Loading data by evaluating a script in an SSE plugin
tabledescription ::= (script, table { ,tablefield})

Data type handling in the table field definition

Data types are automatically detected in analytic connections. If the data has no
numeric values and at least one non-NULL text string, the field is considered as
text. In any other case it is considered as numeric.

You can force the data type by wrapping a field name with String() or Mixed().

¢ String() forces the field to be text. If the field is numeric, the text part of
the dual value is extracted, there is no conversion performed.

¢ Mixed() forces the field to be dual.

String() or Mixed() cannot be used outside extension table field definitions, and
you cannot use other Qlik Sense functions in a table field definition.

More about analytic connections

You need to configure analytic connections before you can use them.

where is a clause used for stating whether a record should be included in the
selection or not. The selection is included if criterion is True.
criterion is a logical expression.

while is a clause used for stating whether a record should be repeatedly read. The
same record is read as long as criterion is True. In order to be useful, a while
clause must typically include the IterNo() function.

criterion is a logical expression.

Script syntax and chart functions - Qlik Sense, August 2023 155

2 Script statements and keywords

Argument Description

group by group by is a clause used for defining over which fields the data should be
aggregated (grouped). The aggregation fields should be included in some way in
the expressions loaded. No other fields than the aggregation fields may be used
outside aggregation functions in the loaded expressions.

groupbyfieldlist ::= (fieldname { ,fieldname })

order by order by is a clause used for sorting the records of a resident table before they are
processed by the load statement. The resident table can be sorted by one or more
fields in ascending or descending order. The sorting is made primarily by numeric
value and secondarily by national collation order. This clause may only be used
when the data source is a resident table.
The ordering fields specify which field the resident table is sorted by. The field can
be specified by its name or by its number in the resident table (the first field is
number 1).

orderbyfieldlist ::= fieldname [sortorder] {, fieldname [sortorder] }

sortorder is either asc for ascending or desc for descending. If no sortorder is
specified, asc is assumed.

fieldname, path, filename and aliasname are text strings representing what the
respective names imply. Any field in the source table can be used as fieldname.
However, fields created through the as clause (aliasname) are out of scope and
cannot be used inside the same load statement.

If no source of data is given by means of a from, inline, resident, from_field, extension or autogenerate
clause, data will be loaded from the result of the immediately succeeding SELECT or LOAD statement. The
succeeding statement should not have a prefix.

Examples:

Loading different file formats
Load a delimited data file with default options:

LOAD * from datal.csv;

Load a delimited data file from a library connection (DataFiles):

LOAD * from 'lib://DataFiles/datal.csv';

Load all delimited data files from a library connection (DataFiles):

LOAD * from 'lib://DataFiles/*.csv';

Load a delimited file, specifying comma as delimiter and with embedded labels:

LOAD * from 'c:\userfiles\datal.csv' (ansi, txt, delimiter is ',', embedded Tlabels);

Load a delimited file specifying tab as delimiter and with embedded labels:

Script syntax and chart functions - Qlik Sense, August 2023 156

2 Script statements and keywords

LOAD * from 'c:\userfiles\data2.txt' (ansi, txt, delimiter is '\t', embedded Tabels);

Load a dif file with embedded headers:

LOAD * from file2.dif (ansi, dif, embedded labels);

Load three fields from a fixed record file without headers:

LOAD @1:2 as ID, @3:25 as Name, @57:80 as City from data4.fix (ansi, fix, no Tabels, header is
0, record is 80);

Load a QVX file, specifying an absolute path:

LOAD * from C:\qdssamples\xyz.qvx (qvx);

Loading web files
Load from the default URL set in the web file data connection:

LOAD * from [1ib://MywebFile];

Load from a specific URL, and override the URL set in the web file data connection:

LOAD * from [1ib://MywebFile] (URL is 'http://localhost:8000/foo.bar');

Load from a specific URL set in a variable using dollar-sign expansion:

SET dynamicURL = 'http://localhost/foo.bar’;
LOAD * from [1ib://MywebFile] (URL is '$(dynamicURL)"');

Selecting certain fields, renaming and calculating fields
Load only three specific fields from a delimited file:

LOAD FirstName, LastName, Number from datal.csv;

Rename first field as A and second field as B when loading a file without labels:

LOAD @1 as A, @ as B from data3.txt (ansi, txt, delimiter is '\t', no labels);
Load Name as a concatenation of FirstName, a space character, and LastName:

LOAD FirstName&' '&LastName as Name from datal.csv;

Load Quantity, Price and Value (the product of Quantity and Price):

LOAD Quantity, Price, Quantity*Price as value from datal.csv;

Selecting certain records
Load only unique records, duplicate records will be discarded:

LOAD distinct FirstName, LastName, Number from datal.csv;

Load only records where the field Litres has a value above zero:

LOAD * from Consumption.csv where Litres>0;

Script syntax and chart functions - Qlik Sense, August 2023 157

2 Script statements and keywords

Loading data not on file and auto-generated data

Load a table with inline data, two fields named CatID and Category:
LOAD * Inline

[catID, category

0,Regular

1,0ccasional
2,Permanent];

Load a table with inline data, three fields named UserlID, Password and Access:
LOAD * Inline [UserID, Password, Access

A, ABC456, User
B, VIP789, Admin];

Load a table with 10 000 rows. Field A will contain the number of the read record (1,2,3,4,5...) and field B will
contain a random number between 0 and 1:

LOAD RecNo() as A, rand() as B autogenerate(10000);

The parenthesis after autogenerate is allowed but not required.

Loading data from a previously loaded table
First we load a delimited table file and name it tab1:

tabl:
SELECT A,B,C,D from 'Tlib://DataFiles/datal.csv';

Load fields from the already loaded tabl table as tab2:

tab2:
LOAD A,B,month(C),A*B+D as E resident tabl;

Load fields from already loaded table tabl but only records where A is larger than B:

tab3:
LOAD A,A+B+C resident tabl where A>B;

Load fields from already loaded table tabl ordered by A:
LOAD A,B*C as E resident tabl order by A;

Load fields from already loaded table tabl, ordered by the first field, then the second field:

LOAD A,B*C as E resident tabl order by 1,2;

Load fields from already loaded table tabl ordered by C descending, then B in ascending order, and then the
first field in descending order:

LOAD A,B*C as E resident tabl order by C desc, B asc, 1 desc;

Loading data from previously loaded fields
Load field Types from previously loaded table Characters as A:

Script syntax and chart functions - Qlik Sense, August 2023 158

2 Script statements and keywords

LOAD A from_field (Characters, Types);

Loading data from a succeeding table (preceding load
Load A, B and calculated fields X and Y from Tablel that is loaded in succeeding SELECT statement:

LOAD A, B, if(C>0,'positive', 'negative') as X, weekday(D) as Y;
SELECT A,B,C,D from Tablel;

Grouping data
Load fields grouped (aggregated) by ArtNo:

LOAD ArtNo, round(sum(TransAmount),0.05) as ArtNoTotal from table.csv group by ArtNo;

Load fields grouped (aggregated) by Week and ArtNo:

LOAD Week, ArtNo, round(Avg(TransAmount),0.05) as weekArtNoAverages from table.csv group by
week, ArtNo;

Reading one record repeatedly
In this example we have a input file Grades.csv containing the grades for each student condensed in one field:

Student,Grades

Mike, 5234

John, 3345

Pete,1234

Paul, 3352

The grades, in a 1-5 scale, represent subjects Math, English, Science and History. We can separate the grades
into separate values by reading each record several times with a while clause, using the IterNo() function as
a counter. In each read, the grade is extracted with the Mid function and stored in Grade, and the subject is
selected using the pick function and stored in Subject. The final while clause contains the test to check if all

grades have been read (four per student in this case), which means next student record should be read.

MyTab:

LOAD Student,

mid(Grades,IterNo(),1) as Grade,

pick(IterNo(), 'Math', 'English', 'Science', 'History') as Subject from Grades.csv
while IsNum(mid(Grades,IterNo(),1));

The result is a table containing this data:

Script syntax and chart functions - Qlik Sense, August 2023 159

2 Script statements and keywords

Student Subject Grade

John English 3
John History 5
John Math 3
John Scence 4
Mike English 2
Mike History 4
Mike Math 5
Mike Scence 3
Paul English 3
Paul History 2
Paul Math 3
Paul Scence 5§
Pete English 2
Pete History 4
Pete Math 1
Pete Sdence 3

Loading from analytic connections
The following sample data is used.

values:

Load
Rand() as A,
Rand() as B,
Rand() as C

AutoGenerate(50);

Loading data using a function

In these examples, we assume that we have an analytic connection plugin named P that contains a custom
function Calculate(Parameterl, Parameter2). The function returns the table Results that contains the fields
Field1 and Field2.

Load * Extension P.Calculate(values{A, C});
Load all fields that are returned when sending the fields A and C to the function.

Load Fieldl Extension P.Calculate(values{A, C});
Load only the Field1 field when sending the fields A and C to the function.

Load * Extension P.Calculate(values);
Load all fields that are returned when sending the fields A and B to the function. As fields are not specified, A
and B are used as they are the first in order in the table.

Load * Extension P.Calculate(values {C, C});
Load all fields that are returned when sending the field C to both parameters of the function.

Load * Extension P.Calculate(values {String(A), Mixed(B)});
Load all fields that are returned when sending the field A forced as a string and B forced as a numeric to the
function.

Script syntax and chart functions - Qlik Sense, August 2023 160

2 Script statements and keywords

Loading data by evaluating a script
Load A as A_echo, B as B_echo Extension R.ScripteEval('q;', values{A, B});
Load the table returned by the script g when sending the values of A and B.

Load * Extension R.ScriptEval('$(My_R_Script)', values{A, B});
Load the table returned by the script stored in the My_R_Script variable when sending the values of A and B.

Load * Extension R.ScriptEval('$(My_R_Script)', values{B as D, *});
Load the table returned by the script stored in the My_R_Script variable when sending the values of B
renamed to D, A and C. Using * sends the remaining unreferenced fields.

The file extension of DataFiles connections is case sensitive. For example: .qvd.

Format specification items

Each format specification item defines a certain property of the table file:

fspec-item ::=[ansi|oem | mac | UTF-8 | Unicode | txt | fix | dif | biff | ooxml | html | xml | kml |
qvd | qux | parquet | delimiter is char | no eof | embedded labels | explicit labels | no labels | table is

[tablename] | header is n | header is 1ine | header is n lines | comment is string | record is n | record
is Line | record is n lines | no quotes |msq | URL is string | userAgent is string]

Character set
Character set is a file specifier for the LOAD statement that defines the character set used in the
file.

The ansi, oem and mac specifiers were used in QlikView and will still work. However, they will not be
generated when creating the LOAD statement with Qlik Sense.

Syntax:
utf8 | unicode | ansi | ocem | mac | codepage 1is

Arguments:
Arguments
Argument Description
utf8 UTF-8 character set
unicode Unicode character set
ansi Windows, codepage 1252
oem DOS, 0S/2, AS400 and others
mac Codepage 10000
codepage is With the codepage specifier, it is possible to use any Windows codepage as N .

Script syntax and chart functions - Qlik Sense, August 2023 161

2 Script statements and keywords

Limitations:

Conversion from the oem character set is not implemented for macOS. If nothing is specified, codepage 1252
is assumed under Windows.

Example:

LOAD * from a.txt (utf8, txt, delimiter is ',' , embedded Tabels)

LOAD * from a.txt (unicode, txt, delimiter is ',' , embedded Tlabels)
LOAD * from a.txt (codepage is 10000, txt, delimiter is ',' , no labels)
See also:

) Load (page 151)

Table format

The table format is a file specifier for the LOAD statement that defines the file type. If nothing is
specified, a .txt file is assumed.

Table format types

Type Description

txt In a delimited text file the columns in the table are separated by a delimiter
character.

fix In a fixed record file, each field is exactly a certain number of characters.

Typically, many fixed record length files contains records separated by a linefeed,
but there are more advanced options to specify record size in bytes or to span over
more than one line with Record is.

If the data contains multi-byte characters, field breaks can become
misaligned as the format is based on a fixed length in bytes.

dif In a .dif file, (Data Interchange Format) a special format for defining the table is used.

biff Qlik Sense can also interpret data in standard Excel files by means of the biff format
(Binary Interchange File Format).

ooxml Excel 2007 and later versions use the ooxml .xslx format.
html If the table is part of an html page or file, html should be used.
xml xml (Extensible Markup Language) is a common markup language that is used to

represent data structures in a textual format.
qvd The format gvd is the proprietary QVD files format, exported from a Qlik Sense app.

gvx qvx is a file/stream format for high performance output to Qlik Sense.

Script syntax and chart functions - Qlik Sense, August 2023 162

2 Script statements and keywords

Type Description

parquet Apache Parquet is a columnar storage format, highly efficient for storing and
querying large datasets.

Delimiter is

For delimited table files, an arbitrary delimiter can be specified through the delimiter is
specifier. This specifier is relevant only for delimited .txt files.

Syntax:

delimiter is char

Arguments:
Arguments
Argument Description
char Specifies a single character from the 127 ASCII characters.

Additionally, the following values can be used:

Optional values

Value Description

\t' representing a tab sign, with or without quotation marks.

"y representing a backslash (\) character.

'spaces’ representing all combinations of one or more spaces. Non-printable

characters with an ASCll-value below 32, with the exception of CR and
LF, will be interpreted as spaces.

If nothing is specified, delimiter is ',' is assumed.
Example:

LOAD * from a.txt (utf8, txt, delimiter is ',' , embedded labels);

See also:

() Load (page 151)

No eof

The no eof specifier is used to disregard end-of-file character when loading delimited .txt files.

Syntax:
no eof

Script syntax and chart functions - Qlik Sense, August 2023 163

2 Script statements and keywords

If the no eof specifier is used, characters with code point 26, which otherwise denotes end-of-file, are
disregarded and can be part of a field value.

It is relevant only for delimited text files.

Example:

LOAD * from a.txt (txt, utf8, embedded Tabels, delimiter is ' ', no eof);

See also:
) Load (page 151)

Labels

Labels is a file specifier for the LOAD statement that defines where in a file the field names can be found.

Syntax:
embedded labels|explicit labels|no labels

The field names can be found in different places of the file. If the first record contains the field names,
embedded labels should be used. If there are no field names to be found, no labels should be used. In dif
files, a separate header section with explicit field names is sometimes used. In such a case, explicit labels
should be used. If nothing is specified, embedded labels is assumed, also for dif files.

Example 1:
LOAD * from a.txt (unicode, txt, delimiter is ',' , embedded labels

Example 2:

LOAD * from a.txt (codePage is 1252, txt, delimiter is ',' , no labels)

See also:

() Load (page 151)

Header is

Specifies the header size in table files. An arbitrary header length can be specified through the header is
specifier. A header is a text section not used by Qlik Sense.

Syntax:

header is n
header is line
header is n lines

The header length can be given in bytes (header is n), or in lines (header is line or header is n lines). n must
be a positive integer, representing the header length. If not specified, header is 0 is assumed. The header is
specifier is only relevant for table files.

Script syntax and chart functions - Qlik Sense, August 2023 164

2 Script statements and keywords

Example:

This is an example of a data source table containing a header text line that should not be interpreted as data
by Qlik Sense.

*Header Tine
Ccoll,col2
a,B

c,D

Using the header is 1 lines specifier, the first line will not be loaded as data. In the example, the embedded
labels specifier tells Qlik Sense to interpret the first non-excluded line as containing field labels.

LOAD Coll, Col2
FROM 'Tib://files/header.txt'
(txt, embedded Tabels, delimiter is ',', msq, header is 1 Tines);

The result is a table with two fields, Coll and Col2.

See also:

) Load (page 151)

Record is

For fixed record length files, the record length must be specified through the record is specifier.

Syntax:

Record is n
Record is line
Record is n lines

Arguments:
Arguments
Argument Description
n Specifies the record length in bytes.
line Specifies the record length as one line.
n lines Specifies the record length in lines where n is a positive integer representing the record

length.

Limitations:

The record is specifier is only relevant for fix files.

Script syntax and chart functions - Qlik Sense, August 2023 165

2 Script statements and keywords

See also:

) Load (page 151)

Quotes

Quotes is a file specifier for the LOAD statement that defines whether quotes can be used and the precedence
between quotes and separators. For text files only.

Syntax:

no quotes

msq

If the specifier is omitted, standard quoting is used, that is, the quotes
are the first and last non blank character of a field value.

or''can be used, but only if they

Arguments:
Arguments
Argument Description
no quotes Used if quotation marks are not to be accepted in a text file.
msq Used to specify modern style quoting, allowing multi-line content in fields. Fields
containing end-of-line characters must be enclosed within double quotes.
One limitation of the msq option is that single double-quote (") characters appearing as
first or last character in field content will be interpreted as start or end of multi-line
content, which may lead to unpredicted results in the data set loaded. In this case you
should use standard quoting instead, omitting the specifier.
XML

This script specifier is used when loading xml files. Valid options for the XML specifier are listed
in syntax.

You cannot load DTD files in Qlik Sense.

Syntax:

xmlsimple

See also:

) Load (page 151)

KML

This script specifier is used when loading KML files to use in a map visualization.

Script syntax and chart functions - Qlik Sense, August 2023 166

2 Script statements and keywords

Syntax:
km1l

The KML file can represent either area data (for example, countries or regions) represented by polygons, line
data (for example tracks or roads), or point data (for example, cities or places) represented by points in the
form [long, lat].

URL is

This script specifier is used to set the URL of a web file data connection when loading a web file.

Syntax:
URL is string

Arguments:
Arguments
Argument Description
string Specifies the URL of the file to load. This will override the URL set in the web file connection

that is used.

Limitations:

The URL is specifier is only relevant for web files. You need to use an existing web file data connection.

See also:
Y Load (page 151)

userAgent is

This script specifier is used to set the browser user agent when loading a web file.

Syntax:
userAgent is string

Arguments:
Arguments
Argument Description
string Specifies the browser user agent string. This will override the default browser user agent

"Mozilla/5.0".

Limitations:

The userAgent is specifier is only relevant for web files.

Script syntax and chart functions - Qlik Sense, August 2023 167

2 Script statements and keywords

See also:

) Load (page 151)

Let

The let statement is a complement to the set statement, used for defining script variables. The
let statement, in opposition to the set statement, evaluates the expression on the right side of
the ' =" at script run time before it is assigned to the variable.

Syntax:

Let variablename=expression

Examples and results:

Example Result

Set x=3+4; $(x) will be evaluated as ' 3+4'
Let y=3+4;

z=3(y)+1; $(y) will be evaluated as ' 7"

$(z) will be evaluated as' 8"

Note the difference between the Set and Let statements. The Set statement
assigns the string '3+4' to the variable whereas the Let statement evaluates
the string and assigns 7 to the variable.

Let T=now(); $ (1) will be given the value of the current time.

Loosen Table

One or more Qlik Sense internal data tables can be explicitly declared loosely coupled during script execution
by using a Loosen Table statement. When a table is loosely coupled, all associations between field values in
the table are removed. A similar effect could be achieved by loading each field of the loosely coupled table as
independent, unconnected tables. Loosely coupled can be useful during testing to temporarily isolate
different parts of the data structure. A loosely coupled table can be identified in the table viewer by the dotted
lines. The use of one or more Loosen Table statements in the script will make Qlik Sense disregard any
setting of tables as loosely coupled made before the script execution.

Syntax:
Loosen Tabletablename [, tablename2 ...]
Loosen Tablestablename [, tablename2 ...]

Either syntax: Loosen Table or Loosen Tables can be used.

Script syntax and chart functions - Qlik Sense, August 2023 168

2 Script statements and keywords

Should Qlik Sense find circular references in the data structure which cannot be broken by tables
declared loosely coupled interactively or explicitly in the script, one or more additional tables will be
forced loosely coupled until no circular references remain. When this happens, the Loop Warning
dialog, gives a warning.

Example:

Tabl:
SELECT * from Trans;
Loosen Table Tabl;

Map

The map ... using statement is used for mapping a certain field value or expression to the
values of a specific mapping table. The mapping table is created through the Mapping
statement.

Syntax:
Map fieldlist Using mapname

The automatic mapping is done for fields loaded after the Map ... Using statement until the end of the script
or until an Unmap statement is encountered.

The mapping is done last in the chain of events leading up to the field being stored in the internal table in Qlik
Sense. This means that mapping is not done every time a field name is encountered as part of an expression,
but rather when the value is stored under the field name in the internal table. If mapping on the expression
level is required, the Applymap() function has to be used instead.

Arguments:
Arguments
Argument Description
fieldlist A comma separated list of the fields that should be mapped from this point in the script.
Using * as field list indicates all fields. The wildcard characters * and ? are allowed in field
names. Quoting of field names may be necessary when wildcards are used.
mapname The name of a mapping table previously read in a mapping load or mapping select

statement.

Script syntax and chart functions - Qlik Sense, August 2023 169

2 Script statements and keywords

Examples and results:

Example Result

Map Country Using Enables mapping of the field Country using the map Cmap.

Cmap;

Map A, B, C Using X; Enables mapping of the fields A, B and C using the map X.

Map * Using GenMap; Enables mapping of all fields using GenMap.
NullAsNull

The NullAsNull statement turns off the conversion of NULL values to string values previously set

by a NullAsValue statement.
Syntax:

NullAsNull *fieldlist

The NullAsValue statement operates as a switch and can be turned on or off several times in the script, using
either a NullAsValue or a NullAsNull statement.

Arguments:
Arguments
Argument Description
*fieldlist A comma separated list of the fields for which NullAsNull should be turned on. Using * as
field list indicates all fields. The wildcard characters * and ? are allowed in field names.
Quoting of field names may be necessary when wildcards are used.
Example:

NulTlAsNull A,B;
LOAD A,B from x.csv;

NullAsValue

The NullAsValue statement specifies for which fields that NULL should be converted to a value.

Syntax:
NullAsValue *fieldlist

By default, Qlik Sense considers NULL values to be missing or undefined entities. However, certain database
contexts imply that NULL values are to be considered as special values rather than simply missing values. The
fact that NULL values are normally not allowed to link to other NULL values can be suspended by means of

the NullAsValue statement.

Script syntax and chart functions - Qlik Sense, August 2023 170

2 Script statements and keywords

The NullAsValue statement operates as a switch and will operate on subsequent loading statements. It can be
switched off again by means of the NullAsNull statement.

Arguments:
Arguments
Argument Description
*fieldlist A comma separated list of the fields for which NullAsValue should be turned on. Using * as
field list indicates all fields. The wildcard characters * and ? are allowed in field names.
Quoting of field names may be necessary when wildcards are used.
Example:

NulTAsvalue A,B;
Set Nullvalue = 'NULL';
LOAD A,B from x.csv;

Qualify

The Qualify statement is used for switching on the qualification of field names, i.e. field names
will get the table name as a prefix.

Syntax:
Qualify *fieldlist

The automatic join between fields with the same name in different tables can be suspended by means of the
qualify statement, which qualifies the field name with its table name. If qualified, the field name(s) will be
renamed when found in a table. The new name will be in the form of tablename.fieldname. Tablename is
equivalent to the label of the current table, or, if no label exists, to the name appearing after from in LOAD
and SELECT statements.

The qualification will be made for all fields loaded after the qualify statement.

Qualification is always turned off by default at the beginning of script execution. Qualification of a field name
can be activated at any time using a qualify statement. Qualification can be turned off at any time using an
Unqualify statement.

The qualify statement should not be used in conjunction with partial reload.

Arguments:
Arguments
Argument Description
*fieldlist A comma separated list of the fields for which qualification should be turned on. Using * as

field list indicates all fields. The wildcard characters * and ? are allowed in field names.
Quoting of field names may be necessary when wildcards are used.

Script syntax and chart functions - Qlik Sense, August 2023 171

2 Script statements and keywords

Example 1:

Qualify B;
LOAD A,B from x.csv;
LOAD A,B from y.csv;

The two tables x.csv and y.csv are associated only through A. Three fields will result: A, x.B, y.B.

Example 2:

In an unfamiliar database, it is often useful to start out by making sure that only one or a few fields are
associated, as illustrated in this example:

qualify *;

unqualify TransiD;

SQL SELECT * from tabl;
SQL SELECT * from tab2;
SQL SELECT * from tab3;

Only TransID will be used for associations between the tables tab1, tab2 and tab3.
Rem
The rem statement is used for inserting remarks, or comments, into the script, or to temporarily

deactivate script statements without removing them.

Syntax:

Rem string

Everything between the rem and the next semicolon ; is considered to be a comment.
There are two alternative methods available for making comments in the script:

1. Itis possible to create a comment anywhere in the script - except between two quotes - by placing the
section in question between [* and */.

2. When typing /[in the script, all text that follows to the right on the same row becomes a comment.
(Note the exception //: that may be used as part of an Internet address.)

Arguments:
Arguments
Argument Description
string An arbitrary text.
Example:
Rem ** This is a comment **;

/* This is also a comment */
// This is a comment as well

Script syntax and chart functions - Qlik Sense, August 2023 172

2 Script statements and keywords

Rename

The Rename script keyword can be used to rename tables or fields that are already loaded.

Rename field

This script function renames one or more existing Qlik Sense field(s) after they have been
loaded.

It is not recommended to name a variable identically to a field or a function in Qlik Sense.

Either syntax: rename field or rename fields can be used.

Syntax:
Rename Field (using mapname | oldname to newname{ , oldname to newname })
Rename Fields (using mapname | oldname to newname{ , oldname to newname })

Arguments:
Argument Description
mapname The name of a previously loaded mapping table containing one or more pairs of old and
new field names.
oldname The old field name.
newname The new field name.

Limitations:

You cannot rename two fields to having the same name.
Example 1:

Rename Field XAz0007 to Sales;

Example 2:

Fieldmap:
Mapping SQL SELECT oldnames, newnames from datadictionary;
Rename Fields using FieldMmap;

Rename table

This script function renames one or more existing Qlik Sense internal table(s) after they have
been loaded.

Either syntax: rename table or rename tables can be used.

Script syntax and chart functions - Qlik Sense, August 2023 173

2 Script statements and keywords

Syntax:
Rename Table (using mapname | oldname to newname{ , oldname to newname })
Rename Tables (using mapname | oldname to newname{ , oldname to newname })

Arguments:
Arguments
Argument Description
mapname The name of a previously loaded mapping table containing one or more pairs of old and
new table names.
oldname The old table name.
newname The new table name.

Limitations:

Two differently named tables cannot be renamed to having the same name. The script will generate an error if
you try to rename a table to the same name as an existing table.

Example 1:

Tabl:
SELECT * from Trans;
Rename Table Tabl to Xyz;

Example 2:

TabMap:
Mapping LOAD oldnames, newnames from tabnames.csv;
Rename Tables using TabMap;

Search

The Search statement is used for including or excluding fields in smart search.

Syntax:
Search Include *fieldlist
Search Exclude *fieldlist

You can use several Search statements to refine your selection of fields to include. The statements are
evaluated from top to bottom.

Script syntax and chart functions - Qlik Sense, August 2023 174

2 Script statements and keywords

Arguments:
Arguments
Argument Description
*fieldlist A comma separated list of the fields to include or exclude from searches in smart search.
Using * as field list indicates all fields. The wildcard characters * and ? are allowed in field
names. Quoting of field names may be necessary when wildcards are used.
Example:
Search examples
Statement Description
Search Include *; Include all fields in searches in smart search.
Search Exclude [*ID]; Exclude all fields ending with ID from searches in smart search.
Search Exclude '*ID'; Exclude all fields ending with ID from searches in smart search.
Search Include ProductID; Include the field ProductID in searches in smart search.

The combined result of these three statements, in this sequence, is that all fields ending with ID except
ProductID are excluded from searches in smart search.

Section
With the section statement, it is possible to define whether the subsequent LOAD and SELECT statements

should be considered as data or as a definition of the access rights.

Syntax:

Section (access | application)

If nothing is specified, section application is assumed. The section definition is valid until a new section
statement is made.

Example:

Section access;
Section application;

Select

The selection of fields from an ODBC data source or OLE DB provider is made through standard
SQL SELECT statements. However, whether the SELECT statements are accepted depends on
the ODBC driver or OLE DB provider used. Use of the SELECT statement requires an open data
connection to the source.

Script syntax and chart functions - Qlik Sense, August 2023 175

2 Script statements and keywords

Syntax:
Select [all | distinct | distinctrow | top n [percent]] fieldlist

From tablelist

[where criterion]

[group by fieldlist [having criterion]]
[order by fieldlist [asc | desc]]

[(Inner | Left | Right | Full) join tablename on fieldref = fieldref]

Furthermore, several SELECT statements can sometimes be concatenated into one through the use of a union
operator:

selectstatement Union selectstatement

The SELECT statement is interpreted by the ODBC driver or OLE DB provider, so deviations from the general
SQL syntax might occur depending on the capabilities of the ODBC drivers or OLE DB provider, for example:.

e asis sometimes not allowed, i.e. aliasname must follow immediately after fieldname.
e asis sometimes compulsory if an aliasname is used.
¢ distinct, as, where, group by, order by, or union is sometimes not supported.

¢ The ODBC driver sometimes does not accept all the different quotation marks listed above.

This is not a complete description of the SQL SELECT statement! E.g. SELECT statements can be
nested, several joins can be made in one SELECT statement, the number of functions allowed in
expressions is sometimes very large, etc.

Arguments:
Arguments
Argument Description
distinct distinct is a predicate used if duplicate combinations of values in the selected fields only
should be loaded once.
distinctrow distinctrow is a predicate used if duplicate records in the source table only should be

loaded once.

Script syntax and chart functions - Qlik Sense, August 2023 176

2 Script statements and keywords

Argument

fieldlist

from

where

group by

having

order by

join

Example 1:

Description

fieldlist ::= (*| field) {, field }

A list of the fields to be selected. Using * as field list indicates all fields in the table.
fieldlist ::= field {, field }

A list of one or more fields, separated by commas.

field ::= (fieldref | expression) [as aliasname]

The expression can e.g. be a numeric or string function based on one or several other
fields. Some of the operators and functions usually accepted are: +, -, *, /, & (string
concatenation), sum(fieldname), count(fieldname), avg(fieldname)(average), month
(fieldname), etc. See the documentation of the ODBC driver for more information.
fieldref ::= [tablename.] fieldname

The tablename and the fieldname are text strings identical to what they imply. They must
be enclosed by straight double quotation marks if they contain e.g. spaces.

The as clause is used for assigning a new name to the field.

tablelist ::= table {, table }

The list of tables that the fields are to be selected from.

table ::= tablename [[as] aliasname]

The tablename may or may not be put within quotes.

where is a clause used for stating whether a record should be included in the selection or
not.

criterion is a logical expression that can sometimes be very complex. Some of the
operators accepted are: numeric operators and functions, =, <> or #(not equal), >, >=, <,
<=, and, or, not, exists, some, all, in and also new SELECT statements. See the
documentation of the ODBC driver or OLE DB providerfor more information.

group by is a clause used for aggregating (group) several records into one. Within one
group, for a certain field, all the records must either have the same value, or the field can
only be used from within an expression, e.g. as a sum or an average. The expression based
on one or several fields is defined in the expression of the field symbol.

having is a clause used for qualifying groups in a similar manner to how the where clause
is used for qualifying records.

order by is a clause used for stating the sort order of the resulting table of the SELECT
statement.

join is a qualifier stating if several tables are to be joined together into one. Field names
and table names must be put within quotes if they contain blank spaces or letters from the
national character sets. When the script is automatically generated by Qlik Sense, the
quotation mark used is the one preferred by the ODBC driver or OLE DB provider specified
in the data source definition of the data source in the Connect statement.

SELECT * FROM Categories ;

Script syntax and chart functions - Qlik Sense, August 2023 177

2 Script statements and keywords

Example 2:
SELECT "Category ID , Category Name FROM "Categories ;
Example 3:

SELECT ‘Order ID, "Product ID ,
‘Unit Price’ * Quantity * (1-Discount) as NetSales
FROM “Order Details;

Example 4:

SELECT "Order Details . Order ID,
sum(order Details . Unit Price *
FROM "Order Details’, oOrders

where orders. order ID = "Order Details . Order ID’
group by “order Details . order ID ;

“order Details .Quantity) as "Result’

Set

The set statement is used for defining script variables. These can be used for substituting strings, paths,
drives, and so on.

Syntax:

Set variablename=string

Example 1:

Set FileToUse=Datal.csv;

Example 2:

Set Constant="My string";

Example 3:

Set BudgetYear=2012;

Sleep

The sleep statement pauses script execution for a specified time.

Syntax:
Sleep n

Arguments:

Argument Description

n Stated in milliseconds, where n is a positive integer no larger than 3600000 (i.e. 1 hour). The
value may be an expression.

Script syntax and chart functions - Qlik Sense, August 2023 178

2 Script statements and keywords

Example 1:

Sleep 10000;

Example 2:

Sleep t*1000;

SQL

The SQL statement allows you to send an arbitrary SQL command through an ODBC or OLE DB connection.

Syntax:
SQL sgl command

Sending SQL statements which update the database will return an error if Qlik Sense has opened the ODBC
connection in read-only mode.

The syntax:

SQL SELECT * from tabl;
is allowed, and is the preferred syntax for SELECT, for reasons of consistency. The SQL prefix will, however,
remain optional for SELECT statements.

Arguments:
Argument Description
sql_command A valid SQL command.

Example 1:
SQL Teave;
Example 2:

SQL Execute <storedProc>;

SQLColumns

The sqlcolumns statement returns a set of fields describing the columns of an ODBC or OLE DB data source,
to which a connect has been made.

Syntax:
SQLcolumns

The fields can be combined with the fields generated by the sqltables and sqltypes commands in order to
give a good overview of a given database. The twelve standard fields are:

Script syntax and chart functions - Qlik Sense, August 2023 179

2 Script statements and keywords

TABLE_QUALIFIER
TABLE_OWNER
TABLE_NAME
COLUMN_NAME
DATA_TYPE
TYPE_NAME
PRECISION
LENGTH
SCALE
RADIX
NULLABLE
REMARKS

For a detailed description of these fields, see an ODBC reference handbook.

Example:

Cconnect to 'MS Access 7.0 Database; DBQ=C:\Course3\DataSrc\QwT.mbd";
sQLcolumns;

Some ODBC drivers may not support this command. Some ODBC drivers may produce additional
fields.

SQLTables

The sqltables statement returns a set of fields describing the tables of an ODBC or OLE DB data source, to
which a connect has been made.

Syntax:
SQLTables

The fields can be combined with the fields generated by the sqlcolumns and sqltypes commands in order to
give a good overview of a given database. The five standard fields are:

TABLE_QUALIFIER
TABLE_OWNER
TABLE_NAME

TABLE_TYPE

Script syntax and chart functions - Qlik Sense, August 2023 180

2 Script statements and keywords

REMARKS

For a detailed description of these fields, see an ODBC reference handbook.
Example:

Connect to 'MS Access 7.0 Database; DBQ=C:\Course3\DataSrc\QwT.mbd";
SQLTables;

Some ODBC drivers may not support this command. Some ODBC drivers may produce additional
fields.

SQLTypes

The sqltypes statement returns a set of fields describing the types of an ODBC or OLE DB data source, to
which a connect has been made.

Syntax:
SQLTypes

The fields can be combined with the fields generated by the sqlcolumns and sqltables commands in order to
give a good overview of a given database. The fifteen standard fields are:

TYPE_NAME
DATA_TYPE
PRECISION
LITERAL_PREFIX
LITERAL_SUFFIX
CREATE_PARAMS
NULLABLE
CASE_SENSITIVE
SEARCHABLE
UNSIGNED_ATTRIBUTE
MONEY
AUTO_INCREMENT
LOCAL_TYPE_NAME
MINIMUM_SCALE

MAXIMUM_SCALE

Script syntax and chart functions - Qlik Sense, August 2023 181

2 Script statements and keywords

For a detailed description of these fields, see an ODBC reference handbook.
Example:

Connect to 'MS Access 7.0 Database; DBQ=C:\Course3\DataSrc\QWT.mbd"';
SQLTypes;

Some ODBC drivers may not support this command. Some ODBC drivers may produce additional
fields.

Star

The string used for representing the set of all the values of a field in the database can be set
through the star statement. It affects the subsequent LOAD and SELECT statements.

Syntax:
Star is[string]

Arguments:
Arguments
Argument Description
string An arbitrary text. Note that the string must be enclosed by quotation marks if it contains

blanks.

If nothing is specified, star is; is assumed, i.e. there is no star symbol available unless
explicitly specified. This definition is valid until a new star statement is made.

The Star is statement is not recommended for use in the data part of the script (under Section Application) if
section access is used. The star character is however fully supported for the protected fields in the Section
Access part of the script. In this case you do not need to use the explicit Star is statement since this is always
implicit in section access.

Limitations

¢ You cannot use the star character with key fields; that is, fields that link tables.

¢ You cannot use the star character with any fields affected by the Unqualify statement as this can affect
fields that link tables.

¢ You cannot use the star character with non-logical tables, for example, info-load tables or mapping-
load tables.

e When the star character is used in a reducing field (a field that links to the data) in section access, it
represents the values listed in this field in section access. It does not represent other values that may
exist in the data but are not listed in section access.

¢ You cannot use the star character with fields affected by any form of data reduction outside the
Section Access area.

Script syntax and chart functions - Qlik Sense, August 2023 182

2 Script statements and keywords

Example

The example below is an extract of a data load script featuring section access.

o8

Star is *;

Section Access;

LOAD * INLINE [
ACCESS, USERID, OMIT
ADMIN, ADMIN,

USER, USER1, SALES
USER, USER2, WAREHOUSE
USER, USER3, EMPLOYEES
USER, USER4, SALES
USER, USER4, WAREHOUSE
USER, USER5, *

1;

Section Application;

LOAD * INLINE [

SALES, WAREHOUSE, EMPLOYEES, ORDERS
1, 2, 3, 4

1;

The following applies:

e The Starsign is *.

e The user ADMIN sees all fields. Nothing is omitted.

e The user USERI is not able to see the field SALES.

e The user USER2 is not able to see the field WAREHOUSE .

* The user USER3 cannot see the field EMPLOYEES.

¢ The user USER4 is added twice to the solution to OMIT two fields for this user, SALES and WAREHOUSE.

e The USER5 has a “*” added which means that all listed fields in OMIT are unavailable, that is, user
USER5 cannot see the fields SALES, WAREHOUSE and EMPLOYEES but this user can see the field ORDERS.

Store
The Store statement creates a QVD, Parquet, CSV, or TXT file.

Syntax:
Store [fieldlist from] table into filename [format-spec 1];
The statement will create an explicitly named QVD, Parquet, or text file.

The statement can only export fields from one data table. If fields from several tables are to be exported, an
explicit join must be made previously in the script to create the data table that should be exported.

The text values are exported to the CSV file in UTF-8 format. A delimiter can be specified, see LOAD. The store
statement to a CSV file does not support BIFF export.

Script syntax and chart functions - Qlik Sense, August 2023 183

2 Script statements and keywords

Arguments:
Store command arguments

Argument Description

fieldlist::= (* | field) {, field }) A list of the fields to be selected. Using * as field list indicates
all fields.
field::= fieldname [as aliasname]
fieldname is a text that is identical to a field name in table.
(Note that the field name must be enclosed b straight double
quotation marks or square brackets if it contains spaces or
other non-standard characters.)
aliasname is an alternate name for the field to be used in the
resulting QVD or CSV file.

table A script label representing an already loaded table to be used
as source for data.

filename The name of the target file including a valid path to an existing

folder data connection.

Example: 'lib://Table Files/target.qvd'

In legacy scripting mode, the following path formats are also
supported:

¢ absolute

Example: c:\data\sales.qvd

¢ relative to the Qlik Sense app working directory.

Example: data\sales.qvd

If the path is omitted, Qlik Sense stores the file in the
directory specified by the Directory statement. If there
is no Directory statement, Qlik Sense stores the file in
the working directory, C:\Users\
{user}\Documents\Qlik\Sense\Apps.

Script syntax and chart functions - Qlik Sense, August 2023 184

2 Script statements and keywords

Argument Description
format-spec ::=((txt | qvd | parquet), You can set the format specification to either of these file
compression is codec) formats. If the format specification is omitted, qvd is assumed.

txt for CSV and TXT files.
qvd for QVD files.

parquet for Parquet files.

If you use parquet, you can also set which compression codec
to use with compression is. If you do not specify the
compression codec with compression is, snappy is used. The

following compression settings are available:

uncompressed
snappy

gzip

1z4

brotli

zstd

1z4_hadoop

Example:

Store mytable into [1ib://DataFiles/myfile.parquet]
(parquet, compression is 1z4);

Examples:

Store mytable into xyz.qvd (qvd);

Store * from mytable into 'lib://FolderConnection/myfile.qvd';

Store Name, RegNo from mytable into xyz.qvd;

Store Name as a, RegNo as b from mytable into 'lib://FoldercConnection/myfile.qvd’;

Store mytable into myfile.txt (txt);
Store mytable into myfile.parquet (parquet);

Store * from mytable into 'lib://FoldercConnection/myfile.qvd';

The file extension of DataFiles connections is case sensitive. For example: .qvd.

Table/Tables

The Table and Tables script keywords are used in Drop, Comment and Rename statements, as

well as a format specifier in Load statements.

Script syntax and chart functions - Qlik Sense, August 2023 185

2 Script statements and keywords

Tag

This script statement provides a way to assign tags to one or more fields or tables. If an attempt
to tag a field or table not present in the app is made, the tagging will be ignored. If conflicting
occurrences of a field or tag name are found, the last value is used.

Syntax:
Tag [field|fields] fieldlist with tagname

Tag [field|fields] fieldlist using mapname

Tag table tablelist with tagname

Arguments
Argument Description
fieldlist One or several fields that should be tagged, in a comma separated list.
mapname The name of a mapping table previously loaded in a mapping Load or mapping Select
statement.
tablelist A comma separated list of the tables that should be tagged.
tagname The name of the tag that should be applied to the field.

Example 1:

tagmap:

mapping LOAD * inline [
a,b

Alpha,MyTag

Num,MyTag

1;

tag fields using tagmap;

Example 2:
tag field Alpha with 'MyTag2';

Trace

The trace statement writes a string to the Script Execution Progress window and to the script log file, when
used. It is very useful for debugging purposes. Using $-expansions of variables that are calculated prior to the
trace statement, you can customize the message.

Syntax:
Trace string

Example 1:

The following statement can be used right after the Load statement that loads the 'Main' table.

Script syntax and chart functions - Qlik Sense, August 2023 186

2 Script statements and keywords

Trace Main table Tloaded;
This will display the text ‘Main table loaded’ in the script execution dialog and in the log file.

Example 2:

The following statements can be used right after the Load statement that loads the 'Main' table.

Let MyMessage = NoOfRows('Main') & ' rows in Main table';
Trace $(MyMessage);
This will display a text showing the number of rows in the script execution dialog and in the log file, for

example, 265,391 rows in Main table’ .

Unmap
The Unmap statement disables field value mapping specified by a previous Map ... Using

statement for subsequently loaded fields.

Syntax:
Unmap *fieldlist

Arguments:
Arguments
Argument Description
*fieldlist a comma separated list of the fields that should no longer be mapped from this point in the

script. Using * as field list indicates all fields. The wildcard characters * and ? are allowed in
field names. Quoting of field names may be necessary when wildcards are used.

Examples and results:

Example Result

Unmap Country; Disables mapping of field Country.

Unmap A, B, C; Disables mapping of fields A, B and C.

Unmap *; Disables mapping of all fields.
Unqualify

The Unqualify statement is used for switching off the qualification of field names that has been
previously switched on by the Qualify statement.

Syntax:
Unqualify *fieldlist

Script syntax and chart functions - Qlik Sense, August 2023 187

2 Script statements and keywords

Arguments:
Arguments
Argument Description
*fieldlist A comma separated list of the fields for which qualification should be turned on. Using * as

field list indicates all fields. The wildcard characters * and ? are allowed in field names.
Quoting of field names may be necessary when wildcards are used.

Refer to the documentation for the Qualify statement for further information.

Example 1:

In an unfamiliar database, it is often useful to start out by making sure that only one or a few fields are
associated, as illustrated in this example:

qualify *;

unqualify TransiID;

SQL SELECT * from tabl;
SQL SELECT * from tab2;
SQL SELECT * from tab3;

First, qualification is turned on for all fields.

Then qualification is turned off for TransID.

Only TransID will be used for associations between the tables tab1, tab2 and tab3. All other fields will be
qualified with the table name.

Untag

This script statement provides a way to remove tags from fields or tables. If an attempt to untag
a field or table not present in the app is made, the untagging will be ignored.

Syntax:
Untag [field|fields] fieldlist with tagname

Untag [field|fields] fieldlist using mapname

Untag table tablelist with tagname

Arguments:
Arguments
Argument Description
fieldlist One or several fields which tags should be removed, in a comma separated list.

mapname The name of a mapping table previously loaded in a mapping LOAD or mapping SELECT
statement.

Script syntax and chart functions - Qlik Sense, August 2023 188

2 Script statements and keywords

Argument Description
tablelist A comma separated list of the tables that should be untagged.
tagname The name of the tag that should be removed from the field.

Example 1:

tagmap:

mapping LOAD * inline [
a,b

Alpha,MyTag

Num,MyTag

1;

Untag fields using tagmap;

Example 2:

Untag field Alpha with MyTag2;

2.6 Working directory

If you are referencing a file in a script statement and the path is omitted, Qlik Sense searches for
the file in the following order:

1. The directory specified by a Directory statement (only supported in legacy scripting mode).

2. If there is no Directory statement, Qlik Sense searches in the working directory.

Qlik Sense Desktop working directory
In Qlik Sense Desktop, the working directory is C:\Users\{user}\Documents\Qlik\Sense\Apps.

Qlik Sense working directory

In a Qlik Sense server installation, the working directory is specified in Qlik Sense Repository Service, by
default it is C:\ProgramData\Qlik\Sense\Apps. See the Qlik Management Console help for more information.

Script syntax and chart functions - Qlik Sense, August 2023 189

2 Working with variables in the data load editor

2 Working with variables in the data load editor

A variable in Qlik Sense is a container storing a static value or a calculation, for example a
numeric or alphanumeric value. When you use the variable in the app, any change made to the
variable is applied everywhere the variable is used. You can define variables in the variables
overview, or in the script using the Data load editor. You set the value of a variable using Let or
Set statements in the data load script.

You can also work with the Qlik Sense variables from the variables overview when editing a sheet.

2.7 Overview

If the first character of a variable value is an equals sign ' ="' Qlik Sense will try to evaluate the value as a
formula (Qlik Sense expression) and then display or return the result rather than the actual formula text.

When used, the variable is substituted by its value. Variables can be used in the script for dollar sign expansion
and in various control statements. This is very useful if the same string is repeated many times in the script,
for example, a path.

Some special system variables will be set by Qlik Sense at the start of the script execution regardless of their
previous values.

2.8 Defining a variable

Variables provide the ability to store static values or the result of a calculation. When defining a variable, use
the following syntax:

set variablename = string
or

let variable = expression

The Set statement is used for string assignment. It assigns the text to the right of the equal sign to the
variable. The Let statement evaluates an expression to the right of the equal sign at script run time and
assigns the result of the expression to the variable.

Variables are case sensitive.

It is not recommended to name a variable identically to a field or a function in Qlik Sense.

Examples:

set x = 3 + 4; //thevariable will get the string '3 + 4' as the value.

Tet x = 3 + 4; //returns 7 as the value.

Script syntax and chart functions - Qlik Sense, August 2023 190

2 Working with variables in the data load editor

set x = Today(Q); // returns 'Today()' as the value.

let x = Today(); // returnstoday's date as the value, for example, ‘9/27/2021’.

2.9 Deleting a variable

If you remove a variable from the script and reload the data, the variable stays in the app. If you want to fully
remove the variable from the app, you must also delete the variable from the variables dialog.

2.10 Loading a variable value as a field value

If you want to load a variable value as a field value in a LOAD statement and the result of the dollar expansion
is text rather than numeric or an expression then you need to enclose the expanded variable in single quotes.

Example:

This example loads the system variable containing the list of script errors to a table. You can note that the
expansion of ScriptErrorCount in the If clause does not require quotes, while the expansion of ScriptErrorList
requires quotes.

IF $(ScriptErrorCount) >= 1 THEN
LOAD '$(ScriptErrorList)' AS Error AutoGenerate 1;
END IF

2.11 Variable calculation

There are several ways to use variables with calculated values in Qlik Sense, and the result depends on how
you define it and how you call it in an expression.

In this example, we load some inline data:

LOAD * INLINE [
Dim, Sales
A, 150

, 200

, 240

, 230

, 410

, 330

N N ®™ W >

1;
Let's define two variables:

Let vSales = 'sum(Sales)' ;
Let vSales2 = '=Sum(Sales)' ;

In the second variable, we add an equal sign before the expression. This will cause the variable to be
calculated before it is expanded and the expression is evaluated.

If you use the vSales variable as it is, for example in a measure, the result will be the string Sum(Sales), that is,
no calculation is performed.

Script syntax and chart functions - Qlik Sense, August 2023 191

2 Working with variables in the data load editor

If you add a dollar-sign expansion and call $(vSales) in the expression, the variable is expanded, and the sum
of Sales is displayed.

Finally, if you call $(vSales2), the variable will be calculated before it is expanded. This means that the result
displayed is the total sum of Sales. The difference between using =$(vSales) and =$(vSales2) as measure
expressions is seen in this chart showing the results:

Results

Dim $(vSales) $(vSales2)

A 350 1560
B 470 1560
C 740 1560

As you can see, $(vSales) results in the partial sum for a dimension value, while $(vSales2) results in the total
sum.

The following script variables are available:

e Error variables (page 263)
e Number interpretation variables (page 200)

e System variables (page 192)

Value handling variables (page 198)

2.12 System variables
System variables, some of which are system-defined, provide information about the system and

the Qlik Sense app.

System variables overview

Some of the functions are described further after the overview. For those functions, you can click the function
name in the syntax to immediately access the details for that specific function.

CreateSearchindexOnReload
This variable defines if search index files should be created during data reload.

CreateSearchIndexOnReload

Floppy
Returns the drive letter of the first floppy drive found, normally a:. This is a system-defined variable.

Floppy

This variable is not supported in standard mode.

Script syntax and chart functions - Qlik Sense, August 2023 192

2 Working with variables in the data load editor

CcD
Returns the drive letter of the first CD-ROM drive found. If no CD-ROM is found, then c: is returned. This is a
system-defined variable.

CD

This variable is not supported in standard mode.

HidePrefix
All field names beginning with this text string will be hidden in the same manner as the system fields. This is a
user-defined variable.

HidePrefix

HideSuffix
All field names ending with this text string will be hidden in the same manner as the system fields. This is a
user-defined variable.

HideSuffix

Include

The Include/Must_Include variable specifies a file that contains text that should be included in the script and
evaluated as script code. It is not used to add data. You can store parts of your script code in a separate text
file and reuse it in several apps. This is a user-defined variable.

$ (Include=filename)
$ (Must_Include=filename)

OpenUrlTimeout
This variable defines the timeout in seconds that Qlik Sense should respect when getting data from URL
sources (e.g. HTML pages). If omitted, the timeout is about 20 minutes.

OpenUrlTimeout

QvPath
Returns the browse string to the Qlik Sense executable. This is a system-defined variable.

QvPath

This variable is not supported in standard mode.

QvRoot
Returns the root directory of the Qlik Sense executable. This is a system-defined variable.

QvRoot

This variable is not supported in standard mode.

Script syntax and chart functions - Qlik Sense, August 2023 193

2 Working with variables in the data load editor

QvWorkPath
Returns the browse string to the current Qlik Sense app. This is a system-defined variable.

QvWorkPath

This variable is not supported in standard mode.

QvWorkRoot
Returns the root directory of the current Qlik Sense app. This is a system-defined variable.

QvWorkRoot

This variable is not supported in standard mode.

StripComments
If this variable is set to 0, stripping of /*..*/ and // comments in the script will be inhibited. If this variable is
not defined, stripping of comments will always be performed.

StripComments

Verbatim

Normally all field values are automatically stripped of leading and trailing blanks (ASCII 32) before being
loaded into the Qlik Sense database. Setting this variable to 1 suspends the stripping of blanks. Tab (ASCII 9)
and hard space (ANSI 160) characters are never stripped.

Verbatim

WinPath
Returns the browse string to Windows. This is a system-defined variable.

WinPath

This variable is not supported in standard mode.

WinRoot
Returns the root directory of Windows. This is a system-defined variable.

WinRoot

This variable is not supported in standard mode.

CollationLocale
Specifies which locale to use for sort order and search matching. The value is the culture name of a locale, for
example 'en-US'.This is a system-defined variable.

CollationLocale

Script syntax and chart functions - Qlik Sense, August 2023 194

2 Working with variables in the data load editor

CreateSearchindexOnReload

This variable defines if search index files should be created during data reload.

Syntax:

CreateSearchIndexOnReload

You can define if search index files should be created during data reload, or if they should be created after the
first search request of the user. The benefit of creating search index files during data reload is that you avoid
the waiting time experienced by the first user making a search. This needs to be weighed against the longer
data reload time required by search index creation.

If this variable is omitted, search index files will not be created during data reload.

For session apps, search index files will not be created during data reload, regardless of the setting
of this variable.

Example 1: Create search index fields during data reload

set CreateSearchIndexonReload=1;

Example 2: Create search index fields after first search request

set CreateSearchIndexOnReload=0;

HidePrefix

All field names beginning with this text string will be hidden in the same manner as the system
fields. This is a user-defined variable.

Syntax:
HidePrefix

Example:
set HidePrefix='_"' ;

If this statement is used, the field names beginning with an underscore will not be shown in the field name
lists when the system fields are hidden.

HideSuffix

All field names ending with this text string will be hidden in the same manner as the system
fields. This is a user-defined variable.

Syntax:
HideSuffix

Script syntax and chart functions - Qlik Sense, August 2023 195

2 Working with variables in the data load editor

Example:

set Hidesuffix='%";

If this statement is used, the field names ending with a percentage sign will not be shown in the field name
lists when the system fields are hidden.

Include

The Include/Must_Include variable specifies a file that contains text that should be included in
the script and evaluated as script code. It is not used to add data. You can store parts of your
script code in a separate text file and reuse it in several apps. This is a user-defined variable.

This variable supports only folder data connections in standard mode.

Syntax:
$ (Include=filename)

$ (Must_Include=filename)
There are two versions of the variable:

* Include does not generate an error if the file cannot be found, it will fail silently.

¢ Must_Include generates an error if the file cannot be found.

If you don't specify a path, the filename will be relative to the Qlik Sense app working directory. You can also
specify an absolute file path, or a path to a lib:// folder connection. Do not put a space character before or
after the equal sign.

The construction set Include =filename is not applicable.

Examples:

S (Include=abc.txt) ;

$ (Must Include=lib://DataFiles/abc.txt);

Limitations

Limited cross-compatibility between UTF-8 encoded files under Windows versus Linux.

It is optional to use UTF-8 with BOM (Byte Order Mark). BOM can interfere with the use of UTF-8 in software
that does not expect non-ASClI bytes at the start of a file, but that could otherwise handle the text stream.

* Windows systems use BOM in UTF-8 to identify that a file is UTF-8 encoded, despite the fact that there
is no ambiguity in the byte storage.

Script syntax and chart functions - Qlik Sense, August 2023 196

2 Working with variables in the data load editor

¢ Unix/Linux use UTF-8 for Unicode, but does not use the BOM as this interferes with the syntax for
command files.

This has some implications for Qlik Sense.

¢ In Windows any file that begins with an UTF-8 BOM is considered a UTF-8 script file. Otherwise ANSI
encoding is assumed.

* In Linux, the system default 8 bit code page is UTF-8. This is why the UTF-8 works although it does not
contain a BOM.

As a result, portability cannot be guaranteed. It is not always possible to create a file on Windows that can be
interpreted by Linux and vice versa. There is no cross compatibility between the two systems regarding UTF-8
encoded files due to different handling of the BOM.

OpenUrlTimeout

This variable defines the timeout in seconds that Qlik Sense should respect when getting data
from URL sources (e.g. HTML pages). If omitted, the timeout is about 20 minutes.

Syntax:
OpenUrlTimeout

Example:
set OpenUrlTimeout=10;

StripComments

If this variable is set to 0, stripping of /*..*/ and // comments in the script will be inhibited. If this
variable is not defined, stripping of comments will always be performed.

Syntax:
StripComments

Certain database drivers use /*..*/ as optimization hints in SELECT statements. If this is the case, the
comments should not be stripped before sending the SELECT statement to the database driver.

It is recommended that this variable be reset to 1 immediately after the statement(s) where it is
needed.

Example:

set StripComments=0;
SQL SELECT * /* <optimization directive> */ FROM Table ;
set StripComments=1;

Script syntax and chart functions - Qlik Sense, August 2023 197

2 Working with variables in the data load editor

Verbatim

Normally all field values are automatically stripped of leading and trailing blanks (ASCII 32)
before being loaded into the Qlik Sense database. Setting this variable to 1 suspends the
stripping of blanks. Tab (ASCII 9) and hard space (ANSI 160) characters are never stripped.

Syntax:
Verbatim

Example:

set Verbatim = 1;

2.13 Value handling variables

This section describes variables that are used for handling NULL and other values.

Value handling variables overview

Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

NullDisplay
The defined symbol will substitute all NULL values from ODBC, and connectors, on the lowest level of data.
This is a user-defined variable.

NullDisplay

Nullinterpret
The defined symbol will be interpreted as NULL when it occurs in a text file, Excel file or an inline statement.
This is a user-defined variable.

NullInterpret

Nullvalue
If the NullAsValue statement is used, the defined symbol will substitute all NULL values in the NullAsValue
specified fields with the specified string.

NullValue

OtherSymbol
Defines a symbol to be treated as 'all other values' before a LOAD/SELECT statement. This is a user-defined
variable.

OtherSymbol

Script syntax and chart functions - Qlik Sense, August 2023 198

2 Working with variables in the data load editor

NullDisplay

The defined symbol will substitute all NULL values from ODBC, and connectors, on the lowest
level of data. This is a user-defined variable.

Syntax:
NullDisplay

Example:

set NullDisplay="<NULL>";

Nulllnterpret
The defined symbol will be interpreted as NULL when it occurs in a text file, Excel file or an

inline statement. This is a user-defined variable.

Syntax:
NullInterpret

Examples:

set NullInterpret=' ';
set NullInterpret =;

will not return NULL values for blank values in Excel, but it will for a CSV text file.

set NullInterpret ="";

will return NULL values for blank values in Excel.

NullValue

If the NullAsValue statement is used, the defined symbol will substitute all NULL values in the
NullAsValue specified fields with the specified string.

Syntax:
NullValue

Example:

NuTlTAsvalue Fieldl, Field2;
set Nullvalue='<NULL>";

OtherSymbol

Defines a symbol to be treated as 'all other values' before a LOAD/SELECT statement. This is a
user-defined variable.

Syntax:
OtherSymbol

Script syntax and chart functions - Qlik Sense, August 2023 199

2 Working with variables in the data load editor

Example:

set Othersymbol="+";

LOAD * 1inline

[X, Y

a, a

b, bl;

LOAD * 1inline

X, z

a, a

+, cl;

The field value Y="b' will now link to Z='c' through the other symbol.

2.14 Number interpretation variables

Number interpretation variables are system defined. The variables are included at the top of the
load script and apply number formatting settings at the time of the script execution. They can
be deleted, edited, or duplicated.

Number interpretation variables are automatically generated according to the current regional settings of the
operating system when a new app is created. In Qlik Sense Desktop, this is according to the settings of the
computer operating system. In Qlik Sense, it is according to the operating system of the server where Qlik
Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Currency formatting

MoneyDecimalSep
The decimal separator defined replaces the decimal symbol for currency set by your regional settings.

MoneyDecimalSep

MoneyFormat
The symbol defined replaces the currency symbol set by your regional settings.

MoneyFormat

MoneyThousandSep
The thousands separator defined replaces the digit grouping symbol for currency set by your regional settings.

MoneyThousandSep

Number formatting

DecimalSep
The decimal separator defined replaces the decimal symbol set by your regional settings.

DecimalSep

Script syntax and chart functions - Qlik Sense, August 2023 200

2 Working with variables in the data load editor

ThousandSep
The thousands separator defined replaces the digit grouping symbol of the operating system (regional
settings).

ThousandSep

NumericalAbbreviation
The numerical abbreviation sets which abbreviation to use for scale prefixes of numerals, for example M for
mega or a million (10%), and p for micro (10°).

NumericalAbbreviation

Time formatting

DateFormat

This environment variable defines the date format used as the default in the app. The format is used both to
interpret and format dates. If the variable is not defined, the date format of the regional settings of the
operating system will be fetched when the script runs.

DateFormat

TimeFormat

The format defined replaces the time format of the operating system (regional settings).

TimeFormat

TimestampFormat
The format defined replaces the date and time formats of the operating system (regional settings).

TimestampFormat

MonthNames
The format defined replaces the month names convention of the regional settings.

MonthNames

LongMonthNames
The format defined replaces the long month names convention in the regional settings.

LongMonthNames

DayNames

The format defined replaces the weekday names convention set by your regional settings.

DayNames

LongDayNames
The format defined replaces the long weekday names convention in the regional settings.

LongDayNames

Script syntax and chart functions - Qlik Sense, August 2023 201

2 Working with variables in the data load editor

FirstWeekDay
Integer that defines which day to use as the first day of the week.

FirstWeekDay

BrokenWeeks
This setting defines if weeks are broken or not.

BrokenWeeks

ReferenceDay
The setting defines which day in January to set as reference day to define week 1.

ReferenceDay

FirstMonthOfYear
The setting defines which month to use as first month of the year, which can be used to define financial years
that use a monthly offset, for example starting April 1.

This setting is currently unused but reserved for future use.

Valid settings are 1 (January) to 12 (December). Default setting is 1.

Syntax:
FirstMonthOfYear

Example:

Set FirstMonthofyear=4; //Sets the year to start in April

BrokenWeeks

This setting defines if weeks are broken or not.

Syntax:

BrokenWeeks

In Qlik Sense, the regional settings are fetched when the app is created, and the corresponding settings are
stored in the script as environment variables.

A North American app developer often gets set Brokenweeks=1; in the script, corresponding to broken
weeks. A European app developer often gets set Brokenweeks=0; in the script, corresponding to unbroken
weeks.

Unbroken weeks means that:

¢ In some years, week 1 starts in December, and in other years, the last week of previous year continues
into January.

e According to ISO 8601, week 1 always has at least 4 days in January. In Qlik Sense, this can be
configured using the Referencebay variable.

Broken weeks means that:

Script syntax and chart functions - Qlik Sense, August 2023 202

2 Working with variables in the data load editor

¢ The last week of the year never continues into January.

¢ Week 1 starts on January 1 and is, in most cases, not a full week.
The following values can be used:

¢ 0 (=use unbroken weeks)

e 1 (= use broken weeks)

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Examples:

If you want I1SO settings for weeks and week numbers, make sure to have the following in the script:

Set FirstWeekbay=0;

Set Brokenweeks=0; //(use unbroken weeks)

Set Referencebay=4;

If you want US settings, make sure to have the following in the script:

Set FirstweekDay=6;
Set Brokenweeks=1; //(use broken weeks)
Set Referencebay=1;

DateFormat

This environment variable defines the date format used as the default in the app and by date
returning functions like date() and date#(). The format is used to interpret and format dates. If
the variable is not defined, the date format set by your regional settings is fetched when the

script runs.
Syntax:
DateFormat
DateFormat Function examples
Example Result
Set DateFormat='M/D/YY'; //(US This use of the pateFormat function defines the date as the US
format)

format, month/day/year.

Script syntax and chart functions - Qlik Sense, August 2023 203

2 Working with variables in the data load editor

Example Result

Set DateFormat='DD/MM/YY'; //(UK This use of the bateFormat function defines the date as the UK

date format) format, day/month/year.

Set DateFormat='YYYY/MM/DD'; // This use of the pateFormat function defines the date as the 1ISO

(1s0 date format) format, year/month/day.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - System variables default

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset of dates.

¢ The pateFormat function, which will use the US date format.

In this example, a dataset is loaded into a table named 'Transactions'. It includes a date field. The US
pateFormat definition is used. This pattern will be used for implicit text to date conversion when the text
dates are loaded.

Load script
Set DateFormat='MM/DD/YYYY';

Transactions:

LOAD

date,

month(date) as month,
id,

amount

INLINE

[

date,id,amount

Script syntax and chart functions - Qlik Sense, August 2023 204

2 Working with variables in the data load editor

01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e month

Create this measure:

=sum(amount)
Results table
date month =sum(amount)
01/01/2022 Jan 1000
02/01/2022 Feb 2123
03/01/2022 Mar 4124
04/01/2022 Apr 2431

The pateFormat definition MM/DD/YYYY is used for implicit conversion of text to dates, which is why the date
field is properly interpreted as a date. The same format is used to display the date, as shown in the results
table.

Example 2 - Change system variable

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ The same dataset from the previous example.

¢ The pateFormat function, which will use the ‘DD/MM/YYYY’ format.
Load script

SET DateFormat='DD/MM/YYYY';
Transactions:

LOAD

date,

month(date) as month,

id,

amount

Script syntax and chart functions - Qlik Sense, August 2023 205

2 Working with variables in the data load editor

INLINE
L

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e month

Create this measure:

=sum(amount)
Results table
date month =sum(amount)
01/01/2022 Jan 1000
02/01/2022 Jan 2123
03/01/2022 Jan 4124
04/01/2022 Jan 2431

Because the pateFormat definition was set to ‘DD/MM/YYYY’, you can see that the two digits after the first «/”
symbol have been interpreted as the month, resulting in all records being from the month of January.

Example 3 - Date interpretation

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset with dates in numerical format.
e The pateFormat variable, which will use the ‘DD/MM/YYYY’ format.

e The date() variable.
Load script
SET DateFormat='MM/DD/YYYY';

Transactions:
Load

Script syntax and chart functions - Qlik Sense, August 2023 206

2 Working with variables in the data load editor

date(numerical_date),
month(date(numerical_date)) as month,
id,

amount

Inline

[
numerical_date,id,amount
43254,1,1000
43255,2,2123
43256,3,4124
43258,4,2431

1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e month

Create this measure:

=sum(amount)
Results table
date month =sum(amount)
06/03/2022 Jun 1000
06/04/2022 Jun 2123
06/05/2022 Jun 4124
06/07/2022 Jun 2431

In the load script, you use the date() function to convert the numerical date into a date format. Because you
do not provide a specified format as a second argument in the function, the bateFormat is used. This results in
the date field using the format ‘MM/DD/YYYY’.

Example 4 - Foreign date formatting

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset of dates.

e The pateFormat variable, which uses the ‘DD/MM/YYYY' format but is uncommented by forward
slashes.

Script syntax and chart functions - Qlik Sense, August 2023 207

2 Working with variables in the data load editor

Load script

// SET DateFormat='DD/MM/YYYY';

Transactions:
Load

date,

month(date) as month,
id,

amount

Inline

[

date,id,amount
22-05-2022,1,1000
23-05-2022,2,2123
24-05-2022,3,4124
25-05-2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e month

Create this measure:

=sum(amount)
Results table
date month =sum(amount)
22-05-2022 - 1000
23-05-2022 - 2123
24-05-2022 - 4124
25-05-2022 - 2431

In the initial load script, the pateFormat being used is the default ‘MM/DD/YYYY’. Because the date field in the

transactions dataset is not in this format, the field is not interpreted as a date. This is shown in the results

table where the month field values are null.

You can verify the interpreted data types in the Data model viewer by inspecting the date field’s “Tags”

properties.

Script syntax and chart functions - Qlik Sense, August 2023 208

2 Working with variables in the data load editor

Preview of the Transactions table. Note the “Tags” for the date field indicating that the textual input data has not been
implicitly converted to a date/timestamp.

date Transactions

Density date month id amount
Subset ratio 100% 22-05-2022 - 1 000
Has duplicates false 23-05-2022 - 2 2123
Total distinct values 4 24-05-2022 - 3 4124
Present distinct values 4 25-05-2022 4 2431
Mon-null values 4

Tags Sascii Stext

This can be solved by enabling the bateFormat system variable:
// SET DateFormat='DD/MM/YYYY';
Remove the double forward slashes and reload the data.

Preview of the Transactions table. Note the “Tags” for the date field indicating that the textual input data has been
implicitly converted to a date/timestamp.

date Transactions

Density 100% date month id amount

Subset ratio 100% 22-05-2022 May 1 1000
as duplicates fals 23-05-2022 Ma 2 2123

Total distinct values 4 24-05-2022 Ma 3 4124

Present distinct values 4 25-05-2022 May 4 2431

Mon-null values 4

DayNames

The format defined replaces the weekday names convention set by your regional settings.

Syntax:
DayNames
When modifying the variable, a semicolon ; is required to separate the individual values.

DayName Function examples

Function example Result definition

set This use of the DayNames function defines day names

DayNames="'Mon;Tue;Wed;Thu;Fri;Sat;Sun'; in their abbreviated form.

Script syntax and chart functions - Qlik Sense, August 2023 209

2 Working with variables in the data load editor

Function example Result definition

Set DayNames='M;Tu;W;Th;F;Sa;su’; This use of the DayNames function defines day names
by their first letters.

The payNames function is often used in combination with the following functions:

Related functions

Function Interaction
weekday (page 1042) Script function to return payNames as field values .
Date (page 1198) Script function to return payNames as field values.

LongDayNames (page 220) Long form values of bayNames.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - System variables default

Load script and results

Overview

In this example, the dates in the dataset are set in the MM/DD/YYYY format.
Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset with dates, which will be loaded into a table named, Transactions.
¢ Adate field.

¢ The default payNames definition.
Load script
SET DayNames='Mon;Tue;wWed;Thu;Fri;Sat;Sun’;

Transactions:
LOAD

Script syntax and chart functions - Qlik Sense, August 2023 210

2 Working with variables in the data load editor

date,
weekDay(date) as dayname,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e dayname

Create this measure:

sum(amount)
Results table
date dayname sum(amount)
01/01/2022 Sat 1000
02/01/2022 Tue 2123
03/01/2022 Tue 4124
04/01/2022 Fri 2431

In the load script, the weekpay function is used with the date field as the provided argument. In the results
table, the output of this weekbay function displays the days of the week in the format of the bayNames
definition.

Example 2 - Change system variable

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab. The same dataset and scenario from
the first example are used.

However, at the start of the script, the bayNames definition is modified to use the abbreviated days of the week
in Afrikaans.

Script syntax and chart functions - Qlik Sense, August 2023 211

2 Working with variables in the data load editor

Load script
SET DayNames='Ma;D1i;Wo;Do;Vr;Sa;So';

Transactions:
Load

date,
weekDay(date) as dayname,
id,

amount

Inline

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e dayname

Create this measure:

sum(amount)
Results table
date dayname sum(amount)
01/01/2022 Sa 1000
02/01/2022 Di 2123
03/01/2022 Di 4124
04/01/2022 Vr 2431

In the results table, the output of this weekpay function displays the days of the week in the format of the
DayNames definition.

It is important to remember that if the language for the payNames is modified like it has been in this example,
the LongbayNames would still contain the days of the week in English. This would need to be modified as well
if both variables are used in the application.

Example 3 - Date function

Load script and results

Script syntax and chart functions - Qlik Sense, August 2023 212

2 Working with variables in the data load editor

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset with dates, which will be loaded into a table named, Transactions.
¢ Adate field.

¢ The default payNames definition.
Load script
SET DayNames='Mon;Tue;Wed;Thu;Fri;sat;Sun';

Transactions:
Load

date,

Date(date, 'www') as dayname,
id,

amount

Inline

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

« dayname

Create this measure:

sum(amount)
Results table
date dayname sum(amount)
01/01/2022 Sat 1000
02/01/2022 Tue 2123
03/01/2022 Tue 4124
04/01/2022 Fri 2431

The default baynamesdefinition is used. In the load script, the bate function is used with the date field as the
first argument. The second argument is www. This formatting converts the result into the values stored in the
DayNames definition. This is displayed in the output of the results table.

Script syntax and chart functions - Qlik Sense, August 2023 213

2 Working with variables in the data load editor

DecimalSep

The decimal separator defined replaces the decimal symbol set by your regional settings.

Qlik Sense automatically interprets text as numbers whenever a recognizable number pattern is encountered.
The Thousandsep and Decimalsep system variables determine the makeup of the patterns applied when
parsing text as numbers. The Thousandsep and Decimalsep variables set the default number format pattern

when visualizing numeric content in front-end charts and tables. That is, it directly impacts the Number
formatting options for any front end expression.

Assuming a thousand separator of comma ‘,” and a decimal separator of ‘., these are examples of patterns
that would be implicitly converted to numeric equivalent values:

0,000.00
0000.00

0,000

These are examples of patterns that would remain unchanged as text; that is, not converted to numeric:

0.000,00
0,00
Syntax:
DecimalSep
Function examples
Example Result
Set DecimalSep="."'; Sets‘’as the decimal separator.
Set Decimalsep=","; Sets‘’ as the decimal separator.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example - Effect of setting number separator variables on different input data

Load script and results

Script syntax and chart functions - Qlik Sense, August 2023 214

2 Working with variables in the data load editor

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset of sums and dates with the sums set in different format patterns.
¢ Atable named Transactions.

e The becimalsep variable which is set to ‘.".

¢ The Thousandsep variable which is setto ', .

e The delimiter variable that is set as the '|' character to separate the different fields in a line.
Load script

Set ThousandSep="',"';
Set Decimalsep='.";

Transactions:

Load date,

id,

amount as amount
Inline

[

date|id|amount
01/01/2022]1|1.000-45
01/02/202212|23.344
01/03/202213|4124,35
01/04/202214|2431.36
01/05/202215|4,787
01/06/202216|2431.84
01/07/2022|7|4132.5246
01/08/2022|8|3554.284
01/09/202219|3.756,178
01/10/2022110]3,454.356
] (deTimiter is "[");

Results

Load the data and open a sheet. Create a new table and add this field as a dimension amount.

Create this measure:

=sum(amount)
Results table
Amount =Sum(amount)
Totals 20814.7086
1.000-45

Script syntax and chart functions - Qlik Sense, August 2023 215

2 Working with variables in the data load editor

Amount =Sum(amount)
3.756,178
412435
23.344 23.344
2431.36 2431.36
2431.84 2431.84
3,454.356 3454.356
3554.284 3554.284
4132.5246 4132.5246
4,787 4787

Any value not interpreted as number remains as text and is aligned to the left by default. Any successfully
converted values are aligned to the right, retaining the original input format.

The expression column shows the numeric equivalent, which is by default formatted with only a decimal
separator ‘.’. This can be overridden with the Number formatting drop down setting in the expression
configuration.

FirstWeekDay

Integer that defines which day to use as the first day of the week.

Syntax:

FirstWeekDay

Monday is the first day of the week according to 1SO 8601, the international standard for the representation of
dates and times. Monday is also used as the first day of the week in a number of countries, for example on the
UK, France, Germany and Sweden.

But in other countries, like in the United States and Canada, Sunday is considered to be the start of the week.

In Qlik Sense, the regional settings are fetched when the app is created, and the corresponding settings are
stored in the script as environment variables.

A North American app developer often gets set Firstweekpay=6; in the script, corresponding to Sunday. A
European app developer often gets set Firstweekbay=0; in the script, corresponding to Monday.

Values that can be set for
FirstWeekDay

Value Day

0 Monday

1 Tuesday

2 Wednesday

Script syntax and chart functions - Qlik Sense, August 2023 216

2 Working with variables in the data load editor

Value Day

3 Thursday
4 Friday

5 Saturday
6 Sunday

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Examples:

If you want I1SO settings for weeks and week numbers, make sure to have the following in the script:

Set Firstweekbay=0; // Monday as first week day

Set Brokenweeks=0;

Set ReferenceDay=4;

If you want US settings, make sure to have the following in the script:

Set FirstweekDay=6; // Sunday as first week day
Set Brokenweeks=1;
Set Referencebay=1;

Example 1 - Using default value (script)

Load script and results
Overview

Open the Data load editor and add the load script below to a new tab.

In this example, the load script uses the default Qlik Sense system variable value, Firstweekpay=6. This data
contains data for the first 14 days in 2020.

Load script

// Example 1: Load Script using the default value of FirstweekDay=6, 1i.e. Sunday

Script syntax and chart functions - Qlik Sense, August 2023 217

2 Working with variables in the data load editor

SET FirstWeekbDay = 6;

Sales:
LOAD
date,
sales,
week(date) as week,
weekday(date) as weekday
Inline [
date,sales
01/01/2021,6000
01/02/2021,3000
01/03/2021,6000
01/04/2021,8000
01/05/2021,5000
01/06/2020,7000
01/07/2020,3000
01/08/2020,5000
01/09/2020,9000
01/10/2020,5000
01/11/2020,7000
01/12/2020,7000
01/13/2020,7000
01/14/2020,7000
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

* week

o weekday

Results table

Date week weekday
01/01/2021 1 Wed
01/02/2021 1 Thu
01/03/2021 1 Fri
01/04/2021 1 Sat
01/05/2021 2 Sun
01/06/2020 2 Mon
01/07/2020 2 Tue
01/08/2020 2 Wed
01/09/2020 2 Thu

Script syntax and chart functions - Qlik Sense, August 2023 218

2 Working with variables in the data load editor

Date week weekday
01/10/2020 2 Fri
01/11/2020 2 Sat
01/12/2020 3 Sun
01/13/2020 3 Mon
01/14/2020 3 Tue

Because the default settings are being used, the Firstweekpay system variable is set to 6. In the results table,
each new week can be seen beginning on Sunday (the 5th and 12th of January).

Example 2 - Changing the FirstWeekDay variable (script)

Load script and results
Overview

Open the Data load editor and add the load script below to a new tab.

In this example, the data contains the first 14 days in 2020. At the start of the script, we set the Firstweekbay
variable to 3.

Load script
// Example 2: Load Script setting the value of Firstweekbay=3, i.e. Thursday

SET Firstweekbay = 3;

Sales:
LOAD
date,
sales,
week(date) as week,
weekday(date) as weekday
Inline [
date,sales

01/01/2021,6000
01/02/2021,3000
01/03/2021,6000
01/04/2021,8000
01/05/2021,5000
01/06/2020,7000
01/07/2020,3000
01/08/2020,5000
01/09/2020,9000
01/10/2020,5000
01/11/2020,7000
01/12/2020,7000
01/13/2020,7000
01/14/2020,7000

Script syntax and chart functions - Qlik Sense, August 2023 219

2 Working with variables in the data load editor

1;
Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

¢ date

e week

« weekday

Results table

Date week weekday
01/01/2021 52 Wed
01/02/2021 1 Thu
01/03/2021 1 Fri
01/04/2021 1 Sat
01/05/2021 1 Sun
01/06/2020 1 Mon
01/07/2020 1 Tue
01/08/2020 1 Wed
01/09/2020 2 Thu
01/10/2020 2 Fri
01/11/2020 2 Sat
01/12/2020 2 Sun
01/13/2020 2 Mon
01/14/2020 2 Tue

Because the Firstweekbay system variable is set to 3, the first day of each week will be a Thursday. In the
results table, each new week can be seen beginning on Thursday (the 2nd and 9th of January).

LongDayNames

The format defined replaces the long weekday names convention in the regional settings.

Syntax:
LongDayNames
The following example of the LongpayNames function defines day names in full:

Set LongDayNames='Monday;Tuesday;Wednesday;Thursday;Friday;Saturday;Sunday’;
When modifying the variable, a semicolon ; is required to separate the individual values.

Script syntax and chart functions - Qlik Sense, August 2023 220

2 Working with variables in the data load editor

The LongbayNames function can be used in combination with the Date (page 1198) function which returns
DayNames as field values.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - System variable default

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset with dates, which will be loaded into a table named, Transactions.
¢ Adate field.

¢ The default LongbayNames definition.
Load script

SET LongDayNames='Monday;Tuesday;Wednesday;Thursday;Friday;Saturday;Sunday';

Transactions:
LOAD

date,

Date(date, "'wwww') as dayname,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Script syntax and chart functions - Qlik Sense, August 2023 221

2 Working with variables in the data load editor

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e dayname

Create this measure:

=sum(amount)
Results table
date dayname =sum(amount)
01/01/2022 Saturday 1000
02/01/2022 Tuesday 2123
03/01/2022 Tuesday 4124
04/01/2022 Friday 2431

In the load script, to create a field called, dayname, the pate function is used with the date field as the first
argument. The second argument in the function is the formatting wwww.

Using this formatting converts the values from the first argument into the corresponding full day name that is
set in the variable LongbayNames. In the results table, the field values of our created field dayname display this.

Example 2 - Change system variable

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The same dataset and scenario from the first example are used. However, at the start of the script, the
LongbayNames definition is modified to use the days of the week in Spanish.

Load Script

SET LongDayNames='Lunes;Martes;Miércoles;Jueves;Viernes;Sabado;Domingo';

Transactions:

LOAD

date,

Date(date, 'wwww') as dayname,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000

Script syntax and chart functions - Qlik Sense, August 2023 222

2 Working with variables in the data load editor

02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e dayname

Create this measure:

=sum(amount)
Results table
date dayname =sum(amount)
01/01/2022 Sabado 1000
02/01/2022 Martes 2123
03/01/2022 Martes 4124
04/01/2022 Viernes 2431

In the load script, the LongDayNames variable is modified to list the days of the week in Spanish.

Then, you create a field called, dayname, which is the pate function used with the date field as the first
argument.

The second argument in the function is the formatting wwww. By using this formatting Qlik Sense converts the
values from the first argument into the corresponding full day name set in the variable LongbayNames.

In the results table, the field values of our created field dayname displays the days of the week written in
Spanish and in full.

LongMonthNames

The format defined replaces the long month names convention in the regional settings.

Syntax:
LongMonthNames
When modifying the variable, the ; needs to be used to separate the individual values.

The following example of the LongMonthNames function defines month names in full:

Set
LongMonthNames="January;February;March;April;May;June;July;August;September;0October;November;D
ecember’';

The LongMonthNames function is often used in combination with the following functions:

Script syntax and chart functions - Qlik Sense, August 2023 223

2 Working with variables in the data load editor

Related functions

Function Interaction
Date (page 1198) Script function to return payNamesas field values.

LongDayNames (page 220) Long form values of bayNames.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - System variables default

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A datasetof dates that is loaded into a table named Transactions.
e Adate field.

¢ The default LongMmonthNames definition.
Load script

SET
LongMonthNames="'3January;February;March;April;May;June;July;August;September;0ctober;November;D
ecember’';

Transactions:

Load

date,
Date(date,’™MMMM’) as monthname,
id,

amount

Inline

[

date,id,amount
01/01/2022,1,1000.45
01/02/2022,2,2123.34

Script syntax and chart functions - Qlik Sense, August 2023 224

2 Working with variables in the data load editor

01/03/2022,3,4124.35
01/04/2022,4,2431.36
01/05/2022,5,4787.78
01/06/2022,6,2431.84
01/07/2022,7,2854.83
01/08/2022,8,3554.28
01/09/2022,9,3756.17
01/10/2022,10,3454.35

1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions.

e date

e monthname

Create this measure

=sum(amount)

date

01/01/2022
01/02/2022
01/03/2022
01/04/2022
01/05/2022
01/06/2022
01/07/2022
01/08/2022
01/09/2022

01/10/2022

Results table

monthname
January
January
January
January
January
January
January
January
January

January

sum(amount)
1000.45
2123.34
4124.35
2431.36
4787.78
2431.84
2854.83
3554.28
3756.17

3454.35

The default LongMmonthNnames definition is used. In the load script, to create a field called, month, the pate
function is used with the date field as the first argument. The second argument in the function is the

formatting MmmMm.

Using this formatting Qlik Sense converts the values from the first argument into the corresponding full month
name set in the variable LongMonthNames. In the results table, the field values of our created field month

display this.

Example 2 - Change system variable

Load script and results

Script syntax and chart functions - Qlik Sense, August 2023 225

2 Working with variables in the data load editor

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset of dates that is loaded into a table named Transactions.
e Adate field.

e The LongMonthNames variable that is modified to use the abbreviated days of the week in Spanish.
Load script

SET
LongMonthNames="'Enero;Febrero;Marzo;Abril;Mayo;Junio;Julio;Agosto;Septiembre;0ctubreNoviembre;
Diciembre';

Transactions:
LOAD

date,

Date(date, '"MMMM') as monthname,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add sum(amount) as a measure and these fields as
dimensions:
e date

e« monthname

Create this measure:

=sum(amount)
Results table
date monthname sum(amount)
01/01/2022 Enero 1000.45
01/02/2022 Enero 2123.34
01/03/2022 Enero 4124.35

Script syntax and chart functions - Qlik Sense, August 2023 226

2 Working with variables in the data load editor

date monthname sum(amount)
01/04/2022 Enero 2431.36
01/05/2022 Enero 4787.78
01/06/2022 Enero 2431.84
01/07/2022 Enero 2854.83
01/08/2022 Enero 3554.28
01/09/2022 Enero 3756.17
01/10/2022 Enero 3454.35

In the load script, the LongMonthNames variable is modified to list the months of the year in Spanish. Then, to
create a field called, monthname, thepate function is used with the date field as the first argument. The second
argument in the function is the formatting Mmmm.

Using this formatting Qlik Sense converts the values from the first argument into the corresponding full month
name set in the variable LongMonthNames. In the results table, the field values of our created field monthname
display the month name written in Spanish.

MoneyDecimalSep

The decimal separator defined replaces the decimal symbol for currency set by your regional
settings.

By default, Qlik Sense displays numbers and text differently in table charts. Numbers are right-
aligned, and text is left-aligned. This makes it easy to find text-to-number conversion issues. Any
tables on this page that show Qlik Sense results will use this formatting.

Syntax:

MoneyDecimalSep

Qlik Sense applications will interpret text fields that conform to this formatting as monetary values. The text
field must contain the currency symbol that is defined in the MoneyFormat system variable. MoneyDecimalsep
is particularly helpful when handling data sources received from multiple different regional settings.

The following example shows a possible use of the MoneyDecimalsep system variable:

Set MoneyDecimalSep='.";
This function is often used together with the following functions:

Related functions
Function Interaction
MoneyFormat In instances of text field interpretation, the MoneyFormat symbol will be used as

part of the interpretation. For Number Formatting, the MoneyFormat formatting will
be used by Qlik Sense in Chart Objects.

Script syntax and chart functions - Qlik Sense, August 2023 227

2 Working with variables in the data load editor

Function Interaction

MoneyThousandSep In instances of text field interpretation, the MoneyThousandsep function must also
be adhered to.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - MoneyDecimalSep dot (.) notation

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset that is loaded into a table named Transactions.

¢ Provided data that has its monetary field in text format with a dot ‘.’ used as the decimal separator.
Each record is also prefixed by a ‘$’ symbol, except for the last record, which is prefixed by a ‘£’
symbol.

Keep in mind that the MoneyFormat system variable defines dollar ‘$’ as the default currency.
Load script

SET MoneyThousandSep="',";
SET MoneyDecimalSep="'.";
SET MoneyFormat="S$###0.00;-$###0.00";

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount
01/01/2022,1,'$14.41"

Script syntax and chart functions - Qlik Sense, August 2023 228

2 Working with variables in the data load editor

01/02/2022,2,'$2,814.32"
01/03/2022,3,'$249.36"'
01/04/2022,4,'$24.37"'
01/05/2022,5,'$7.54"
01/06/2022,6,'$243.63"
01/07/2022,7,"'$545.36"
01/08/2022,8,'$3.55"
01/09/2022,9,'$3.436'
01/10/2022,10, '£345.66"
1;

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:amount.

Add the following measures:

e isNum(amount)

e sum(amount)

Review the results below, demonstrating the correct interpretation of all dollar ‘S’ values only.

Results table

amount =isNum(amount) =Sum(amount)
Totals 0 $3905.98
£345.66 0 $0.00
$3.436 -1 $3.44
$3.55 -1 $3.55

$7.54 -1 $7.54
$14.41 -1 $14.41
$24.37 -1 $24.37
243.63 -1 $243.63
$249.36 -1 $249.36
$545.36 -1 $545.36
$2,814.32 -1 $2814.32

The results table above shows how the amount field has been interpreted correctly for all dollar ($) prefixed
values, whilst the pound (£) prefixed amount has not been converted to a monetary value.

Script syntax and chart functions - Qlik Sense, August 2023 229

2 Working with variables in the data load editor

Example 2 - MoneyDecimalSep comma (,) notation

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset which is loaded into a table named Transactions.

¢ Provided data that has its monetary field in text format with a comma ;" used as the decimal
separator. Each record is also prefixed by a ‘S’ symbol, except for the last record, which erroneously
uses the dot decimal separator '.".

Keep in mind that the MoneyFormat system variable defines dollar ‘$’ as the default currency.
Load script

SET MoneyThousandSep=".";
SET MoneyDecimalSep="',";
SET MoneyFormat="'$###0.00;-$###0.00";

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount
01/01/2022,1,'$14,41"
01/02/2022,2,'$2.814,32"
01/03/2022,3,'$249,36'
01/04/2022,4,"'$24,37"
01/05/2022,5,'$7,54"
01/06/2022,6, '$243,63"
01/07/2022,7, '$545,36"
01/08/2022,8,'$3,55"
01/09/2022,9, '$3,436"
01/10/2022,10, '$345.66"
1;

Results
Paragraph text for Results.

Load the data and open a sheet. Create a new table and add this field as a dimension:amount.

Add the following measures:

Script syntax and chart functions - Qlik Sense, August 2023 230

2 Working with variables in the data load editor

e isNum(amount)

e sum(amount)

Review the results below, demonstrating the correct interpretation of all values, except for the amount in
which the decimal separator uses dot '.' notation. In that case, a comma should have been used instead.

Results table

amount =isNum(amount) =Sum(amount)
Totals 0 $3905.98
$345.66 0 $0.00
$3,436 -1 $3.44
$3,55 -1 $3.55
$7,54 -1 $7.54
$14,41 -1 $14.41
$24,37 -1 $24.37
$243,63 -1 $243.63
$249,36 -1 $249.36
$545,36 -1 $545.36
$2.814,32 -1 $2814.32
MoneyFormat

This system variable defines the format pattern used by Qlik for automatic translation of text to
number where the number is prefixed by a monetary symbol. It also defines how measures
whose Number Formatting properties are set to ‘Money’ will be displayed in chart objects.

The symbol defined as part of the format pattern in the MoneyFormat system variable replaces the currency
symbol set by your regional settings.

By default, Qlik Sense displays numbers and text differently in table charts. Numbers are right-
aligned, and text is left-aligned. This makes it easy to find text-to-number conversion issues. Any
tables on this page that show Qlik Sense results will use this formatting.

Syntax:
MoneyFormat
Set MoneyFormat='$ #,##0.00; ($ #,##0.00)';

This formatting will be displayed in chart objects when a numerical field's Number Formatting property is set
to money. Further, when numerical text fields are interpreted by Qlik Sense, if the currency symbol of the text
field matches that of the symbol defined in the MoneyFormat variable, Qlik Sense will interpret this field as a
monetary value.

Script syntax and chart functions - Qlik Sense, August 2023 231

2 Working with variables in the data load editor

This function is often used together with the following functions:

Related functions

Function Interaction
MoneyDecimalSep (page For Number Formatting, Moneybecimalsep will be used in field formatting of
227) objects.

MoneyThousandSep (page For Number Formatting, MoneyThousandsep will be used in field formatting of
235) objects.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - MoneyFormat

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains a dataset which is loaded into a table named Transactions. The default MoneyFormat
variable definition is used.

Load script

SET MoneyThousandSep="',";
SET MoneyDecimalSep="'.";
SET MoneyFormat="S$###0.00;-$###0.00";

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount
01/01/2022,1,$10000000441

Script syntax and chart functions - Qlik Sense, August 2023 232

2 Working with variables in the data load editor

01/02/2022,2,$21237492432
01/03/2022,3,%$249475336
01/04/2022,4,$24313369837
01/05/2022,5,$7873578754
01/06/2022,6,$24313884663
01/07/2022,7,$545883436
01/08/2022,8,$35545828255
01/09/2022,9,$37565817436
01/10/2022,10,$3454343566
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e amount
Add this measure:
=Sum(amount)
Under Number formatting, select Money to configure sum(amount) as a monetary value.

Results table

date Amount =Sum(amount)
Totals $165099674156.00
01/01/2022 $10000000441 $10000000441.00
01/02/2022 $21237492432 $21237492432.00
01/03/2022 $249475336 $249475336.00
01/04/2022 $24313369837 $24313369837.00
01/05/2022 $7873578754 $7873578754.00
01/06/2022 $24313884663 $24313884663.00
01/07/2022 $545883436 $545883436.00
01/08/2022 $35545828255 $35545828255.00
01/09/2022 $37565817436 $37565817436.00
01/10/2022 $3454343566 $3454343566.00

The default moneyFormat definition is used. This looks as follows: $###0.00; -$###0.00. In the results table,
the format of the amount field displays the currency symbol and the decimal point and decimal places have
been included.

Script syntax and chart functions - Qlik Sense, August 2023 233

2 Working with variables in the data load editor

Example 2 - MoneyFormat with thousands separator and mixed input formats

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

* A mixed-input format dataset, which is loaded into a table named Transactions with thousands
separators and decimal separators interspersed.

¢ A modification of the MmoneyFormat definition is modified to include a comma as the thousands
separator.

¢ One of the rows of data erroneously delimited with thousands separator commas in the wrong places.
Note how this amount is left as text and not interpretable as a number.

Load script

SET MoneyThousandSep=",";
SET MoneyDecimalSep=".";
SET MoneyFormat = '$#,##0.00;-$#,##0.00';

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1, '$10,000,000,441.45"
01/02/2022,2,'$212,3749,24,32.23"
01/03/2022,3,$249475336.45
01/04/2022,4,%$24,313,369,837
01/05/2022,5,%$7873578754
01/06/2022,6,$24313884663
01/07/2022,7,$545883436
01/08/2022,8,$35545828255
01/09/2022,9,$37565817436
01/10/2022,10,$3454343566

1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e amount

Add this measure:

Script syntax and chart functions - Qlik Sense, August 2023 234

2 Working with variables in the data load editor

=Sum(amount)
Under Number formatting, select Money to configure sum(amount) as a monetary value.

Results table

date Amount =Sum(amount)
Totals $119,548,811,911.90
01/01/2022 $10,000,000,441.45 $10,000,000,441.45
01/02/2022 $212,3749,24,32.23 $0.00
01/03/2022 $249475336.45 $249,475,336.45
01/04/2022 $24 $24.00
01/05/2022 $7873578754 $7,873,578,754.00
01/06/2022 $24313884663 $24,313,884,663.00
01/07/2022 $545883436 $545,883,436.00
01/08/2022 $35545828255 $35,545,828,255.00
01/09/2022 $37565817436 $37,565,817,436.00
01/10/2022 $3454343566 $3,454,343,566.00

At the start of the script, the MoneyFormat system variable is modified to include a comma as a thousands
separator. In the Qlik Sense table, the formatting can be seen to include this separator. Furthermore, the row
with the erroneous separator has not been interpreted correctly and remains as text. This is why it does not
contribute towards the summation of the amount.

MoneyThousandSep

The thousands separator defined replaces the digit grouping symbol for currency set by your
regional settings.

By default, Qlik Sense displays numbers and text differently in table charts. Numbers are right-
aligned, and text is left-aligned. This makes it easy to find text-to-number conversion issues. Any
tables on this page that show Qlik Sense results will use this formatting.

Syntax:

MoneyThousandSep

Qlik Sense applications will interpret text fields that conform to this formatting as monetary values. The text
field must contain the currency symbol that is defined in the MoneyFormat system variable. MoneyThousandsep
is particularly helpful when handling data sources received from multiple different regional settings.

The following example shows a possible use of the MoneyThousandsep system variable:

Set MoneyDecimalSep="',";
This function is often used together with the following functions:

Script syntax and chart functions - Qlik Sense, August 2023 235

2 Working with variables in the data load editor

Related functions

Function Interaction

MoneyFormat In instances of text field interpretation, the MoneyFormat symbol will be used as part
of the interpretation. For Number Formatting, the MoneyFormat formatting will be
used by Qlik Sense in chart objects.

MoneyDecimalsep In instances of text field interpretation, the Moneybecimalsep function must also be
adhered to.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - MoneyThousandSep comma (,) notation

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset which is loaded into a table named Transactions.

¢ Provided data that has its monetary field in text format with a comma used as the thousands
separator. Each record is also prefixed by a ‘S’ symbol.

Keep in mind that the MoneyFormat system variable defines dollar ‘$’ as the default currency.
Load script

SET MoneyThousandSep="',";
SET MoneyDecimalSep='.";
SET MoneyFormat="S$###0.00;-$###0.00";

Transactions:
Load

date,

id,

amount

Script syntax and chart functions - Qlik Sense, August 2023 236

2 Working with variables in the data load editor

Inline

[

date,id,amount

01/01/2022,1, '$10,000,000,441"
01/02/2022,2,'$21,237,492,432"
01/03/2022,3,'$249,475,336"
01/04/2022,4,'%$24,313,369,837"
01/05/2022,5,'$7,873,578,754"
01/06/2022,6, '$24,313,884,663"
01/07/2022,7,'$545,883,436"
01/08/2022,8, '$35,545,828,255"
01/09/2022,9, '$37,565,817,436"
01/10/2022,10,"$3.454.343.566"
1;

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:amount.

Add the following measures:

e isNum(amount)

e sum(amount)

Review the results below. The table demonstrates the correct interpretation of all values using comma *,’
notation as the thousands separator.

The amount field has been interpreted correctly for all values, with the exception of one value which used a
dot '." as the thousands separator.

Results table

amount =isNum(amount) =Sum(amount)
Totals 0 $161645330590.00
$3.454.343.566 0 $0.00
$249,475,336 -1 $249475336.00
$545,883,436 -1 $545883436.00
$7,873,578,754 -1 $7873578754.00
$10,000,000,441 -1 $10000000441.00
$21,237,492,432 -1 $21237492432.00
$24,313,369,837 -1 $24313369837.00
$24,33,884,663 -1 $24313884663.00
$35,545,828,255 -1 $35545828255.00
$37,565,817,436 -1 $37565817436.00

Script syntax and chart functions - Qlik Sense, August 2023 237

2 Working with variables in the data load editor

Example 2 - MoneyThousandSep dot (.) notation

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset which is loaded into a table named Transactions.

¢ Provided data that has its monetary field in text format with a dot '." used as the thousands separator.
Each record is also prefixed by a ‘$’ symbol.

Keep in mind that the MoneyFormat system variable defines dollar ‘$’ as the default currency.

Load script

SET MoneyThousandSep="'.";
SET MoneyDecimalSep="',";
SET MoneyFormat="S$###0.00;-$###0.00";

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount
01/01/2022,1,'$10.000.000.441"
01/02/2022,2,'$21.237.492.432"
01/03/2022,3,'$249.475.336"
01/04/2022,4,'$24.313.369.837"'
01/05/2022,5,'$7.873.578.754"
01/06/2022,6, '$24.313.884.663"
01/07/2022,7,'$545.883.436"'
01/08/2022,8, '$35.545.828.255"
01/09/2022,9, '$37.565.817.436'
01/10/2022,10, '$3,454,343,566'
1;

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:amount.

Add the following measures:

e isNum(amount)

e sum(amount)

Script syntax and chart functions - Qlik Sense, August 2023 238

2 Working with variables in the data load editor

Review the results below, demonstrating the correct interpretation of all values using dot ‘." notation as the

thousand separator.

The amount field has been interpreted correctly for all values, with the exception of one value which used a

comma'," as the thousands separator.

Results table

amount =isNum(amount) =Sum(amount)
Totals 0 $161645330590.00
$3,545,343,566 0 $0.00
$249.475.336 -1 $249475336.00
$545.883.436 -1 545883436.00
$7.873.578.754 -1 $7873578754.00
$10.000.000.441 -1 $10000000441.00
$21.237.492.432 -1 $21237492432.00
$24.313.884.663 -1 $24313884663.00
$24.313.884.663 -1 $24313884663.00
$35.545.828.255 -1 $35545828255.00
$37.565.817.436 -1 $37565817436.00

MonthNames

The format defined replaces the month names convention of the regional settings.

Syntax:
MonthNames
When modifying the variable, the ; needs to be used to separate the individual values.

Function examples

Example Results

Set MonthNames='3Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;0ct;Nov;Dec'; This use of the
MonthNames function
defines month
names in English
and their

abbreviated form.

Set This use of the

MonthNames='Enero;Feb;Marzo;Abr;Mayo;Jun;Jul;Agosto;Set;0ct;Nov;Dic’; MonthNames
function defines
month names in
Spanish and their
abbreviated form.

Script syntax and chart functions - Qlik Sense, August 2023 239

2 Working with variables in the data load editor

The monthNames function can be used in combination with the following functions:

Related functions

Function Interaction
month (page 887) Script function to return values defined in MonthNnames as field values
Date (page 1198) Script function to return values defined in MonthNnames as field values based on a

formatting argument provided

LongMonthNames Long form values of MonthNnames
(page 223)

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - System variables default

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset of dates that is loaded into a table named Transactions.
e Adate field.

¢ The default monthNames definition.
Load script
SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;0ct;Nov;Dec';

Transactions:

LOAD

date,

Month(date) as monthname,
id,

amount

INLINE

Script syntax and chart functions - Qlik Sense, August 2023 240

2 Working with variables in the data load editor

[

date,id,amount
01/01/2022,1,1000.45
01/02/2022,2,2123.34
01/03/2022,3,4124.35
01/04/2022,4,2431.36
01/05/2022,5,4787.78
01/06/2022,6,2431.84
01/07/2022,7,2854.83
01/08/2022,8,3554.28
01/09/2022,9,3756.17
01/10/2022,10,3454.35
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e monthname

Create this measure:

=sum(amount)
Results table
date monthname sum(amount)
01/01/2022 Jan 1000.45
01/02/2022 Jan 2123.34
01/03/2022 Jan 4124.35
01/04/2022 Jan 2431.36
01/05/2022 Jan 4787.78
01/06/2022 Jan 2431.84
01/07/2022 Jan 2854.83
01/08/2022 Jan 3554.28
01/09/2022 Jan 3756.17
01/10/2022 Jan 3454.35

The default monthnames definition is used. In the load script, the mMonth function is used with the date field as
the provided argument.

In the results table, the output of this Mmonth function displays the months of the year in the format of the
MonthNames definition.

Example 2 - Change system variable

Load script and results

Script syntax and chart functions - Qlik Sense, August 2023 241

2 Working with variables in the data load editor

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset of dates that is loaded into a table named Transactions.
e Adate field.

e The mMonthNames variable that is modified to use the abbreviated months in Spanish.
Load script
Set MonthNames='Enero;Feb;Marzo;Abr;Mayo;Jun;Jul;Agosto;Set;0ct;Nov;Dic';

Transactions:
LOAD

date,

month(date) as month,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e monthname

Create this measure:

=sum(amount)
Results table
date monthname sum(amount)
01/01/2022 Enero 1000.45
01/02/2022 Enero 2123.34
01/03/2022 Enero 4124.35
01/04/2022 Enero 2431.36
01/05/2022 Enero 4787.78

Script syntax and chart functions - Qlik Sense, August 2023 242

2 Working with variables in the data load editor

date monthname sum(amount)
01/06/2022 Enero 2431.84
01/07/2022 Enero 2854.83
01/08/2022 Enero 3554.28
01/09/2022 Enero 3756.17
01/10/2022 Enero 3454.35

In the load script, first the MmonthNames variable is modified to list the months of the year abbreviated in
Spanish. The Month function is used with the date field as the provided argument.

In the results table, the output of this Mmonth function displays the months of the year in the format of the
MonthNames definition.

It is important to remember that if the language for the MonthNames variable is modified like it has been in this
example, the LongMonthNames variable would still contain the months of the year in English. The
LongMonthNames variable would have to be modified if both variables are used in the application.

Example 3 - Date function

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset of dates that is loaded into a table named Transactions.
e Adate field.

¢ The default MonthNames definition.
Load script
SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;0ct;Nov;Dec';

Transactions:

LOAD

date,

Month(date, ’'MMM’) as monthname,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000.45
01/02/2022,2,2123.34
01/03/2022,3,4124.35
01/04/2022,4,2431.36
01/05/2022,5,4787.78

Script syntax and chart functions - Qlik Sense, August 2023 243

2 Working with variables in the data load editor

01/06/2022,6,2431.84
01/07/2022,7,2854.83
01/08/2022,8,3554.28
01/09/2022,9,3756.17
01/10/2022,10,3454.35
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e monthname

Create this measure:

=sum(amount)
Results table
date monthname sum(amount)
01/01/2022 Jan 1000.45
01/02/2022 Jan 2123.34
01/03/2022 Jan 4124.35
01/04/2022 Jan 2431.36
01/05/2022 Jan 4787.78
01/06/2022 Jan 2431.84
01/07/2022 Jan 2854.83
01/08/2022 Jan 3554.28
01/09/2022 Jan 3756.17
01/10/2022 Jan 3454.35

The default monthNames definition is used. In the load script, the bate function is used with the date field as
the first argument. The second argument is MuM.

Using this formatting Qlik Sense converts the values from the first argument into the corresponding month
name set in the variable MonthNames. In the results table, the field values of our created field month display
this.

NumericalAbbreviation
The numerical abbreviation sets which abbreviation to use for scale prefixes of numerals, for example M for

mega or a million (10%), and p for micro (10°9).

Syntax:
NumericalAbbreviation

Script syntax and chart functions - Qlik Sense, August 2023 244

2 Working with variables in the data load editor

You set the NumericalAbbreviation variable to a string containing a list of abbreviation definition pairs,
delimited by semi colon. Each abbreviation definition pair should contain the scale (the exponent in decimal
base) and the abbreviation separated by a colon, for example, 6:M for a million.

The default setting is '3:k;6:M;9:G;12:T;15:P;18:E;21:2;24:Y;-3:m;-6:;-9:n;-12:p;-15:f;-18:a;-
21:z;-24:y".

Examples:

This setting will change the prefix for a thousand to t and the prefix for a billion to B. This would be useful for
financial applications where you would expect abbreviations like t$, M$, and BS.

Set NumericalAbbreviation='3:t;6:M;9:B;12:T;15:P;18:E;21:Z;24:Y;-3:m;-6:4;-9:n;-12:p;-15:fF;-
18:a;-21:z;-24:y';

ReferenceDay

The setting defines which day in January to set as reference day to define week 1. In other

words, this setting prescribes how many days in week 1 must be dates within January.

Syntax:
ReferenceDay

ReferenceDay sets how many days are included in the first week of the year. Referencebay can be set to any
value between 1 and 7. Any value outside of the 1-7 range is interpreted as the midpoint of the week (4),
which is equivalent to Referencebay being set to 4.

If you do not select a value for the Referencebpay setting, then the default value will show rReferencepay=0
which will be interpreted as the midpoint of the week (4), as seen in the Referencebay values table below.

The rReferencebay function is often used in combination with the following functions:

Related functions

Variable Interaction
BrokenWeeks If the Qlik Sense app is operating with unbroken weeks, the Referencepay variable
(page 202) setting will be enforced. However, if broken weeks are being used, week 1 will begin on

January 1 and terminate in conjunction with the Firstweekbay variable setting and
ignore the Referencebay flag.

FirstWeekDay Integer that defines which day to use as the first day of the week.
(page 216)

Qlik Sense allows the following values to be set for Referencepay:
ReferenceDay values
Value Reference day
0 (default) January 4

1 January 1

Script syntax and chart functions - Qlik Sense, August 2023 245

2 Working with variables in the data load editor

Value Reference day
2 January 2
3 January 3
4 January 4
5 January 5
6 January 6
7 January 7

In the following example the Referencepay = 3 defines January 3 as the reference day:

SET Referencebay=3; //(set January 3 as the reference day)

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Examples:

If you want I1SO settings for weeks and week numbers, make sure to have the following in the script:

Set FirstWeekbay=0;

Set Brokenweeks=0;

Set ReferencebDay=4; // Jan 4th is always in week 1

If you want US settings, make sure to have the following in the script:

Set FirstweekbDay=6;
Set Brokenweeks=1;
Set ReferencebDay=1; // Jan 1st is always in week 1

Example 1 - Load script using the default value; ReferenceDay=0

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, August 2023 246

2 Working with variables in the data load editor

¢ The Referencebay variable that is set to 0.
e The Brokenweeks variable that is set to 0 which forces the app to use unbroken weeks.

¢ A dataset of dates from the end of 2019 to the start of 2020.
Load script

SET Brokenweeks = 0;
SET Referencebay = 0;

Sales:

LOAD

date,

sales,
week(date) as week,
weekday(date) as weekday
Inline [
date,sales
12/27/2019,5000
12/28/2019,6000
12/29/2019,7000
12/30/2019,4000
12/31/2019,3000
01/01/2020,6000
01/02/2020,3000
01/03/2020,6000
01/04/2020,8000
01/05/2020,5000
01/06/2020,7000
01/07/2020,3000
01/08/2020,5000
01/09/2020,9000
01/10/2020,5000
01/11/2020,7000
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

« date

« week

« weekday

Results table

date week weekday
12/27/2019 52 Fri
12/28/2019 52 Sat
12/29/2019 1 Sun

Script syntax and chart functions - Qlik Sense, August 2023 247

2 Working with variables in the data load editor

date week weekday
12/30/2019 1 Mon
12/31/2019 1 Tue
01/01/2020 1 Wed
01/02/2020 1 Thu
01/03/2020 1 Fri
01/04/2020 1 Sat
01/05/2020 2 Sun
01/06/2020 2 Mon
01/07/2020 2 Tue
01/08/2020 2 Wed
01/09/2020 2 Thu
01/10/2020 2 Fri
01/11/2020 2 Sat

Week 52 concludes on Saturday, December 28. Because ReferenceDay requires January 4 to be included in
week 1, week 1 therefore begins on December 29 and concludes on Saturday, January 4.

Example - ReferenceDay variable set to 5

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ The Referencebay variable that is set to 5.
¢ The Brokenweeks variable that is set to 0 which forces the app to use unbroken weeks.

¢ A dataset of dates from the end of 2019 to the start of 2020.
Load script

SET Brokenweeks = 0;
SET Referencebay = 5;

Sales:

LOAD

date,

sales,

week (date) as week,
weekday(date) as weekday
Inline [

Script syntax and chart functions - Qlik Sense, August 2023 248

2 Working with variables in the data load editor

date,sales
12/27/2019,5000
12/28/2019,6000
12/29/2019,7000
12/30/2019,4000
12/31/2019,3000
01/01/2020,6000
01/02/2020,3000
01/03/2020,6000
01/04/2020,8000
01/05/2020,5000
01/06/2020,7000
01/07/2020,3000
01/08/2020,5000
01/09/2020,9000
01/10/2020,5000
01/11/2020,7000
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

« date

* week

« weekday

Results table

date week weekday
12/27/2019 52 Fri
12/28/2019 52 Sat
12/29/2019 53 Sun
12/30/2019 53 Mon
12/31/2019 53 Tue
01/01/2020 53 Wed
01/02/2020 53 Thu
01/03/2020 53 Fri
01/04/2020 53 Sat
01/05/2020 1 Sun
01/06/2020 1 Mon
01/07/2020 1 Tue
01/08/2020 1 Wed
01/09/2020 1 Thu

Script syntax and chart functions - Qlik Sense, August 2023 249

2 Working with variables in the data load editor

date week weekday
01/10/2020 1 Fri
01/11/2020 1 Sat

Week 52 concludes on Saturday, December 28. The Brokenweeks variable forces the app to use unbroken
weeks. The reference day value of 5 requires January 5 to be included in week 1.

However, this is eight days after the conclusion of week 52 of the previous year. Therefore, week 53 begins on
December 29 and concludes on January 4. Week 1 begins on Sunday, January 5.

ThousandSep

The thousands separator defined replaces the digit grouping symbol of the operating system
(regional settings).

Syntax:
ThousandSep
Qlik Sense object using the ThousandSep variable (with thousands separator)

max(amount)

47,873,578,754.00

Qlik Sense apps interpret text fields that conform to this formatting as numbers. This formatting will be
displayed in chart objects when a numerical field’s Number formatting property is set to Number.

Thousandsep is helpful when handling data sources received from multiple regional settings.

If the Thousandsep variable is modified after objects have already been created and formatted in the
application, the user will need to re-format each relevant field by de-selecting and then re-selecting
the Number formatting property Number.

The following examples show possible uses of the Thousandsep system variable:
Set Thousandsep=','; //(for example, seven billion will be displayed as: 7,000,000,000)

Set ThousandSep=' '; //(for example, seven billion will be displayed as: 7 000 000 000)

These topics may help you work with this function:

Script syntax and chart functions - Qlik Sense, August 2023 250

2 Working with variables in the data load editor

Related topics

Topic Description
DecimalSep In instances of text field interpretation, the decimal separator settings, as provided by this
(page 214) function, must also be respected. For number formatting, DecimalSep will be used by Qlik

Sense where necessary.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - Default system variables

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset which is loaded into a table named Transactions.

¢ Use of the default Thousandsep variable definition.
Load script

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount
01/01/2022,1,10000000441
01/02/2022,2,21237492432
01/03/2022,3,41249475336
01/04/2022,4,24313369837
01/05/2022,5,47873578754
01/06/2022,6,24313884663
01/07/2022,7,28545883436

Script syntax and chart functions - Qlik Sense, August 2023 251

2 Working with variables in the data load editor

01/08/2022,8,35545828255
01/09/2022,9,37565817436
01/10/2022,10,3454343566
1;

Results
Do the following:

1. Load the data and open a sheet. Create a new table and add this field as a dimension:date.

2. Add the following measure:
=sum(amount)

3. Inthe properties panel, under Data, select the measure.

4. Under Number formatting, select Number.

Adjusting number formatting for a chart measure

Columns
Sum amiount
ifigr »
I
Results table
date =sum(amount)

01/01/2022 10,000,000,441.00
01/02/2022 21,237,492,432.00
01/03/2022 41,249,475,336.00
01/04/2022 24,313,369,837.00
01/05/2022 47,873,578,754.00
01/06/2022 24,313,884,663.00

01/07/2022 28,545,883,436.00

Script syntax and chart functions - Qlik Sense, August 2023 252

2 Working with variables in the data load editor

date =sum(amount)
01/08/2022 35,545,828,255.00
01/09/2022 37,565,817,436.00

01/10/2022 3,454,343,566.00

In this example, the default Thousandsep definition, which is set to comma format (*,’), is used. In the results
table, the format of the amount field displays a comma between thousand groupings.

Example 2 - Changing system variable

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ The same dataset from the first example, which is loaded into a table named Transactions.

* Modification of the Thousandsep definition, at the start of the script, to display a '*' character as the
thousands separator. This is an extreme example, and is used solely to demonstrate the functionality
of the variable.

The modification used in this example is extreme and not commonly used, but is shown here to demonstrate
the functionality of the variable.

Load script

SET ThousandSep="'*";

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount
01/01/2022,1,10000000441
01/02/2022,2,21237492432
01/03/2022,3,41249475336
01/04/2022,4,24313369837
01/05/2022,5,47873578754
01/06/2022,6,24313884663
01/07/2022,7,28545883436
01/08/2022,8,35545828255
01/09/2022,9,37565817436
01/10/2022,10,3454343566
1;

Script syntax and chart functions - Qlik Sense, August 2023 253

2 Working with variables in the data load editor

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add this field as a dimension:date.

2. Add the following measure:
=sum(amount)

3. Inthe properties panel, under Data, select the measure.

4. Under Number formatting, select Custom.

date

01/01/2022
01/02/2022
01/03/2022
01/04/2022
01/05/2022
01/06/2022
01/07/2022
01/08/2022
01/09/2022

01/10/2022

Results table

=sum(amount)

10*000*000*441.00
21*237*492*432.00
41*249*475*336.00
24*313*369*837.00
47*873*578*754.00
24*313*884"663.00
28*545*883*436.00
35*545%828*255.00
37*565*817*436.00

3*454*343*566.00

At the start of the script, the Thousandsep system variable is modified to a '*'. In the results table, the format

of the amount field can be seen to display a “*’ between thousand grouping.

Example 3 - Text interpretation

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

¢ A dataset which is loaded into a table named Transactions.

¢ Data which has its numerical field in text format, with a comma used as the thousands separator.

¢ Use of the default Thousandsep system variable.

Script syntax and chart functions - Qlik Sense, August 2023 254

2 Working with variables in the data load editor

Load script

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount
01/01/2022,1,'10,000,000,441"
01/02/2022,2,'21,492,432"'
01/03/2022,3,'4,249,475,336"'
01/04/2022,4,'24,313,369,837"'
01/05/2022,5,'4,873,578,754"
01/06/2022,6,'313,884,663"'
01/07/2022,7,'2,545,883,436"'
01/08/2022,8,'545,828,255"
01/09/2022,9,'37,565,817,436"'
01/10/2022,10, '3,454,343,566"'
1;

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add this field as a dimension:date.

2. Add the following measure:
=sum(amount)

3. Inthe properties panel, under Data, select the measure.

4. Under Number formatting, select Number.

5. Add the following measure to evaluate whether or not the amount field is a numerical value:

=isnum(amount)

Results table

date =sum(amount)

01/01/2022 10,000,000,441.00

01/02/2022 21,492,432.00

01/03/2022 4,249,475,336.00

01/04/2022 24,313,369,837.00

01/05/2022 4,873,578,754.00
01/06/2022 313,884,663.00
01/07/2022 2,545,883,436.00

01/08/2022 545,828,255.00

=isnum(amount)
-1
-1
-1

-1

Script syntax and chart functions - Qlik Sense, August 2023 255

2 Working with variables in the data load editor

date =sum(amount) =isnum(amount)
01/09/2022 37,565,817,436.00 -1

01/10/2022 3%454*343*566.00 -1

Once the data is loaded, we can see that Qlik Sense has interpreted the amount field as a numerical value,
due to the data conforming to the Thousandsep variable. This is demonstrated by the isnum() function, which
evaluates each entry to -1, or TRUE.

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

TimeFormat

The format defined replaces the time format of the operating system (regional settings).

Syntax:
TimeFormat

Example:
Set TimeFormat='hh:mm:ss';

TimestampFormat

The format defined replaces the date and time formats of the operating system (regional
settings).

Syntax:
TimestampFormat

Example:

The following examples use 1983-12-14T13:15:30Z as timestamp data to show the results of different SET
TimestampFormat statements. The date format used is YYYYMMDD and the time format is h:mm:ss TT. The
date format is specified in the SET DateFormat statement and the time format is specified in the SET
TimeFormat statement, at the top of the data load script.

Results
Example Result
SET TimestampFormat='YYYYMMDD'; 19831214
SET TimestampFormat='M/D/YY hh:mm:ss[.fff]"; 12/14/83 13:15:30
SET TimestampFormat='DD/MM/YYYY hh:mm:ss[.fff]"; 14/12/1983 13:15:30
SET TimestampFormat='DD/MM/YYYY hh:mm:ss[.fff] TT'; 14/12/1983 1:15:30 PM
SET TimestampFormat='YYYY-MM-DD hh:mm:ss[.fff] TT'; 1983-12-14 01:15:30

Script syntax and chart functions - Qlik Sense, August 2023 256

2 Working with variables in the data load editor

Examples: Load script

Example: Load script

In the first load script SET TimestampFormat="DD/MM/YYYY h:mm:ss[.fff] TT' is used. In the second load script
the timestamp format is changed to SET TimestampFormat="MM/DD/YYYY hh:mm:ss[.fff]'. The different results
show how the SET TimeFormat statement works with different time data formats.

The table below shows the data set that is used in the load scripts that follow. The second column of the table
shows the format of each timestamp in the data set. The first five timestamps follow 1SO 8601 rules but the
sixth does not.

Data set

Table showing the time data used and the format for each timestamp
in the data set.

transaction_timestamp time data format
2018-08-30 YYYY-MM-DD
20180830T193614.857 YYYYMMDDhhmmss.sss

20180830T193614.857+0200 YYYYMMDDhhmmss.sssthhmm

2018-09-16T12:30-02:00 YYYY-MM-DDhh:mmz+hh:mm
2018-09-16T13:15:30Z YYYY-MM-DDhh:mmZ
9/30/18 19:36:14 M/D/YY hh:mm:ss

In the Data load editor, create a new section, and then add the example script and run it. Then add, at least,
the fields listed in the results column to a sheet in your app to see the result.

Load script

SET FirstWeekbay=0;

SET Brokenweeks=1;

SET Referencebay=0;

SET DayNames='Mon;Tue;wWed;Thu;Fri;Sat;sun’;

SET LongDayNames='Monday;Tuesday;Wednesday;Thursday;Friday;Saturday;Sunday’;
SET DateFormat='YYYYMMDD';

SET TimestampFormat='DD/MM/YYYY h:mm:ss[.fff] TT';

Transactions:
Load

¥
’

Timestamp(transaction_timestamp, 'YYYY-MM-DD hh:mm:ss[.fff]') as LogTimestamp

Load * Inline [

transaction_id, transaction_timestamp, transaction_amount, transaction_quantity, discount,
customer_id, size, color_code

3750, 2018-08-30, 12423.56, 23, 0,2038593, L, Red

3751, 20180830T193614.857, 5356.31, 6, 0.1, 203521, m, orange

Script syntax and chart functions - Qlik Sense, August 2023 257

2 Working with variables in the data load ed

itor

3752, 20180830T193614.857+0200, 15.75, 1, 0.22, 5646471, S, blue

3753, 2018-09-16T12:30-02:00, 1251, 7, 0, 3036491, 1, Black

3754, 2018-09-16T13:15:30z, 21484.21, 1356, 75, 049681, xs, Red

3755, 9/30/18 19:36:14, -59.18, 2, 0.333333333333333, 2038593, M, Blue
1;

Results

Qlik Sense table showing results of the TimestampFormat interpretation
variable being used in the load script. The last timestamp in the data set
does not return a correct date.

transaction_id transaction_timestamp LogTimeStamp

3750 2018-08-30 2018-08-30 00:00:00
3751 20180830T193614.857 2018-08-30 19:36:14
3752 20180830T193614.857+0200 2018-08-30 17:36:14
3753 2018-09-16T12:30-02:00 2018-09-16 14:30:00
3754 2018-09-16T13:15:30Z 2018-09-16 13:15:30

3755 9/30/18 19:36:14 -

The next load script uses the same data set. However, it uses SET TimestampFormat="MM/DD/YYYY hh:mm:

[fff]' to match the non-ISO 8601 format of the sixth timestamp.

SS

In the Data load editor, replace the previous example script with the one below and run it. Then add, at least,

the fields listed in the results column to a sheet in your app to see the result.
Load script

SET FirstWeekbDay=0;

SET Brokenweeks=1;

SET Referencebay=0;

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;sun’;

SET LongDayNames='Monday;Tuesday;Wednesday;Thursday;Friday;Saturday;Sunday';
SET DateFormat='YYYYMMDD';

SET TimestampFormat='MM/DD/YYYY hh:mm:ss[.fff]"';

Transactions:
Load

%
’

Timestamp(transaction_timestamp, 'YYYY-MM-DD hh:mm:ss[.fff]') as LogTimestamp

Load * InTline [

transaction_id, transaction_timestamp, transaction_amount, transaction_quantity, discount,
customer_id, size, color_code

3750, 2018-08-30, 12423.56, 23, 0,2038593, L, Red

3751, 20180830T193614.857, 5356.31, 6, 0.1, 203521, m, orange

3752, 20180830T193614.857+0200, 15.75, 1, 0.22, 5646471, s, blue

3753, 2018-09-16T12:30-02:00, 1251, 7, 0, 3036491, 1, Black

3754, 2018-09-16713:15:30z, 21484.21, 1356, 75, 049681, xs, Red

Script syntax and chart functions - Qlik Sense, August 2023

258

2 Working with variables in the data load editor

3755, 9/30/18 19:36:14, -59.18, 2, 0.333333333333333, 2038593, M, Blue

1;
Results
Qlik Sense table showing results of the TimestampFormat interpretation
variable being used in the load script.

transaction_id transaction_timestamp LogTimeStamp
3750 2018-08-30 2018-08-30 00:00:00
3751 20180830T193614.857 2018-08-30 19:36:14
3752 20180830T193614.857+0200 2018-08-30 17:36:14
3753 2018-09-16T12:30-02:00 2018-09-16 14:30:00
3754 2018-09-16T13:15:30Z 2018-09-16 13:15:30
3755 9/30/18 19:36:14 2018-09-16 19:36:14

2.15 Direct Discovery variables

Direct Discovery system variables

DirectCacheSeconds

You can set a caching limit to the Direct Discovery query results for visualizations. Once this time limit is
reached, Qlik Sense clears the cache when new Direct Discovery queries are made. Qlik Sense queries the
source data for the selections and creates the cache again for the designated time limit. The result for each
combination of selections is cached independently. That is, the cache is refreshed for each selection
independently, so one selection refreshes the cache only for the fields selected, and a second selection
refreshes cache for its relevant fields. If the second selection includes fields that were refreshed in the first
selection, they are not updated in cache again if the caching limit has not been reached.

The Direct Discovery cache does not apply to Table visualizations. Table selections query the data source
every time.

The limit value must be set in seconds. The default cache limit is 1800 seconds (30 minutes).

The value used for DirectCacheSeconds is the value set at the time the DIRECT QUERY statement is
executed. The value cannot be changed at runtime.

Example:

SET DirectCacheSeconds=1800;

DirectConnectionMax
You can do asynchronous, parallel calls to the database by using the connection pooling capability. The load
script syntax to set up the pooling capability is as follows:

SET DirectConnectionMax=10;

Script syntax and chart functions - Qlik Sense, August 2023 259

2 Working with variables in the data load editor

The numeric setting specifies the maximum number of database connections the Direct Discovery code should
use while updating a sheet. The default setting is 1.

This variable should be used with caution. Setting it to greater than 1 is known to cause problems
when connecting to Microsoft SQL Server.

DirectUnicodeStrings

Direct Discovery can support the selection of extended Unicode data by using the SQL standard format for
extended character string literals (N’<extended string>’) as required by some databases (notably SQL Server).
The use of this syntax can be enabled for Direct Discovery with the script variable DirectUnicodeStrings.

Setting this variable to 'true' will enable the use of the ANSI standard wide character marker “N” in front of
the string literals. Not all databases support this standard. The default setting is 'false'.

DirectDistinctSupport

When a DIMENSION field value is selected in a Qlik Sense object, a query is generated for the source database.
When the query requires grouping, Direct Discovery uses the DISTINCT keyword to select only unique values.
Some databases, however, require the GROUP BY keyword. Set DirectDistinctSupport to 'false' to generate
GROUP BY instead of DISTINCT in queries for unique values.

SET DirectDistinctSupport='false';
If DirectDistinctSupport is set to true, then DISTINCT is used. If it is not set, the default behavior is to use
DISTINCT.

DirectEnableSubquery

In high cardinality multi-table scenarios, it is possible to generate sub queries in the SQL query instead of
generating a large IN clause. This is activated by setting DirectEnableSubquery to 'true’. The default value is
'false'.

When DirectEnableSubquery is enabled, you cannot load tables that are not in Direct Discovery
mode.

SET DirectEnableSubquery="true';

Teradata query banding variables

Teradata query banding is a function that enables enterprise applications to collaborate with the underlying
Teradata database in order to provide for better accounting, prioritization, and workload management. Using
query banding you can wrap metadata, such as user credentials, around a query.

Two variables are available, both are strings that are evaluated and sent to the database.

SQLSessionPrefix
This string is sent when a connection to the database is created.

SET SQLSessionPrefix = 'SET QUERY_BAND = ' & chr(39) & 'who=' & OSuser() & '";' & chr(39) &'
FOR SESSION;';

Script syntax and chart functions - Qlik Sense, August 2023 260

2 Working with variables in the data load editor

If OSuser() for example returns WA\sbt, this will be evaluated to SET QUERY_BAND = 'who=WA\sbt;' FOR
SESSION; , which is sent to the database when the connection is created.

SQLQueryPrefix
This string is sent for each single query.

SET SQLSessionPrefix = 'SET QUERY_BAND = ' & chr(39) & 'who=' & OSuser() & '";' & chr(39) &'
FOR TRANSACTION;';

Direct Discovery character variables

DirectFieldColumnDelimiter

You can set the character used as the field delimiter in Direct Query statements for databases that require a
character other than comma as the field delimiter. The specified character must be surrounded by single
quotation marks in the SET statement.

SET DirectFieldColumnDelimiter= '|'

DirectStringQuoteChar
You can specify a character to use to quote strings in a generated query. The default is a single quotation
mark. The specified character must be surrounded by single quotation marks in the SET statement.

SET DirectStringQuoteChar= ""';

DirectldentifierQuoteStyle

You can specify that non-ANSI quoting of identifiers be used in generated queries. At this time, the only non-
ANSI quoting available is GoogleBQ. The default is ANSI. Uppercase, lowercase, and mixed case can be used
(ANSI, ansi, Ansi).

SET DirectIdentifierQuoteStyle="GoogleBQ";
For example, ANSI quoting is used in the following SELECT statement:

SELECT [Quarter] FROM [qvTest].[sales] GROUP BY [Quarter]
When DirectldentifierQuoteStyle is set to "GoogleBQ", the SELECT statement would use quoting as follows:

SELECT [Quarter] FROM [qvTest.sales] GROUP BY [Quarter]

DirectldentifierQuoteChar

You can specify a character to control the quoting of identifiers in a generated query. This can be set to either
one character (such as a double quotation mark) or two (such as a pair of square brackets). The default is a
double quotation mark.

SET DirectIdentifierQuotechar='[]";
SET DirectIdentifierQuotechar="'""";
SET DirectIdentifierQuoteChar="' "';
SET DirectIdentifierQuotechar="'""";

DirectTableBoxListThreshold

When Direct Discovery fields are used in a Table visualization, a threshold is set to limit the number of rows
displayed. The default threshold is 1000 records. The default threshold setting can be changed by setting the
DirectTableBoxListThreshold variable in the load script. For example:

Script syntax and chart functions - Qlik Sense, August 2023 261

2 Working with variables in the data load editor

SET DirectTableBoxListThreshold=5000;
The threshold setting applies only to Table visualizations that contain Direct Discovery fields. Table
visualizations that contain only in-memory fields are not limited by the DirectTableBoxListThreshold setting.

No fields are displayed in the Table visualization until the selection has fewer records than the threshold limit.

Direct Discovery number interpretation variables

DirectMoneyDecimalSep
The decimal separator defined replaces the decimal symbol for currency in the SQL statement generated to
load data using Direct Discovery. This character must match the character used in DirectMoneyFormat.

Default valueis '."
Example:

Set DirectMoneyDecimalSep='.";

DirectMoneyFormat
The symbol defined replaces the currency format in the SQL statement generated to load data using Direct
Discovery. The currency symbol for the thousands separator should not be included.

Default value is '#.0000"'
Example:

Set DirectMoneyFormat="#.0000";

DirectTimeFormat
The time format defined replaces the time format in the SQL statement generated to load data using Direct
Discovery.

Example:

Set DirectTimeFormat="'hh:mm:ss"';

DirectDateFormat
The date format defined replaces the date format in the SQL statement generated to load data using Direct
Discovery.

Example:

Set DirectDateFormat='MM/DD/YYYY';

DirectTimeStampFormat
The format defined replaces the date and time format in the SQL statement generated in the SQL statement
generated to load data using Direct Discovery.

Example:

Set DirectTimestampFormat='M/D/YY hh:mm:ss[.fff]"';

Script syntax and chart functions - Qlik Sense, August 2023 262

2 Working with variables in the data load editor

2.16 Error variables

The values of all error variables will exist after the script execution. The first variable, ErrorMode, is input from
the user, and the last three are output from Qlik Sense with information on errors in the script.

Error variables overview

Each variable is described further after the overview. You can also click the variable name in the syntax to
immediately access the details for that specific variable.

Refer to the Qlik Sense online help for further details about the variable.

ErrorMode
This error variable determines what action is to be taken by Qlik Sense when an error is encountered during
script execution.

ErrorMode

ScriptError
This error variable returns the error code of the last executed script statement.

ScriptError

ScriptErrorCount
This error variable returns the total number of statements that have caused errors during the current script
execution. This variable is always reset to 0 at the start of script execution.

ScriptErrorCount

ScriptErrorList
This error variable will contain a concatenated list of all script errors that have occurred during the last script
execution. Each error is separated by a line feed.

ScriptErrorList

ErrorMode
This error variable determines what action is to be taken by Qlik Sense when an error is encountered during

script execution.

Syntax:
ErrorMode

Script syntax and chart functions - Qlik Sense, August 2023 263

2 Working with variables in the data load editor

Arguments:
Arguments
Argument Description
ErrorMode=1 The default setting. The script execution will halt and the user will be prompted for

action (non-batch mode).

ErrorMode =0 Qlik Sense will simply ignore the failure and continue script execution at the next script
statement.

ErrorMode =2 Qlik Sense will trigger an "Execution of script failed..." error message immediately on
failure, without prompting the user for action beforehand.

Example:

set ErrorMode=0;

ScriptError

This error variable returns the error code of the last executed script statement.

Syntax:
ScriptError

This variable will be reset to 0 after each successfully executed script statement. If an error occurs it will be set
to an internal Qlik Sense error code. Error codes are dual values with a numeric and a text component. The
following error codes exist:

Script error codes

Error

Description

code

0 No error. Dual value text
is empty.

1 General error.

2 Syntax error.

3 General ODBC error.

4 General OLE DB error.

5 General custom
database error.

6 General XML error.

7 General HTML error.

Script syntax and chart functions - Qlik Sense, August 2023 264

2 Working with variables in the data load editor

Error
code

10
11
12

16

Example:

Description

File not found.
Database not found.
Table not found.

Field not found.

File has wrong format.

Semantic error.

set ErrorMode=0;

LOAD * from abc.qvf;
if ScriptError=8 then
exit script;

//no file;

end if

ScriptErrorCount

This error variable returns the total number of statements that have caused errors during the current script

execution. This variable is always reset to 0 at the start of script execution.

Syntax:

ScriptErrorCount

ScriptErrorList

This error variable will contain a concatenated list of all script errors that have occurred during the last script

execution. Each error is separated by a line feed.

Syntax:

ScriptErrorList

Script syntax and chart functions - Qlik Sense, August 2023 265

2 Script expressions

2 Script expressions

Expressions can be used in both LOAD statements and SELECT statements. The syntax and

functions described here apply to the LOAD statement, and not to the SELECT statement, since

the latter is interpreted by the ODBC driver and not by Qlik Sense. However, most ODBC drivers

are often capable of interpreting a number of the functions described below.

Expressions consist of functions, fields and operators, combined in a syntax.

All expressions in a Qlik Sense script return a number and/or a string, whichever is appropriate. Logical

functions and operators return 0 for False and -1 for True. Number to string conversions and vice versa are
implicit. Logical operators and functions interpret 0 as False and all else as True.

The general syntax for an expression is:

Expression

expression ::= (constant
expression ::= (constant
expression ::= (constant
expression ::= (constant
expression ::= (constant

expression ::= (constant

where:

General syntax

Fields

constant

fieldref

operatorl expression
expression operator2 expression
function

(expression)

Operator

¢ constant is a string (a text, a date or a time) enclosed by single straight quotation marks, or a number.

Constants are written with no thousands separator and with a decimal point as the decimal separator.

* fieldref is a field name of the loaded table.

e operatorl is a unary operator (working on one expression, the one to the right).

e operator2 is a binary operator (working on two expressions, one on each side).

¢ function ::= functionname(parameters)

» parameters ::= expression { , expression }

The number and types of parameters are not arbitrary. They depend on the function used.

Expressions and functions can thus be nested freely, and as long as the expression returns an interpretable

value, Qlik Sense will not give any error messages.

Script syntax and chart functions - Qlik Sense, August 2023

266

3 Chart expressions

3 Chart expressions

A chart (visualization) expression is a combination of functions, fields, and mathematical
operators (+ * / =), and other measures. Expressions are used to process data in the app in order
to produce a result that can be seen in a visualization. They are not limited to use in measures.
You can build visualizations that are more dynamic and powerful, with expressions for titles,
subtitles, footnotes, and even dimensions.

This means, for example, that instead of the title of a visualization being static text, it can be
made from an expression whose result changes depending on the selections made.

For detailed reference regarding script functions and chart functions, see the Script syntax and chart
functions.

3.1 Defining the aggregation scope

There are usually two factors that together determine which records are used to define the value
of aggregation in an expression. When working in visualizations these factors are:

¢ Dimensional value (of the aggregation in a chart expression)

¢ Selections

Together, these factors define the scope of the aggregation. You may come across situations where you want
your calculation to disregard the selection, the dimension or both. In chart functions, you can achieve this by
using the TOTAL qualifier, set analysis or a combination of the two.

Aggregation: Method and description
Method Description

TOTAL Using the total qualifier inside your aggregation function disregards the dimensional value.

qualifier
The aggregation will be performed on all possible field values.

The TOTAL qualifier may be followed by a list of one or more field names within angle
brackets. These field names should be a subset of the chart dimension variables. In this case,
the calculation is made disregarding all chart dimension variables except those listed, that is,
one value is returned for each combination of field values in the listed dimension fields. Also,
fields that are not currently a dimension in a chart may be included in the list. This may be
useful in the case of group dimensions, where the dimension fields are not fixed. Listing all of
the variables in the group causes the function to work when the drill-down level changes.

Set Using set analysis inside your aggregation overrides the selection. The aggregation will be
analysis performed on all values split across the dimensions.

Script syntax and chart functions - Qlik Sense, August 2023 267

3 Chart expressions

Method

TOTAL
qualifier
and set
analysis

ALL
qualifier

Description

Using the TOTAL qualifier and set analysis inside your aggregation overrides the selection and

disregards the dimensions.

Using the ALL qualifier inside your aggregation disregards the selection and the dimensions.
The equivalent can be achieved with the {1} set analysis statement and the TOTAL qualifier:

=sum(AT11 sales)

=sum({1} Total sales)

Example: TOTAL qualifier

The following example shows how TOTAL can be used to calculate a relative share. Assuming that Q2 has

been selected, using TOTAL calculates the sum of all values disregarding the dimensions.

Year

2012

2013

Quarter Sum(Amount)
3000

Q2 1700

Q2 1300

Example: Total qualifier

Sum(TOTAL Amount) Sum(Amount)/Sum(TOTAL Amount)

3000

3000

3000

100%
56,7%

43,3%

To show the numbers as a percentage, in the properties panel, for the measure you want to show as

a percentage value, under Number formatting, select Number, and from Formatting, choose

Simple and one of the % formats.

Example: Set analysis

The following example shows how set analysis can be used to make a comparison between data sets before

any selection was made. Assuming that Q2 has been selected, using set analysis with the set definition {1}

calculates the sum of all values disregarding any selections but split by the dimensions.

Year

2012

2012

2012

2012

Example: Set analysis

Quarter Sum(Amount)
3000

Q1 0

Q3 0

Q4 0

Q2 1700

Sum({1} Amount)
10800

1100

1400

1800

1700

Sum(Amount)/Sum({1} Amount)
27,8%

0%

0%

0%

100%

Script syntax and chart functions - Qlik Sense, August 2023

268

3 Chart expressions

Year

2013

2013

2013

2013

Quarter
Q1
Q3
Q4
Q2

Sum(Amount)
0
0
0

1300

Sum({1} Amount)
1000
1100
1400

1300

Example: TOTAL qualifier and set analysis

Sum(Amount)/Sum({1} Amount)
0%
0%
0%

100%

The following example shows how set analysis and the TOTAL qualifier can be combined to make a

comparison between data sets before any selection was made and across all dimensions. Assuming that Q2
has been selected, using set analysis with the set definition {1} and the TOTAL qualifier calculates the sum of
all values disregarding any selections and disregarding the dimensions.

Year

2012

2013

Data used in examples:

Quarter

Q2
Q2

AggregationScope:

LOAD *

2012 Q1
2012 Q2
2012 Q3
2012 Q4
2013 Q1
2013 Q2
2013 Q3
2013 Q4

3.2

inline [
Year Quarter Amount

1100
1700
1400
1800
1000
1300
1100

Example: TOTAL qualifier and set analysis

Sum
(Amount)

3000
1700

1300

1400] (delimiter is ' ');

Set analysis

Sum({1} TOTAL
Amount)

10800
10800

10800

Sum(Amount)/Sum({1} TOTAL
Amount)

27,8%
15,7%

12%

When you make a selection in an app, you define a subset of records in the data. Aggregation

functions, such as sumQ), Max(), Min(), Avg(), and count() are calculated based on this subset.

In other words, your selection defines the scope of the aggregation, it defines the set of records on which

calculations are made.

Set analysis offers a way of defining a scope that is different from the set of records defined by the current
selection. This new scope can also be regarded as an alternative selection.

Script syntax and chart functions - Qlik Sense, August 2023

269

3 Chart expressions

This can be useful if you want to compare the current selection with a particular value, for example last year’s
value or the global market share.

Set expressions

Set expressions can be used inside and outside aggregation functions, and are enclosed in curly brackets.
Example: Inner set expression

sum({$<vear={2021}>} sales)

Example: Outer set expression

{<vear={2021}>} sum(Sales) / Count(distinct Customer)
A set expression consists of a combination of the following elements:

« Identifiers. A set identifier represents a selection, defined elsewhere. It also represents a specific set of
records in the data. It could be the current selection, a selection from a bookmark, or a selection from
an alternate state. A simple set expression consists of a single identifier, such as the dollar sign, {$},
which means all records in the current selection.

Examples: $, 1, BookMarkl, State2

e Operators. A set operator can be used to create unions, differences or intersections between different
set identifiers. This way, you can create a subset or a superset of the selections defined by the set
identifiers.

Examples: +, -, *, /

¢ Modifiers. A set modifier can be added to the set identifier to change its selection. A modifier can also
be used on its own and will then modify the default identifier. A modifier must be enclosed in angle
brackets <..>.

Examples: <year={2020}>, <Supplier={ACME}>

The elements are combined to form set expressions.

Elements in a set expression

Set expression
|

S?t modifierl's

Sum (| {8k — {2021} >+1k —{'Sweden'}>} Sales)
| 1]

|
Set identifiers LSet operator

The set expression above, for example, is built from the aggregation sum(sales).

The first operand returns sales for the year 2021 for the current selection, which is indicated by the § set
identifier and the modifier containing the selection of year 2021. The second operand returns sales for
sweden, and ignores the current selection, which is indicated by the 1 set identifier.

Script syntax and chart functions - Qlik Sense, August 2023 270

3 Chart expressions

Finally, the expression returns a set consisting of the records that belongs to any of the two set operands, as
indicated by the + set operator.

Examples

Examples that combine the set expression elements above are available in the following topics:

Natural sets

Usually, a set expression represents both a set of records in the data model, and a selection that defines this
subset of data. In this case, the set is called a natural set.

Set identifiers, with or without set modifiers, always represent natural sets.

However, a set expression using set operators also represents a subset of the records, but can generally still
not be described using a selection of field values. Such an expression is a non-natural set.

For example, the set given by {1-$} cannot always be defined by a selection. It is therefore not a natural set.
This can be shown by loading the following data, adding it to a table, and then making selections using filter
panes.

Load * InTine
[Diml, Dim2, Number
A, X, 1

A, Y, 1
B, X, 1
B, Y, 1];

By making selections for bim1 and pim2, you get the view shown in the following table.

Table with natural and non-natural sets

Dim1 . Dim2
Z]"11i Q. Dim2 Q. Sum({5} Number Sum({1-5} Number
B A X 1 0
A ¥]
B X 0

B Y 0

The set expression in the first measure uses a natural set: it corresponds to the selection that is made {$}.

The second measure is different. It uses {1-$}. It is not possible to make a selection that corresponds to this
set, so it is a non-natural set.

This distinction has a number of consequences:

» Set modifiers can only be applied to set identifiers. They cannot be applied to an arbitrary set
expression. For example, it is not possible to use a set expression such as:

Script syntax and chart functions - Qlik Sense, August 2023 271

3 Chart expressions

{ (BMO1 * BM02) <Field={x,y}> }
Here, the normal (round) brackets imply that the intersection between BM01 and BM02 should be
evaluated before the set modifier is applied. The reason is that there is no element set that can be
modified.

¢ You cannot use non-natural sets inside the P() and EQ) element functions. These functions return an
element set, but it is not possible to deduce the element set from a non-natural set.

¢ A measure using a non-natural set cannot always be attributed to the right dimensional value if the
data model has many tables. For example, in the following chart, some excluded sales numbers are

attributed to the correct Country, whereas others have NULL as Country.
Chart with non-natural set

. ProductCategory

’ ProductCategory L | Country O Values
5]

© Baby Clothes 127791.28 0

— © Children's Clothes 0 8158154

© Men's Clothes [140987.45

© Men's Footwear 5] 232T4T.44

© Sportzwear a 2T02T2.TE

Vo © Swimwear o 295488
2 Women's Clothes o} 545548.5

o e @ Women's Footwear 5} 14065444

< >

Whether or not the assignment is made correctly depends on the data model. In this case, the number
cannot be assigned if it pertains to a country that is excluded by the selection.

Identifier Description

1 Represents the full set of all the records in the application, irrespective of any selections
made.

S Represents the records of the current selection. The set expression {$} is thus the

equivalent to not stating a set expression.

S1 Represents the previous selection. $2 represents the previous selection-but-one, and so on.

S_1 Represents the next (forward) selection. $_2 represents the next selection-but-one, and so
on.

BMO1 You can use any bookmark ID or bookmark name.

MyAltState You can reference the selections made in an alternate state by its state name.

Script syntax and chart functions - Qlik Sense, August 2023 272

3 Chart expressions

Example Result

sum ({1} Sales) Returns total sales for the app, disregarding selections but not the dimension.
sum ({$} Sales) Returns the sales for the current selection, that is, the same as sum(Sales).
sum ({$1} Sales) Returns the sales for the previous selection.

sum ({BM01} Sales) Returns the sales for the bookmark named BMO01.

Example Result

sum({$<OrderDate = Returns the sales for the current selection where OrderDate =

DeliveryDate>} Sales) DeliveryDate.

sum({1<Region = {US}>} Sales) Returns the sales for region US, disregarding the current selection.

sum({$<Region = >} Sales) Returns the sales for the selection, but with the selection in Region
removed.

sum({<Region = >} Sales) Returns the same as the example above. When the set to modify is

omitted, $ is assumed.

sum({$<Year={2000}, Region= Returns the sales for the current selection, but with new selections both
{“U*”}>} Sales) in Year and in Region.

Set identifiers

A set identifier represents a set of records in the data; either all the data or a subset of the data.
It is the set of records defined by a selection. It could be the current selection, all data (no
selection), a selection from a bookmark, or a selection from an alternate state.

In the example sum({$<vear = {2009}>} sales), the identifier is the dollar sign: $. This represents the
current selection. It also represents all the possible records. This set can then altered by the modifier part of
the set expression: the selection 2009 in vear is added.

In a more complex set expression, two identifiers can be used together with an operator to form a union, a
difference, or an intersection of the two record sets.

The following table shows some common identifiers.
Examples with common identifiers
Identifier Description

1 Represents the full set of all the records in the application, irrespective of any
selections made.

$ Represents the records of the current selection in the default state. The set
expression {$3} is thus usually the equivalent to not stating a set expression.

$1 Represents the previous selection in the default state. $2 represents the previous
selection-but-one, and so on.

Script syntax and chart functions - Qlik Sense, August 2023 273

3 Chart expressions

Identifier Description

$-1 Represents the next (forward) selection. $_2 represents the next selection-but-one,
and so on.

BMO1 You can use any bookmark ID or bookmark name.

Altstate You can reference an alternate state by its state name.

Altstate::BMO1 A bookmark contains the selections of all states, and you can reference a specific

bookmark by qualifying the bookmark name.

The following table shows examples with different identifiers.

Examples with different identifiers

Example Result

sum ({1} sales) Returns total sales for the app disregarding selections but not
the dimension.

sum ({$} sales) Returns the sales for the current selection, that is, the same

as sum(sales).
sum ({$1} sales) Returns the sales for the previous selection.

Sum ({BMO1} Returns the sales for the bookmark named BmO01.
sales)

Set operators

Set operators are used to include, exclude, or intersect data sets. All operators use sets as operands and

return a set as result.
You can use set operators in two different situations:

¢ To perform a set operation on set identifiers, representing sets of records in data.

e To perform a set operation on the element sets, on the field values, or inside a set modifier.
The following table shows the operators that can be used in set expressions.

Operators

Operator Description

+ Union. This binary operation returns a set consisting of the records or elements that belong
to any of the two set operands.

- Exclusion. This binary operation returns a set consisting of the records or elements that
belong to the first but not the other of the two set operands. Also, when used as a unary

operator, it returns the complement set.

Intersection. This binary operation returns a set consisting of the records or elements that
belong to both set operands.

/ Symmetric difference (xoR). This binary operation returns a set consisting of the records or
elements that belong to either, but not both set operands.

Script syntax and chart functions - Qlik Sense, August 2023 274

3 Chart expressions

The following table shows examples with operators.

Examples with operators

Example Result

sum ({1-$} sales) Returns sales for everything excluded by current selection.

sum ({$*BMO1} sales) Returns sales for the intersection between the selection and bookmark
#160;BM01.

sum ({-($+BMO1)} sales) Returns sales excluded by the selection and bookmark BvMO1.

sum ({$<vear= Returns sales for the year 2009 associated with the current selections and

{2009}>+1<Country=

add the full set of data associated with the country sweden across all years.
{'sweden'}>} Ssales)

sum ({$<Country={"s*"}+ Returns the sales for countries that begin with s or end with Tand.
{"*1and"}>} sales)

Set modifiers

Set expressions are used to define the scope of a calculation. The central part of the set
expression is the set modifier that specifies a selection. This is used to modify the user selection,
or the selection in the set identifier, and the result defines a new scope for the calculation.

The set modifier consists of one or more field names, each followed by a selection that should be made on the
field. The modifier is enclosed by angled brackets: < >

For example:

e Sum ({$<vear = {2015}>} sales)
e Count ({l1<Country = {Germany}>} distinct OrderiD)

e sum ({$<vear = {2015}, Country = {Germany}>} Sales)

Element sets

An element set can be defined using the following:

¢ Alist of values
e Asearch
¢ Areference to another field

¢ Aset function

If the element set definition is omitted, the set modifier will clear any selection in this field. For example:

sum({$<vear = >} sales)

Script syntax and chart functions - Qlik Sense, August 2023 275

3 Chart expressions

Examples: Chart expressions for set modifiers based on element sets

Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

MyTable:

Load * InTline [

Country, Year, Sales
Argentina, 2014, 66295.03
Argentina, 2015, 140037.89
Austria, 2014, 54166.09
Austria, 2015, 182739.87
Belgium, 2014, 182766.87
Belgium, 2015, 178042.33
Brazil, 2014, 174492.67
Brazil, 2015, 2104.22
Canada, 2014, 101801.33
Canada, 2015, 40288.25
Denmark, 2014, 45273.25
Denmark, 2015, 106938.41
Finland, 2014, 107565.55
Finland, 2015, 30583.44
France, 2014, 115644.26
France, 2015, 30696.98
Germany, 2014, 8775.18
Germany, 2015, 77185.68
1;

Chart expressions

Create a table in a Qlik Sense sheet with the following chart expressions.

Table - Set modifiers based on element sets

Sum
Sum Sum Sum({1<Year=

({1<Country=

Country Sum(Sales) {Belgium}>} ({1<Country= ({1<Country= {$(=Max
elgium
& {"*A*"}>} Sales) {"A*"}>} Sales) (Year))}>} Sales)

Sales)
Totals 1645397.3 360809.2 1284588.1 443238.88 788617.07
Argentina 206332.92 0 206332.92 206332.92 140037.89
Austria 236905.96 0 236905.96 236905.96 182739.87
Belgium 360809.2 360809.2 0 0 178042.33
Brazil 176596.89 0 176596.89 0 2104.22
Canada 142089.58 0 142089.58 0 40288.25

Script syntax and chart functions - Qlik Sense, August 2023 276

3 Chart expressions

Sum
({1<Count Sum Sum Sum({1<Year=
ountry=

Country Sum(Sales) . y ({1<Country= ({1<Country= {$(=Max

{Belgium}>}

sales) {"*A*"}>} Sales) {"A*"}>}Sales) (Year))}>} Sales)

ales
Denmark 152211.66 0 152211.66 0 106938.41
Finland 138148.99 0 138148.99 0 30583.44
France 146341.24 0 146341.24 0 30696.98
Germany 85960.86 0 85960.86 0 77185.68
Explanation

¢ Dimensions:

o country

* Measures:
o sum(Sales)
Sum sales with no set expression.
o sum({1l<Country={Belgium}>}sSales)
Select Belgium, and then sum corresponding sales.
o sum({1l<Country={"*A*"}>}Sales)
Select all countries that have an A, and then sum corresponding sales.
o sum({l<Country={"A*"}>}sales)
Select all countries that begin with an A, and then sum corresponding sales.
o sum({l<vear={$(=Max(yvear))}>}sSales)
Calculate the max(vear), which is 2015, and then sum corresponding sales.

Set modifiers based on element sets

e

Sum({1=Country = Sum({1=Country = Sum({1=Country = Sum({1<Year=
CountAr)f Q Sum (Sales) {Belgium}=} Sales) {"*A*"}=]} Sales) {"A*"}=]} Sales) {S(=Max(Year))}=} Sales)
Totals 1645397.3 360809.2 1284588.1 443238.88 788617.07
Argentina 206332.92 0 206332.92 206332.92 140037.89
Austria 236905.96 0 236905.96 236905.96 182739.87
Belgium 360809.2 360809.2 0 0 178042.33
Brazil 176596.89 0 176596.89 0 2104.22
Canada 142089.58 0 142089.58 0 40288.25
Denmark 152211.66 0 152211.66 0 106938.41
Finland 138148.99 0 138148.99 0 30583.44
France 146341.24 0 146341.24 0 30696.98
Germany 85960.86 0 85960.86 0 77185.68

Script syntax and chart functions - Qlik Sense, August 2023 277

3 Chart expressions

Listed values
The most common example of an element set is one that is based on a list of field values enclosed in curly
brackets. For example:

e {$<Country = {Canada, Germany, Singapore}>}

e {$<vear = {2015, 2016}>}
The inner curly brackets define the element set. The individual values are separated by commas.

Quotes and case sensitivity

If the values contain blanks or special characters, the values need to be quoted. Single quotes will be a literal,
case-sensitive match with a single field value. Double quotes imply a case-insensitive match with one or
several field values. For example:

e <Country = {'New Zealand'}>
Matches New zealand only.
e <Country = {"New Zealand"}>
Matches New zealand, NEw ZEALAND, and new zealand.

Dates must be enclosed in quotes and use the date format of the field in question. For example:
e <ISO_Date = {'2021-12-31'}>

{'12/31/2021"'}>

{'31/12/2021"'}>

e <US_Date

e <UK_Date

Double quotes can be substituted by square brackets or by grave accents.

Searches

Element sets can also be created through searches. For example:

e <Country = {"C*"}>

e <Ingredient = {"*garlic*"}>
e <Year = {">2015"}>

e <Date = {">12/31/2015"}>

Wildcards can be used in text searches: An asterisk (*) represents any number of characters, and a question
mark (?) represents a single character. Relational operators can be used to define numeric searches.

You should always use double quotes for searches. Searches are case-insensitive.

Dollar expansions

Dollar expansions are needed if you want to use a calculation inside your element set. For example, if you
want to look at the last possible year only, you can use:

<Year = {$(=Max(Year))}>

Selected values in other fields

Modifiers can be based on the selected values of another field. For example:

Script syntax and chart functions - Qlik Sense, August 2023 278

3 Chart expressions

<OrderDate = DeliverybDate>

This modifier will take the selected values from peliverybate and apply those as a selection on orderpate. If
there are many distinct values - more than a couple of hundred - then this operation is CPU intensive and
should be avoided.

Element set functions

The element set can also be based on the set functions P() (possible values) and Q) (excluded values).
For example, if you want to select countries where the product cap has been sold, you can use:
<Country = P({1l<Product={Cap}>} Country)>

Similarly, if you want to pick out the countries where the product cap has not been sold, you can use:

<Country = E({l<Product={Cap}>} Country)>

Set modifiers with searches

You can create element sets through searches with set modifiers.

For example:

e <Country = {"C*"}>
e <Year = {">2015"}>

e <Ingredient = {"*garlic*"}>
Searches should always be enclosed in double quotes, square brackets or grave accents. You can use a list
with a mixture of literal strings (single quotes) and searches (double quotes). For example:
<Product = {'Nut', "*Bolt", washer}>

Text searches

Wildcards and other symbols can be used in text searches:

¢ An asterisk (*) will represent any number of characters.
¢ A question mark (?) will represent a single character.

¢ Acircumflex accent (*) will mark the beginning of a word.

For example:

e <Country = {"c*", "*land"}>
Match all countries beginning with a ¢ or ending with 1and.
e <Country = {"*Az*"}>
This will match all countries that have a word beginning with z, such as New zealand.

Numeric searches

You can make numeric searches using these relational operators: >, >=, <, <=

A numeric search always begins with one of these operators. For example:

Script syntax and chart functions - Qlik Sense, August 2023 279

3 Chart expressions

e <Year = {">2015"}>
Match 2016 and subsequent years.

e <Date = {">=1/1/2015<1/1/2016"}>
Match all dates during 2015. Note the syntax for describing a time range between two dates. The date
format needs to match the date format of the field in question.

Expression searches

You can use expression searches to make more advanced searches. An aggregation is then evaluated for each
field value in the search field. All values for which the search expression returns true are selected.

An expression search always begins with an equals sign: =

For example:

<Customer = {"=Sum(Sales)>1000"}>

This will return all customers with a sales value greater than 1000. sum(sales) is calculated on the current
selection. This means that if you have a selection in another field, such as the product field, you will get the
customers that fulfilled the sales condition for the selected products only.

If you want the condition to be independent of the selection, you need to use set analysis inside the search
string. For example:

<Customer = {"=Sum({1} sales)>1000"}>

The expressions after the equals sign will be interpreted as a boolean value. This means that if it evaluates to
something else, any non-zero number will be interpreted as true, while zero and strings are interpreted as
false.

Quotes

Use quotation marks when the search strings contain blanks or special characters. Single quotes imply a
literal, case-sensitive match with a single field value. Double quotes imply a case insensitive search that
potentially matches multiple field values.

For example:

e <Country = {'New Zealand'}>
Match New zealand only.
e <Country = {"New Zealand"}>
Match New zealand, NEw ZEALAND, and new zealand

Double quotes can be substituted by square brackets or by grave accents.

In previous versions of Qlik Sense, there was no distinction between single quotes and double
quotes, and all quoted strings were treated as searches. To maintain backward compatibility, apps
created with older versions of Qlik Sense will continue to work as they did in previous versions. Apps
created with Qlik Sense November 2017 or later will respect the difference between the two types of
quotes.

Script syntax and chart functions - Qlik Sense, August 2023 280

3 Chart expressions

Examples: Chart expressions for set modifiers with searches

Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

MyTable:

Load

Year(Date) as Year,

Date#(Date, 'YYYY-MM-DD') as ISO_Date,
Date(Date#(Date, 'YYYY-MM-DD'), '"M/D/YYYY') as US_Date,
Country, Product, Amount

Inline

[Date, Country, Product, Amount
2018-02-20, canada, washer, 6
2018-07-08, Germany, Anchor bolt, 10
2018-07-14, Germany, Anchor bolt, 3
2018-08-31, France, Nut, 2
2018-09-02, czech Republic, Bolt, 1
2019-02-11, czech Republic, Bolt, 3
2019-07-31, Cczech Republic, washer, 6
2020-03-13, France, Anchor bolt, 1
2020-07-12, canada, Anchor bolt, 8
2020-09-16, France, washer, 1];

Example 1: Chart expressions with text searches

Create a table in a Qlik Sense sheet with the following chart expressions.

Table - Set modifiers with text searches

Countr Sum Sum({<Country= Sum({<Country= Sum({<Product=
u
y (Amount) {"c*"}>} Amount) {"*AR*"}>} Amount) {"*bolt*"}>} Amount)
Totals 41 24 10 26
Canada 14 14 0 8
Czech 10 10 10 4
Republic
France 4 0 0 1
Germany 13 0 0 13

Explanation

¢ Dimensions:

o country

Script syntax and chart functions - Qlik Sense, August 2023 281

3 Chart expressions

e Measures:

o Sum(Amount)

Sum Amount with no set expression.

o sum({<Country={"C*"}>}Amount)

Sum Amount for all countries that start with ¢, such as canada and czech Republic.
o sum({<Country={"*AR*"}>}Amount)

Sum amount for all countries that have a word that starts with R, such as czech RepubTic.
o sum({<Product={"*bolt*"}>}Amount)

Sum amount for all products that contain the string bo1t, such as Bo1t and Anchor bolt.

Set modifiers with text searches

Sum
Cou r11ryA Q (Amount)
Totals 41
Canada 14
Czech Republic 10
France 4
Germany 13

Sum ({<Country={"C*""}=} Sum({=Country={""*R""}=} Sum({=Product={""bolt*"}=}
Amount) Amount) Amount)

24 10 26

14 0 8

10 10 4

0 0 1

0 0 13

Example 2: Chart expressions with numeric searches

Create a table in a Qlik Sense sheet with the following chart expressions.

c t Sum
ountr

y (Amount)
Totals 41
Canada 14
Czech 10
Republic
France 4

Germany 13

Explanation

¢ Dimensions:

o Country

¢ Measures:

Table - Set modifiers with numeric searches

Sum({<Year= Sum({<ISO_Date= Sum({<US_Date=

{">2019"}>} {">=2019-07- {">=4/1/2018<=12/31/2018"}>}
Amount) 01"}>} Amount) Amount)

10 16 16

8 8 0

0 6 1

2 2 2

0 0 13

Script syntax and chart functions - Qlik Sense, August 2023 282

3 Chart expressions

o Sum(Amount)
Sum Amount with no set expression.

o sum({<Year={">2019"}>}Amount)
Sum Amount for all years after 2019.

o sum({<ISo_bate={">=2019-07-01"}>}Amount)
Sum Amount for all dates on or after 2019-07-01. The format of the date in the search must
match the format of the field.

o sum({<US_bate={">=4/1/2018<=12/31/2018"}>}Amount)
Sum Amount for all dates from 4/1/2018 to 12/31/2018, including the start and end dates. The
format of the dates in the search must match the format of the field.

Set modifiers with numeric searches

Sum Sum{{<Year={"=2019"}} Sum([<IS0_Date={"==2019-07-01"}} Sum({<US_Date={">=4/1/2018==12

Country (Amount) Amount) Amount) /31/2018"}>} Amount)
F Y

Totals 41 10 16 16
Canada 14 8 8 0
Czech Republic 10 0 -] 1
France 4 2 2 2
Germany 13 0 0 13

Example 3: Chart expressions with expression searches

Create a table in a Qlik Sense sheet with the following chart expressions.

Table - Set modifiers with expression searches

Sum({<Country= Sum({<Product=
Sum({<Country=
Sum {"=Sum L {"=Count
Country {"=Count(distinct
(Amount) (Amount)>10"}>} (Amount)>3"}>}
Product)=1"}>} Amount)
Amount) Amount)
Totals 41 27 13 22
Canada 14 14 0 8
Czech 10 0 0 0
Republic
France 4 0 0 1
Germany 13 13 13 13

Explanation

¢ Dimensions:

o country

Script syntax and chart functions - Qlik Sense, August 2023 283

3 Chart expressions

* Measures:
o Sum(Amount)
Sum Amount with no set expression.
o sum({<Country={"=Sum(Amount)>10"}>3}Amount)
Sum Amount for all countries that have an aggregated sum of Amount greater than 10.
o sum({<Country={"=Count(distinct Product)=1"}>}Amount)
Sum Amount for all countries that are associated with exactly one distinct product.
o sum({<Product={"=Count(Amount)>3"}>}Amount)
Sum Amount for all countries that have more than three transactions in the data.

Set modifiers with expression searches

Sum({=<Country= Sum({=Product=

Q Sum {"=Sum(Amount)>10"}>} Sum({=Country=["=Count{distinct {"=Count{Amount)=3"}=}
CountryA (Amount) Amount) Product)=1"}=} Amount) Amount)
Totals 31 27 13 22
Canada 14 14 0 8
Czech Republic 10 0 0 0
France 4 0 1] 1
Germany 13 13 13 13
Examples Results
sum({$-1<Product = Returns the sales for current selection, excluding transactions
{“*Internal*”, “*Domestic*”}>} pertaining to products with the string 'Internal’ or 'Domestic’ in the
Sales) product name.
sum({$S<Customer = {“=Sum Returns the sales for current selection, but with a new selection in the
({1<Year = {2007}>} Sales) > 'Customer’ field: only customers who during 2007 had a total sales of
1000000”}>} Sales) more than 1000000.

Set modifiers with dollar-sign expansions

Dollar-sign expansions are constructs that are calculated before the expression is parsed and
evaluated. The result is then injected into the expression instead of the $(.). The calculation of
the expression is then made using the result of the dollar expansion.

The expression editor shows a dollar expansion preview so that you can verify what your dollar-sign expansion
evaluates to.

Script syntax and chart functions - Qlik Sense, August 2023 284

3 Chart expressions

Dollar-sign expansion preview in expression editor
Edit expression

Sum({< ={">=5% {(=AddYears (Max (US Date),-1))"}>}

O ox

sum({=US_Date={">=9/16/2019"}=1Amount)

Use dollar-sign expansions when you want to use a calculation inside your element set.

For example, if you want to look at the last possible year only, you can use the following construction:
<Year = {$(=Max(year))}>

Max(year) is calculated first, and the result would be injected in the expression instead of the $(..).
The result after the dollar expansion will be an expression such as the following:

<Year = {2021}>

The expression inside the dollar expansion is calculated based on the current selection. This means that if you
have a selection in another field, the result of the expression will be affected.

If you want the calculation to be independent of the selection, use set analysis inside the dollar expansion. For
example:

<Year = {$(=Max({1} Year))}>

Strings

When you want the dollar expansion to result in a string, normal quoting rules apply. For example:
<Country = {'$(=FirstSortedvalue(Country,Date)'}>

The result after the dollar expansion will be an expression such as the following:

<Country = {'New Zealand'}>

You will get a syntax error if you do not use the quotation marks.

Numbers

When you want the dollar expansion to result in a number, ensure that the expansion gets the same
formatting as the field. This means that you sometimes need to wrap the expression in a formatting function.

For example:

<Amount = {$(=Num(Max(Amount), '###0.00'))}>

The result after the dollar expansion will be an expression such as the following:

Script syntax and chart functions - Qlik Sense, August 2023 285

3 Chart expressions

<Amount = {12362.00}>
Use a hash to force the expansion to always use decimal point and no thousand separator . For example:
<Amount = {$(#=Max(Amount))}>

Dates

When you want the dollar expansion to result in a date, ensure that the expansion has the correct formatting.
This means that you sometimes need to wrap the expression in a formatting function.

For example:

<Date = {'$(=Date(Max(Date)))'}>

The result after the dollar expansion will be an expression such as the following:
<Date = {'12/31/2015'}>

Just as with strings, you need to use the correct quotes.

A common use case is that you want your calculation to be limited to the last month (or year). Then you can
use a numeric search in combination with the AddMonths () function.

For example:

<Date = {">=$(=AddMonths(Today(),-1))"}>
The result after the dollar expansion will be an expression such as the following:
<Date = {">=9/31/2021"}>

This will pick out all events that have occurred the last month.

Example: Chart expressions for set modifiers with dollar-sign expansions

Example - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

Let vToday = Today(Q);

MyTable:

Load

Year(Date) as Year,

Date#(Date, 'YYYY-MM-DD') as ISO_Date,
Date(Date#(Date, 'YYYY-MM-DD'), '"M/D/YYYY') as US_Date,
Country, Product, Amount

Inline

[Date, Country, Product, Amount
2018-02-20, canada, washer, 6
2018-07-08, Germany, Anchor bolt, 10
2018-07-14, Germany, Anchor bolt, 3
2018-08-31, France, Nut, 2

Script syntax and chart functions - Qlik Sense, August 2023 286

3 Chart expressions

2018-09-02,
2019-02-11,
2019-07-31,
2020-03-13,
2020-07-12,
2021-10-15,

Czech Republic, Bolt, 1
Czech Republic, Bolt, 3
Czech Republic, washer, 6
France, Anchor bolt, 1
Canada, Anchor bolt, 8
France, Washer, 1];

Chart expressions with dollar-sign expansions

Create a table in a Qlik Sense sheet with the following chart expressions.

Country

Totals
Canada

Czech
Republic

France

Germany

Explanation

Table - Set modifiers with dollar-sign expansions

Sum({<ISO_Date= Sum({<US_Date=
Sum({<US_Date= .
o $(vToday)yp} L oCpate(Min(ISO_ {">=$(=AddYears(Max
(Amount) y Date),'YYYY-MM-DD'))"}>} (US_Date),-1))"}>}
Amount)
Amount) Amount)
41 1 6 1
14 0 6 0
10 0 0 0
4 1 0 1
13 0 0 0

¢ Dimensions:

o

country

e Measures:

(o]

Sum(Amount)

Sum Amount with no set expression.

sum({<Us_bDate={"'$(vToday) '}>}Amount)

Sum amount for all records where the us_pate is the same as in the variablevToday.
sum({<1so_bate={"$(=Date(Min(ISO_Date), 'YYYY-MM-DD'))"}>}Amount)

Sum Amount for all records where the 1s0_bate is the same as the first (smallest) possible 1so_
Date. The pate() function is needed to ensure that the format of the date matches that of the
field.

sum({<Us_bate={">=$(=AddYvears(Max(US_Date),-1))"}>}Amount)

Sum Amount for all records that have a us_bate after or on the date a year before the latest
(largest) possible us_pate. The Addyears () function will return a date in the format specified by
the variable pateFormat, and this needs to match the format of the field us_bate.

Script syntax and chart functions - Qlik Sense, August 2023 287

3 Chart expressions

Set modifiers with dollar-sign expansions

Sum({<IS0_Date= Sum({<US_Date=

Q Sum Sum({=US_Date={'$(vToday)'}=} {"S(=Date(Min(ISO_Date),YYYY-MM- [">=S(=AddYears(Max(US_Date),-1))"}*}
Cm:ntry“ (Amount) Amount) DD'))"}>} Amount) Amount)
Totals 41 1 6 1
Canada 14 0 6 0
Czech Republic 10 0 0 0
France 4 1 0 1
Germany 13 0 0 0
Examples Results
sum({$<Year = Returns the sales for the previous year in relation to current selection. Here, a
{$(#vLastYear)}>} variable vLastYear containing the relevant year is used in a dollar-sign expansion.
Sales)
sum({$<Year = Returns the sales for the previous year in relation to current selection. Here, a
{S(#=Only(Year)-1)}>} dollar-sign expansion is used to calculate previous year.
Sales)

Set modifiers with set operators
Set operators are used to include, exclude, or intersect different element sets. They combine the

different methods to define element sets.

The operators are the same as those used for set identifiers.
Operators
Operator Description

+ Union. This binary operation returns a set consisting of the records or elements that belong
to any of the two set operands.

Exclusion. This binary operation returns a set consisting of the records or elements that
belong to the first but not the other of the two set operands. Also, when used as a unary
operator, it returns the complement set.

Intersection. This binary operation returns a set consisting of the records or elements that
belong to both set operands.

/ Symmetric difference (x0R). This binary operation returns a set consisting of the records or
elements that belong to either, but not both set operands.

For example, the following two modifiers define the same set of field values:

e <Year = {1997, "20*"}>
e <Year = {1997} + {"20*"}>

Script syntax and chart functions - Qlik Sense, August 2023 288

3 Chart expressions

Both expressions select 1997 and the years that begin with 20. In other words, this is the union of the two
conditions.

Set operators also allow for more complex definitions. For example:
<vyear = {1997, "20*"} - {2000}>

This expression will select the same years as those above, but in addition exclude year 2000.

Examples: Chart expressions for set modifiers with set operators

Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

MyTable:

Load

Year(Date) as Year,

Date#(Date, 'YYYY-MM-DD') as ISO_Date,
Date(Date#(Date, 'YYYY-MM-DD'), '"M/D/YYYY') as US_Date,
Country, Product, Amount

Inline

[Date, Country, Product, Amount
2018-02-20, canada, washer, 6
2018-07-08, Germany, Anchor bolt, 10
2018-07-14, Germany, Anchor bolt, 3
2018-08-31, France, Nut, 2
2018-09-02, czech Republic, Bolt, 1
2019-02-11, czech Republic, Bolt, 3
2019-07-31, czech Republic, washer, 6
2020-03-13, France, Anchor bolt, 1
2020-07-12, canada, Anchor bolt, 8
2020-09-16, France, washer, 1];

Chart expressions

Create a table in a Qlik Sense sheet with the following chart expressions.

Table - Set modifiers with set operators

Sum Sum({<Year= Sum({<Country=- Sum({<Country={Germany}+P
u
Country A Y {">2018"}- {Germany}>} ({<Product={Nut}>}Country)>}
moun
{2020}>} Amount) Amount) Amount)
Totals 41 9 28 17
Canada 14 0 14 0

Script syntax and chart functions - Qlik Sense, August 2023 289

3 Chart expressions

Country

Totals

Czech
Republic

France

Germany

Explanation

Sum
(Amount)

41

10

13

¢ Dimensions:

o

country

¢ Measures:

(o]

Sum(Amount)

Sum({<Year=
{">2018"}-
{2020}>} Amount)

9
9

Sum Amount with no set expression.
sum({<year={">2018"}-{2020}>}Amount)
Sum Amount for all years after 2018, except 2020.

sum({<Country=-{Germany}>}Amount)

Sum({<Country=-
{Germany}>}
Amount)

28

10

Sum({<Country={Germany}+P
({<Product={Nut}>}Country)>}
Amount)

17

0

13

Sum Amount for all countries except Germany. Note the unary exclusion operator.

sum({<Country={Germany}+P({<Product={Nut}>}Country)>}Amount)
Sum Amount for Germany and all countries associated with the product Nut.

Set modifiers with set operators

Country

Fy
Totals
Canada
Czech Republic
France

Germany

Examples

Q

Sum
(Amount)

41

sum({$S<Product =
Product + {OurProduct1}
- {OurProduct2} >} Sales

)

Sum({<Year={">2018"}-{2020}>

*}

Amount)

Results

9
]
9

0
0

Sum{{<Country= - {Germany}=} Sum({=Country={Germany}+P({<Product=
Amount {Nut}=} Country)=} Amount)

28 17

14 0

10 0

4 4

0 13

Returns the sales for the current selection, but with the product “OurProductl”
added to the list of selected products and “OurProduct2” removed from the list

of selected products.

Script syntax and chart functions - Qlik Sense, August 2023

290

3 Chart expressions

Examples Results

sum({S<Year = Year + Returns the sales for the current selection but with additional selections in the
({“20*7,1997} - {2000}) >} = field “Year”: 1997 and all that begin with “20” - however, not 2000.

Sales)
Note that if 2000 is included in the current selection, it will still be included after

the modification.

sum({S<Year = (Year + Returns almost the same as above, but here 2000 will be excluded, also if it
{“20*7,1997}) - {2000} >} initially is included in the current selection. The example shows the importance
Sales) of sometimes using brackets to define an order of precedence.

sum({S<Year = {“*"} - Returns the sales for the current selection but with a new selection in “Year”: all
{2000}, Product = years except 2000; and only for products containing the string 'bearing'.

{“*bearing*”} >} Sales)

Set modifiers with implicit set operators
The standard way to write selections in a set modifier is to use an equals sign. For example:
Year = {">2015"}

The expression to the right of the equals sign in the set modifier is called an element set. It defines a set of
distinct field values, in other words a selection.

This notation defines a new selection, disregarding the current selection in the field. So, if the set identifier
contains a selection in this field, the old selection will be replaced by the one in the element set.

When you want to base your selection on the current selection in the field, you need to use a different
expression

For example, if you want to respect the old selection, and add the requirement that the year is after 2015, you
can write the following:

Year = Year * {">2015"}

The asterisk is a set operator defining an intersection, so you will get the intersection between the current
selection in Year, and the additional requirement that the year be after 2015. An alternative way to write this
is the following:

Year *= {">2015"}
That is, the assignment operator (*=) implicitly defines an intersection.

Similarly, implicit unions, exclusions and symmetric differences can be defined using the following: +=, -=, /=

Script syntax and chart functions - Qlik Sense, August 2023 291

3 Chart expressions

Examples: Chart expressions for set modifiers with implicit set operators

Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

MyTable:

Load

Year(Date) as Year,

Date#(Date, 'YYYY-MM-DD') as ISO_Date,
Date(Date#(Date, 'YYYY-MM-DD'), '"M/D/YYYY') as US_Date,
Country, Product, Amount

Inline

[Date, Country, Product, Amount
2018-02-20, canada, washer, 6
2018-07-08, Germany, Anchor bolt, 10
2018-07-14, Germany, Anchor bolt, 3
2018-08-31, France, Nut, 2
2018-09-02, czech Republic, Bolt, 1
2019-02-11, czech Republic, Bolt, 3
2019-07-31, Cczech Republic, washer, 6
2020-03-13, France, Anchor bolt, 1
2020-07-12, canada, Anchor bolt, 8
2020-09-16, France, washer, 1];

Chart expressions with implicit set operators
Create a table in a Qlik Sense sheet with the following chart expressions.

Select canada and czech Republic from a list of countries.

Table - Chart expressions with implicit set operators

Countr Sum Sum({<Country*= Sum({<Country-= Sum({<Country+=
u
y (Amount) {Canada}>} Amount) {Canada}>} Amount) {France}>} Amount)
Totals 24 14 10 28
Canada 14 14 0 14
Czech 10 0 10 10
Republic
France 0 0 0 4

Explanation

¢ Dimensions:

o Country

Script syntax and chart functions - Qlik Sense, August 2023 292

3 Chart expressions

e Measures:

o

sum(Amount)

Sum Amount for the current selection. Note that only canada and czech Republic have non-
zero values.

sum({<Country*={Canada}>}Amount)

Sum Amount for the current selection, intersected with the requirement that the country be
Canada. If canada is not part of the user selection, the set expression returns an empty set, and
the column will have 0 on all rows.

sum({<Country-={Canada}>}Amount)

Sum Amount for the current selection, but first exclude canada from the country selection. If
Canada is not part of the user selection, the set expression will not change any numbers.
sum({<Country+={France}>}Amount)

Sum Amount for the current selection, but first add France to the country selection. If France is
already part of the user selection, the set expression will not change any numbers.

Set modifiers with implicit set operators

Country X
\ Country
Sum Sum({<Country*= Sum({=Country-= Sum({=Country+=
Canada Cou ntry‘ Q (Amount) {Canada}=} Amount) {Canada}=} Amount) {France}>} Amount)
Czech Republil: Totals 24 14 10 28
Canada 14 14 0 14
France .
Czech Republic 10 0 10 10
Germany France 0 0 0 4
Examples Results
sum({$S<Product += Returns the sales for the current selection, but using an implicit union to add
{OurProductl, the products 'OurProductl' and 'OurProduct2' to the list of selected products.
OurProduct2} >} Sales)
sum({S<Year += Returns the sales for the current selection but using an implicit union to add a
{“20*7,1997} - {2000} >} number of years in the selection: 1997 and all that begin with “20” - however,
Sales) not 2000.
Note that if 2000 is included in the current selection, it will still be included
after the modification. Same as <vear=vear + ({*20%”,1997}-{2000})>.
sum({$<Product *= Returns the sales for the current selection, but only for the intersection of

{OurProduct1} >} Sales) currently selected products and the product OurProductl.

Script syntax and chart functions - Qlik Sense, August 2023 293

3 Chart expressions

Set modifiers using set functions

Sometimes you need to define a set of field values using a nested set definition. For example,
you may want to select all customers that have bought a specific product, without selecting the
product.

In such cases, use the element set functions P() and EQ). These return the element sets of possible values and
excluded values of a field, respectively. Inside the brackets, you can specify the field in question, and a set
expression that defines the scope. For example:

P({1l<Year = {2021}>} Customer)

This will return the set of customers that had transactions in 2021. You can then use this in a set modifier. For
example:

sum({<Customer = P({l<vear = {2021}>} Customer)>} Amount)
This set expression will select these customers, but it will not restrict the selection to 2021.
These functions cannot be used in other expressions.

Additionally, only natural sets can be used inside the element set functions. That is, a set of records that can
be defined by a simple selection.

For example, the set given by {1-$} cannot always be defined through a selection, and is therefore not a
natural set. Using these functions on non-natural sets will return unexpected results.

Examples: Chart expressions for set modifiers using set functions

Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

MyTable:

Load

Year(Date) as Year,

Date#(Date, 'YYYY-MM-DD') as ISO_Date,
Date(Date#(Date, 'YYYY-MM-DD'), 'M/D/YYYY') as US_Date,
Country, Product, Amount

Inline

[Date, Country, Product, Amount
2018-02-20, canada, washer, 6
2018-07-08, Germany, Anchor bolt, 10
2018-07-14, Germany, Anchor bolt, 3
2018-08-31, France, Nut, 2
2018-09-02, czech Republic, Bolt, 1
2019-02-11, czech Republic, Bolt, 3
2019-07-31, czech Republic, washer, 6

Script syntax and chart functions - Qlik Sense, August 2023 294

3 Chart expressions

2020-03-13, France, Anchor bolt, 1
2020-07-12, canada, Anchor bolt, 8
2020-09-16, France, washer, 1];

Chart expressions

Create a table in a Qlik Sense sheet with th