Ga naar hoofdinhoud

KMeans2D - diagramfunctie

KMeans2D() evalueert de rijen van het diagram door K-means clustering toe te passen. Voor elke rij van het diagram wordt de cluster-id weergegeven van het cluster waaraan dit gegevenspunt is toegewezen. De kolommen die worden gebruikt door het clustering-algoritme worden bepaald door de parameter coordinate_1 respectievelijk coordinate_2. Dit zijn beide aggregraties. De parameter num_clusters bepaalt het aantal clusters dat wordt gemaakt. Gegevens kunnen optioneel worden genormaliseerd door de normparameter.

KMeans2D retourneert één waarde per gegevenspunt. De geretourneerde waarde is een dubbele waarde en is het gehele getal dat overeenkomt met het cluster waaraan elk gegevenspunt is toegewezen.

Syntax:  

KMeans2D(num_clusters, coordinate_1, coordinate_2 [, norm])

Return data type: dual

Arguments:  

Argumenten
Argument Beschrijving
num_clusters Het geheel getal dat het aantal clusters aangeeft.
coordinate_1 De aggregatie die de eerste coördinaat berekent, meestal de x-as van de verdelingsplot die op basis van het diagram kan worden gemaakt. De aanvullende parameter, coordinate_2, berekent de tweede coördinaat.
norm

De optionele normalisatiemethode die is toegepast op gegevensverzamelingen voordat K-means clustering wordt toegepast.

Mogelijke waarden:

0 of ‘geen’ voor geen normalisatie

1 of ‘zscore’ for z-score normalisatie

2 of ‘minmax’ voor min-max normalisatie

Als er geen parameter is opgegeven of de opgegeven parameter is onjuist, wordt er geen normalisatie toegepast.

De Z-score normaliseert gegevens op basis van de gemiddelde- en standaardafwijking. De Z-score zorgt er niet voor dat elke functie dezelfde schaal toebedeeld krijgt, maar het is een betere manier om aan te gaan met uitschieters dan de min-max-methode.

De min-max normalisatie zorgt ervoor dat functies dezelfde schaal toebedeeld krijgen door gebruik te maken van de minimum- en maximumwaarden van elk gegevenspunt en elk gegevenspunt opnieuw te berekenen.