
Script syntax and chart functions

Qlik Sense®

May 2023
Copyright © 1993-2024 QlikTech International AB. All rights reserved.

HELP.QLIK.COM

© 2024 QlikTech International AB. All rights reserved. All company and/or product names may be trade names,
trademarks and/or registered trademarks of the respective owners with which they are associated.

Script syntax and chart functions - Qlik Sense, May 2023 3

1 What is Qlik Sense? 16
1.1 What can you do in Qlik Sense? 16
1.2 How does Qlik Sense work? 16

The app model 16
The associative experience 16
Collaboration and mobility 16

1.3 How can you deploy Qlik Sense? 16
Qlik Sense Desktop 16
Qlik Sense Enterprise 17

1.4 How to administer and manage a Qlik Sense site 17
1.5 Extend Qlik Sense and adapt it for your own purposes 17

Building extensions and mashups 17
Building clients 17
Building server tools 17
Connecting to other data sources 17

2 Script syntax overview 18
2.1 Introduction to script syntax 18
2.2 What is Backus-Naur formalism? 18

2 Script statements and keywords 20
2.3 Script control statements 20

Script control statements overview 20
Call 22
Do..loop 23
End 24
Exit 24
Exit script 24
For..next 24
For each..next 26
If..then..elseif..else..end if 29
Next 30
Sub..end sub 30
Switch..case..default..end switch 31
To 32

2.4 Script prefixes 32
Script prefixes overview 32
Add 36
Buffer 38
Concatenate 39
Crosstable 44
First 54
Generic 56
Hierarchy 62
HierarchyBelongsTo 64
Inner 65
IntervalMatch 66
Join 69
Keep 79

Contents

Script syntax and chart functions - Qlik Sense, May 2023 4

Left 80
Mapping 81
Merge 83
NoConcatenate 87
Only 96
Outer 96
Partial reload 97
Replace 100
Right 102
Sample 103
Semantic 106
Unless 110
When 116

2.5 Script regular statements 122
Script regular statements overview 122
Alias 128
AutoNumber 129
Binary 132
Comment field 133
Comment table 134
Connect 134
Declare 136
Derive 138
Direct Query 139
Directory 144
Disconnect 145
Drop 146
Drop table 147
Execute 148
Field/Fields 149
FlushLog 149
Force 149
From 151
Load 151
Let 168
Loosen Table 168
Map 169
NullAsNull 170
NullAsValue 170
Qualify 171
Rem 172
Rename 173
Search 174
Section 175
Select 175
Set 178
Sleep 178
SQL 179

Contents

Script syntax and chart functions - Qlik Sense, May 2023 5

SQLColumns 179
SQLTables 180
SQLTypes 181
Star 182
Store 183
Table/Tables 185
Tag 185
Trace 186
Unmap 186
Unqualify 187
Untag 187

2.6 Working directory 188
Qlik Sense Desktop working directory 188
Qlik Sense working directory 188

2 Working with variables in the data load editor 189
2.7 Overview 189
2.8 Defining a variable 189
2.9 Deleting a variable 190
2.10 Loading a variable value as a field value 190
2.11 Variable calculation 190
2.12 System variables 191

System variables overview 191
CreateSearchIndexOnReload 194
HidePrefix 194
HideSuffix 194
Include 195
OpenUrlTimeout 196
StripComments 196
Verbatim 197

2.13 Value handling variables 197
Value handling variables overview 197
NullDisplay 198
NullInterpret 198
NullValue 198
OtherSymbol 198

2.14 Number interpretation variables 199
Currency formatting 199
Number formatting 199
Time formatting 200
BrokenWeeks 201
DateFormat 202
DayNames 208
DecimalSep 213
FirstWeekDay 215
LongDayNames 219
LongMonthNames 222
MoneyDecimalSep 226

Contents

Script syntax and chart functions - Qlik Sense, May 2023 6

MoneyFormat 230
MoneyThousandSep 234
MonthNames 238
NumericalAbbreviation 243
ReferenceDay 244
ThousandSep 249
TimeFormat 255
TimestampFormat 255

2.15 Direct Discovery variables 258
Direct Discovery system variables 258
Teradata query banding variables 259
Direct Discovery character variables 260
Direct Discovery number interpretation variables 261

2.16 Error variables 262
Error variables overview 262
ErrorMode 262
ScriptError 263
ScriptErrorCount 264
ScriptErrorList 264

2 Script expressions 265
3 Chart expressions 266

3.1 Defining the aggregation scope 266
3.2 Set analysis 268

Set expressions 269
Examples 270
Natural sets 270
Set identifiers 272
Set operators 273
Set modifiers 274
Inner and outer set expressions 295
Tutorial - Creating a set expression 297
Syntax for set expressions 307

3.3 General syntax for chart expressions 307
3.4 General syntax for aggregations 308

4 Operators 309
4.1 Bit operators 309
4.2 Logical operators 310
4.3 Numeric operators 310
4.4 Relational operators 311
4.5 String operators 312

& 313
like 313

5 Script and chart functions 314
5.1 Analytic connections for server-side extensions (SSE) 314
5.2 Aggregation functions 314

Using aggregation functions in a data load script 315

Contents

Script syntax and chart functions - Qlik Sense, May 2023 7

Using aggregation functions in chart expressions 315
How aggregations are calculated 315
Aggregation of key fields 315
Basic aggregation functions 316
Counter aggregation functions 338
Financial aggregation functions 355
Statistical aggregation functions 382
Statistical test functions 447
String aggregation functions 510
Synthetic dimension functions 522
Nested aggregations 525

5.3 Aggr - chart function 525
Examples: Chart expressions using Aggr 528

5.4 Color functions 531
Pre-defined color functions 533
ARGB 534
RGB 535
HSL 537

5.5 Conditional functions 537
Conditional functions overview 537
alt 538
class 539
coalesce 541
if 542
match 545
mixmatch 548
pick 551
wildmatch 552

5.6 Counter functions 555
Counter functions overview 555
autonumber 556
autonumberhash128 559
autonumberhash256 561
IterNo 563
RecNo 564
RowNo 565
RowNo - chart function 566

5.7 Date and time functions 568
Date and time functions overview 569
addmonths 577
addyears 587
age 594
converttolocaltime 596
day 599
dayend 605
daylightsaving 613
dayname 613
daynumberofquarter 615

Contents

Script syntax and chart functions - Qlik Sense, May 2023 8

daynumberofyear 621
daystart 628
firstworkdate 635
GMT 637
hour 641
inday 644
indaytotime 652
inlunarweek 662
inlunarweektodate 674
inmonth 685
inmonths 693
inmonthstodate 706
inmonthtodate 719
inquarter 729
inquartertodate 742
inweek 754
inweektodate 770
inyear 784
inyeartodate 796
lastworkdate 809
localtime 818
lunarweekend 819
lunarweekname 831
lunarweekstart 844
makedate 855
maketime 861
makeweekdate 868
minute 877
month 882
monthend 888
monthname 898
monthsend 905
monthsname 918
monthsstart 931
monthstart 944
networkdays 953
now 963
quarterend 970
quartername 983
quarterstart 995
second 1006
setdateyear 1011
setdateyearmonth 1013
timezone 1015
today 1015
UTC 1020
week 1021
weekday 1037

Contents

Script syntax and chart functions - Qlik Sense, May 2023 9

weekend 1045
weekname 1058
weekstart 1072
weekyear 1084
year 1094
yearend 1100
yearname 1112
yearstart 1125
yeartodate 1137

5.8 Exponential and logarithmic functions 1152
5.9 Field functions 1153

Count functions 1153
Field and selection functions 1154
GetAlternativeCount - chart function 1154
GetCurrentSelections - chart function 1155
GetExcludedCount - chart function 1157
GetFieldSelections - chart function 1158
GetNotSelectedCount - chart function 1160
GetObjectDimension - chart function 1161
GetObjectField - chart function 1161
GetObjectMeasure - chart function 1162
GetPossibleCount - chart function 1163
GetSelectedCount - chart function 1164

5.10 File functions 1165
File functions overview 1165
Attribute 1167
ConnectString 1174
FileBaseName 1175
FileDir 1175
FileExtension 1176
FileName 1176
FilePath 1176
FileSize 1177
FileTime 1177
GetFolderPath 1178
QvdCreateTime 1179
QvdFieldName 1180
QvdNoOfFields 1181
QvdNoOfRecords 1182
QvdTableName 1183

5.11 Financial functions 1184
Financial functions overview 1184
BlackAndSchole 1185
FV 1186
nPer 1187
Pmt 1188
PV 1189
Rate 1189

Contents

Script syntax and chart functions - Qlik Sense, May 2023 10

5.12 Formatting functions 1190
Formatting functions overview 1191
ApplyCodepage 1192
Date 1193
Dual 1194
Interval 1196
Money 1197
Num 1198
Time 1201
Timestamp 1202

5.13 General numeric functions 1203
General numeric functions overview 1203
Combination and permutation functions 1204
Modulo functions 1204
Parity functions 1205
Rounding functions 1205
BitCount 1205
Ceil 1206
Combin 1207
Div 1207
Even 1208
Fabs 1208
Fact 1209
Floor 1209
Fmod 1210
Frac 1211
Mod 1212
Odd 1213
Permut 1213
Round 1214
Sign 1215

5.14 Geospatial functions 1216
Geospatial functions overview 1216
GeoAggrGeometry 1218
GeoBoundingBox 1219
GeoCountVertex 1219
GeoGetBoundingBox 1220
GeoGetPolygonCenter 1220
GeoInvProjectGeometry 1221
GeoMakePoint 1221
GeoProject 1222
GeoProjectGeometry 1223
GeoReduceGeometry 1223

5.15 Interpretation functions 1224
Interpretation functions overview 1225
Date# 1226
Interval# 1227
Money# 1227

Contents

Script syntax and chart functions - Qlik Sense, May 2023 11

Num# 1229
Text 1229
Time# 1230
Timestamp# 1231

5.16 Inter-record functions 1232
Row functions 1232
Column functions 1233
Field functions 1234
Pivot table functions 1234
Inter-record functions in the data load script 1235
Above - chart function 1235
Below - chart function 1240
Bottom - chart function 1243
Column - chart function 1248
Dimensionality - chart function 1250
Exists 1251
FieldIndex 1255
FieldValue 1256
FieldValueCount 1258
LookUp 1260
NoOfRows - chart function 1262
Peek 1264
Previous 1271
Top - chart function 1272
SecondaryDimensionality - chart function 1276
After - chart function 1276
Before - chart function 1277
First - chart function 1279
Last - chart function 1280
ColumnNo - chart function 1281
NoOfColumns - chart function 1281

5.17 Logical functions 1282
5.18 Mapping functions 1283

Mapping functions overview 1283
ApplyMap 1283
MapSubstring 1285

5.19 Mathematical functions 1287
5.20 NULL functions 1287

NULL functions overview 1288
EmptyIsNull 1288
IsNull 1288
NULL 1289

5.21 Range functions 1290
Basic range functions 1290
Counter range functions 1291
Statistical range functions 1292
Financial range functions 1292
RangeAvg 1293

Contents

Script syntax and chart functions - Qlik Sense, May 2023 12

RangeCorrel 1295
RangeCount 1297
RangeFractile 1300
RangeIRR 1302
RangeKurtosis 1303
RangeMax 1304
RangeMaxString 1306
RangeMin 1307
RangeMinString 1309
RangeMissingCount 1311
RangeMode 1312
RangeNPV 1314
RangeNullCount 1315
RangeNumericCount 1317
RangeOnly 1318
RangeSkew 1319
RangeStdev 1320
RangeSum 1322
RangeTextCount 1324
RangeXIRR 1325
RangeXNPV 1327

5.22 Relational functions 1329
Ranking functions 1329
Clustering functions 1330
Time series decomposition functions 1331
Rank - chart function 1332
HRank - chart function 1335
Optimizing with k-means: A real-world example 1337
KMeans2D - chart function 1346
KMeansND - chart function 1361
KMeansCentroid2D - chart function 1376
KMeansCentroidND - chart function 1377
STL_Trend - chart function 1378
STL_Seasonal - chart function 1380
STL_Residual - chart function 1382
Tutorial - Time series decomposition in Qlik Sense 1384

5.23 Statistical distribution functions 1388
Statistical distribution functions overview 1388
BetaDensity 1391
BetaDist 1391
BetaInv 1391
BinomDist 1392
BinomFrequency 1392
BinomInv 1393
ChiDensity 1393
ChiDist 1394
ChiInv 1394
FDensity 1395

Contents

Script syntax and chart functions - Qlik Sense, May 2023 13

FDist 1395
FInv 1396
GammaDensity 1397
GammaDist 1397
GammaInv 1398
NormDist 1398
NormInv 1399
PoissonDist 1400
PoissonFrequency 1400
PoissonInv 1400
TDensity 1401
TDist 1401
TInv 1402

5.24 String functions 1403
String functions overview 1403
Capitalize 1406
Chr 1407
Evaluate 1408
FindOneOf 1408
Hash128 1410
Hash160 1410
Hash256 1411
Index 1412
IsJson 1413
JsonGet 1414
JsonSet 1415
KeepChar 1416
Left 1417
Len 1418
LevenshteinDist 1419
Lower 1421
LTrim 1422
Mid 1423
Ord 1424
PurgeChar 1425
Repeat 1426
Replace 1427
Right 1427
RTrim 1428
SubField 1429
SubStringCount 1433
TextBetween 1433
Trim 1434
Upper 1435

5.25 System functions 1436
System functions overview 1436
EngineVersion 1439
InObject - chart function 1439

Contents

Script syntax and chart functions - Qlik Sense, May 2023 14

IsPartialReload 1443
ObjectId - chart function 1443
ProductVersion 1446
StateName - chart function 1447

5.26 Table functions 1447
Table functions overview 1447
FieldName 1449
FieldNumber 1450
NoOfFields 1450
NoOfRows 1451

5.27 Trigonometric and hyperbolic functions 1451
6 File system access restriction 1454

6.1 Security aspects when connecting to file based ODBC and OLE DB data connections 1454
6.2 Limitations in standard mode 1454

System variables 1454
Regular script statements 1456
Script control statements 1457
File functions 1457
System functions 1459

6.3 Disabling standard mode 1459
Qlik Sense 1460
Qlik Sense Desktop 1460

6 Chart level scripting 1461
6.4 Control statements 1461

Chart modifier control statements overview 1461
Call 1463
Do..loop 1464
End 1464
Exit 1464
Exit script 1464
For..next 1465
For each..next 1466
If..then..elseif..else..end if 1469
Next 1470
Sub..end sub 1470
Switch..case..default..end switch 1471
To 1472

6.5 Prefixes 1472
Chart modifier prefixes overview 1472
Add 1473
Replace 1473

6.6 Regular statements 1473
Chart modifier regular statements overview 1474
Load 1474
Let 1478
Set 1479
Put 1479

Contents

Script syntax and chart functions - Qlik Sense, May 2023 15

HCValue 1480
7 QlikView functions and statements not supported in Qlik Sense 1481

7.1 Script statements not supported in Qlik Sense 1481
7.2 Functions not supported in Qlik Sense 1481
7.3 Prefixes not supported in Qlik Sense 1481

8 Functions and statements not recommended in Qlik Sense 1482
8.1 Script statements not recommended in Qlik Sense 1482
8.2 Script statement parameters not recommended in Qlik Sense 1482
8.3 Functions not recommended in Qlik Sense 1483

ALL qualifier 1484

Contents

1 What is Qlik Sense?

1 What is Qlik Sense?
Qlik Sense is a platform for data analysis. With Qlik Sense you can analyze data and make data discoveries on
your own. You can share knowledge and analyze data in groups and across organizations. Qlik Sense lets you
ask and answer your own questions and follow your own paths to insight. Qlik Sense enables you and your
colleagues to reach decisions collaboratively.

1.1 What can you do in Qlik Sense?
Most Business Intelligence (BI) products can help you answer questions that are understood in advance. But
what about your follow-up questions? The ones that come after someone reads your report or sees your
visualization? With the Qlik Sense associative experience, you can answer question after question after
question, moving along your own path to insight. With Qlik Sense you can explore your data freely, with just
clicks, learning at each step along the way and coming up with next steps based on earlier findings.

1.2 How does Qlik Sense work?
Qlik Sense generates views of information on the fly for you. Qlik Sense does not require predefined and static
reports or you being dependent on other users – you just click and learn. Every time you click, Qlik Sense
instantly responds, updating every Qlik Sense visualization and view in the app with a newly calculated set of
data and visualizations specific to your selections.

The app model
Instead of deploying and managing huge business applications, you can create your own Qlik Sense apps that
you can reuse, modify and share with others. The app model helps you ask and answer the next question on
your own, without having to go back to an expert for a new report or visualization.

The associative experience
Qlik Sense automatically manages all the relationships in the data and presents information to you using a
green/white/gray metaphor. Selections are highlighted in green, associated data is represented in white, and
excluded (unassociated) data appears in gray. This instant feedback enables you to think of new questions
and continue to explore and discover.

Collaboration and mobility
Qlik Sense further enables you to collaborate with colleagues no matter when and where they are located. All
Qlik Sense capabilities, including the associative experience and collaboration, are available on mobile
devices. With Qlik Sense, you can ask and answer your questions and follow-up questions, with your
colleagues, wherever you are.

1.3 How can you deploy Qlik Sense?
There are two versions of Qlik Sense to deploy, Qlik Sense Desktop and Qlik Sense Enterprise.

Qlik Sense Desktop
This is an easy-to-install single user version that is typically installed on a local computer.

Script syntax and chart functions - Qlik Sense, May 2023 16

1 What is Qlik Sense?

Qlik Sense Enterprise
This version is used to deploy Qlik Sense sites. A site is a collection of one or more server machines connected
to a common logical repository or central node.

1.4 How to administer and manage a Qlik Sense site
With the Qlik Management Console you can configure, manage and monitor Qlik Sense sites in an easy and
intuitive way. You can manage licenses, access and security rules, configure nodes and data source
connections and synchronize content and users among many other activities and resources.

1.5 Extend Qlik Sense and adapt it for your own purposes
Qlik Sense provides you with flexible APIs and SDKs to develop your own extensions and adapt and integrate
Qlik Sense for different purposes, such as:

Building extensions and mashups
Here you can do web development using JavaScript to build extensions that are custom visualization in Qlik
Sense apps, or you use a mashups APIs to build websites with Qlik Sense content.

Building clients
You can build clients in .NET and embed Qlik Sense objects in your own applications. You can also build native
clients in any programming language that can handle WebSocket communication by using the Qlik Sense
client protocol.

Building server tools
With service and user directory APIs you can build your own tool to administer and manage Qlik Sense sites.

Connecting to other data sources
Create Qlik Sense connectors to retrieve data from custom data sources.

Script syntax and chart functions - Qlik Sense, May 2023 17

2 Script syntax overview

2 Script syntax overview

2.1 Introduction to script syntax
In a script, the name of the data source, the names of the tables, and the names of the fields included in the
logic are defined. Furthermore, the fields in the access rights definition are defined in the script. A script
consists of a number of statements that are executed consecutively.

The Qlik Sense command line syntax and script syntax are described in a notation called Backus-Naur
Formalism, or BNF code.

The first lines of code are already generated when a new Qlik Sense file is created. The default values of these
number interpretation variables are derived from the regional settings of the OS.

The script consists of a number of script statements and keywords that are executed consecutively. All script
statements must end with a semicolon, ";".

You can use expressions and functions in the LOAD-statements to transform the data that has been loaded.

For a table file with commas, tabs or semicolons as delimiters, a LOAD-statement may be used. By default a
LOAD-statement will load all fields of the file.

General databases can be accessed through ODBC or OLE DBdatabase connectors. . Here standard SQL
statements are used. The SQL syntax accepted differs between different ODBC drivers.

Additionally, you can access other data sources using custom connectors.

2.2 What is Backus-Naur formalism?
The Qlik Sense command line syntax and script syntax are described in a notation called
Backus-Naur formalism, also known as BNF code.

The following table provides a list of symbols used in BNF code, with a description of how they are
interpreted:

Symbol Description

| Logical OR: the symbol on either side can be used.

() Parentheses defining precedence: used for structuring the BNF syntax.

[] Square brackets: enclosed items are optional.

{ } Braces: enclosed items may be repeated zero or more times.

Symbol A non-terminal syntactic category, that: can be divided further into other symbols. For
example, compounds of the above, other non-terminal symbols, text strings, and so on.

::= Marks the beginning of a block that defines a symbol.

LOAD A terminal symbol consisting of a text string. Should be written as it is into the script.

Symbols

Script syntax and chart functions - Qlik Sense, May 2023 18

2 Script syntax overview

All terminal symbols are printed in a bold face font. For example, "(" should be interpreted as a parenthesis
defining precedence, whereas "(" should be interpreted as a character to be printed in the script.

Example:

The description of the alias statement is:

alias fieldname as aliasname { , fieldname as aliasname}

This should be interpreted as the text string "alias", followed by an arbitrary field name, followed by the text
string "as", followed by an arbitrary alias name. Any number of additional combinations of "fieldname as
alias" may be given, separated by commas.

The following statements are correct:

alias a as first;

alias a as first, b as second;

alias a as first, b as second, c as third;

The following statements are not correct:

alias a as first b as second;

alias a as first { , b as second };

Script syntax and chart functions - Qlik Sense, May 2023 19

2 Script statements and keywords

2 Script statements and keywords
The Qlik Sense script consists of a number of statements. A statement can be either a regular script statement
or a script control statement. Certain statements can be preceded by prefixes.

Regular statements are typically used for manipulating data in one way or another. These statements may be
written over any number of lines in the script and must always be terminated by a semicolon, ";".

Control statements are typically used for controlling the flow of the script execution. Each clause of a control
statement must be kept inside one script line and may be terminated by a semicolon or the end-of-line.

Prefixes may be applied to applicable regular statements but never to control statements. The when and
unless prefixes can however be used as suffixes to a few specific control statement clauses.

In the next subchapter, an alphabetical listing of all script statements, control statements and prefixes, are
found.

All script keywords can be typed with any combination of lower case and upper case characters. Field and
variable names used in the statements are however case sensitive.

2.3 Script control statements
The Qlik Sense script consists of a number of statements. A statement can be either a regular script statement
or a script control statement.

Control statements are typically used for controlling the flow of the script execution. Each clause of a control
statement must be kept inside one script line and may be terminated by semicolon or end-of-line.

Prefixes are never applied to control statements, with the exceptions of the prefixes when and unless which
may be used with a few specific control statements.

All script keywords can be typed with any combination of lower case and upper case characters.

Script control statements overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Call
The call control statement calls a subroutine which must be defined by a previous sub statement.

Call name ([paramlist])

Do..loop
The do..loop control statement is a script iteration construct which executes one or several statements until a
logical condition is met.

Do..loop [(while | until) condition] [statements]

[exit do [(when | unless) condition] [statements]

loop [(while | until) condition]

Script syntax and chart functions - Qlik Sense, May 2023 20

2 Script statements and keywords

Exit script
This control statement stops script execution. It may be inserted anywhere in the script.

Exit script[(when | unless) condition]

For each ..next
The for each..next control statement is a script iteration construct which executes one or several statements
for each value in a comma separated list. The statements inside the loop enclosed by for and next will be
executed for each value of the list.

For each..next var in list
[statements]
[exit for [(when | unless) condition]
[statements]
next [var]

For..next
The for..next control statement is a script iteration construct with a counter. The statements inside the loop
enclosed by for and next will be executed for each value of the counter variable between specified low and
high limits.

For..next counter = expr1 to expr2 [stepexpr3]
[statements]
[exit for [(when | unless) condition]
[statements]
Next [counter]

If..then
The if..then control statement is a script selection construct forcing the script execution to follow different
paths depending on one or several logical conditions.

Since the if..then statement is a control statement and as such is ended with either a semicolon or
end-of-line, each of its four possible clauses (if..then, elseif..then, else and end if) must not cross a
line boundary.

If..then..elseif..else..end if condition then
[statements]

{ elseif condition then
[statements] }

[else
[statements]]

end if

Sub
The sub..end sub control statement defines a subroutine which can be called upon from a call statement.

Sub..end sub name [(paramlist)] statements end sub

Script syntax and chart functions - Qlik Sense, May 2023 21

2 Script statements and keywords

Switch
The switch control statement is a script selection construct forcing the script execution to follow different
paths, depending on the value of an expression.

Switch..case..default..end switch expression {case valuelist [statements]}

[default statements] end switch

Call
The call control statement calls a subroutine which must be defined by a previous sub
statement.

Syntax:
Call name ([paramlist])

Arguments:

Argument Description

name The name of the subroutine.

paramlist A comma separated list of the actual parameters to be sent to the
subroutine. Each item in the list may be a field name, a variable or an
arbitrary expression.

Arguments

The subroutine called by a call statement must be defined by a sub encountered earlier during script
execution.

Parameters are copied into the subroutine and, if the parameter in the call statement is a variable and not an
expression, copied back out again upon exiting the subroutine.

Limitations:

l Since the call statement is a control statement and as such is ended with either a semicolon or end-of-
line, it must not cross a line boundary.

l When you define a subroutine with Sub..end sub inside a control statement, for example if..then,
you can only call the subroutine from within the same control statement.

Example:

This example lists all Qlik related files in a folder and its subfolders, and stores file information in a table. It is
assumed that you have created a data connection named Apps to the folder .

The DoDir subroutine is called with the reference to the folder, 'lib://Apps', as parameter. Inside the
subroutine, there is a recursive call, Call DoDir (Dir), that makes the function look for files recursively in
subfolders.

Script syntax and chart functions - Qlik Sense, May 2023 22

2 Script statements and keywords

sub DoDir (Root)

For Each Ext in 'qvw', 'qvo', 'qvs', 'qvt', 'qvd', 'qvc', 'qvf'

For Each File in filelist (Root&'*.' &Ext)

LOAD

'$(File)' as Name,

FileSize('$(File)') as Size,

FileTime('$(File)') as FileTime

autogenerate 1;

Next File

Next Ext

For Each Dir in dirlist (Root&'*')

Call DoDir (Dir)

Next Dir

End Sub

Call DoDir ('lib://Apps')

Do..loop
The do..loop control statement is a script iteration construct which executes one or several
statements until a logical condition is met.

Syntax:
Do [(while | until) condition] [statements]

[exit do [(when | unless) condition] [statements]

loop[(while | until) condition]

Since the do..loop statement is a control statement and as such is ended with either a semicolon or
end-of-line, each of its three possible clauses (do, exit do and loop) must not cross a line boundary.

Arguments:

Argument Description

condition A logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

while / until The while or until conditional clause must only appear once in any do..loop statement,
i.e. either after do or after loop. Each condition is interpreted only the first time it is
encountered but is evaluated for every time it encountered in the loop.

exit do If an exit do clause is encountered inside the loop, the execution of the script will be
transferred to the first statement after the loop clause denoting the end of the loop. An
exit do clause can be made conditional by the optional use of a when or unless suffix.

Arguments

Example:

// LOAD files file1.csv..file9.csv

Script syntax and chart functions - Qlik Sense, May 2023 23

2 Script statements and keywords

Set a=1;

Do while a<10

LOAD * from file$(a).csv;

Let a=a+1;

Loop

End
The End script keyword is used to close If, Sub and Switch clauses.

Exit
The Exit script keyword is part of the Exit Script statement, but can also be used to exit Do, For
or Sub clauses.

Exit script
This control statement stops script execution. It may be inserted anywhere in the script.

Syntax:
Exit Script [(when | unless) condition]

Since the exit script statement is a control statement and as such is ended with either a semicolon or end-of-
line, it must not cross a line boundary.

Arguments:

Argument Description

condition A logical expression evaluating to True or False.

when
/ unless

An exit script statement can be made conditional by the optional use of
when or unless clause.

Arguments

Examples:

//Exit script

Exit Script;

//Exit script when a condition is fulfilled

Exit Script when a=1

For..next
The for..next control statement is a script iteration construct with a counter. The statements
inside the loop enclosed by for and next will be executed for each value of the counter variable
between specified low and high limits.

Script syntax and chart functions - Qlik Sense, May 2023 24

2 Script statements and keywords

Syntax:
For counter = expr1 to expr2 [step expr3]
[statements]
[exit for [(when | unless) condition]
[statements]
Next [counter]

The expressions expr1, expr2 and expr3 are only evaluated the first time the loop is entered. The value of the
counter variable may be changed by statements inside the loop, but this is not good programming practice.

If an exit for clause is encountered inside the loop, the execution of the script will be transferred to the first
statement after the next clause denoting the end of the loop. An exit for clause can be made conditional by
the optional use of a when or unless suffix.

Since the for..next statement is a control statement and as such is ended with either a semicolon or
end-of-line, each of its three possible clauses (for..to..step, exit for and next) must not cross a line
boundary.

Arguments:

Argument Description

counter A variable name. If counter is specified after next it must be the same variable name as the
one found after the corresponding for.

expr1 An expression which determines the first value of the counter variable for which the loop
should be executed.

expr2 An expression which determines the last value of the counter variable for which the loop
should be executed.

expr3 An expression which determines the value indicating the increment of the counter variable
each time the loop has been executed.

condition a logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

Arguments

Example 1: Loading a sequence of files

// LOAD files file1.csv..file9.csv

for a=1 to 9

LOAD * from file$(a).csv;

next

Script syntax and chart functions - Qlik Sense, May 2023 25

2 Script statements and keywords

Example 2: Loading a random number of files

In this example, we assume there are data files x1.csv, x3.csv, x5.csv, x7.csv and x9.csv. Loading is stopped at a
random point using the if rand()<0.5 then condition.

for counter=1 to 9 step 2

set filename=x$(counter).csv;

if rand()<0.5 then

exit for unless counter=1

end if

LOAD a,b from $(filename);

next

For each..next
The for each..next control statement is a script iteration construct which executes one or
several statements for each value in a comma separated list. The statements inside the loop
enclosed by for and next will be executed for each value of the list.

Syntax:
Special syntax makes it possible to generate lists with file and directory names in the current directory.

for each var in list
[statements]
[exit for [(when | unless) condition]
[statements]
next [var]

Arguments:

Argument Description

var A script variable name which will acquire a new value from list for each loop execution. If
var is specified after next it must be the same variable name as the one found after the
corresponding for each.

Arguments

The value of the var variable may be changed by statements inside the loop, but this is not good
programming practice.

If an exit for clause is encountered inside the loop, the execution of the script will be transferred to the first
statement after the next clause denoting the end of the loop. An exit for clause can be made conditional by
the optional use of a when or unless suffix.

Script syntax and chart functions - Qlik Sense, May 2023 26

2 Script statements and keywords

Since the for each..next statement is a control statement and as such is ended with either a
semicolon or end-of-line, each of its three possible clauses (for each, exit for and next) must not
cross a line boundary.

Syntax:
list := item { , item }
item := constant | (expression) | filelist mask | dirlist mask |

fieldvaluelist mask

Argument Description

constant Any number or string. Note that a string written directly in the script must be enclosed by
single quotes. A string without single quotes will be interpreted as a variable, and the
value of the variable will be used. Numbers do not need to be enclosed by single quotes.

expression An arbitrary expression.

mask A filename or folder name mask which may include any valid filename characters as well
as the standard wildcard characters, * and ?.

You can use absolute file paths or lib:// paths.

condition A logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

filelist mask This syntax produces a comma separated list of all files in the current directory matching
the filename mask.

This argument supports only library connections in standard mode.

dirlist mask This syntax produces a comma separated list of all folders in the current folder matching
the folder name mask.

This argument supports only library connections in standard mode.

fieldvaluelist
mask

This syntax iterates through the values of a field already loaded into Qlik Sense.

Arguments

The Qlik Web Storage Provider Connectors and other DataFiles connections do not support filter
masks that use wildcard (* and ?) characters.

Script syntax and chart functions - Qlik Sense, May 2023 27

2 Script statements and keywords

Example 1: Loading a list of files

// LOAD the files 1.csv, 3.csv, 7.csv and xyz.csv

for each a in 1,3,7,'xyz'

LOAD * from file$(a).csv;

next

Example 2: Creating a list of files on disk

This example loads a list of all Qlik Sense related files in a folder.

sub DoDir (Root)

for each Ext in 'qvw', 'qva', 'qvo', 'qvs', 'qvc', 'qvf', 'qvd'

for each File in filelist (Root&'/*.' &Ext)

LOAD

'$(File)' as Name,

FileSize('$(File)') as Size,

FileTime('$(File)') as FileTime

autogenerate 1;

next File

next Ext

for each Dir in dirlist (Root&'/*')

call DoDir (Dir)

next Dir

end sub

call DoDir ('lib://DataFiles')

Example 3: Iterating through a the values of a field

This example iterates through the list of loaded values of FIELD and generates a new field, NEWFIELD. For
each value of FIELD, two NEWFIELD records will be created.

load * inline [

FIELD

one

two

three

];

FOR Each a in FieldValueList('FIELD')

LOAD '$(a)' &'-'&RecNo() as NEWFIELD AutoGenerate 2;

NEXT a

The resulting table looks like this:

Script syntax and chart functions - Qlik Sense, May 2023 28

2 Script statements and keywords

NEWFIELD

one-1

one-2

two-1

two-2

three-1

three-2

Example table

If..then..elseif..else..end if
The if..then control statement is a script selection construct forcing the script execution to
follow different paths depending on one or several logical conditions.

Control statements are typically used to control the flow of the script execution. In a chart expression, use the
if conditional function instead.

Syntax:
If condition then
[statements]

{ elseif condition then
[statements] }

[else
[statements]]

end if

Since the if..then statement is a control statement and as such is ended with either a semicolon or end-of-
line, each of its four possible clauses (if..then, elseif..then, else and end if) must not cross a line boundary.

Arguments:

Argument Description

condition A logical expression which can be evaluated as True or False.

statements Any group of one or more Qlik Sense script statements.

Arguments

Example 1:

if a=1 then

LOAD * from abc.csv;

SQL SELECT e, f, g from tab1;

end if

Script syntax and chart functions - Qlik Sense, May 2023 29

2 Script statements and keywords

Example 2:

if a=1 then; drop table xyz; end if;

Example 3:

if x>0 then

LOAD * from pos.csv;

elseif x<0 then

LOAD * from neg.csv;

else

LOAD * from zero.txt;

end if

Next
The Next script keyword is used to close For loops.

Sub..end sub
The sub..end sub control statement defines a subroutine which can be called upon from a call
statement.

Syntax:
Sub name [(paramlist)] statements end sub

Arguments are copied into the subroutine and, if the corresponding actual parameter in the call statement is
a variable name, copied back out again upon exiting the subroutine.

If a subroutine has more formal parameters than actual parameters passed by a call statement, the extra
parameters will be initialized to NULL and can be used as local variables within the subroutine.

Arguments:

Argument Description

name The name of the subroutine.

paramlist A comma separated list of variable names for the formal parameters of the
subroutine. These can be used as any variable inside the subroutine.

statements Any group of one or more Qlik Sense script statements.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 30

2 Script statements and keywords

Limitations:

l Since the sub statement is a control statement and as such is ended with either a semicolon or end-of-
line, each of its two clauses (sub and end sub) must not cross a line boundary.

l When you define a subroutine with Sub..end sub inside a control statement, for example if..then,
you can only call the subroutine from within the same control statement.

Example 1:

Sub INCR (I,J)

I = I + 1

Exit Sub when I < 10

J = J + 1

End Sub

Call INCR (X,Y)

Example 2: - parameter transfer

Sub ParTrans (A,B,C)

A=A+1

B=B+1

C=C+1

End Sub

A=1

X=1

C=1

Call ParTrans (A, (X+1)*2)

The result of the above will be that locally, inside the subroutine, A will be initialized to 1, B will be initialized
to 4 and C will be initialized to NULL.

When exiting the subroutine, the global variable A will get 2 as value (copied back from subroutine). The
second actual parameter “(X+1)*2” will not be copied back since it is not a variable. Finally, the global variable
C will not be affected by the subroutine call.

Switch..case..default..end switch
The switch control statement is a script selection construct forcing the script execution to
follow different paths, depending on the value of an expression.

Syntax:
Switch expression {case valuelist [statements]} [default statements] end
switch

Since the switch statement is a control statement and as such is ended with either a semicolon or
end-of-line, each of its four possible clauses (switch, case, default and end switch) must not cross a
line boundary.

Script syntax and chart functions - Qlik Sense, May 2023 31

2 Script statements and keywords

Arguments:

Argument Description

expression An arbitrary expression.

valuelist A comma separated list of values with which the value of expression will be compared.
Execution of the script will continue with the statements in the first group encountered
with a value in valuelist equal to the value in expression. Each value in valuelist may be an
arbitrary expression. If no match is found in any case clause, the statements under the
default clause, if specified, will be executed.

statements Any group of one or more Qlik Sense script statements.

Arguments

Example:

Switch I

Case 1

LOAD '$(I): CASE 1' as case autogenerate 1;

Case 2

LOAD '$(I): CASE 2' as case autogenerate 1;

Default

LOAD '$(I): DEFAULT' as case autogenerate 1;

End Switch

To
The To script keyword is used in several script statements.

2.4 Script prefixes
Prefixes may be applied to applicable regular statements but never to control statements. The when and
unless prefixes can however be used as suffixes to a few specific control statement clauses.

All script keywords can be typed with any combination of lower case and upper case characters. Field and
variable names used in the statements are however case sensitive.

Script prefixes overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Add
The Add prefix can be added to any LOAD or SELECT statement in the script to specify that it should add
records to another table. It also specifies that this statement should be run in a partial reload. The Add prefix
can also be used in a Map statement.

Add [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)
Add [Only] mapstatement

Script syntax and chart functions - Qlik Sense, May 2023 32

2 Script statements and keywords

Buffer
QVD files can be created and maintained automatically via the buffer prefix. This prefix can be used on most
LOAD and SELECT statements in script. It indicates that QVD files are used to cache/buffer the result of the
statement.

Buffer[(option [, option])] (loadstatement | selectstatement)
option::= incremental | stale [after] amount [(days | hours)]

Concatenate
If two tables that are to be concatenated have different sets of fields, concatenation of two tables can still be
forced with the Concatenate prefix.

Concatenate[(tablename)] (loadstatement | selectstatement)

Crosstable
The crosstable load prefix is used to transpose “cross table” or “pivot table” structured data. Data structured
this way is commonly encountered when working with spreadsheet sources. The output and aim of the
crosstable load prefix is to transpose such structures into a regular column-oriented table equivalent, as this
structure is generally better suited for analysis in Qlik Sense.

Crosstable (attribute field name, data field name [, n]) (loadstatement |

selectstatement)

First
The First prefix to a LOAD or SELECT (SQL) statement is used for loading a set maximum number of records
from a data source table.

First n(loadstatement | selectstatement)

Generic
The Generic load prefix allows for conversion of entity–attribute–value modeled data (EAV) into a traditional,
normalized relational table structure. EAV modeling is alternatively referred to as "generic data modeling" or
"open schema".

Generic (loadstatement | selectstatement)

Hierarchy
The hierarchy prefix is used to transform a parent-child hierarchy table to a table that is useful in a Qlik Sense
data model. It can be put in front of a LOAD or a SELECT statement and will use the result of the loading
statement as input for a table transformation.

Hierarchy (NodeID, ParentID, NodeName, [ParentName], [PathSource],

[PathName], [PathDelimiter], [Depth])(loadstatement | selectstatement)

HierarchBelongsTo
This prefix is used to transform a parent-child hierarchy table to a table that is useful in a Qlik Sense data
model. It can be put in front of a LOAD or a SELECT statement and will use the result of the loading statement
as input for a table transformation.

Script syntax and chart functions - Qlik Sense, May 2023 33

2 Script statements and keywords

HierarchyBelongsTo (NodeID, ParentID, NodeName, AncestorID, AncestorName,

[DepthDiff])(loadstatement | selectstatement)

Inner
The join and keep prefixes can be preceded by the prefix inner.

If used before join it specifies that an inner join should be used. The resulting table will thus only contain
combinations of field values from the raw data tables where the linking field values are represented in both
tables. If used before keep, it specifies that both raw data tables should be reduced to their common
intersection before being stored in Qlik Sense.
.

Inner (Join | Keep) [(tablename)](loadstatement |selectstatement)

IntervalMatch
The IntervalMatch prefix is used to create a table matching discrete numeric values to one or more numeric
intervals, and optionally matching the values of one or several additional keys.

IntervalMatch (matchfield)(loadstatement | selectstatement)
IntervalMatch (matchfield,keyfield1 [, keyfield2, ... keyfield5])
(loadstatement | selectstatement)

Join
The join prefix joins the loaded table with an existing named table or the last previously created data table.

[Inner | Outer | Left | Right] Join [(tablename)](loadstatement |

selectstatement)

Keep
The keep prefix is similar to the join prefix. Just as the join prefix, it compares the loaded table with an
existing named table or the last previously created data table, but instead of joining the loaded table with an
existing table, it has the effect of reducing one or both of the two tables before they are stored in Qlik Sense,
based on the intersection of table data. The comparison made is equivalent to a natural join made over all the
common fields, i.e. the same way as in a corresponding join. However, the two tables are not joined and will
be kept in Qlik Sense as two separately named tables.

(Inner | Left | Right) Keep [(tablename)](loadstatement | selectstatement

)

Left
The Join and Keep prefixes can be preceded by the prefix left.

If used before join it specifies that a left join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented in the first
table. If used before keep, it specifies that the second raw data table should be reduced to its common
intersection with the first table, before being stored in Qlik Sense.

Left (Join | Keep) [(tablename)](loadstatement |selectstatement)

Script syntax and chart functions - Qlik Sense, May 2023 34

2 Script statements and keywords

Mapping
The mapping prefix is used to create a mapping table that can be used to, for example, replacing field values
and field names during script execution.

Mapping (loadstatement | selectstatement)

Merge
The Merge prefix can be added to any LOAD or SELECT statement in the script to specify that the loaded table
should be merged into another table. It also specifies that this statement should be run in a partial reload.

Merge [only] [(SequenceNoField [, SequenceNoVar])] On ListOfKeys [Concatenate
[(TableName)]] (loadstatement | selectstatement)

NoConcatenate
The NoConcatenate prefix forces two loaded tables with identical field sets to be treated as two separate
internal tables, when they would otherwise be automatically concatenated.

NoConcatenate(loadstatement | selectstatement)

Outer
The explicit Join prefix can be preceded by the prefix Outer to specify an outer join. In an outer join, all
combinations between the two tables are generated. The resulting table will thus contain combinations of
field values from the raw data tables where the linking field values are represented in one or both tables. The
Outer keyword is optional and is the default join type used when a join prefix is not specified.

Outer Join [(tablename)](loadstatement |selectstatement)

Partial reload
A full reload always starts by deleting all tables in the existing data model, and then runs the load script.

A Partial reload (page 97) will not do this. Instead it keeps all tables in the data model and then executes only
Load and Select statements preceded by an Add, Merge, or Replace prefix. Other data tables are not affected
by the command. The only argument denotes that the statement should be executed only during partial
reloads, and should be disregarded during full reloads. The following table summarizes statement execution
for partial and full reloads.

Replace
The Replace prefix can be added to any LOAD or SELECT statement in the script to specify that the loaded
table should replace another table. It also specifies that this statement should be run in a partial reload. The
Replace prefix can also be used in a Map statement.

Replace [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)
Replace [only] mapstatement

Right
The Join and Keep prefixes can be preceded by the prefix right.

Script syntax and chart functions - Qlik Sense, May 2023 35

2 Script statements and keywords

If used before join it specifies that a right join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented in the
second table. If used before keep, it specifies that the first raw data table should be reduced to its common
intersection with the second table, before being stored in Qlik Sense.

Right (Join | Keep) [(tablename)](loadstatement |selectstatement)

Sample
The sample prefix to a LOAD or SELECT statement is used for loading a random sample of records from the
data source.

Sample p (loadstatement | selectstatement)

Semantic
Tables containing relations between records can be loaded through a semantic prefix. This can for example
be self-references within a table, where one record points to another, such as parent, belongs to, or
predecessor.

Semantic (loadstatement | selectstatement)

Unless
The unless prefix and suffix is used for creating a conditional clause which determines whether a statement or
exit clause should be evaluated or not. It may be seen as a compact alternative to the full if..end if statement.

(Unless condition statement | exitstatement Unless condition)

When
The when prefix and suffix is used for creating a conditional clause which determines whether a statement or
exit clause should be executed or not. It may be seen as a compact alternative to the full if..end if statement.

(When condition statement | exitstatement when condition)

Add
The Add prefix can be added to any LOAD or SELECT statement in the script to specify that it should add
records to another table. It also specifies that this statement should be run in a partial reload. The Add prefix
can also be used in a Map statement.

For partial reload to work properly, the app must be opened with data before a partial reload is
triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Syntax:
Add [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)

Add [only] mapstatement

During a normal (non-partial) reload, the Add LOAD construction will work as a normal LOAD statement.
Records will be generated and stored in a table.

Script syntax and chart functions - Qlik Sense, May 2023 36

2 Script statements and keywords

If the Concatenate prefix is used, or if there exists a table with the same set of fields, the records will be
appended to the relevant existing table. Otherwise, the Add LOAD construction will create a new table.

A partial reload will do the same. The only difference is that the Add LOAD construction will never create a
new table. There always exists a relevant table from the previous script execution to which the records should
be appended.

No check for duplicates is performed. Therefore, a statement using the Add prefix will often include either a
distinct qualifier or a where clause guarding duplicates.

The Add Map...Using statement causes mapping to take place also during partial script execution.

Arguments:

Argument Description

only An optional qualifier denoting that the statement should be executed only
during partial reloads. It should be disregarded during normal (non-partial)
reloads.

Arguments

Examples and results:

Example Result

Tab1:

LOAD Name, Number FROM

Persons.csv;

Add LOAD Name, Number

FROM newPersons.csv;

During normal reload, data is loaded from Persons.csv and stored in the Qlik
Sense table Tab1. Data from NewPersons.csv is then concatenated to the
same Qlik Sense table.

During partial reload, data is loaded from NewPersons.csv and appended to
the Qlik Sense table Tab1. No check for duplicates is made.

Tab1:

SQL SELECT Name, Number

FROM Persons.csv;

Add LOAD Name, Number

FROM NewPersons.csv

where not exists(Name);

A check for duplicates is made by means of looking if Name exists in the
previously loaded table data.

During normal reload, data is loaded from Persons.csv and stored in the Qlik
Sense table Tab1. Data from NewPersons.csv is then concatenated to the
same Qlik Sense table.

During partial reload, data is loaded from NewPersons.csv which is
appended to the Qlik Sense table Tab1. A check for duplicates is made by
means of seeing if Name exists in the previously loaded table data.

Tab1:

LOAD Name, Number FROM

Persons.csv;

Add Only LOAD Name,

Number FROM

NewPersons.csv where not

exists(Name);

During normal reload, data is loaded from Persons.csv and stored in the Qlik
Sense table Tab1. The statement loading NewPersons.csv is disregarded.

During partial reload, data is loaded from NewPersons.csv which is
appended to the Qlik Sense table Tab1. A check for duplicates is made by
means of seeing if Name exists in the previously loaded table data.

Script syntax and chart functions - Qlik Sense, May 2023 37

2 Script statements and keywords

Buffer
QVD files can be created and maintained automatically via the buffer prefix. This prefix can be
used on most LOAD and SELECT statements in script. It indicates that QVD files are used to
cache/buffer the result of the statement.

Syntax:
Buffer [(option [, option])] (loadstatement | selectstatement)
option::= incremental | stale [after] amount [(days | hours)]

If no option is used, the QVD buffer created by the first execution of the script will be used indefinitely.

The buffer file is stored in the Buffers sub-folder, typically C:\ProgramData\Qlik\Sense\Engine\Buffers (server
installation) or C:\Users\{user}\Documents\Qlik\Sense\Buffers (Qlik Sense Desktop).

The name of the QVD file is a calculated name, a 160-bit hexadecimal hash of the entire following LOAD or
SELECT statement and other discriminating info. This means that the QVD buffer will be rendered invalid by
any change in the following LOAD or SELECT statement.

QVD buffers will normally be removed when no longer referenced anywhere throughout a complete script
execution in the app that created it or when the app that created it no longer exists.

Arguments:

Argument Description

incremental The incremental option enables the ability to read only part of an
underlying file. Previous size of the file is stored in the XML header in the
QVD file. This is particularly useful with log files. All records loaded at a
previous occasion are read from the QVD file whereas the following new
records are read from the original source and finally an updated QVD-file is
created.

The incremental option can only be used with LOAD statements and text
files. Incremental load cannot be used where old data is changed or
deleted.

stale [after]
amount [(days
| hours)]

amount is a number specifying the time period. Decimals may be used. The
unit is assumed to be days if omitted.
The stale after option is typically used with DB sources where there is no
simple timestamp on the original data. Instead you specify how old the
QVD snapshot can be to be used. A stale after clause simply states a time
period from the creation time of the QVD buffer after which it will no
longer be considered valid. Before that time the QVD buffer will be used as
source for data and after that the original data source will be used. The
QVD buffer file will then automatically be updated and a new period starts.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 38

2 Script statements and keywords

Limitations:

Numerous limitations exist, most notable is that there must be either a file LOAD or a SELECT statement at
the core of any complex statement.

Example 1:

Buffer SELECT * from MyTable;

Example 2:

Buffer (stale after 7 days) SELECT * from MyTable;

Example 3:

Buffer (incremental) LOAD * from MyLog.log;

Concatenate
Concatenate is a script load prefix that enables a dataset to be appended to an already existing
in-memory table. It is often used to append different sets of transactional data to a single
central fact table, or to build up common reference datasets of a specific type that originate
from multiple sources. It is similar in functionality to a SQL UNION operator.

The resulting table from a concatenate operation will contain the original dataset with the new rows of data
appended to the bottom of that table. The source and target tables may have different fields present. Where
fields are different, the resulting table will be widened to represent the combined result of all fields present in
both the source table and the target table.

Syntax:
Concatenate[(tablename)] (loadstatement | selectstatement)

Argument Description

tablename The name of an existing table. The named table will be the target of
the Concatenate operation and any records of data loaded will be
appended to that table. If the tablename parameter isn't used, the
target table will be the last loaded table before this statement.

loadstatement/selectstatement The loadstatement/selectstatement argument that follows the
tablename argument will be concatenated to the specified table.

Arguments

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may

Script syntax and chart functions - Qlik Sense, May 2023 39

2 Script statements and keywords

be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

Concatenate

(Transactions)

Load …. ;

The data loaded in the load statement below the Concatenate prefix will be
appended to the existing in-memory table named Transactions (assuming that a
table named Transactions has been loaded prior to this point in the load script).

Function example

Example 1 – Appending multiple sets of data to a target table with Concatenate load
prefix
Load script and results

Overview

In this example you will load two scripts in sequential order.

l The first load script contains an initial dataset with dates and amounts that is sent to a table named
Transactions.

l The second load script contains:
l A second dataset that is appended to the initial dataset by using the Concatenate prefix. This

dataset has an additional field, type, that is not in the initial dataset.
l The Concatenate prefix.

Open the data load editor and add the load script below to a new tab.

First load script

Transactions:

Load * Inline [

id, date, amount

3750, 08/30/2018, 23.56

3751, 09/07/2018, 556.31

3752, 09/16/2018, 5.75

3753, 09/22/2018, 125.00

3754, 09/22/2018, 484.21

3756, 09/22/2018, 59.18

3757, 09/23/2018, 177.42

];

Script syntax and chart functions - Qlik Sense, May 2023 40

2 Script statements and keywords

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l amount

id date amount

3750 08/30/2018 23.56

3751 09/07/2018 556.31

3752 09/16/2018 5.75

3753 09/22/2018 125.00

3754 09/22/2018 484.21

3756 09/22/2018 59.18

3757 09/23/2018 177.42

First load script results table

The table shows the initial dataset.

Second load script

Open the data load editor and add the load script below .

Concatenate(Transactions)

Load * Inline [

id, date, amount, type

3758, 10/01/2018, 164.27, Internal

3759, 10/03/2018, 384.00, External

3760, 10/06/2018, 25.82, Internal

3761, 10/09/2018, 312.00, Internal

3762, 10/15/2018, 4.56, Internal

3763, 10/16/2018, 90.24, Internal

3764, 10/18/2018, 19.32, External

];

Results

Load the data and go to the sheet. Create this field as a dimension:

l type

Script syntax and chart functions - Qlik Sense, May 2023 41

2 Script statements and keywords

id date amount type

3750 08/30/2018 23.56 -

3751 09/07/2018 556.31 -

3752 09/16/2018 5.75 -

3753 09/22/2018 125.00 -

3754 09/22/2018 484.21 -

3756 09/22/2018 59.18 -

3757 09/23/2018 177.42 -

3758 10/01/2018 164.27 Internal

3759 10/03/2018 384.00 External

3760 10/06/2018 25.82 Internal

3761 10/09/2018 312.00 Internal

3762 10/15/2018 4.56 Internal

3763 10/16/2018 90.24 Internal

3764 10/18/2018 19.32 External

Second load script results table

Note the null values in the type field for the first seven records loaded where type had not been defined.

Example 2 – Appending multiple sets of data to a target table using implicit
concatenation
Load script and results

Overview

A typical use case for implicitly appending data is when you load several files of identically structured data
and want to append them all to a target table.

For example, by using wildcards in file names with syntax such as:

myTable:

Load * from [myFile_*.qvd] (qvd);

or in loops using constructs such as:

for each file in filelist('myFile_*.qvd')

myTable:

Load * from [$(file)] (qvd);

next file

Script syntax and chart functions - Qlik Sense, May 2023 42

2 Script statements and keywords

Implicit concatenation will take place between any two tables that are loaded with identically
named fields, even if they aren't defined after one another in the script. This can lead to data being
unintentionally appended to tables. If you don't want a secondary table with identical fields to be
appended in this way, use the NoConcatenate load prefix. Renaming the table with an alternate
table name tag is not sufficient to prevent implicit concatenation to occur. For more information, see
NoConcatenate (page 87).

In this example you will load two scripts in sequential order.

l The first load script contains an initial dataset with four fields that is sent to a table named
Transactions.

l The second load script contains a dataset with the same fields as the first dataset.

Open the data load editor and add the load script below to a new tab.

First load script

Transactions:

Load * Inline [

id, date, amount, type

3758, 10/01/2018, 164.27, Internal

3759, 10/03/2018, 384.00, External

3760, 10/06/2018, 25.82, Internal

3761, 10/09/2018, 312.00, Internal

3762, 10/15/2018, 4.56, Internal

3763, 10/16/2018, 90.24, Internal

3764, 10/18/2018, 19.32, External

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l amount

l type

id date type amount

3758 10/01/2018 Internal 164.27

3759 10/03/2018 External 384.00

3760 10/06/2018 Internal 25.82

3761 10/09/2018 Internal 312.00

3762 10/15/2018 Internal 4.56

First load script results table

Script syntax and chart functions - Qlik Sense, May 2023 43

2 Script statements and keywords

id date type amount

3763 10/16/2018 Internal 90.24

3764 10/18/2018 External 19.32

The table shows the initial dataset.

Second load script

Open the data load editor and add the load script below .

Load * Inline [

id, date, amount, type

3765, 11/03/2018, 129.40, Internal

3766, 11/05/2018, 638.50, External

];

Results

Load the data and go to the sheet.

id date type amount

3758 10/01/2018 Internal 164.27

3759 10/03/2018 External 384.00

3760 10/06/2018 Internal 25.82

3761 10/09/2018 Internal 312.00

3762 10/15/2018 Internal 4.56

3763 10/16/2018 Internal 90.24

3764 10/18/2018 External 19.32

3765 11/03/2018 Internal 129.40

3766 11/05/2018 External 638.50

Second load script results table

The second dataset was implicitly concatenated onto the initial dataset because they had identical fields.

Crosstable
The crosstable load prefix is used to transpose “cross table” or “pivot table” structured data.
Data structured this way is commonly encountered when working with spreadsheet sources. The
output and aim of the crosstable load prefix is to transpose such structures into a regular
column-oriented table equivalent, as this structure is generally better suited for analysis in Qlik
Sense.

Script syntax and chart functions - Qlik Sense, May 2023 44

2 Script statements and keywords

Example of data structured as a crosstable and its equivalent structure after a crosstable transformation

Syntax:
crosstable (attribute field name, data field name [, n]) (loadstatement |

selectstatement)

Argument Description

attribute
field name

The desired output field name describing the horizontally oriented dimension that is to be
transposed (the header row).

data field
name

The desired output field name which describes the horizontally oriented data of the
dimension that is to be transposed (the matrix of data values beneath the header row).

n The number of qualifier fields, or unchanged dimensions, preceding the table to be
transformed to generic form. The default value is 1.

Arguments

This scripting function is related to the following functions:

Function Interaction

Generic
(page 56)

A transformation load prefix which takes an entity-attribute-value structured data set and
transforms it into a regular relational table structure, separating each attribute encountered
into a new field or column of data.

Related functions

Script syntax and chart functions - Qlik Sense, May 2023 45

2 Script statements and keywords

Example 1 – Transforming pivoted sales data (simple)
Load scripts and results

Overview

Open the Data load editor and add the first load script below to a new tab.

The first load script contains a dataset to which the crosstable script prefix will be applied later, with the
section applying crosstable commented out. This means that comment syntax was used to disable this
section in the load script.

The second load script is the same as the first, but with the application of crosstable uncommented (enabled
by removing the comment syntax). The scripts are shown this way to highlight the value of this scripting
function in transforming data.

First load script (function not applied)

tmpData:

//Crosstable (MonthText, Sales)

Load * inline [

Product, Jan 2021, Feb 2021, Mar 2021, Apr 2021, May 2021, Jun 2021

A, 100, 98, 103, 63, 108, 82

B, 284, 279, 297, 305, 294, 292

C, 50, 53, 50, 54, 49, 51];

//Final:

//Load Product,

//Date(Date#(MonthText,'MMM YYYY'),'MMM YYYY') as Month,

//Sales

//Resident tmpData;

//Drop Table tmpData;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l Product

l Jan 2021

l Feb 2021

l Mar 2021

l Apr 2021

l May 2021

l Jun 2021

Script syntax and chart functions - Qlik Sense, May 2023 46

2 Script statements and keywords

Product Jan 2021 Feb 2021 Mar 2021 Apr 2021 May 2021
Jun
2021

A 100 98 103 63 108 82

B 284 279 297 305 294 292

C 50 53 50 54 49 51

Results table

This script allows the creation of a crosstable with one column for each month and one row per product. In its
current format, this data is not easy to analyze. It would be much better to have all numbers in one field and
all months in another, in a three-column table. The next section explains how to do this transformation to the
crosstable.

Second load script (function applied)

Uncomment the script by removing the //. The load script should look like this:

tmpData:

Crosstable (MonthText, Sales)

Load * inline [

Product, Jan 2021, Feb 2021, Mar 2021, Apr 2021, May 2021, Jun 2021

A, 100, 98, 103, 63, 108, 82

B, 284, 279, 297, 305, 294, 292

C, 50, 53, 50, 54, 49, 51];

Final:

Load Product,

Date(Date#(MonthText,'MMM YYYY'),'MMM YYYY') as Month,

Sales

Resident tmpData;

Drop Table tmpData;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l Product

l Month

l Sales

Product Month Sales

A Jan 2021 100

A Feb 2021 98

A Mar 2021 103

Results table

Script syntax and chart functions - Qlik Sense, May 2023 47

2 Script statements and keywords

Product Month Sales

A Apr 2021 63

A May 2021 108

A Jun 2021 82

B Jan 2021 284

B Feb 2021 279

B Mar 2021 297

B Apr 2021 305

B May 2021 294

B Jun 2021 292

C Jan 2021 50

C Feb 2021 53

C Mar 2021 50

C Apr 2021 54

C May 2021 49

C Jun 2021 51

Once the script prefix has been applied, the crosstable is transformed into a straight table with one column for
Month and another for Sales. This improves the readability of the data.

Example 2 – Transforming pivoted sales target data into a vertical table structure
(intermediate)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table named Targets.
l The crosstable load prefix, which transposes the pivoted sales person names into a field of its own,

labeled Sales Person.
l The associated sales target data, which is structured into a field called Target.

Load script

SalesTargets:

CROSSTABLE([Sales Person],Target,1)

Script syntax and chart functions - Qlik Sense, May 2023 48

2 Script statements and keywords

LOAD

*

INLINE [

Area, Lisa, James, Sharon

APAC, 1500, 1750, 1850

EMEA, 1350, 950, 2050

NA, 1800, 1200, 1350

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l Area

l Sales Person

Add this measure:

=Sum(Target)

Area Sales Person =Sum(Target)

APAC James 1750

APAC Lisa 1500

APAC Sharon 1850

EMEA James 950

EMEA Lisa 1350

EMEA Sharon 2050

NA James 1200

NA Lisa 1800

NA Sharon 1350

Results table

If you want to replicate the display of data as the pivoted input table, you can create an equivalent pivot table
in a sheet.

Do the following:

1. Copy and paste the table you have just created into the sheet.

2. Drag the Pivot table chart object on top of the newly created table copy. Select Convert.

3. Click Done editing.

4. Drag the Sales Person field from the vertical column shelf to the horizontal column shelf.

The following table shows the data in its initial table form, as it is displayed in Qlik Sense:

Script syntax and chart functions - Qlik Sense, May 2023 49

2 Script statements and keywords

Area Sales Person =Sum(Target)

Totals - 13800

APAC James 1750

APAC Lisa 1500

APAC Sharon 1850

EMEA James 950

EMEA Lisa 1350

EMEA Sharon 2050

NA James 1200

NA Lisa 1800

NA Sharon 1350

Original results table, as shown in Qlik Sense

The equivalent pivot table looks similar to the following, with the column for each sales person's name being
contained within the larger row for Sales Person:

Area James Lisa Sharon

APAC 1750 1500 1850

EMEA 950 1350 2050

NA 1350 1350 1350

Equivalent pivot table with the Sales Person

field pivoted horizontally

Example of data displayed as a table and an equivalent pivot table with the Sales Person field pivoted horizontally

Script syntax and chart functions - Qlik Sense, May 2023 50

2 Script statements and keywords

Example 3 – Transforming pivoted sales and target data into a vertical table
structure (advanced)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset representing sales and targets data, organized by area and month of the year. This is loaded
into a table called SalesAndTargets.

l The crosstable load prefix. This is used to unpivot the Month Year dimension into a dedicated field,
as well as to transpose the matrix of sales and target amounts into a dedicated field called Amount.

l A conversion of the Month Year field from text to a proper date, using the text-to-date conversion
function date#. This date-converted Month Year field is joined back onto the SalesAndTarget table via
a Join load prefix.

Load script

SalesAndTargets:

CROSSTABLE(MonthYearAsText,Amount,2)

LOAD

*

INLINE [

Area Type Jan-22 Feb-22 Mar-22 Apr-22 May-22 Jun-22 Jul-22 Aug-22 Sep-22 Oct-22 Nov-22 Dec-22

APAC Target 425 425 425 425 425 425 425 425 425 425 425 425

APAC Actual 435 434 397 404 458 447 413 458 385 421 448 397

EMEA Target 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5

EMEA Actual 363.5 359.5 337.5 361.5 341.5 337.5 379.5 352.5 327.5 337.5 360.5 334.5

NA Target 375 375 375 375 375 375 375 375 375 375 375 375

NA Actual 378 415 363 356 403 343 401 365 393 340 360 405

] (delimiter is '\t');

tmp:

LOAD DISTINCT MonthYearAsText,date#(MonthYearAsText,'MMM-YY') AS [Month Year]

RESIDENT SalesAndTargets;

JOIN (SalesAndTargets)

LOAD * RESIDENT tmp;

DROP TABLE tmp;

DROP FIELD MonthYearAsText;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2023 51

2 Script statements and keywords

l Area

l Month Year

Create the following measure, with the label Actual:

=Sum({<Type={'Actual'}>} Amount)

Also create this measure, with the label Target:

=Sum({<Type={'Target'}>} Amount)

Area Month Year Actual Target

APAC Jan-22 435 425

APAC Feb-22 434 425

APAC Mar-22 397 425

APAC Apr-22 404 425

APAC May-22 458 425

APAC Jun-22 447 425

APAC Jul-22 413 425

APAC Aug-22 458 425

APAC Sep-22 385 425

APAC Oct-22 421 425

APAC Nov-22 448 425

APAC Dec-22 397 425

EMEA Jan-22 363.5 362.5

EMEA Feb-22 359.5 362.5

Results table (cropped)

If you wish to replicate the display of data as the pivoted input table, you can create an equivalent pivot table
in a sheet.

Do the following:

1. Copy and paste the table you have just created into the sheet.

2. Drag the Pivot table chart object on top of the newly created table copy. Select Convert.

3. Click Done editing.

4. Drag the Month Year field from the vertical column shelf to the horizontal column shelf.

5. Drag the Values item from the horizontal column shelf to the vertical column shelf.

The following table shows the data in its initial table form, as it is displayed in Qlik Sense:

Script syntax and chart functions - Qlik Sense, May 2023 52

2 Script statements and keywords

Area Month Year Actual Target

Totals - 13812 13950

APAC Jan-22 435 425

APAC Feb-22 434 425

APAC Mar-22 397 425

APAC Apr-22 404 425

APAC May-22 458 425

APAC Jun-22 447 425

APAC Jul-22 413 425

APAC Aug-22 458 425

APAC Sep-22 385 425

APAC Oct-22 421 425

APAC Nov-22 448 425

APAC Dec-22 397 425

EMEA Jan-22 363.5 362.5

EMEA Feb-22 359.5 362.5

Original results table (cropped), as shown in Qlik
Sense

The equivalent pivot table looks similar to the following, with the column for each individual month of the
year being contained within the larger row for Month Year:

Area
(Value
s)

Jan-
22

Feb-
22

Mar-
22

Apr-
22

May-
22

Jun-
22

Jul-
22

Aug-
22

Sep-
22

Oct-
22

Nov-
22

Dec-
22

APAC -
Actual

435 434 397 404 458 447 413 458 385 421 448 397

APAC -
Target

425 425 425 425 425 425 425 425 425 425 425 425

EMEA -
Actual

363.5 359.5 337.5 361.5 341.5 337.5 379.5 352.5 327.5 337.5 360.5 334.5

EMEA -
Target

362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5

NA -
Actual

378 415 363 356 403 343 401 365 393 340 360 405

Equivalent pivot table (cropped) with the Month Year field pivoted horizontally

Script syntax and chart functions - Qlik Sense, May 2023 53

2 Script statements and keywords

Area
(Value
s)

Jan-
22

Feb-
22

Mar-
22

Apr-
22

May-
22

Jun-
22

Jul-
22

Aug-
22

Sep-
22

Oct-
22

Nov-
22

Dec-
22

NA -
Target

375 375 375 375 375 375 375 375 375 375 375 375

Example of data displayed as a table and an equivalent pivot table with the Month Year field pivoted horizontally

First
The First prefix to a LOAD or SELECT (SQL) statement is used for loading a set maximum number
of records from a data source table. A typical use case for using the First prefix is when you
want to retrieve a small subset of records from a large and/or slow data load step. As soon as
the defined “n” number of records has been loaded, the load step terminates prematurely, and
the rest of the script execution continues as normal.

Syntax:
First n (loadstatement | selectstatement)

Argument Description

n An arbitrary expression that evaluates to an integer indicating the maximum
number of records to be read. n can also be enclosed in parentheses: (n).

loadstatement |

selectstatement

The load statement/select statement that follows the n argument will define the
specified table that must be loaded with the set maximum number of records.

Arguments

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use

Script syntax and chart functions - Qlik Sense, May 2023 54

2 Script statements and keywords

Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

FIRST 10 LOAD * from abc.csv; This example will retrieve the first ten lines from an excel file.

FIRST (1) SQL SELECT * from

Orders;

This example will retrieve the first selected line from the Orders

dataset.

Function examples

Example – Load the first five rows
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates from the first two weeks of 2020.
l The First variable that instructs the application to only load the first five records.

Load script

Sales:

FIRST 5

LOAD

*

Inline [

date,sales

01/01/2020,6000

01/02/2020,3000

01/03/2020,6000

01/04/2020,8000

01/05/2020,5000

01/06/2020,7000

01/07/2020,3000

01/08/2020,5000

01/09/2020,9000

01/10/2020,5000

01/11/2020,7000

01/12/2020,7000

01/13/2020,7000

01/14/2020,7000

];

Results

Load the data and open a sheet. Create a new table and add Date as a field and sum(sales) as a measure.

Script syntax and chart functions - Qlik Sense, May 2023 55

2 Script statements and keywords

Date sum(sales)

01/01/2020 6000

01/02/2020 3000

01/03/2020 6000

01/04/2020 8000

01/05/2020 5000

Results table

The script only loads the first five records of the Sales table.

Generic
The Generic load prefix allows for conversion of entity–attribute–value modeled data (EAV) into
a traditional, normalized relational table structure. EAV modeling is alternatively referred to as
"generic data modeling" or "open schema".

Example of EAV modeled data and an equivalent denormalized relational table

Example of EAV modeled data and an equivalent set of normalized relational tables

Script syntax and chart functions - Qlik Sense, May 2023 56

2 Script statements and keywords

While it is technically possible to load and analyze EAV modeled data in Qlik, it is often easier to work with an
equivalent traditional relational data structure.

Syntax:
Generic(loadstatement | selectstatement)

These topics may help you work with this function:

Topic Description

Crosstable
(page 44)

The Crosstable load prefix transforms data that is horizontally-oriented into vertically-
oriented data. From a purely functional perspective, it performs the opposite
transformation to the Generic load prefix, although the prefixes typically serve entirely
different use cases.

Generic
databases in
Manage data

EAV structured data models are further described here.

Related topics

Example 1 – Transforming EAV structured data with the Generic load prefix
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains a dataset which is loaded into a table named Transactions. The dataset includes a
date field. The default MonthNames definition is used.

Load script

Products:

Generic

Load * inline [

Product ID, Attribute, Value

13, Status, Discontinued

13, Color, Brown

20, Color, White

13, Size, 13-15

20, Size, 16-18

2, Status, Discontinued

5, Color, Brown

2, Color, White

44, Color, Brown

45, Size, 16-18

45, Color, Brown

];

Script syntax and chart functions - Qlik Sense, May 2023 57

2 Script statements and keywords

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: Color.

Add this measure:

=Count([Product ID])

Now you can inspect the number of products by color.

Color =Count([Product ID])

Brown 4

White 2

Results table

Note the shape of the data model, where each attribute has been broken out into a separate table named
according to the original target table tag Product.Each table has the attribute as a suffix. One example of this
is Product.Color. The resulting Product Attribute output records are associated by the Product ID.

Data model viewer representation of the results

Product ID Status

13 Discontinued

2 Discontinued

Resulting table of
records: Products.Status

Script syntax and chart functions - Qlik Sense, May 2023 58

2 Script statements and keywords

Product ID Size

13 13-15

20 16-18

45 16-18

Resulting table of
records: Products.Size

Product ID Color

13 Brown

5 Brown

44 Brown

45 Brown

20 White

2 White

Resulting table of
records: Products.Color

Example 2 – Analyzing EAV structured data without the Generic load prefix
Load script and chart expression

Overview

This example shows how to analyze EAV structured data in its original form.

Open the Data load editor and add the load script below to a new tab.

The load script contains a dataset which is loaded into a table named Products in an EAV structure.

In this example, we are still counting products by color attribute. In order to analyze data structured in this
way, you will need to apply expression-level filtering of products carrying the Attribute value Color.

Furthermore, individual attributes are not available to select as dimensions or fields, making it harder to
determine how to build effective visualizations.

Load script

Products:

Load * Inline

[

Product ID, Attribute, Value

13, Status, Discontinued

13, Color, Brown

20, Color, White

Script syntax and chart functions - Qlik Sense, May 2023 59

2 Script statements and keywords

13, Size, 13-15

20, Size, 16-18

2, Status, Discontinued

5, Color, Brown

2, Color, White

44, Color, Brown

45, Size, 16-18

45, Color, Brown

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: Value.

Create the following measure:

=Count({<Attribute={'Color'}>} [Product ID])

Now you can inspect the number of products by color.

Value =Count({<Attribute={'Color'}>} [Product ID])

Brown 4

White 2

Resulting table of records: Products.Status

Example 3 – Denormalizing the resulting output tables from a Generic load
(advanced)
Load script and chart expression

Overview

In this example, we show how the normalised data structure produced by the Generic load prefix can be
denormalised back into a consolidated Product dimension table. This is an advanced modeling technique
which can be employed as part of data model performance tuning.

Open the Data load editor and add the load script below to a new tab.

Load script

Products:

Generic

Load * inline [

Product ID, Attribute, Value

13, Status, Discontinued

13, Color, Brown

20, Color, White

13, Size, 13-15

20, Size, 16-18

Script syntax and chart functions - Qlik Sense, May 2023 60

2 Script statements and keywords

2, Status, Discontinued

5, Color, Brown

2, Color, White

44, Color, Brown

45, Size, 16-18

45, Color, Brown

];

RENAME TABLE Products.Color TO Products;

OUTER JOIN (Products)

LOAD * RESIDENT Products.Size;

OUTER JOIN (Products)

LOAD * RESIDENT Products.Status;

DROP TABLES Products.Size,Products.Status;

Results

Open the Data model viewer and note the shape of the resulting data model. Only one denormalized table is
present. It is a combination of the three intermediary output tables: Products.Size, Products.Status, and
Products.Color.

Products

Product ID

Status

Color

Size

Resulting
internal data

model

Product ID Status Color Size

13 Discontinued Brown 13-15

20 - White 16-18

2 Discontinued White -

5 - Brown -

44 - Brown -

45 - Brown 16-18

Resulting table of records: Products

Load the data and open a sheet. Create a new table and add this field as a dimension: Color.

Add this measure:

Script syntax and chart functions - Qlik Sense, May 2023 61

2 Script statements and keywords

=Count([Product ID])

Color =Count([Product ID])

Brown 4

White 2

Results table

Hierarchy
The hierarchy prefix is used to transform a parent-child hierarchy table to a table that is useful
in a Qlik Sense data model. It can be put in front of a LOAD or a SELECT statement and will use
the result of the loading statement as input for a table transformation.

The prefix creates an expanded nodes table, which normally has the same number of records as the input
table, but in addition each level in the hierarchy is stored in a separate field. The path field can be used in a
tree structure.

Syntax:
Hierarchy (NodeID, ParentID, NodeName, [ParentName, [PathSource, [PathName,

[PathDelimiter, Depth]]]])(loadstatement | selectstatement)

The input table must be an adjacent nodes table. Adjacent nodes tables are tables where each record
corresponds to a node and has a field that contains a reference to the parent node. In such a table the node is
stored on one record only but the node can still have any number of children. The table may of course contain
additional fields describing attributes for the nodes.

The prefix creates an expanded nodes table, which normally has the same number of records as the input
table, but in addition each level in the hierarchy is stored in a separate field. The path field can be used in a
tree structure.

Usually the input table has exactly one record per node and in such a case the output table will contain the
same number of records. However, sometimes there are nodes with multiple parents, i.e. one node is
represented by several records in the input table. If so, the output table may have more records than the input
table.

All nodes with a parent id not found in the node id column (including nodes with missing parent id) will be
considered as roots. Also, only nodes with a connection to a root node - direct or indirect - will be loaded, thus
avoiding circular references.

Additional fields containing the name of the parent node, the path of the node and the depth of the node can
be created.

Script syntax and chart functions - Qlik Sense, May 2023 62

2 Script statements and keywords

Arguments:

Argument Description

NodeID The name of the field that contains the node id. This field must exist in the input table.

ParentID The name of the field that contains the node id of the parent node. This field must exist
in the input table.

NodeName The name of the field that contains the name of the node. This field must exist in the
input table.

ParentName A string used to name the new ParentName field. If omitted, this field will not be
created.

ParentSource The name of the field that contains the name of the node used to build the node path.
Optional parameter. If omitted, NodeName will be used.

PathName A string used to name the new Path field, which contains the path from the root to the
node. Optional parameter. If omitted, this field will not be created.

PathDelimiter A string used as delimiter in the new Path field. Optional parameter. If omitted, '/' will
be used.

Depth A string used to name the new Depth field, which contains the depth of the node in the
hierarchy. Optional parameter. If omitted, this field will not be created.

Arguments

Example:

Hierarchy(NodeID, ParentID, NodeName, ParentName, NodeName, PathName, '\', Depth) LOAD *

inline [

NodeID, ParentID, NodeName

1, 4, London

2, 3, Munich

3, 5, Germany

4, 5, UK

5, , Europe

];

NodeI
D

Parent
ID

NodeNa
me

NodeNa
me1

NodeNa
me2

NodeNa
me3

ParentNa
me

PathName Dept
h

1 4 London Europe UK London UK Europe\UK\Londo
n

3

2 3 Munich Europe Germany Munich Germany Europe\Germany\
Munich

3

3 5 German
y

Europe Germany - Europe Europe\Germany 2

4 5 UK Europe UK - Europe Europe\UK 2

5 Europe Europe - - - Europe 1

Script syntax and chart functions - Qlik Sense, May 2023 63

2 Script statements and keywords

HierarchyBelongsTo
This prefix is used to transform a parent-child hierarchy table to a table that is useful in a Qlik
Sense data model. It can be put in front of a LOAD or a SELECT statement and will use the result
of the loading statement as input for a table transformation.

The prefix creates a table containing all ancestor-child relations of the hierarchy. The ancestor fields can then
be used to select entire trees in the hierarchy. The output table in most cases contains several records per
node.

Syntax:
HierarchyBelongsTo (NodeID, ParentID, NodeName, AncestorID, AncestorName,

[DepthDiff])(loadstatement | selectstatement)

The input table must be an adjacent nodes table. Adjacent nodes tables are tables where each record
corresponds to a node and has a field that contains a reference to the parent node. In such a table the node is
stored on one record only but the node can still have any number of children. The table may of course contain
additional fields describing attributes for the nodes.

The prefix creates a table containing all ancestor-child relations of the hierarchy. The ancestor fields can then
be used to select entire trees in the hierarchy. The output table in most cases contains several records per
node.

An additional field containing the depth difference of the nodes can be created.

Arguments:

Argument Description

NodeID The name of the field that contains the node id. This field must exist in the input table.

ParentID The name of the field that contains the node id of the parent node. This field must exist
in the input table.

NodeName The name of the field that contains the name of the node. This field must exist in the
input table.

AncestorID A string used to name the new ancestor id field, which contains the id of the ancestor
node.

AncestorName A string used to name the new ancestor field, which contains the name of the ancestor
node.

DepthDiff A string used to name the new DepthDiff field, which contains the depth of the node in
the hierarchy relative the ancestor node. Optional parameter. If omitted, this field will
not be created.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 64

2 Script statements and keywords

Example:

HierarchyBelongsTo (NodeID, AncestorID, NodeName, AncestorID, AncestorName, DepthDiff) LOAD *

inline [

NodeID, AncestorID, NodeName

1, 4, London

2, 3, Munich

3, 5, Germany

4, 5, UK

5, , Europe

];

NodeID AncestorID NodeName AncestorName DepthDiff

1 1 London London 0

1 4 London UK 1

1 5 London Europe 2

2 2 Munich Munich 0

2 3 Munich Germany 1

2 5 Munich Europe 2

3 3 Germany Germany 0

3 5 Germany Europe 1

4 4 UK UK 0

4 5 UK Europe 1

5 5 Europe Europe 0

Results

Inner
The join and keep prefixes can be preceded by the prefix inner. If used before join it specifies
that an inner join should be used. The resulting table will thus only contain combinations of
field values from the raw data tables where the linking field values are represented in both
tables. If used before keep, it specifies that both raw data tables should be reduced to their
common intersection before being stored in Qlik Sense.

Syntax:
Inner (Join | Keep) [(tablename)](loadstatement |selectstatement)

Script syntax and chart functions - Qlik Sense, May 2023 65

2 Script statements and keywords

Arguments:

Argument Description

tablename The named table to be compared to the loaded table.

loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

Arguments

Example

Load script
Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Table1:

Load * inline [

Column1, Column2

A, B

1, aa

2, cc

3, ee];

Table2:

Inner Join Load * inline [

Column1, Column3

A, C

1, xx

4, yy];

Result

Column1 Column2 Column3

A B C

1 aa xx

Resulting table

Explanation
This example demonstrates the Inner Join output where only values present in both the first (left) and the
second (right) tables are joined.

IntervalMatch
The IntervalMatch prefix is used to create a table matching discrete numeric values to one or
more numeric intervals, and optionally matching the values of one or several additional keys.

Syntax:
IntervalMatch (matchfield)(loadstatement | selectstatement)
IntervalMatch (matchfield,keyfield1 [, keyfield2, ... keyfield5])
(loadstatement | selectstatement)

Script syntax and chart functions - Qlik Sense, May 2023 66

2 Script statements and keywords

The IntervalMatch prefix must be placed before a LOAD or a SELECT statement that loads the intervals. The
field containing the discrete data points (Time in the example below) and additional keys must already have
been loaded into Qlik Sense before the statement with the IntervalMatch prefix. The prefix does not by itself
read this field from the database table. The prefix transforms the loaded table of intervals and keys to a table
that contains an additional column: the discrete numeric data points. It also expands the number of records
so that the new table has one record per possible combination of discrete data point, interval and value of the
key field(s).

The intervals may be overlapping and the discrete values will be linked to all matching intervals.

When the IntervalMatch prefix is extended with key fields, it is used to create a table matching discrete
numeric values to one or more numeric intervals, while at the same time matching the values of one or
several additional keys.

In order to avoid undefined interval limits being disregarded, it may be necessary to allow NULL values to map
to other fields that constitute the lower or upper limits to the interval. This can be handled by the
NullAsValue statement or by an explicit test that replaces NULL values with a numeric value well before or
after any of the discrete numeric data points.

Arguments:

Argument Description

matchfield The field containing the discrete numeric values to be linked to intervals.

keyfield Fields that contain the additional attributes that are to be matched in the
transformation.

loadstatement
orselectstatement

Must result in a table, where the first field contains the lower limit of each interval,
the second field contains the upper limit of each interval, and in the case of using key
matching, the third and any subsequent fields contain the keyfield(s) present in the
IntervalMatch statement. The intervals are always closed, i.e. the end points are
included in the interval. Non-numeric limits render the interval to be disregarded
(undefined).

Arguments

Example 1:

In the two tables below, the first one lists a number of discrete events and the second one defines the start
and end times for the production of different orders. By means of the IntervalMatch prefix it is possible to
logically connect the two tables in order to find out e.g. which orders were affected by disturbances and which
orders were processed by which shifts.

EventLog:

LOAD * Inline [

Time, Event, Comment

00:00, 0, Start of shift 1

01:18, 1, Line stop

02:23, 2, Line restart 50%

Script syntax and chart functions - Qlik Sense, May 2023 67

2 Script statements and keywords

04:15, 3, Line speed 100%

08:00, 4, Start of shift 2

11:43, 5, End of production

];

OrderLog:

LOAD * INLINE [

Start, End, Order

01:00, 03:35, A

02:30, 07:58, B

03:04, 10:27, C

07:23, 11:43, D

];

//Link the field Time to the time intervals defined by the fields Start and End.

Inner Join IntervalMatch (Time)

LOAD Start, End

Resident OrderLog;

The table OrderLog contains now an additional column: Time. The number of records is also expanded.

Time Start End Order

00:00 - - -

01:18 01:00 03:35 A

02:23 01:00 03:35 A

04:15 02:30 07:58 B

04:15 03:04 10:27 C

08:00 03:04 10:27 C

08:00 07:23 11:43 D

11:43 07:23 11:43 D

Table with additional column

Example 2: (using keyfield)

Same example than above, adding ProductionLine as a key field.

EventLog:

LOAD * Inline [

Time, Event, Comment, ProductionLine

00:00, 0, Start of shift 1, P1

01:00, 0, Start of shift 1, P2

01:18, 1, Line stop, P1

02:23, 2, Line restart 50%, P1

04:15, 3, Line speed 100%, P1

08:00, 4, Start of shift 2, P1

09:00, 4, Start of shift 2, P2

11:43, 5, End of production, P1

11:43, 5, End of production, P2

];

Script syntax and chart functions - Qlik Sense, May 2023 68

2 Script statements and keywords

OrderLog:

LOAD * INLINE [

Start, End, Order, ProductionLine

01:00, 03:35, A, P1

02:30, 07:58, B, P1

03:04, 10:27, C, P1

07:23, 11:43, D, P2

];

//Link the field Time to the time intervals defined by the fields Start and End and match the

values

// to the key ProductionLine.

Inner Join

IntervalMatch (Time, ProductionLine)

LOAD Start, End, ProductionLine

Resident OrderLog;

A table box could now be created as below:

ProductionLine Time Event Comment Order Start End

P1 00:00 0 Start of shift 1 - - -

P2 01:00 0 Start of shift 1 - - -

P1 01:18 1 Line stop A 01:00 03:35

P1 02:23 2 Line restart 50% A 01:00 03:35

P1 04:15 3 Line speed 100% B 02:30 07:58

P1 04:15 3 Line speed 100% C 03:04 10:27

P1 08:00 4 Start of shift 2 C 03:04 10:27

P2 09:00 4 Start of shift 2 D 07:23 11:43

P1 11:43 5 End of production - - -

P2 11:43 5 End of production D 07:23 11:43

Tablebox example

Join
The join prefix joins the loaded table with an existing named table or the last previously created
data table.

The effect of joining data is to extend the target table by an additional set of fields or attributes, namely ones
not already present in the target table. Any common field names between the source data set and the target
table are used to work out how to associate the new incoming records. This is commonly referred to as a
“natural join”. A Qlik join operation can lead to the resulting target table having more or fewer records than it
started with, depending on the uniqueness of the join association and the type of join employed.

There are four types of joins:

Script syntax and chart functions - Qlik Sense, May 2023 69

2 Script statements and keywords

Left join

Left joins are the most common join type. For example, if you have a transaction data set and would like to
combine it with a reference data set, you would typically use a Left Join. You would load the transaction
table first, then load the reference data set while joining it via a Left Join prefix onto the already loaded
transaction table. A Left Join would keep all transactions as-is and add on the supplementary reference data
fields where a match is found.

Inner join

When you have two data sets where you only care about any results where there is a matching association,
consider using an Inner Join. This will eliminate all records from both the source data loaded and the target
table if no match is found. As a result, this may leave your target table with fewer records than before the join
operation took place.

Outer join

When you need to keep both the target records and all of the incoming records, use an Outer Join. Where no
match is found, each set of records is still kept while the fields from the opposite side of the join will remain
unpopulated (null).

If the type keyword is omitted, the default join type is an outer join.

Right join

This join type keeps all the records about to be loaded, while reducing the records in the table targeted by the
join to only those records where there is an association match in the incoming records. This is a niche join
type that is sometimes used as a means of trimming down an already pre-loaded table of records to a
required subset.

Script syntax and chart functions - Qlik Sense, May 2023 70

2 Script statements and keywords

Example results sets from different types of join operations

If there are no field names in common between the source and target of a join operation, the join
will result in a cartesian product of all rows – this is called a “cross join”.

Example result set from a "cross join" operation

Syntax:
[inner | outer | left | right]Join [(tablename)](loadstatement |

selectstatement)

Script syntax and chart functions - Qlik Sense, May 2023 71

2 Script statements and keywords

Argument Description

tablename The named table to be compared to the loaded table.

loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

Arguments

These topics may help you work with this function:

Topic Description

Combining tables
with Join and Keep
in Manage data

This topic provides further explanation of the concepts of “joining” and “keeping”
data sets.

Keep (page 79) The Keep load prefix is similar to the Join prefix, but it does not combine the
source and target datasets. Instead, it trims each dataset according to the type of
operation adopted (inner, outer, left, or right).

Related topics

Example 1 - Left join: Enriching a target table with a reference data set
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset representing change records, which is loaded into a table named Changes. It includes a
Status ID key field.

l A second dataset representing change statuses, which is loaded and combined with the original
change records by joining it with a left Join load prefix.

This left join ensures that the change records remain intact while adding on status attributes where a match in
the incoming status records is found based on a common Status ID.

Load script

Changes:

Load * inline [

Change ID Status ID Scheduled Start Date Scheduled End Date Business Impact

10030 4 19/01/2022 23/02/2022 None

10015 3 04/01/2022 15/02/2022 Low

10103 1 02/04/2022 29/05/2022 Medium

10185 2 23/06/2022 08/09/2022 None

10323 1 08/11/2022 26/11/2022 High

10326 2 11/11/2022 05/12/2022 None

Script syntax and chart functions - Qlik Sense, May 2023 72

2 Script statements and keywords

10138 2 07/05/2022 03/08/2022 None

10031 3 20/01/2022 25/03/2022 Low

10040 1 29/01/2022 22/04/2022 None

10134 1 03/05/2022 08/07/2022 Low

10334 2 19/11/2022 06/02/2023 Low

10220 2 28/07/2022 06/09/2022 None

10264 1 10/09/2022 17/10/2022 Medium

10116 1 15/04/2022 24/04/2022 None

10187 2 25/06/2022 24/08/2022 Low

] (delimiter is '\t');

Status:

Left Join (Changes)

Load * inline [

Status ID Status Sub Status

1 Open Not Started

2 Open Started

3 Closed Completed

4 Closed Cancelled

5 Closed Obsolete

] (delimiter is '\t');

Results

Open the Data model viewer and note the shape of the data model. Only one denormalized table is present. It
is a combination of all the original change records, with the matching status attributes joined onto each
change record.

Changes

Change ID

Status ID

Scheduled Start Date

Scheduled End Date

Business Impact

Status

Sub Status

Resulting internal data
model

If you expand the preview window in the Data model viewer, you will see a portion of this full result set
organized into a table:

Script syntax and chart functions - Qlik Sense, May 2023 73

2 Script statements and keywords

Change
ID

Status
ID

Scheduled Start
Date

Scheduled End
Date

Business
Impact

Status Sub Status

10030 4 19/01/2022 23/02/2022 None Closed Cancelled

10031 3 20/01/2022 25/03/2022 Low Closed Completed

10015 3 04/01/2022 15/02/2022 Low Closed Completed

10103 1 02/04/2022 29/05/2022 Medium Open Not Started

10116 1 15/04/2022 24/04/2022 None Open Not Started

10134 1 03/05/2022 08/07/2022 Low Open Not Started

10264 1 10/09/2022 17/10/2022 Medium Open Not Started

10040 1 29/01/2022 22/04/2022 None Open Not Started

10323 1 08/11/2022 26/11/2022 High Open Not Started

10187 2 25/06/2022 24/08/2022 Low Open Started

10185 2 23/06/2022 08/09/2022 None Open Started

10220 2 28/07/2022 06/09/2022 None Open Started

10326 2 11/11/2022 05/12/2022 None Open Started

10138 2 07/05/2022 03/08/2022 None Open Started

10334 2 19/11/2022 06/02/2023 Low Open Started

Preview of Changes table in the Data model viewer

Since the fifth row in the Status table (Status ID: '5', Status: 'Closed', Sub Status: 'Obsolete') does not
correspond to any of the records in the Changes table, the information in this row does not appear in the
result set above.

Return to the Data load editor. Load the data and open a sheet. Create a new table and add this field as a
dimension: Status.

Add this measure:

=Count([Change ID])

Now you can inspect the number of Changes by Status.

Status =Count([Change ID])

Open 12

Closed 3

Results table

Script syntax and chart functions - Qlik Sense, May 2023 74

2 Script statements and keywords

Example 2 – Inner join: Combining matching records only
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset representing change records, which is loaded into a table named Changes.
l A second dataset representing change records originating from the source system JIRA.This is loaded

and combined with the original records by joining it with an Inner Join load prefix.

This Inner Join ensures that only the five change records which are found in both datasets are kept.

Load script

Changes:

Load * inline [

Change ID Status ID Scheduled Start Date Scheduled End Date Business Impact

10030 4 19/01/2022 23/02/2022 None

10015 3 04/01/2022 15/02/2022 Low

10103 1 02/04/2022 29/05/2022 Medium

10185 2 23/06/2022 08/09/2022 None

10323 1 08/11/2022 26/11/2022 High

10326 2 11/11/2022 05/12/2022 None

10138 2 07/05/2022 03/08/2022 None

10031 3 20/01/2022 25/03/2022 Low

10040 1 29/01/2022 22/04/2022 None

10134 1 03/05/2022 08/07/2022 Low

10334 2 19/11/2022 06/02/2023 Low

10220 2 28/07/2022 06/09/2022 None

10264 1 10/09/2022 17/10/2022 Medium

10116 1 15/04/2022 24/04/2022 None

10187 2 25/06/2022 24/08/2022 Low

] (delimiter is '\t');

JIRA_changes:

Inner Join (Changes)

Load

[Ticket ID] AS [Change ID],

[Source System]

inline

[

Ticket ID Source System

10000 JIRA

10030 JIRA

10323 JIRA

10134 JIRA

10334 JIRA

10220 JIRA

Script syntax and chart functions - Qlik Sense, May 2023 75

2 Script statements and keywords

20000 TFS

] (delimiter is '\t');

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l Source System

l Change ID

l Business Impact

Now you can inspect the five resulting records. The resultant table from an Inner Join will only include
records with matching information in both datasets.

Source System Change ID Business Impact

JIRA 10030 None

JIRA 10134 Low

JIRA 10220 None

JIRA 10323 High

JIRA 10334 Low

Results table

Example 3 – Outer join: Combining overlapping record sets
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset representing change records, which is loaded into a table named Changes.
l A second dataset representing change records originating from the source system JIRA, which is

loaded and combined with the original records by joining it with an Outer Join load prefix.

This ensures that all the overlapping change records from both datasets are kept.

Load script

// 8 Change records

Changes:

Load * inline [

Change ID Status ID Scheduled Start Date Scheduled End Date Business Impact

Script syntax and chart functions - Qlik Sense, May 2023 76

2 Script statements and keywords

10030 4 19/01/2022 23/02/2022 None

10015 3 04/01/2022 15/02/2022 Low

10138 2 07/05/2022 03/08/2022 None

10031 3 20/01/2022 25/03/2022 Low

10040 1 29/01/2022 22/04/2022 None

10134 1 03/05/2022 08/07/2022 Low

10334 2 19/11/2022 06/02/2023 Low

10220 2 28/07/2022 06/09/2022 None

] (delimiter is '\t');

// 6 Change records

JIRA_changes:

Outer Join (Changes)

Load

[Ticket ID] AS [Change ID],

[Source System]

inline

[

Ticket ID Source System

10030 JIRA

10323 JIRA

10134 JIRA

10334 JIRA

10220 JIRA

10597 JIRA

] (delimiter is '\t');

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l Source System

l Change ID

l Business Impact

Now you can inspect the 10 resulting records.

Source System Change ID Business Impact

JIRA 10030 None

JIRA 10134 Low

JIRA 10220 None

JIRA 10323 -

JIRA 10334 Low

JIRA 10597 -

Results table

Script syntax and chart functions - Qlik Sense, May 2023 77

2 Script statements and keywords

Source System Change ID Business Impact

- 10015 Low

- 10031 Low

- 10040 None

- 10138 None

Example 4 – Right join: Trimming down a target table by a secondary master dataset
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset representing change records, which is loaded into a table named Changes.
l A second dataset representing change records originating from the source system Teamwork. This is

loaded and combined with the original records by joining it with a Right Join load prefix.

This ensures that only Teamwork change records are kept, while not losing any Teamwork records if the target
table does not have a matching Change ID.

Load script

Changes:

Load * inline [

Change ID Status ID Scheduled Start Date Scheduled End Date Business Impact

10030 4 19/01/2022 23/02/2022 None

10015 3 04/01/2022 15/02/2022 Low

10103 1 02/04/2022 29/05/2022 Medium

10185 2 23/06/2022 08/09/2022 None

10323 1 08/11/2022 26/11/2022 High

10326 2 11/11/2022 05/12/2022 None

10138 2 07/05/2022 03/08/2022 None

10031 3 20/01/2022 25/03/2022 Low

10040 1 29/01/2022 22/04/2022 None

10134 1 03/05/2022 08/07/2022 Low

10334 2 19/11/2022 06/02/2023 Low

10220 2 28/07/2022 06/09/2022 None

10264 1 10/09/2022 17/10/2022 Medium

10116 1 15/04/2022 24/04/2022 None

10187 2 25/06/2022 24/08/2022 Low

] (delimiter is '\t');

Teamwork_changes:

Right Join (Changes)

Load

Script syntax and chart functions - Qlik Sense, May 2023 78

2 Script statements and keywords

[Ticket ID] AS [Change ID],

[Source System]

inline

[

Ticket ID Source System

10040 Teamwork

10015 Teamwork

10103 Teamwork

10031 Teamwork

50231 Teamwork

] (delimiter is '\t');

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l Source System

l Change ID

l Business Impact

Now you can inspect the five resulting records.

Source System Change ID Business Impact

Teamwork 10015 Low

Teamwork 10031 Low

Teamwork 10040 None

Teamwork 10103 Medium

Teamwork 50231 -

Results table

Keep
The keep prefix is similar to the join prefix. Just as the join prefix, it compares the loaded table with an
existing named table or the last previously created data table, but instead of joining the loaded table with an
existing table, it has the effect of reducing one or both of the two tables before they are stored in Qlik Sense,
based on the intersection of table data. The comparison made is equivalent to a natural join made over all the
common fields, i.e. the same way as in a corresponding join. However, the two tables are not joined and will
be kept in Qlik Sense as two separately named tables.

Syntax:
(inner | left | right) keep [(tablename)](loadstatement | selectstatement

)

The keep prefix must be preceded by one of the prefixes inner, left or right.

Script syntax and chart functions - Qlik Sense, May 2023 79

2 Script statements and keywords

The explicit join prefix in Qlik Sense script language performs a full join of the two tables. The result is one
table. In many cases such joins will result in very large tables. One of the main features of Qlik Sense is its
ability to make associations between multiple tables instead of joining them, which greatly reduces memory
usage, increases processing speed and offers enormous flexibility. Explicit joins should therefore generally be
avoided in Qlik Sense scripts. The keep functionality was designed to reduce the number of cases where
explicit joins needs to be used.

Arguments:

Argument Description

tablename The named table to be compared to the loaded table.

loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

Arguments

Example:

Inner Keep LOAD * from abc.csv;

Left Keep SELECT * from table1;

tab1:

LOAD * from file1.csv;

tab2:

LOAD * from file2.csv;

..

Left Keep (tab1) LOAD * from file3.csv;

Left
The Join and Keep prefixes can be preceded by the prefix left.

If used before join it specifies that a left join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented in the first
table. If used before keep, it specifies that the second raw data table should be reduced to its common
intersection with the first table, before being stored in Qlik Sense.

Were you looking for the string function by the same name? See: Left (page 1417)

Syntax:
Left (Join | Keep) [(tablename)](loadstatement | selectstatement)

Arguments:

Argument Description

tablename The named table to be compared to the loaded table.

loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 80

2 Script statements and keywords

Example

Load script
Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Table1:

Load * inline [

Column1, Column2

A, B

1, aa

2, cc

3, ee];

Table2:

Left Join Load * inline [

Column1, Column3

A, C

1, xx

4, yy];

Result

Column1 Column2 Column3

A B C

1 aa xx

2 cc -

3 ee -

Resulting table

Explanation
This example demonstrates the Left Join output where only values present in the first (left) table are joined.

Mapping
The mapping prefix is used to create a mapping table that can be used to, for example,
replacing field values and field names during script execution.

Syntax:
Mapping(loadstatement | selectstatement)

The mapping prefix can be put in front of a LOAD or a SELECT statement and will store the result of the
loading statement as a mapping table. Mapping provides an efficient way to substituting field values during
script execution, e.g. replacing US, U.S. or America with USA. A mapping table consists of two columns, the
first containing comparison values and the second containing the desired mapping values. Mapping tables are
stored temporarily in memory and dropped automatically after script execution.

Script syntax and chart functions - Qlik Sense, May 2023 81

2 Script statements and keywords

The content of the mapping table can be accessed using e.g. the Map … Using statement, the Rename Field
statement, the Applymap() function or the Mapsubstring() function.

Example:

In this example we load a list of salespersons with a country code representing their country of residence. We
use a table mapping a country code to a country to replace the country code with the country name. Only
three countries are defined in the mapping table, other country codes are mapped to 'Rest of the world'.

// Load mapping table of country codes:

map1:

mapping LOAD *

Inline [

CCode, Country

Sw, Sweden

Dk, Denmark

No, Norway

] ;

// Load list of salesmen, mapping country code to country

// If the country code is not in the mapping table, put Rest of the world

Salespersons:

LOAD *,

ApplyMap('map1', CCode,'Rest of the world') As Country

Inline [

CCode, Salesperson

Sw, John

Sw, Mary

Sw, Per

Dk, Preben

Dk, Olle

No, Ole

Sf, Risttu] ;

// We don't need the CCode anymore

Drop Field 'CCode';

The resulting table looks like this:

Salesperson Country

John Sweden

Mary Sweden

Per Sweden

Preben Denmark

Olle Denmark

Ole Norway

Risttu Rest of the world

Mapping table

Script syntax and chart functions - Qlik Sense, May 2023 82

2 Script statements and keywords

Merge
The Merge prefix can be added to any LOAD or SELECT statement in the script to specify that
the loaded table should be merged into another table. It also specifies that this statement
should be run in a partial reload.

The typical use case is when you load a change log and want to use this to apply inserts, updates, and deletes
to an existing table.

For partial reload to work properly, the app must be opened with data before a partial reload is
triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Syntax:
Merge [only] [(SequenceNoField [, SequenceNoVar])] On ListOfKeys [Concatenate
[(TableName)]] (loadstatement | selectstatement)

Arguments:

Argument Description

only An optional qualifier denoting that the statement should be executed
only during partial reloads. The statement is disregarded during
normal (non-partial) reloads.

SequenceNoField The name of the field containing a timestamp or a sequence number
that defines the order of the operations.

SequenceNoVar The name of the variable that gets assigned the maximum value for
SequenceNoField of the table being merged.

ListOfKeys A comma separated list of field names specifying the primary key.

Operation The first field of the load statement must contain the operation as a
text string: 'Insert', 'Update', or 'Delete'. ‘i’, ‘u’ and ‘d’ are also
accepted.

Arguments

General functionality
During a normal (non-partial) reload, the Merge LOAD construction works as a normal Load statement but
with the additional functionality of removing older obsolete records and records marked for deletion. The first
field of the Load statement must hold information about the operation: Insert, Update, or Delete.

For each loaded record, the record identifier is compared with previously loaded records, and only the latest
record (according to the sequence number) will be kept. If the latest record is marked with Delete, none will
be kept.

Script syntax and chart functions - Qlik Sense, May 2023 83

2 Script statements and keywords

Target table
Which table to modify is determined by the set of fields. If a table with the same set of fields (except the first
field; the operation) already exists, this will be the relevant table to modify. Alternatively, a Concatenate
prefix can be used to specify the table. If the target table is not determined, the result of the Merge LOAD
construction is stored in a new table.

If the Concatenate prefix is used, the resulting table has a set of fields corresponding to the union of the
existing table and the input to the merge. Hence, the target table may get more fields than the change log that
is used as input to the merge.

A partial reload does the same as a full reload. One difference is that a partial reload rarely creates a new
table. Unless you have used the Only clause, a target table with the same set of fields from the previous script
execution always exists.

Sequence number
If the loaded change log is an accumulated log, that is, it contains changes that already have been loaded, the
parameter SequenceNoVar can be used in a Where clause to limit the amount of input data. The Merge LOAD
could then be made to only load records where the field SequenceNoField is greater than SequenceNoVar.
Upon completion, the Merge LOAD assigns a new value to the SequenceNoVar with the maximum value seen
in the SequenceNoField field.

Operations
The Merge LOAD can have fewer fields than the target table. The different operations treat missing fields
differently:

Insert: Fields missing in the Merge LOAD, but existing in the target table, get a NULL in the target table.

Delete: Missing fields do not affect the result. The relevant records are deleted anyway.

Update: Fields listed in the Merge LOAD are updated in the target table. Missing fields are not changed. This
means that the two following statements are not identical:

l Merge on Key Concatenate Load 'U' as Operation, Key, F1, Null() as F2 From ...;
l Merge on Key Concatenate Load 'U' as Operation, Key, F1 From ...;

The first statement updates the listed records and changes F2 to NULL. The second does not change F2, but
instead, leaves the values in the target table.

Examples

Example 1: Simple merge with specified table
In this example, an inline table named Persons is loaded with three rows. Merge then changes the table as
follows:

l Adds the row, Mary, 4 .
l Deletes the row, Steven, 3.
l Assigns the number 5 to Jake .

Script syntax and chart functions - Qlik Sense, May 2023 84

2 Script statements and keywords

The LastChangeDate variable is set to the maximum value in the ChangeDate column after Merge is executed.

Load script
Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Set DateFormat='D/M/YYYY';

Persons:

load * inline [

Name, Number

Jake, 3

Jill, 2

Steven, 3

];

Merge (ChangeDate, LastChangeDate) on Name Concatenate(Persons)

LOAD * inline [

Operation, ChangeDate, Name, Number

Insert, 1/1/2021, Mary, 4

Delete, 1/1/2021, Steven,

Update, 2/1/2021, Jake, 5

];

Result
Prior to the Merge Load, the resulting table appears as follows:

Name Number

Jake 3

Jill 2

Steven 3

Resulting table

Following the Merge Load, the table appears as follows:

ChangeDate Name Number

2/1/2021 Jake 5

- Jill 2

1/1/2021 Mary 4

Resulting table

When the data is loaded, the Data load progress dialog box shows the operations that are performed:

Data load progress dialog box

Script syntax and chart functions - Qlik Sense, May 2023 85

2 Script statements and keywords

Example 2: Data load script with missing fields
In this example, the same data as above is loaded, but now with an ID for each person.

Merge changes the table as follows:

l Adds the row, Mary, 4.
l Deletes the row, Steven, 3.
l Assigns the number 5 to Jake.
l Assigns the number 6 to Jill.

Load script
Here we use two Merge Load statements, one for ‘Insert’ and ‘Delete’, and a second one for the ‘Update’.

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Set DateFormat='D/M/YYYY';

Persons:

Load * Inline [

PersonID, Name, Number

1, Jake, 3

2, Jill, 2

3, Steven, 3

];

Script syntax and chart functions - Qlik Sense, May 2023 86

2 Script statements and keywords

Merge (ChangeDate, LastChangeDate) on PersonID Concatenate(Persons)

Load * Inline [

Operation, ChangeDate, PersonID, Name, Number

Insert, 1/1/2021, 4, Mary, 4

Delete, 1/1/2021, 3, Steven,

];

Merge (ChangeDate, LastChangeDate) on PersonID Concatenate(Persons)

Load * Inline [

Operation, ChangeDate, PersonID, Number

Update, 2/1/2021, 1, 5

Update, 3/1/2021, 2, 6

];

Result
Following the Merge Load statements, the table appears as follows:

PersonID ChangeDate Name Number

1 2/1/2021 Jake 5

2 3/1/2021 Jill 6

4 1/1/2021 Mary 4

Resulting table

Note that the second Merge statement does not include the field Name, and as a consequence, the names
have not been changed.

Example 3: Data load script - Partial reload using a Where-clause with ChangeDate
In the following example, the Only argument specifies that the Merge command is only executed during a
partial reload. Updates are filtered based on the previously captured LastChangeDate. After Merge is finished,
LastChangeDate variable is assigned the maximum value of the ChangeDate column processed during the
merge.

Load script
Merge Only (ChangeDate, LastChangeDate) on Name Concatenate(Persons)

LOAD Operation, ChangeDate, Name, Number

from [lib://ChangeFilesFolder/BulkChangesInPersonsTable.csv] (txt)

where ChangeDate >= $(LastChangeDate);

NoConcatenate
The NoConcatenate prefix forces two loaded tables with identical field sets to be treated as two
separate internal tables, when they would otherwise be automatically concatenated.

Syntax:
NoConcatenate(loadstatement | selectstatement)

By default, if a table is loaded that contains an identical number of fields and matching field names to a table
loaded earlier in the script, Qlik Sense will auto concatenate these two tables. This will happen even if the
second table is named differently.

Script syntax and chart functions - Qlik Sense, May 2023 87

2 Script statements and keywords

However, if the script prefix NoConcatenate is included before the load statement or select statement of the
second table, then these two tables will be loaded separately.

A typical use case for NoConcatenate is when you may need to create a temporary copy of a table to perform
some temporary transformations on that copy, while retaining a copy of the original data. NoConcatenate
ensures that you can make that copy without implicitly adding it back onto the source table.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

Source: LOAD A,B from

file1.csv;

CopyOfSource: NoConcatenate

LOAD A,B resident Source;

A table with A and B as measures is loaded. A second table with the
same fields is loaded separately by using the NoConcatenate variable.

Function example

Example 1 – Implicit concatenation
Load script and results

Overview

In this example, you will add two load scripts in sequential order.

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l An initial dataset with dates and amounts that is sent to a table named Transactions.

First load script

Transactions:

LOAD

*

Inline [

id, date, amount

1, 08/30/2018, 23.56

2, 09/07/2018, 556.31

Script syntax and chart functions - Qlik Sense, May 2023 88

2 Script statements and keywords

3, 09/16/2018, 5.75

4, 09/22/2018, 125.00

5, 09/22/2018, 484.21

6, 09/22/2018, 59.18

7, 09/23/2018, 177.42

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l amount

id date amount

1 08/30/2018 23.56

2 09/07/2018 556.31

3 09/16/2018 5.75

4 09/22/2018 125.00

5 09/22/2018 484.21

6 09/22/2018 59.18

7 09/23/2018 177.42

First results table

Second load script

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A second dataset with identical fields is sent to a table named Sales.

Sales:

LOAD

*

Inline [

id, date, amount

8, 10/01/2018, 164.27

9, 10/03/2018, 384.00

10, 10/06/2018, 25.82

11, 10/09/2018, 312.00

12, 10/15/2018, 4.56

13, 10/16/2018, 90.24

14, 10/18/2018, 19.32

];

Script syntax and chart functions - Qlik Sense, May 2023 89

2 Script statements and keywords

Results

Load the data and go to the table.

id date amount

1 08/30/2018 23.56

2 09/07/2018 556.31

3 09/16/2018 5.75

4 09/22/2018 125.00

5 09/22/2018 484.21

6 09/22/2018 59.18

7 09/23/2018 177.42

8 10/01/2018 164.27

9 10/03/2018 384.00

10 10/06/2018 25.82

11 10/09/2018 312.00

12 10/15/2018 4.56

13 10/16/2018 90.24

14 10/18/2018 19.32

Second results table

When the script runs, the Sales table is implicitly concatenated onto the existing Transactions table due to
the two datasets sharing an identical number of fields, with identical field names. This happens despite the
second table name tag attempting to name the result set ‘Sales’.

You can see that the Sales dataset is implicitly concatenated by looking at the Data load progress log.

Script syntax and chart functions - Qlik Sense, May 2023 90

2 Script statements and keywords

Data load progress log showing Transactions data being implicitly concatenated.

Example 2 – Use case scenario
Load script and results

Overview

In this use case scenario you have:

l A transactions dataset with:
l id
l date
l amount (in GBP)

l A currency table with:
l Conversion rates for USD to GBP

l A second transactions dataset with:
l id

Script syntax and chart functions - Qlik Sense, May 2023 91

2 Script statements and keywords

l date
l amount (in USD)

You will load five scripts in sequential order.

l The first load script contains an initial dataset with dates and amounts in GBP that is sent to a table
named Transactions.

l The second load script contains:
l A second dataset with dates and amounts in USD that is sent to a table named Transactions_

in_USD.
l The noconcatenate prefix which is placed before the load statement of the Transactions_in_

USD dataset to prevent implicit concatenation.
l The third load script contains the join prefix which will be used create a currency exchange rate

between GBP and USD in the Transactions_in_USD table.
l The fourth load script contains the concatenate prefix which will add the Transactions_in_USD to the

initial Transactions table.
l The fifth load script contains the drop table statement which will remove the Transactions_in_USD

table its data has been concatenated to the Transactions table.

First load script

Transactions:

Load * Inline [

id, date, amount

1, 12/30/2018, 23.56

2, 12/07/2018, 556.31

3, 12/16/2018, 5.75

4, 12/22/2018, 125.00

5, 12/22/2018, 484.21

6, 12/22/2018, 59.18

7, 12/23/2018, 177.42

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l amount

id date amount

1 12/30/2018 23.56

2 12/07/2018 556.31

First load script results

Script syntax and chart functions - Qlik Sense, May 2023 92

2 Script statements and keywords

id date amount

3 12/16/2018 5.75

4 12/22/2018 125.00

5 12/22/2018 484.21

6 12/22/2018 59.18

7 12/23/2018 177.42

The table shows the initial dataset with amounts in GBP.

Second load script

Transactions_in_USD:

NoConcatenate

Load * Inline [

id, date, amount

8, 01/01/2019, 164.27

9, 01/03/2019, 384.00

10, 01/06/2019, 25.82

11, 01/09/2019, 312.00

12, 01/15/2019, 4.56

13, 01/16/2019, 90.24

14, 01/18/2019, 19.32

];

Results

Load the data and go to the table.

id date amount

1 12/30/2018 23.56

2 12/07/2018 556.31

3 12/16/2018 5.75

4 12/22/2018 125.00

5 12/22/2018 484.21

6 12/22/2018 59.18

7 12/23/2018 177.42

8 01/01/2019 164.27

9 01/03/2019 384.00

10 01/06/2019 25.82

11 01/09/2019 312.00

Second load script results

Script syntax and chart functions - Qlik Sense, May 2023 93

2 Script statements and keywords

id date amount

12 01/15/2019 4.56

13 01/16/2019 90.24

14 01/18/2019 19.32

You will see that the second dataset from the Transactions_in_USD table has been added.

Third load script

This load script joins a currency exchange rate from USD to GBP to the Transactions_in_USD table.

Join (Transactions_in_USD)

Load * Inline [

rate

0.7

];

Results

Load the data and go to the Data model viewer. Select the Transactions_in_USD table and you will see that
every existing record has a 'rate' field value of 0.7.

Fourth load script

Using resident load, this load script will concatenate the Transactions_in_USD table to the Transactions

table after converting the amounts into USD.

Concatenate (Transactions)

LOAD

id,

date,

amount * rate as amount

Resident Transactions_in_USD;

Results

Load the data and go to the table. You will see new entries with amounts in GBP from lines eight to fourteen.

id date amount

1 12/30/2018 23.56

2 12/07/2018 556.31

3 12/16/2018 5.75

4 12/22/2018 125.00

5 12/22/2018 484.21

Fourth load script results

Script syntax and chart functions - Qlik Sense, May 2023 94

2 Script statements and keywords

id date amount

6 12/22/2018 59.18

7 12/23/2018 177.42

8 01/01/2019 114.989

8 01/01/2019 164.27

9 01/03/2019 268.80

9 01/03/2019 384.00

10 01/06/2019 18.074

10 01/06/2019 25.82

11 01/09/2019 218.40

11 01/09/2019 312.00

12 01/15/2019 3.192

12 01/15/2019 4.56

13 01/16/2019 63.168

13 01/16/2019 90.24

14 01/18/2019 13.524

14 01/18/2019 19.32

Fifth load script

This load script will drop the duplicate entries from the fourth load script results table, leaving only entries
with amounts in GBP.

drop tables Transactions_in_USD;

Results

Load the data and go to the table.

id date amount

1 12/30/2018 23.56

2 12/07/2018 556.31

3 12/16/2018 5.75

4 12/22/2018 125.00

5 12/22/2018 484.21

6 12/22/2018 59.18

Fifth load script results

Script syntax and chart functions - Qlik Sense, May 2023 95

2 Script statements and keywords

id date amount

7 12/23/2018 177.42

8 01/01/2019 114.989

9 01/03/2019 268.80

10 01/06/2019 18.074

11 01/09/2019 218.40

12 01/15/2019 3.192

13 01/16/2019 63.168

14 01/18/2019 13.524

After loading the fifth load script, the results table shows all fourteen transactions that existed in both
transaction datasets; however, transactions 8-14 have had their amounts converted to GBP.

If we remove the NoConcatenate prefix that was used before the Transactions_in_USD in the second load
script, the script will fail with the error:“Table 'Transactions_in_USD' not found”. This is because the
Transactions_in_USD table would have been auto concatenated onto the original Transactions table.

Only
The Only script keyword is used as an aggregation function, or as part of the syntax in partial reload prefixes
Add, Replace, and Merge.

Outer
The explicit Join prefix can be preceded by the prefix Outer to specify an outer join. In an outer join, all
combinations between the two tables are generated. The resulting table will thus contain combinations of
field values from the raw data tables where the linking field values are represented in one or both tables. The
Outer keyword is optional and is the default join type used when a join prefix is not specified.

Syntax:
Outer Join [(tablename)](loadstatement |selectstatement)

Arguments:

Argument Description

tablename The named table to be compared to the loaded table.

loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 96

2 Script statements and keywords

Example

Load script
Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Table1:

Load * inline [

Column1, Column2

A, B

1, aa

2, cc

3, ee];

Table2:

Outer Join Load * inline [

Column1, Column3

A, C

1, xx

4, yy];

Column1 Column2 Column3

A B C

1 aa xx

2 cc -

3 ee -

4 - yy

Resulting table

Explanation
In this example, the two tables, Table1 and Table2, are merged into a single table labeled Table1. In cases like
this, the outer prefix is often used to join several tables into a single table to perform aggregations over the
values of a single table.

Partial reload
A full reload always starts by deleting all tables in the existing data model, and then runs the
load script.

A partial reload will not do this. Instead it keeps all tables in the data model and then executes only Load and
Select statements preceded by an Add, Merge, or Replace prefix. Other data tables are not affected by the
command. The only argument denotes that the statement should be executed only during partial reloads, and
should be disregarded during full reloads. The following table summarizes statement execution for partial and
full reloads.

Script syntax and chart functions - Qlik Sense, May 2023 97

2 Script statements and keywords

Statement Full reload
Partial
reload

Load ... Statement will run Statement
will not run

Add/Replace/Merge Load ... Statement will run Statement
will run

Add/Replace/Merge Only Load ... Statement will not run Statement
will run

Partial reloads have several benefits compared to full reloads:

l Faster, because only data recently changed needs to be loaded. With large data sets the difference is
significant.

l Less memory is consumed, because less data is loaded.
l More reliable, because queries to source data run faster, reducing the risk of network problems.

For partial reload to work properly, the app must be opened with data before a partial reload is
triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Limitations
A partial reload will fail if there are commands with references to tables that existed during full reload, but not
during partial reload.

Example

Example commands
LEFT JOIN(<Table_removed_after_full_reload>)

CONCATENATE(<Table_removed_after_full_reload>)

Where <Table_removed_after_full_reload> is a table that existed in full reload, but not in partial reload.

Workaround
As a workaround you can surround the command with following if-statement:

IF NOT IsPartialReload() THEN ... ENDIF.

A partial reload can remove values from the data. However, this will not be reflected in the list of distinct
values, which is a table maintained internally. So, after a partial reload, the list will contain all distinct values
that have existed in the field since the last full reload, which may be more than what currently exists after the
partial reload. This affects the output of the FieldValueCount() and the FieldValue() functions. The
FieldValueCount() could potentially return a number greater than the current number of field values.

Script syntax and chart functions - Qlik Sense, May 2023 98

2 Script statements and keywords

Example

Example 1

Load script
Add the example script to your app and do a partial reload. To see the result, add the fields listed in the
results column to a sheet in your app.

T1:

Add only Load distinct recno()+10 as Num autogenerate 10;

Result

Num Count(Num)

11 1

12 1

13 1

14 1

15 1

16 1

17 1

18 1

19 1

20 1

Resulting table

Explanation
The statement is only executed during a partial reload. If the "distinct" prefix is omitted, the count of the Num
field will increase with each subsequent partial reload.

Example 2

Load script
Add the example script to your app. Do a full reload and view the result. Next, do a partial reload and view the
result. To see the results, add the fields listed in the results column to a sheet in your app.

T1:

Load recno() as ID, recno() as Value autogenerate 10;

T1:

Replace only Load recno() as ID, repeat(recno(),3) as Value autogenerate 10;

Script syntax and chart functions - Qlik Sense, May 2023 99

2 Script statements and keywords

Result

ID Value

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

Output table after full reload

ID Value

1 111

2 222

3 333

4 444

5 555

6 666

7 777

8 888

9 999

10 101010

Output table after partial reload

Explanation
The first table is loaded during a full reload and the second table simply replaces the first table during a
partial reload.

Replace
The Replace script keyword is used as a string function, or as a prefix in partial reload.

Script syntax and chart functions - Qlik Sense, May 2023 100

2 Script statements and keywords

Replace
The Replace prefix can be added to any LOAD or SELECT statement in the script to specify that the loaded
table should replace another table. It also specifies that this statement should be run in a partial reload. The
Replace prefix can also be used in a Map statement.

For partial reload to work properly, the app must be opened with data before a partial reload is
triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Syntax:
Replace [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)

Replace [only] mapstatement

During a normal (non-partial) reload, the Replace LOAD construction will work as a normal LOAD statement
but be preceded by a Drop Table. First the old table will be dropped, then records will be generated and
stored as a new table.

If the Concatenate prefix is used, or if there exists a table with the same set of fields, this will be the relevant
table to drop. Otherwise, there is no table to drop and the Replace LOAD construction will be identical to a
normal LOAD.

A partial reload will do the same. The only difference is that there is always a table from the previous script
execution to drop. The Replace LOAD construction will always first drop the old table, then create a new one.

The Replace Map...Using statement causes mapping to take place also during partial script execution.

Arguments:

Argument Description

only An optional qualifier denoting that the statement should be executed only during partial
reloads. It should be disregarded during normal (non-partial) reloads.

Arguments

Examples and results:

Example Result

Tab1:

Replace LOAD *

from File1.csv;

During both normal and partial reload, the Qlik Sense table Tab1 is initially dropped.
Thereafter new data is loaded from File1.csv and stored in Tab1.

Script syntax and chart functions - Qlik Sense, May 2023 101

2 Script statements and keywords

Example Result

Tab1:

Replace only

LOAD * from

File1.csv;

During normal reload, this statement is disregarded.

During partial reload, any Qlik Sense table previously named Tab1 is initially
dropped. Thereafter new data is loaded from File1.csv and stored in Tab1.

Tab1:

LOAD a,b,c from

File1.csv;

Replace LOAD

a,b,c from

File2.csv;

During normal reload, the file File1.csv is first read into the Qlik Sense table Tab1, but
then immediately dropped and replaced by new data loaded from File2.csv. All data
from File1.csv is lost.

During partial reload, the entire Qlik Sense table Tab1 is initially dropped. Thereafter
it is replaced by new data loaded from File2.csv.

Tab1:

LOAD a,b,c from

File1.csv;

Replace only

LOAD a,b,c from

File2.csv;

During normal reload, data is loaded from File1.csv and stored in the Qlik Sense table
Tab1. File2.csv is disregarded.

During partial reload, the entire Qlik Sense table Tab1 is initially dropped. Thereafter
it is replaced by new data loaded from File2.csv. All data from File1.csv is lost.

Right
The Join and Keep prefixes can be preceded by the prefix right.

If used before join it specifies that a right join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented in the
second table. If used before keep, it specifies that the first raw data table should be reduced to its common
intersection with the second table, before being stored in Qlik Sense.

Were you looking for the string function by the same name? See: Right (page 1427)

Syntax:
Right (Join | Keep) [(tablename)](loadstatement |selectstatement)

Arguments:

Argument Description

tablename The named table to be compared to the loaded table.

loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

Arguments

Example

Load script
Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Script syntax and chart functions - Qlik Sense, May 2023 102

2 Script statements and keywords

Table1:

Load * inline [

Column1, Column2

A, B

1, aa

2, cc

3, ee];

Table2:

Right Join Load * inline [

Column1, Column3

A, C

1, xx

4, yy];

Result

Column1 Column2 Column3

A B C

1 aa xx

4 - yy

Resulting table

Explanation
This example demonstrates the Right Join output where only values present in the second (right) table are
joined.

Sample
The sample prefix to a LOAD or SELECT statement is used for loading a random sample of
records from the data source.

Syntax:
Sample p (loadstatement | selectstatement)

The expression that is evaluated does not define the percentage of records from the dataset that will be
loaded into the Qlik Sense application, but the probability of each record that is read to be loaded into the
application. In other words, specifying a value p = 0.5 does not mean that 50% of the total number of records
will be loaded, but instead that for each record there will be a 50% chance that it is loaded into the Qlik Sense
application.

Argument Description

p An arbitrary expression which valuates to a number larger than 0 and lower or equal to 1.
The number indicates the probability for a given record to be read.

All records will be read but only some of them will be loaded into Qlik Sense.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 103

2 Script statements and keywords

When to use it
Sample is useful when you would like to sample data coming from a large table, to understand the nature of
data, distribution or field contents. As it brings a subset of data, the data loads are faster, allowing faster
testing of scripts. Unlike First, the Sample function brings data from the whole table, instead of being limited
to the first few rows. This can provide a more accurate representation of the data in some cases.

The following examples show two possible uses of the Sample script prefix:

Sample 0.15 SQL SELECT * from Longtable;

Sample(0.15) LOAD * from Longtab.csv;

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – Sample from an inline table
Load script and results

Overview

In this example, the script loads a sample set of data from a dataset containing seven records into a table
named Transactions from an inline table.

Load script

Transactions:

SAMPLE 0.3

LOAD

*

Inline [

id, date, amount

1, 08/30/2018, 23.56

2, 09/07/2018, 556.31

3, 09/16/2018, 5.75

4, 09/22/2018, 125.00

5, 09/22/2018, 484.21

6, 09/22/2018, 59.18

7, 09/23/2018, 177.42

];

Script syntax and chart functions - Qlik Sense, May 2023 104

2 Script statements and keywords

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l amount

Add the following the measure:

=sum(amount)8

id date =Sum(amount)

2 09/07/2018 556.31

4 09/22/2018 125

1 08/30/2018 23.56

3 09/16/2018 5.75

Results table

In the iteration of the load used in this example, all seven records were read, but only four records were
loaded into the data table. Any re-run load could result in a different number, and a different set of records
being loaded into the application.

Example 2 – Sample from an autogenerated table
Load script and results

Overview

In this example, using Autogenerate, a dataset of 100 records is created with the fields date, id, and amount.
However, the Sample prefix is used, with a value of 0.1.

Load script

SampleData:

Sample 0.1

LOAD

RecNo() AS id,

MakeDate(2013, Ceil(Rand() * 12), Ceil(Rand() * 29)) as date,

Rand() * 1000 AS amount

Autogenerate(100);

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2023 105

2 Script statements and keywords

l id

l amount

Add the following the measure:

id date =Sum(amount)

48 9/28/2013 763

20 5/15/2013 752

19 11/8/2013 657

25 3/24/2013 522

27 8/23/2013 389

81 6/1/2013 53

100 8/15/2013 17

Results table

In the iteration of the load used in this example, seven records were loaded from the created dataset. Once
again, any re-run load could result in a different number, and a different set of records being loaded into the
application.

Semantic
The semantic load prefix creates a special type of field that can be used in Qlik Sense to connect
and manage relational data, such as tree structures, self-referencing parent-child structured
data and/or data that can be described as a graph.

Note that the semantic load can function similarly to the Hierarchy (page 62) and
HierarchyBelongsTo (page 64) prefixes. All three prefixes can be used as building blocks in
effective front-end solutions for traversing relational data.

Syntax:
Semantic(loadstatement | selectstatement)

A semantic load expects an input that is exactly three or four fields wide with a strict definition of what each
ordered field represents, as shown in the table below:

Field
name

Field description

1st
Field:

This tag is a representation of the first of two objects between which there is a relationship.

2nd
Field:

This tag will be used to describe the “forward” relationship between the first and second
object. If the first object is a child and the second object is a parent, you can create a
relationship tab that states “parent” or “parent of” as if you are following the relationship from

Semantic load fields

Script syntax and chart functions - Qlik Sense, May 2023 106

2 Script statements and keywords

Field
name

Field description

child to parent.

3rd
Field:

This tag is a representation of the second of two objects between which there is a relationship.

4th
Field:

This field is optional. This tag describes the “backward” or “inverse” relationship between the
first and second object. If the first object is a child and the second object is a parent, a
relationship tab could state “child” or “child of” as if you are following the relationship from
parent to child. If you do not add a fourth field, then the second field tag will be used to
describe the relationship in either direction. In that case, an arrow symbol is automatically
added as part of the tag.

The following code is an example of the semantic prefix.

Semantic

Load

Object,

‘Parent’ AS Relationship,

NeighbouringObject AS Object,

‘Child’ AS Relationship

from graphdata.csv;

It is allowed and typical practice to label the third field the same as the first field. This creates a self-
referencing lookup, so that you can follow object(s) to the related object(s) one relationship step
away at a time. If the 3rd field does not carry the same name, then the end result will be a simple
lookup from an object(s) to its direct relational neighbor(s) one step away only, which is an output of
little practical use.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Functions Interaction

Hierarchy (page 62) The Hierarchy load prefix is used to divide and organize nodes in parent-child and
other graph-like data structures and transform them into tables.

Related functions

Script syntax and chart functions - Qlik Sense, May 2023 107

2 Script statements and keywords

Functions Interaction

HierarchyBelongsTo
(page 64)

The HierarchyBelongsTo load prefix is used to locate and organize the ancestors
of parent-child and other graph-like data structures and transform them into
tables.

Example - Creating a special field for connecting relationships using the semantic
prefix
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset representing geography relation records which is loaded into a table named GeographyTree.
l Each entry has an ID at the beginning of the line and a ParentID at the end of the line.

l The semantic prefix which will add one special behavior field labeled, Relation.

Load script

GeographyTree:

LOAD

ID,

Geography,

if(ParentID='',null(),ParentID) AS ParentID

INLINE [

ID,Geography,ParentID

1,World

2,Europe,1

3,Asia,1

4,North America,1

5,South America,1

6,UK,2

7,Germany,2

8,Sweden,2

9,South Korea,3

10,North Korea,3

11,China,3

12,London,6

13,Birmingham,6

];

SemanticTable:

Semantic Load

ID as ID,

'Parent' as Relation,

ParentID as ID,

Script syntax and chart functions - Qlik Sense, May 2023 108

2 Script statements and keywords

'Child' as Relation

resident GeographyTree;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l Id

l Geography

Then, create a filter pane with Relation as a dimension. Click Done editing.

Id Geography

1 World

2 Europe

3 Asia

4 North America

5 South America

6 UK

7 Germany

8 Sweden

9 South Korea

10 North Korea

11 China

12 London

13 Birmingham

Results table

Relation

Child

Parent

Filter pane

Click Europe from the Geography dimension in the table and click Child from the Relation dimension in the
filter pane. Note the expected result in the table:

Script syntax and chart functions - Qlik Sense, May 2023 109

2 Script statements and keywords

Id Geography

6 UK

7 Germany

8 Sweden

Results table showing
"children" of Europe

Clicking Child again will show places that are "children" of the UK, one step further down.

Id Geography

12 London

13 Birmingham

Results table showing
"children" of UK

Unless
The unless prefix and suffix is used for creating a conditional clause which determines whether
a statement or exit clause should be evaluated or not. It may be seen as a compact alternative
to the full if..end if statement.

Syntax:
(Unless condition statement | exitstatement Unless condition)

The statement or the exitstatement will only be executed if condition is evaluated to False.

The unless prefix may be used on statements which already have one or several other statements, including
additional when or unless prefixes.

Argument Description

condition A logical expression evaluating to True or False.

statement Any Qlik Sense script statement except control statements.

exitstatement An exit for, exit do or exit sub clause or an exit script statement.

Arguments

When to use it
The Unless statement returns a Boolean result. Typically, this type of function will be used as a condition
when the user would like to conditionally load or exclude parts of the script.

The following lines show three examples of how the Unless function may be used:

exit script unless A=1;

unless A=1 LOAD * from myfile.csv;

unless A=1 when B=2 drop table Tab1;

Script syntax and chart functions - Qlik Sense, May 2023 110

2 Script statements and keywords

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – Unless prefix
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The creation of variable A, which is given a value of 1.
l A dataset which is loaded into a table named Transactions, unless the variable A = 2.

Load script

LET A = 1;

UNLESS A = 2

Transactions:

LOAD

*

Inline [

id, date, amount

1, 08/30/2018, 23.56

2, 09/07/2018, 556.31

3, 09/16/2018, 5.75

4, 09/22/2018, 125.00

5, 09/22/2018, 484.21

6, 09/22/2018, 59.18

7, 09/23/2018, 177.42

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2023 111

2 Script statements and keywords

l id

l date

l amount

id date amount

1 08/30/2018 23.56

2 09/07/2018 556.31

3 09/16/2018 5.75

4 09/22/2018 125.00

5 09/22/2018 484.21

6 09/22/2018 59.18

7 09/23/2018 177.42

Results table

Because the variable A is assigned the value of 1 at the start of the script, the condition following the Unless

prefix is evaluated, returning a result of FALSE. As a result, the script continues to run the Load statement. In
the results table, all the records from the Transactions table can be seen.

If this variable value is set to equal to 2, no data will be loaded into the data model.

Example 2 – Unless suffix
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script starts by loading an initial dataset into a table named Transactions. The script is then
terminated unless there are less than 10 records in the Transactions table.

If this condition does not result in a termination of the script, a further set of transactions is concatenated into
the Transactions table and this process is repeated.

Load script

Transactions:

LOAD

*

Inline [

id, date, amount

1, 08/30/2018, 23.56

2, 09/07/2018, 556.31

3, 09/16/2018, 5.75

4, 09/22/2018, 125.00

5, 09/22/2018, 484.21

Script syntax and chart functions - Qlik Sense, May 2023 112

2 Script statements and keywords

6, 09/22/2018, 59.18

7, 09/23/2018, 177.42

];

exit script unless NoOfRows('Transactions') < 10 ;

Concatenate

LOAD

*

Inline [

id, date, amount

8, 10/01/2018, 164.27

9, 10/03/2018, 384.00

10, 10/06/2018, 25.82

11, 10/09/2018, 312.00

12, 10/15/2018, 4.56

13, 10/16/2018, 90.24

14, 10/18/2018, 19.32

];

exit script unless NoOfRows('Transactions') < 10 ;

Concatenate

LOAD

*

Inline [

id, date, amount

15, 10/01/2018, 164.27

16, 10/03/2018, 384.00

17, 10/06/2018, 25.82

18, 10/09/2018, 312.00

19, 10/15/2018, 4.56

20, 10/16/2018, 90.24

21, 10/18/2018, 19.32

];

exit script unless NoOfRows('Transactions') < 10 ;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l amount

id date amount

1 08/30/2018 23.56

Results table

Script syntax and chart functions - Qlik Sense, May 2023 113

2 Script statements and keywords

id date amount

2 09/07/2018 556.31

3 09/16/2018 5.75

4 09/22/2018 125.00

5 09/22/2018 484.21

6 09/22/2018 59.18

7 09/23/2018 177.42

8 10/01/2018 164.27

9 10/03/2018 384.00

10 10/06/2018 25.82

11 10/09/2018 312.00

12 10/15/2018 4.56

13 10/16/2018 90.24

14 10/18/2018 19.32

There are seven records in each of the three datasets of the load script.

The first dataset (with transaction id 1 through 7) is loaded into the application. The Unless condition
evaluates whether there are less than 10 rows in the Transactions table. This evaluates to TRUE, and
therefore the second dataset (with transaction id 8 through 14) is loaded into the application. The second
Unless condition evaluates if there are less than 10 records in the Transactions table. This evaluates to
FALSE, and so the script terminates.

Example 3 – Multiple Unless prefixes
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

In this example, a dataset containing one transaction is created as a table called Transactions. A 'for' loop is
then triggered, in which two nested unless statements evaluate:

1. Unless there are more than 100 records in the Transactions table

2. Unless the number of records in the Transactions table is a multiple of 6

If these conditions are FALSE, a further seven records are generated and concatenated onto the existing
Transactions table. This process is repeated until one of the two transactions returns a value of TRUE.

Script syntax and chart functions - Qlik Sense, May 2023 114

2 Script statements and keywords

Load script

Transactions:

Load

0 as id

Autogenerate 1;

For i = 1 to 100

unless NoOfRows('Transactions') > 100 unless mod(NoOfRows('Transactions'),6) = 0

Concatenate

Load

if(isnull(Peek(id)),1,peek(id)+1) as id

Autogenerate 7;

next i

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:id.

id

0

1

2

3

4

5

+30 more rows

Results table

The nested unless statements that occur in the 'for' loop evaluate the following:

1. Are there more than 100 rows in the Transactions table?

2. Is the total number of records in the Transactions table a multiple of 6?

Whenever both unless statements return a value of FALSE, a further seven records are generated and
concatenated onto the existing Transactions table.

These statements return a value of FALSE five times, at which point there are a total of 36 rows of data in the
Transactions table.

After this, the second Unless statement returns a value of TRUE, and therefore the load statement following
this will no longer be executed.

Script syntax and chart functions - Qlik Sense, May 2023 115

2 Script statements and keywords

When
The when prefix and suffix is used for creating a conditional clause which determines whether a
statement or exit clause should be executed or not. It may be seen as a compact alternative to
the full if..end if statement.

Syntax:
(when condition statement | exitstatement when condition)

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

The statement or the exitstatement will only be executed if condition is evaluated to TRUE.

The When prefix may be used on statements which already have one or several other statements, including
additional When or Unless prefixes.

When to use it

The When statement returns a Boolean result. Typically, this type of function will be used as a condition when
the user would like to load or exclude parts of a script.

Argument Description

condition A logical expression evaluating to TRUE or FALSE

statement Any Qlik Sense script statement except control statements.

exitstatement An exit for, exit do or exit sub clause or an exit script statement.

Arguments

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Script syntax and chart functions - Qlik Sense, May 2023 116

2 Script statements and keywords

Example Result

exit script when A=1; When the statement A=1 is evaluated to be TRUE, the script will stop.

when A=1 LOAD * from

myfile.csv;

When the statement A=1 is evaluated to be TRUE, the myfile.csv will be
loaded.

when A=1 unless B=2

drop table Tab1;

When the statement A=1 is evaluated to be TRUE, and if B=2 is evaluated to be
FALSE, than the Tab1 table will be dropped.

Function examples

Example 1 – When prefix
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset with dates and amounts that is sent to a table named ‘Transactions’.
l The Let statement which states that the variable A is created and has the value of 1.
l The When condition which provides the condition that if A equals 1, then the script will continue to

load.

Load script

LET A = 1;

WHEN A = 1

Transactions:

LOAD

*

Inline [

id, date, amount

1, 08/30/2018, 23.56

2, 09/07/2018, 556.31

3, 09/16/2018, 5.75

4, 09/22/2018, 125.00

5, 09/22/2018, 484.21

6, 09/22/2018, 59.18

7, 09/23/2018, 177.42

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2023 117

2 Script statements and keywords

l id

l date

l amount

id date amount

1 08/30/2018 23.56

2 09/07/2018 556.31

3 09/16/2018 5.75

4 09/22/2018 125.00

5 09/22/2018 484.21

6 09/22/2018 59.18

7 09/23/2018 177.42

Results table

Because the variable A is assigned the value of 1 at the start of the script, the condition following the When

prefix is evaluated and returns a result of TRUE. Because it returns a TRUE result, the script continues to run
the load statement. All the records from the results table can be seen.

If this variable value was set to any value not equal to 1, no data would be loaded into the data model.

Example 2 – When suffix
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l Three datasets with dates and amounts that are sent to a table named ‘Transactions’.
l The first dataset contains transactions 1-7.
l The second dataset contains transactions 8-14.
l The third dataset contains transactions 15-21.

l A When condition which determines whether the ‘Transactions’ table contains more than ten rows. If
any of the When statements are evaluated to be TRUE, the load script will stop. This condition is placed
at the end of each of the three datasets.

Load script

Transactions:

LOAD

*

Inline [

id, date, amount

Script syntax and chart functions - Qlik Sense, May 2023 118

2 Script statements and keywords

1, 08/30/2018, 23.56

2, 09/07/2018, 556.31

3, 09/16/2018, 5.75

4, 09/22/2018, 125.00

5, 09/22/2018, 484.21

6, 09/22/2018, 59.18

7, 09/23/2018, 177.42

];

exit script when NoOfRows('Transactions') > 10 ;

Concatenate

LOAD

*

Inline [

id, date, amount

8, 10/01/2018, 164.27

9, 10/03/2018, 384.00

10, 10/06/2018, 25.82

11, 10/09/2018, 312.00

12, 10/15/2018, 4.56

13, 10/16/2018, 90.24

14, 10/18/2018, 19.32

];

exit script when NoOfRows('Transactions') > 10 ;

Concatenate

LOAD

*

Inline [

id, date, amount

15, 10/01/2018, 164.27

16, 10/03/2018, 384.00

17, 10/06/2018, 25.82

18, 10/09/2018, 312.00

19, 10/15/2018, 4.56

20, 10/16/2018, 90.24

21, 10/18/2018, 19.32

];

exit script when NoOfRows('Transactions') > 10 ;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l amount

Script syntax and chart functions - Qlik Sense, May 2023 119

2 Script statements and keywords

id date amount

1 08/30/2018 23.56

2 09/07/2018 556.31

3 09/16/2018 5.75

4 09/22/2018 125.00

5 09/22/2018 484.21

6 09/22/2018 59.18

7 09/23/2018 177.42

8 10/01/2018 164.27

9 10/03/2018 384.00

10 10/06/2018 25.82

11 10/09/2018 312.00

12 10/15/2018 4.56

13 10/16/2018 90.24

14 10/18/2018 19.32

Results table

There are seven transactions in each of the three datasets. The first dataset contains transaction 1-7 and is
loaded into the application. The When condition following this load statement is evaluated as FALSE because
there are less than ten rows in the ‘Transactions’ table. The load script continues to the next dataset.

The second dataset contains transaction 8-14 and is loaded into the application. The second When condition
evaluates as TRUE because there are more than ten rows in the ‘Transactions’ table. Therefore, the script
terminates.

Example 3 – Multiple When prefixes
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a single transaction is created as a table called 'Transactions'.
l A For loop which is triggered contains two nested When conditions which evaluate whether:

1. There are less than 100 records in the 'Transactions' table.

2. The number of records in the 'Transactions' table is not a multiple of 6.

Script syntax and chart functions - Qlik Sense, May 2023 120

2 Script statements and keywords

Load script

Transactions:

Load

0 as id

Autogenerate 1;

For i = 1 to 100

when NoOfRows('Transactions') < 100 when mod(NoOfRows('Transactions'),6) <> 0

Concatenate

Load

if(isnull(Peek(id)),1,peek(id)+1) as id

Autogenerate 7;

next i

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

l id

The results table only shows the first five transaction IDs but the load script creates 36 rows and then
terminates once the When condition is fulfilled.

id

0

1

2

3

4

5

+30 more rows

Results table

The nested When conditions in the For loop evaluate the following questions:

l Are there less than 100 rows in the 'Transactions' table?
l Is the total number of records in the 'Transactions' table not a multiple of six?

Whenever both When conditions return a value of TRUE, a further seven records are generated and
concatenated onto the existing ‘Transactions’ table.

The When conditions return a TRUE value five times. At that point there are a total of 36 rows of data in the
‘Transactions’ table.

When 36 rows of data are created in the 'Transactions' table, the second When statement returns a value of
FALSE and therefore the load statement following this will no longer be executed.

Script syntax and chart functions - Qlik Sense, May 2023 121

2 Script statements and keywords

2.5 Script regular statements
Regular statements are typically used for manipulating data in one way or another. These statements may be
written over any number of lines in the script and must always be terminated by a semicolon, ";".

All script keywords can be typed with any combination of lower case and upper case characters. Field and
variable names used in the statements are however case sensitive.

Script regular statements overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Alias
The alias statement is used for setting an alias according to which a field will be renamed whenever it occurs
in the script that follows.

Alias fieldname as aliasname {,fieldname as aliasname}

Autonumber
This statement creates a unique integer value for each distinct evaluated value in a field encountered during
the script execution.

AutoNumber fields [Using namespace]]

Binary
The binary statement is used for loading the data from another QlikView document, including section access
data.

Binary [path] filename

comment
Provides a way of displaying the field comments (metadata) from databases and spreadsheets. Field names
not present in the app will be ignored. If multiple occurrences of a field name are found, the last value is used.

Comment field *fieldlist using mapname
Comment field fieldname with comment

comment table
Provides a way of displaying the table comments (metadata) from databases or spreadsheets.

Comment table tablelist using mapname
Comment table tablename with comment

Connect

This functionality is not available in Qlik Sense SaaS.

Script syntax and chart functions - Qlik Sense, May 2023 122

2 Script statements and keywords

The CONNECT statement is used to define Qlik Sense access to a general database through the OLE DB/ODBC
interface. For ODBC, the data source first needs to be specified using the ODBC administrator.

ODBC Connect TO connect-string [(access_info)]
OLEDB CONNECT TO connect-string [(access_info)]
CUSTOM CONNECT TO connect-string [(access_info)]
LIB CONNECT TO connection

Declare
The Declare statement is used to create field definitions, where you can define relations between fields or
functions. A set of field definitions can be used to automatically generate derived fields, which can be used as
dimensions. For example, you can create a calendar definition, and use that to generate related dimensions,
such as year, month, week and day, from a date field.

definition_name:
Declare [Field[s]] Definition [Tagged tag_list]
[Parameters parameter_list]
Fields field_list
[Groups group_list]

<definition name>:
Declare [Field][s] Definition
Using <existing_definition>
[With <parameter_assignment>]

Derive
The Derive statement is used to generate derived fields based on a field definition created with a Declare
statement. You can either specify which data fields to derive fields for, or derive them explicitly or implicitly
based on field tags.

Derive [Field[s]] From [Field[s]] field_list Using definition
Derive [Field[s]] From Explicit [Tag[s]] (tag_list) Using definition
Derive [Field[s]] From Implicit [Tag[s]] Using definition

Direct Query
The DIRECT QUERY statement allows you to access tables through an ODBC or OLE DB connection using the
Direct Discovery function.

Direct Query [path]

Directory
The Directory statement defines which directory to look in for data files in subsequent LOAD statements, until
a new Directory statement is made.

Directory [path]

Disconnect
The Disconnect statement terminates the current ODBC/OLE DB/Custom connection. This statement is
optional.

Disconnect

Script syntax and chart functions - Qlik Sense, May 2023 123

2 Script statements and keywords

drop field
One or several Qlik Sense fields can be dropped from the data model, and thus from memory, at any time
during script execution, by means of a drop field statement. The "distinct" property of a table is removed
after a drop field statement.

Both drop field and drop fields are allowed forms with no difference in effect. If no table is
specified, the field will be dropped from all tables where it occurs.

Drop field fieldname [, fieldname2 ...] [from tablename1 [, tablename2

...]]
drop fields fieldname [, fieldname2 ...] [from tablename1 [, tablename2

...]]

drop table
One or several Qlik Sense internal tables can be dropped from the data model, and thus from memory, at any
time during script execution, by means of a drop table statement.

The forms drop table and drop tables are both accepted.

Drop table tablename [, tablename2 ...]
drop tables[tablename [, tablename2 ...]

Execute
The Execute statement is used to run other programs while Qlik Sense is loading data. For example, to make
conversions that are necessary.

Execute commandline

FlushLog
The FlushLog statement forces Qlik Sense to write the content of the script buffer to the script log file.

FlushLog

Force
The force statement forces Qlik Sense to interpret field names and field values of subsequent LOAD and
SELECT statements as written with only upper case letters, with only lower case letters, as always capitalized
or as they appear (mixed). This statement makes it possible to associate field values from tables made
according to different conventions.

Force (capitalization | case upper | case lower | case mixed)

LOAD
The LOAD statement loads fields from a file, from data defined in the script, from a previously loaded table,
from a web page, from the result of a subsequent SELECT statement or by generating data automatically. It is
also possible to load data from analytic connections.

Load [distinct] *fieldlist
[(from file [format-spec] |

Script syntax and chart functions - Qlik Sense, May 2023 124

2 Script statements and keywords

from_field fieldassource [format-spec]
inline data [format-spec] |
resident table-label |
autogenerate size)]
[where criterion | while criterion]
[group_by groupbyfieldlist]
[order_by orderbyfieldlist]
[extension pluginname.functionname(tabledescription)]

Let
The let statement is a complement to the set statement, used for defining script variables. The let statement,
in opposition to the set statement, evaluates the expression on the right side of the ' =' at script run time
before it is assigned to the variable.

Let variablename=expression

Loosen Table
One or more Qlik Sense internal data tables can be explicitly declared loosely coupled during script execution
by using a Loosen Table statement. When a table is loosely coupled, all associations between field values in
the table are removed. A similar effect could be achieved by loading each field of the loosely coupled table as
independent, unconnected tables. Loosely coupled can be useful during testing to temporarily isolate
different parts of the data structure. A loosely coupled table can be identified in the table viewer by the dotted
lines. The use of one or more Loosen Table statements in the script will make Qlik Sense disregard any
setting of tables as loosely coupled made before the script execution.

tablename [, tablename2 ...]
Loosen Tables tablename [, tablename2 ...]

Map ... using
The map ... using statement is used for mapping a certain field value or expression to the values of a specific
mapping table. The mapping table is created through the Mapping statement.

Map *fieldlist Using mapname

NullAsNull
The NullAsNull statement turns off the conversion of NULL values to string values previously set by a
NullAsValue statement.

NullAsNull *fieldlist

NullAsValue
The NullAsValue statement specifies for which fields that NULL should be converted to a value.

NullAsValue *fieldlist

Qualify
The Qualify statement is used for switching on the qualification of field names, i.e. field names will get the
table name as a prefix.

Qualify *fieldlist

Script syntax and chart functions - Qlik Sense, May 2023 125

2 Script statements and keywords

Rem
The rem statement is used for inserting remarks, or comments, into the script, or to temporarily deactivate
script statements without removing them.

Rem string

Rename Field
This script function renames one or more existing Qlik Sense field(s) after they have been loaded.

Rename field (using mapname | oldname to newname{ , oldname to newname })

Rename Fields (using mapname | oldname to newname{ , oldname to newname })

Rename Table
This script function renames one or more existing Qlik Sense internal table(s) after they have been loaded.

Rename table (using mapname | oldname to newname{ , oldname to newname })
Rename Tables (using mapname | oldname to newname{ , oldname to newname })

Section
With the section statement, it is possible to define whether the subsequent LOAD and SELECT statements
should be considered as data or as a definition of the access rights.

Section (access | application)

Select
The selection of fields from an ODBC data source or OLE DB provider is made through standard SQL SELECT
statements. However, whether the SELECT statements are accepted depends on the ODBC driver or OLE DB
provider used.

Select [all | distinct | distinctrow | top n [percent]] *fieldlist

From tablelist

[Where criterion]

[Group by fieldlist [having criterion]]

[Order by fieldlist [asc | desc]]

[(Inner | Left | Right | Full)Join tablename on fieldref = fieldref]

Set
The set statement is used for defining script variables. These can be used for substituting strings, paths,
drives, and so on.

Set variablename=string

Sleep
The sleep statement pauses script execution for a specified time.

Sleep n

Script syntax and chart functions - Qlik Sense, May 2023 126

2 Script statements and keywords

SQL
The SQL statement allows you to send an arbitrary SQL command through an ODBC or OLE DB connection.

SQL sql_command

SQLColumns
The sqlcolumns statement returns a set of fields describing the columns of an ODBC or OLE DB data source,
to which a connect has been made.

SQLColumns

SQLTables
The sqltables statement returns a set of fields describing the tables of an ODBC or OLE DB data source, to
which a connect has been made.

SQLTables

SQLTypes
The sqltypes statement returns a set of fields describing the types of an ODBC or OLE DB data source, to
which a connect has been made.

SQLTypes

Star
The string used for representing the set of all the values of a field in the database can be set through the star
statement. It affects the subsequent LOAD and SELECT statements.

Star is [string]

Store
The Store statement creates a QVD, or text file.

Store [*fieldlist from] table into filename [format-spec];

Tag
This script statement provides a way to assign tags to one or more fields or tables. If an attempt to tag a field
or table not present in the app is made, the tagging will be ignored. If conflicting occurrences of a field or tag
name are found, the last value is used.

Tag[field|fields] fieldlist with tagname
Tag [field|fields] fieldlist using mapname
Tag table tablelist with tagname

Trace
The trace statement writes a string to the Script Execution Progress window and to the script log file, when
used. It is very useful for debugging purposes. Using $-expansions of variables that are calculated prior to the
trace statement, you can customize the message.

Trace string

Script syntax and chart functions - Qlik Sense, May 2023 127

2 Script statements and keywords

Unmap
The Unmap statement disables field value mapping specified by a previous Map … Using statement for
subsequently loaded fields.

Unmap *fieldlist

Unqualify
The Unqualify statement is used for switching off the qualification of field names that has been previously
switched on by the Qualify statement.

Unqualify *fieldlist

Untag
This script statement provides a way to remove tags from fields or tables. If an attempt to untag a field or
table not present in the app is made, the untagging will be ignored.

Untag[field|fields] fieldlist with tagname
Tag [field|fields] fieldlist using mapname
Tag table tablelist with tagname

Alias
The alias statement is used for setting an alias according to which a field will be renamed
whenever it occurs in the script that follows.

Syntax:
alias fieldname as aliasname {,fieldname as aliasname}

Arguments:

Argument Description

fieldname The name of the field in your source data

aliasname An alias name you want to use instead

Arguments

Examples and results:

Example Result

Alias ID_N as

NameID;

Alias A as

Name, B as

Number, C as

Date;

The name changes defined through this statement are used on all subsequent SELECT
and LOAD statements. A new alias can be defined for a field name by a new alias
statement at any subsequent position in the script.

Script syntax and chart functions - Qlik Sense, May 2023 128

2 Script statements and keywords

AutoNumber
This statement creates a unique integer value for each distinct evaluated value in a field encountered during
the script execution.

You can also use the autonumber (page 556) function inside a LOAD statement, but this has some limitations
when you want to use an optimized load. You can create an optimized load by loading the data from a QVD
file first, and then using the AutoNumber statement to convert values to symbol keys.

Syntax:
AutoNumber *fieldlist [Using namespace]]

Arguments:

Argument Description

*fieldlist A comma-separated list of the fields where the values should be replaced by a unique
integer value.

You can use wildcard characters ? and * in the field names to include all fields with
matching names. You can also use * to include all fields. You need to quote field names
when wildcards are used.

namespace Using namespace is optional. You can use this option if you want to create a
namespace, where identical values in different fields share the same key.

If you do not use this option, all fields will have a separate key index.

Arguments

Limitations:

When you have several LOAD statements in the script, you need to place the AutoNumber statement after the
final LOAD statement.

Example - script with AutoNumber

Script example
In this example, the data is first loaded without the AutoNumber statement. The AutoNumber statement is
then added to show the effect.

Data used in the example
Load the following data as an inline load in the data load editor to create the script example below. Leave the
AutoNumber statement commented out for now.

RegionSales:

LOAD *,

Region &'|'& Year &'|'& Month as KeyToOtherTable

INLINE

[Region, Year, Month, Sales

Script syntax and chart functions - Qlik Sense, May 2023 129

2 Script statements and keywords

North, 2014, May, 245

North, 2014, May, 347

North, 2014, June, 127

South, 2014, June, 645

South, 2013, May, 367

South, 2013, May, 221

];

Budget:

LOAD Budget,

Region &'|'& Year &'|'& Month as KeyToOtherTable

INLINE

[Region, Year, Month, Budget

North, 2014, May, 200

North, 2014, May, 350

North, 2014, June, 150

South, 2014, June, 500

South, 2013, May, 300

South, 2013, May, 200

];

//AutoNumber KeyToOtherTable;

Create visualizations
Create two table visualizations in a Qlik Sense sheet. Add KeyToOtherTable, Region, Year, Month, and Sales
as dimensions to the first table. Add KeyToOtherTable, Region, Year, Month, and Budget as dimensions to
the second table.

Result

KeyToOtherTable Region Year Month Sales

North|2014|June North 2014 June 127

North|2014|May North 2014 May 245

North|2014|May North 2014 May 347

South|2013|May South 2013 May 221

South|2013|May South 2013 May 367

South|2014|June South 2014 June 645

RegionSales table

KeyToOtherTable Region Year Month Budget

North|2014|June North 2014 June 150

Budget table

Script syntax and chart functions - Qlik Sense, May 2023 130

2 Script statements and keywords

KeyToOtherTable Region Year Month Budget

North|2014|May North 2014 May 200

North|2014|May North 2014 May 350

South|2013|May South 2013 May 200

South|2013|May South 2013 May 300

South|2014|June South 2014 June 500

Explanation
The example shows a composite field KeyToOtherTable that links the two tables. AutoNumber is not used.
Note the length of the KeyToOtherTable values.

Add AutoNumber statement
Uncomment the AutoNumber statement in the load script.

AutoNumber KeyToOtherTable;

Result

KeyToOtherTable Region Year Month Sales

1 North 2014 June 127

1 North 2014 May 245

2 North 2014 May 347

3 South 2013 May 221

4 South 2013 May 367

4 South 2014 June 645

RegionSales table

KeyToOtherTable Region Year Month Budget

1 North 2014 June 150

1 North 2014 May 200

2 North 2014 May 350

3 South 2013 May 200

4 South 2013 May 300

4 South 2014 June 500

Budget table

Script syntax and chart functions - Qlik Sense, May 2023 131

2 Script statements and keywords

Explanation
The KeyToOtherTable field values have been replaced with unique integer values and, as a result, the length
of the field values has been reduced, thus conserving memory. The key fields in both tables are affected by
AutoNumber and the tables remain linked. The example is brief for demonstration purposes, but would be
meaningful with a table containing a large number of rows.

Binary
The binary statement is used for loading the data from another Qlik Sense app or QlikView
document, including section access data. Other elements of the app are not included, for
example, sheets, stories, visualizations, master items or variables.

Only one binary statement is allowed in the script. The binary statement must be the first statement of the
script, even before the SET statements usually located at the beginning of the script.

Syntax:
binary [path] filename

Arguments:

Argument Description

path The path to the file which should be a reference to a folder data connection. This is
required if the file is not located in the Qlik Sense working directory.

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the app containing this script line.

Example: data\

filename The name of the file, including the file extension .qvw or .qvf.

Arguments

Limitations:

You cannot use binary to load data from an app on the same Qlik Sense Enterprise deployment by referring to
the app ID. You can only load from a .qvf file.

Script syntax and chart functions - Qlik Sense, May 2023 132

2 Script statements and keywords

Examples

String Description

Binary lib://DataFolder/customer.qvw; In this example, the file must be in located in the Folder
data connection. This may be, for example, a folder that
your administrator creates on the Qlik Sense server. Click
Create new connection in the data load editor and then
select Folder under File locations.

Binary customer.qvf; In this example, the file must be in located in the Qlik Sense
working directory.

Binary c:\qv\customer.qvw; This example using an absolute file path will only work in
legacy scripting mode.

Comment field
Provides a way of displaying the field comments (metadata) from databases and spreadsheets.
Field names not present in the app will be ignored. If multiple occurrences of a field name are
found, the last value is used.

Syntax:
comment [fields] *fieldlist using mapname
comment [field] fieldname with comment

The map table used should have two columns, the first containing field names and the second the comments.

Arguments:

Argument Description

*fieldlist A comma separated list of the fields to be commented. Using * as field list indicates all
fields. The wildcard characters * and ? are allowed in field names. Quoting of field names
may be necessary when wildcards are used.

mapname The name of a mapping table previously read in a mapping LOAD or mapping SELECT
statement.

fieldname The name of the field that should be commented.

comment The comment that should be added to the field.

Arguments

Example 1:

commentmap:

mapping LOAD * inline [

a,b

Alpha,This field contains text values

Num,This field contains numeric values

];

Script syntax and chart functions - Qlik Sense, May 2023 133

2 Script statements and keywords

comment fields using commentmap;

Example 2:

comment field Alpha with AFieldContainingCharacters;

comment field Num with '*A field containing numbers';

comment Gamma with 'Mickey Mouse field';

Comment table
Provides a way of displaying the table comments (metadata) from databases or spreadsheets.

Table names not present in the app are ignored. If multiple occurrences of a table name are found, the last
value is used. The keyword can be used to read comments from a data source.

Syntax:
comment [tables] tablelist using mapname
comment [table] tablename with comment

Arguments:

Argument Description

tablelist (table{,table})

mapname The name of a mapping table previously read in a mapping LOAD or mapping SELECT
statement.

tablename The name of the table that should be commented.

comment The comment that should be added to the table.

Arguments

Example 1:

Commentmap:

mapping LOAD * inline [

a,b

Main,This is the fact table

Currencies, Currency helper table

];

comment tables using Commentmap;

Example 2:

comment table Main with 'Main fact table';

Connect
The CONNECT statement is used to define Qlik Sense access to a general database through the
OLE DB/ODBC interface. For ODBC, the data source first needs to be specified using the ODBC
administrator.

Script syntax and chart functions - Qlik Sense, May 2023 134

2 Script statements and keywords

This functionality is not available in Qlik Sense SaaS.

This statement supports only folder data connections in standard mode.

Syntax:
ODBC CONNECT TO connect-string
OLEDB CONNECT TO connect-string
CUSTOM CONNECT TO connect-string
LIB CONNECT TO connection

Arguments:

Argument Description

connect-
string

connect-string ::= datasourcename { ; conn-spec-item }

The connection string is the data source name and an optional list of one or
more connection specification items. If the data source name contains
blanks, or if any connection specification items are listed, the connection
string must be enclosed by quotation marks.

datasourcename must be a defined ODBC data source or a string that
defines an OLE DB provider.

conn-spec-item ::=DBQ=database_specifier |DriverID=driver_
specifier |UID=userid |PWD=password

The possible connection specification items may differ between different
databases. For some databases, also other items than the above are
possible. For OLE DB, some of the connection specific items are mandatory
and not optional.

connection The name of a data connection stored in the data load editor.

Arguments

If the ODBC is placed before CONNECT, the ODBC interface will be used; else, OLE DB will be used.

Using LIB CONNECT TO connects to a database using a stored data connection that was created in the data
load editor.

Example 1:

ODBC CONNECT TO 'Sales

DBQ=C:\Program Files\Access\Samples\Sales.mdb';

The data source defined through this statement is used by subsequent Select (SQL) statements, until a new
CONNECT statement is made.

Script syntax and chart functions - Qlik Sense, May 2023 135

2 Script statements and keywords

Example 2:

LIB CONNECT TO 'DataConnection';

Connect32
This statement is used the same way as the CONNECT statement, but forces a 64-bit system to use a 32-bit
ODBC/OLE DB provider. Not applicable for custom connect.

Connect64
This statement is used the same way as the as the CONNECT statement, but forces use of a 64-bit provider.
Not applicable for custom connect.

Declare
The Declare statement is used to create field definitions, where you can define relations between fields or
functions. A set of field definitions can be used to automatically generate derived fields, which can be used as
dimensions. For example, you can create a calendar definition, and use that to generate related dimensions,
such as year, month, week and day, from a date field.

You can use Declare to either set up a new field definition, or to create a field definition based on an already
existing definition.

Setting up a new field definition

Syntax:
definition_name:
Declare [Field[s]] Definition [Tagged tag_list]
[Parameters parameter_list]
Fields field_list

Arguments:

Argument Description

definition_
name

Name of the field definition, ended with a colon.

Do not use autoCalendar as name for field definitions, as this name is reserved
for auto-generated calendar templates.

Example:

Calendar:

Script syntax and chart functions - Qlik Sense, May 2023 136

2 Script statements and keywords

Argument Description

tag_list A comma separated list of tags to apply to fields derived from the field definition. Applying
tags is optional, but if you do not apply tags that are used to specify sort order, such as
$date, $numeric or $text, the derived field will be sorted by load order as default.

Example:

'$date'Thank you for bringing this to our attention, and apologies for the

inconvenience.

parameter_
list

A comma separated list of parameters. A parameter is defined in the form name=value and
is assigned a start value, which can be overridden when a field definition is re-used.
Optional.

Example:

first_month_of_year = 1

field_list A comma separated list of fields to generate when the field definition is used. A field is
defined in the form <expression> As field_name tagged tag. Use $1 to reference the
data field from which the derived fields should be generated.

Example:

Year($1) As Year tagged ('$numeric')

Example:

Calendar:

DECLARE FIELD DEFINITION TAGGED '$date'

Parameters

first_month_of_year = 1

Fields

Year($1) As Year Tagged ('$numeric'),

Month($1) as Month Tagged ('$numeric'),

Date($1) as Date Tagged ('$date'),

Week($1) as Week Tagged ('$numeric'),

Weekday($1) as Weekday Tagged ('$numeric'),

DayNumberOfYear($1, first_month_of_year) as DayNumberOfYear Tagged ('$numeric')

;

The calendar is now defined, and you can apply it to the date fields that have been loaded, in this case
OrderDate and ShippingDate, using a Derive clause.

Re-using an existing field definition

Syntax:
<definition name>:
Declare [Field][s] Definition
Using <existing_definition>
[With <parameter_assignment>]

Script syntax and chart functions - Qlik Sense, May 2023 137

2 Script statements and keywords

Arguments:

Argument Description

definition_
name

Name of the field definition, ended with a colon.

Example:

MyCalendar:

existing_
definition

The field definition to re-use when creating the new field definition. The new field
definition will function the same way as the definition it is based on, with the exception if
you use parameter_assignment to change a value used in the field expressions.

Example:

Using Calendar

parameter_
assignment

A comma separated list of parameter assignments. A parameter assignment is defined in
the form name=value and overrides the parameter value that is set in the base field
definition. Optional.

Example:

first_month_of_year = 4

Example:

In this example we re-use the calendar definition that was created in the previous example. In this case we
want to use a fiscal year that starts in April. This is achieved by assigning the value 4 to the first_month_of_
year parameter, which will affect the DayNumberOfYear field that is defined.

The example assumes that you use the sample data and field definition from the previous example.

MyCalendar:

DECLARE FIELD DEFINITION USING Calendar WITH first_month_of_year=4;

DERIVE FIELDS FROM FIELDS OrderDate,ShippingDate USING MyCalendar;

When you have reloaded the data script, the generated fields are available in the sheet editor, with names
OrderDate.MyCalendar.* and ShippingDate.MyCalendar.*.

Derive
The Derive statement is used to generate derived fields based on a field definition created with a Declare
statement. You can either specify which data fields to derive fields for, or derive them explicitly or implicitly
based on field tags.

Syntax:
Derive [Field[s]] From [Field[s]] field_list Using definition
Derive [Field[s]] From Explicit [Tag[s]] tag_list Using definition

Script syntax and chart functions - Qlik Sense, May 2023 138

2 Script statements and keywords

Derive [Field[s]] From Implicit [Tag[s]] Using definition

Arguments:

Argument Description

definition Name of the field definition to use when deriving fields.

Example: Calendar

field_list A comma separated list of data fields from which the derived fields should be generated,
based on the field definition. The data fields should be fields you have already loaded in the
script.

Example: OrderDate, ShippingDate

tag_list A comma separated list of tags. Derived fields will be generated for all data fields with any
of the listed tags. The list of tags should be enclosed by round brackets.

Example: ('$date','$timestamp')

Arguments

Examples:

l Derive fields for specific data fields.
In this case we specify the OrderDate and ShippingDate fields.
DERIVE FIELDS FROM FIELDS OrderDate,ShippingDate USING Calendar;

l Derive fields for all fields with a specific tag.
In this case we derive fields based on Calendar for all fields with a $date tag.
DERIVE FIELDS FROM EXPLICIT TAGS ('$date') USING Calendar;

l Derive fields for all fields with the field definition tag.
In this case we derive fields for all data fields with the same tag as the Calendar field definition, which
in this case is $date.
DERIVE FIELDS FROM IMPLICIT TAG USING Calendar;

Direct Query
The DIRECT QUERY statement allows you to access tables through an ODBC or OLE DB connection using the
Direct Discovery function.

Syntax:
DIRECT QUERY DIMENSION fieldlist [MEASURE fieldlist] [DETAIL fieldlist] FROM
tablelist
[WHERE where_clause]

The DIMENSION, MEASURE, and DETAIL keywords can be used in any order.

The DIMENSION and FROM keyword clauses are required on all DIRECT QUERY statements. The FROM
keyword must appear after the DIMENSION keyword.

Script syntax and chart functions - Qlik Sense, May 2023 139

2 Script statements and keywords

The fields specified directly after the DIMENSION keyword are loaded in memory and can be used to create
associations between in-memory and Direct Discovery data.

The DIRECT QUERY statement cannot contain DISTINCT or GROUP BY clauses.

Using the MEASURE keyword you can define fields that Qlik Sense is aware of on a “meta level”. The actual
data of a measure field resides only in the database during the data load process, and is retrieved on an ad
hoc basis driven by the chart expressions that are used in a visualization.

Typically, fields with discrete values that will be used as dimensions should be loaded with the DIMENSION
keyword, whereas numbers that will be used in aggregations only should be selected with the MEASURE
keyword.

DETAIL fields provide information or details, like comment fields, that a user may want to display in a drill-to-
details table box. DETAIL fields cannot be used in chart expressions.

By design, the DIRECT QUERY statement is data-source neutral for data sources that support SQL. For that
reason, the same DIRECT QUERY statement can be used for different SQL databases without change. Direct
Discovery generates database-appropriate queries as needed.

Native data-source syntax can be used when the user knows the database to be queried and wants to exploit
database-specific extensions to SQL. Native data-source syntax is supported:

l As field expressions in DIMENSION and MEASURE clauses
l As the content of the WHERE clause

Examples:

DIRECT QUERY

DIMENSION Dim1, Dim2

MEASURE

NATIVE ('X % Y') AS X_MOD_Y

FROM TableName

DIRECT QUERY

DIMENSION Dim1, Dim2

MEASURE X, Y

FROM TableName

WHERE NATIVE ('EMAIL MATCHES "*.EDU"')

The following terms are used as keywords and so cannot be used as column or field names without
being quoted: and, as, detach, detail, dimension, distinct, from, in, is, like, measure, native, not, or,
where

Script syntax and chart functions - Qlik Sense, May 2023 140

2 Script statements and keywords

Arguments:

Argument Description

fieldlist A comma-separated list of field specifications, fieldname {, fieldname} . A field
specification can be a field name, in which case the same name is used for the database
column name and the Qlik Sense field name. Or a field specification can be a "field alias," in
which case a database expression or column name is given a Qlik Sense field name.

tablelist A list of the names of tables or views in the database from which data will be loaded.
Typically, it will be views that contain a JOIN performed on the database.

where_
clause

The full syntax of database WHERE clauses is not defined here, but most SQL "relational
expressions" are allowed, including the use of function calls, the LIKE operator for strings,
IS NULL and IS NOT NULL, and IN. BETWEEN is not included.

NOT is a unary operator, as opposed to a modifier on certain keywords.

Examples:

WHERE x > 100 AND "Region Code" IN ('south', 'west')

WHERE Code IS NOT NULL and Code LIKE '%prospect'

WHERE NOT X in (1,2,3)

The last example can not be written as:

WHERE X NOT in (1,2,3)

Example:

In this example, a database table called TableName, containing fields Dim1, Dim2, Num1, Num2 and Num3, is
used.Dim1 and Dim2 will be loaded into the Qlik Sense dataset.

DIRECT QUERY DIMENSTION Dim1, Dim2 MEASURE Num1, Num2, Num3 FROM TableName ;

Dim1 and Dim2 will be available for use as dimensions. Num1, Num2 and Num3 will be available for
aggregations. Dim1 and Dim2 are also available for aggregations. The type of aggregations for which Dim1 and
Dim2 can be used depends on their data types. For example, in many cases DIMENSION fields contain string
data such as names or account numbers.Those fields cannot be summed, but they can be counted: count
(Dim1).

Script syntax and chart functions - Qlik Sense, May 2023 141

2 Script statements and keywords

DIRECT QUERY statements are written directly in the script editor. To simplify construction of
DIRECT QUERY statements, you can generate a SELECT statement from a data connection, and then
edit the generated script to change it into a DIRECT QUERY statement.
For example, the SELECT statement:

SQL SELECT

SalesOrderID,

RevisionNumber,

OrderDate,

SubTotal,
TaxAmt

FROM MyDB.Sales.SalesOrderHeader;

could be changed to the following DIRECT QUERY statement:

DIRECT QUERY

DIMENSION

SalesOrderID,

RevisionNumber

MEASURE

SubTotal,
TaxAmt

DETAIL

OrderDate

FROM MyDB.Sales.SalesOrderHeader;

Direct Discovery field lists

A field list is a comma-separated list of field specifications, fieldname {, fieldname}. A field
specification can be a field name, in which case the same name is used for the database column
name and the field name. Or a field specification can be a field alias, in which case a database
expression or column name is given a Qlik Sense field name.

Field names can be either simple names or quoted names. A simple name begins with an alphabetic Unicode
character and is followed by any combination of alphabetic or numeric characters or underscores. Quoted
names begin with a double quotation mark and contain any sequence of characters. If a quoted name
contains double quotation marks, those quotation marks are represented using two adjacent double
quotation marks.

Qlik Sense field names are case-sensitive. Database field names may or may not be case-sensitive, depending
on the database. A Direct Discovery query preserves the case of all field identifiers and aliases. In the following
example, the alias "MyState" is used internally to store the data from the database column "STATEID".

DIRECT QUERY Dimension STATEID as MyState Measure AMOUNT from SALES_TABLE;

Script syntax and chart functions - Qlik Sense, May 2023 142

2 Script statements and keywords

This differs from the result of an SQL Select statement with an alias. If the alias is not explicitly quoted, the
result contains the default case of column returned by the target database. In the following example, the SQL
Select statement to an Oracle database creates "MYSTATE," with all upper case letters, as the internal Qlik
Sense alias even though the alias is specified as mixed case. The SQL Select statement uses the column name
returned by the database, which in the case of Oracle is all upper case.

SQL Select STATEID as MyState, STATENAME from STATE_TABLE;

To avoid this behavior, use the LOAD statement to specify the alias.

Load STATEID as MyState, STATENAME;

SQL Select STATEID, STATEMENT from STATE_TABLE;

In this example, the "STATEID" column is stored internally byQlik Sense as "MyState".

Most database scalar expressions are allowed as field specifications. Function calls can also be used in field
specifications. Expressions can contain constants that are boolean, numeric, or strings contained in single
quotation marks (embedded single quotation marks are represented by adjacent single quotation marks).

Examples:

DIRECT QUERY

DIMENSION

SalesOrderID, RevisionNumber

MEASURE

SubTotal AS "Sub Total"

FROM AdventureWorks.Sales.SalesOrderHeader;

DIRECT QUERY

DIMENSION

"SalesOrderID" AS "Sales Order ID"

MEASURE

SubTotal,TaxAmt,(SubTotal-TaxAmt) AS "Net Total"

FROM AdventureWorks.Sales.SalesOrderHeader;

DIRECT QUERY

DIMENSION

(2*Radius*3.14159) AS Circumference,

Molecules/6.02e23 AS Moles

Script syntax and chart functions - Qlik Sense, May 2023 143

2 Script statements and keywords

MEASURE

Num1 AS numA

FROM TableName;

DIRECT QUERY

DIMENSION

concat(region, 'code') AS region_code

MEASURE

Num1 AS NumA

FROM TableName;

Direct Discovery does not support using aggregations in LOAD statements. If aggregations are used, the
results are unpredictable. A LOAD statement such as the following should not be used:

DIRECT QUERY DIMENSION stateid, SUM(amount*7) AS MultiFirst MEASURE amount FROM sales_table;

The SUM should not be in the LOAD statement.

Direct Discovery also does not support Qlik Sense functions in Direct Query statements. For example, the
following specification for a DIMENSION field results in a failure when the "Mth" field is used as a dimension
in a visualization:

month(ModifiedDate) as Mth

Directory
The Directory statement defines which directory to look in for data files in subsequent LOAD
statements, until a new Directory statement is made.

Syntax:
Directory[path]

If the Directory statement is issued without a path or left out, Qlik Sense will look in the Qlik Sense working
directory.

Script syntax and chart functions - Qlik Sense, May 2023 144

2 Script statements and keywords

Arguments:

Argument Description

path A text that can be interpreted as the path to the data file.

The path is the path to the file, either:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.

Example: http://www.qlik.com

Arguments

Examples:

DIRECTORY C:\userfiles\data; // OR -> DIRECTORY data\

LOAD * FROM

[data1.csv] // ONLY THE FILE NAME CAN BE SPECIFIED HERE (WITHOUT THE FULL PATH)

(ansi, txt, delimiter is ',', embedded labels);

LOAD * FROM

[data2.txt] // ONLY THE FILE NAME CAN BE SPECIFIED HERE UNTIL A NEW DIRECTORY STATEMENT IS

MADE

(ansi, txt, delimiter is '\t', embedded labels);

Disconnect
The Disconnect statement terminates the current ODBC/OLE DB/Custom connection. This statement is
optional.

Syntax:
Disconnect

The connection will be automatically terminated when a new connect statement is executed or when the
script execution is finished.

Example:

Disconnect;

Script syntax and chart functions - Qlik Sense, May 2023 145

2 Script statements and keywords

Drop
The Drop script keyword can be used to drop tables or fields from the database.

Drop field
One or several Qlik Sense fields can be dropped from the data model, and thus from memory, at any time
during script execution, by means of a drop field statement. The "distinct" property of a table is removed
after a drop field statement.

Both drop field and drop fields are allowed forms with no difference in effect. If no table is
specified, the field will be dropped from all tables where it occurs.

Syntax:
Drop field fieldname { , fieldname2 ...} [from tablename1 { , tablename2

...}]
Drop fields fieldname { , fieldname2 ...} [from tablename1 { , tablename2

...}]

Examples:

Drop field A;

Drop fields A,B;

Drop field A from X;

Drop fields A,B from X,Y;

Drop table

One or several Qlik Sense internal tables can be dropped from the data model, and thus from
memory, at any time during script execution, by means of a drop table statement.

Syntax:
drop table tablename {, tablename2 ...}
drop tables tablename {, tablename2 ...}

The forms drop table and drop tables are both accepted.

The following items will be lost as a result of this:

l The actual table(s).
l All fields which are not part of remaining tables.
l Field values in remaining fields, which came exclusively from the dropped table(s).

Script syntax and chart functions - Qlik Sense, May 2023 146

2 Script statements and keywords

Examples and results:

Example Result

drop table Orders, Salesmen, T456a; This line results in three tables being dropped
from memory.

Tab1:

Load * Inline [

Customer, Items, UnitPrice

Bob, 5, 1.50

];

Tab2:

LOAD Customer, Sum(Items * UnitPrice) as Sales

resident Tab1

group by Customer;

drop table Tab1;

Once the table Tab2 is created, the table Tab1 is
dropped.

Drop table
One or several Qlik Sense internal tables can be dropped from the data model, and thus from
memory, at any time during script execution, by means of a drop table statement.

Syntax:
drop table tablename {, tablename2 ...}
drop tables tablename {, tablename2 ...}

The forms drop table and drop tables are both accepted.

The following items will be lost as a result of this:

l The actual table(s).
l All fields which are not part of remaining tables.
l Field values in remaining fields, which came exclusively from the dropped table(s).

Examples and results:

Example Result

drop table Orders, Salesmen, T456a; This line results in three tables being dropped
from memory.

Script syntax and chart functions - Qlik Sense, May 2023 147

2 Script statements and keywords

Example Result

Tab1:

Load * Inline [

Customer, Items, UnitPrice

Bob, 5, 1.50

];

Tab2:

LOAD Customer, Sum(Items * UnitPrice) as Sales

resident Tab1

group by Customer;

drop table Tab1;

Once the table Tab2 is created, the table Tab1 is
dropped.

Execute
The Execute statement is used to run other programs while Qlik Sense is loading data. For
example, to make conversions that are necessary.

This functionality is not available in Qlik Sense SaaS.

This statement is not supported in standard mode.

Syntax:
execute commandline

Arguments:

Argument Description

commandline A text that can be interpreted by the operating system as a command line.
You can refer to an absolute file path or a lib:// folder path.

Arguments

If you want to use Execute the following conditions need to be met:

l You must run in legacy mode (applicable for Qlik Sense and Qlik Sense Desktop).
l You need to set OverrideScriptSecurity to 1 in Settings.ini (applicable for Qlik Sense).

Settings.ini is located in C:\ProgramData\Qlik\Sense\Engine\ and is generally an empty file.

If you set OverrideScriptSecurity to enable Execute, any user can execute files on the server. For
example, a user can attach an executable file to an app, and then execute the file in the data load
script.

Script syntax and chart functions - Qlik Sense, May 2023 148

2 Script statements and keywords

Do the following:

1. Make a copy of Settings.ini and open it in a text editor.

2. Check that the file includes [Settings 7] in the first line.

3. Insert a new line and type OverrideScriptSecurity=1.

4. Insert an empty line at the end of the file.

5. Save the file.

6. Substitute Settings.ini with your edited file.

7. Restart Qlik Sense Engine Service (QES).

If Qlik Sense is running as a service, some commands may not behave as expected.

Example:

Execute C:\Program Files\Office12\Excel.exe;

Execute lib://win\notepad.exe // win is a folder connection referring to c:\windows

Field/Fields
The Field and Fields script keywords are used in Declare, Derive, Drop, Comment, Rename and Tag/Untag
statements.

FlushLog
The FlushLog statement forces Qlik Sense to write the content of the script buffer to the script log file.

Syntax:
FlushLog

The content of the buffer is written to the log file. This command can be useful for debugging purposes, as you
will receive data that otherwise may have been lost in a failed script execution.

Example:

FlushLog;

Force
The force statement forces Qlik Sense to interpret field names and field values of subsequent
LOAD and SELECT statements as written with only upper case letters, with only lower case
letters, as always capitalized or as they appear (mixed). This statement makes it possible to
associate field values from tables made according to different conventions.

Syntax:
Force (capitalization | case upper | case lower | case mixed)

Script syntax and chart functions - Qlik Sense, May 2023 149

2 Script statements and keywords

If nothing is specified, force case mixed is assumed. The force statement is valid until a new force statement is
made.

The force statement has no effect in the access section: all field values loaded are case insensitive.

Example Result

This example shows how to force
capitalization.

FORCE Capitalization;

Capitalization:

LOAD * Inline [

ab

Cd

eF

GH

];

The Capitalization table contains the following values:

Ab

Cd

Ef

Gh

All values are capitalized.

This example shows how to force case upper.

FORCE Case Upper;

CaseUpper:

LOAD * Inline [

ab

Cd

eF

GH

];

The CaseUpper table contains the following values:

AB

CD

EF

GH

All values are upper case.

This example shows how to force case lower.

FORCE Case Lower;

CaseLower:

LOAD * Inline [

ab

Cd

eF

GH

];

The CaseLower table contains the following values:

ab

cd

ef

gh

All values are lower case.

This example shows how to force case mixed.

FORCE Case Mixed;

CaseMixed:

LOAD * Inline [

ab

Cd

eF

GH

];

The CaseMixed table contains the following values:

ab

Cd

eF

GH

All values are as they appear in the script.

Examples and results

Script syntax and chart functions - Qlik Sense, May 2023 150

2 Script statements and keywords

See also:

From
The From script keyword is used in Load statements to refer to a file, and in Select statements to refer to a
database table or view.

Load
The LOAD statement loads fields from a file, from data defined in the script, from a previously
loaded table, from a web page, from the result of a subsequent SELECT statement or by
generating data automatically. It is also possible to load data from analytic connections.

Syntax:
LOAD [distinct] fieldlist
[(from file [format-spec] |
from_field fieldassource [format-spec]|
inline data [format-spec] |
resident table-label |
autogenerate size) |extension pluginname.functionname([script]
tabledescription)]
[where criterion | while criterion]
[group by groupbyfieldlist]
[order by orderbyfieldlist]

Arguments:

Argument Description

distinct You can use distinct as a predicate if you only want to load unique records. If
there are duplicate records, the first instance will be loaded.

If you are using preceding loads, you need to place distinct in the first load
statement, as distinct only affects the destination table.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 151

2 Script statements and keywords

Argument Description

fieldlist fieldlist ::= (* | field {, * | field })
A list of the fields to be loaded. Using * as a field list indicates all fields in the
table.
field ::= (fieldref | expression) [as aliasname]

The field definition must always contain a literal, a reference to an existing
field, or an expression.

fieldref ::= (fieldname |@fieldnumber |@startpos:endpos [I | U | R | B | T])
fieldname is a text that is identical to a field name in the table. Note that the field
name must be enclosed by straight double quotation marks or square brackets if
it contains e.g. spaces. Sometimes field names are not explicitly available. Then a
different notation is used:

@fieldnumber represents the field number in a delimited table file. It must be a
positive integer preceded by "@". The numbering is always made from 1 and up to
the number of fields.

@startpos:endpos represents the start and end positions of a field in a file with
fixed length records. The positions must both be positive integers. The two
numbers must be preceded by "@" and separated by a colon. The numbering is
always made from 1 and up to the number of positions. In the last field, n is used
as end position.

l If @startpos:endpos is immediately followed by the characters I or U, the
bytes read will be interpreted as a binary signed (I) or unsigned (U) integer
(Intel byte order). The number of positions read must be 1, 2 or 4.

l If @startpos:endpos is immediately followed by the character R, the bytes
read will be interpreted as a binary real number (IEEE 32-bit or 64 bit
floating point). The number of positions read must be 4 or 8.

l If @startpos:endpos is immediately followed by the character B, the bytes
read will be interpreted as a BCD (Binary Coded Decimal) numbers
according to the COMP-3 standard. Any number of bytes may be specified.

expression can be a numeric function or a string function based on one or several
other fields in the same table. For further information, see the syntax of
expressions.

as is used for assigning a new name to the field.

Script syntax and chart functions - Qlik Sense, May 2023 152

2 Script statements and keywords

Argument Description

from from is used if data should be loaded from a file using a folder or a web file data
connection.

file ::= [path] filename

Example: 'lib://Table Files/'

If the path is omitted, Qlik Sense searches for the file in the directory specified by
the Directory statement. If there is no Directory statement, Qlik Sense searches
in the working directory, C:\Users\{user}\Documents\Qlik\Sense\Apps.

In a Qlik Sense server installation, the working directory is specified in
Qlik Sense Repository Service, by default it is
C:\ProgramData\Qlik\Sense\Apps.

The filename may contain the standard DOS wildcard characters (* and ?). This
will cause all the matching files in the specified directory to be loaded.
format-spec ::= (fspec-item { , fspec-item })
The format specification consists of a list of several format specification items,
within brackets.

Legacy scripting mode

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or an
intranet.

Example: http://www.qlik.com

from_field from_field is used if data should be loaded from a previously loaded field.
fieldassource::=(tablename, fieldname)

The field is the name of the previously loaded tablename and fieldname.
format-spec ::= (fspec-item {, fspec-item })
The format specification consists of a list of several format specification items,
within brackets.

Script syntax and chart functions - Qlik Sense, May 2023 153

2 Script statements and keywords

Argument Description

inline inline is used if data should be typed within the script, and not loaded from a file.
data ::= [text]

Data entered through an inline clause must be enclosed by double quotation
marks or by square brackets. The text between these is interpreted in the same
way as the content of a file. Hence, where you would insert a new line in a text file,
you should also do it in the text of an inline clause, i.e. by pressing the Enter key
when typing the script. The number of columns are defined by the first line.
format-spec ::= (fspec-item {, fspec-item })
The format specification consists of a list of several format specification items,
within brackets.

resident resident is used if data should be loaded from a previously loaded table.
table label is a label preceding the LOAD or SELECT statement(s) that created the
original table. The label should be given with a colon at the end.

autogenerate autogenerate is used if data should be automatically generated by Qlik Sense.
size ::= number

Number is an integer indicating the number of records to be generated.

The field list must not contain expressions which require data from an external
data source or a previously loaded table, unless you refer to a single field value in
a previously loaded table with the Peek function.

Script syntax and chart functions - Qlik Sense, May 2023 154

2 Script statements and keywords

Argument Description

extension You can load data from analytic connections. You need to use the extension
clause to call a function defined in the server-side extension (SSE) plugin, or
evaluate a script.

You can send a single table to the SSE plugin, and a single data table is returned.
If the plugin does not specify the names of the fields that are returned, the fields
will be named Field1, Field2, and so on.

Extension pluginname.functionname(tabledescription);

l Loading data using a function in an SSE plugin
tabledescription ::= (table { ,tablefield})
If you do not state table fields, the fields will be used in load order.

l Loading data by evaluating a script in an SSE plugin
tabledescription ::= (script, table { ,tablefield})

Data type handling in the table field definition

Data types are automatically detected in analytic connections. If the data has no
numeric values and at least one non-NULL text string, the field is considered as
text. In any other case it is considered as numeric.

You can force the data type by wrapping a field name with String() or Mixed().

l String() forces the field to be text. If the field is numeric, the text part of
the dual value is extracted, there is no conversion performed.

l Mixed() forces the field to be dual.

String() or Mixed() cannot be used outside extension table field definitions, and
you cannot use other Qlik Sense functions in a table field definition.

More about analytic connections

You need to configure analytic connections before you can use them.

where where is a clause used for stating whether a record should be included in the
selection or not. The selection is included if criterion is True.
criterion is a logical expression.

while while is a clause used for stating whether a record should be repeatedly read. The
same record is read as long as criterion is True. In order to be useful, a while
clause must typically include the IterNo() function.

criterion is a logical expression.

Script syntax and chart functions - Qlik Sense, May 2023 155

2 Script statements and keywords

Argument Description

group by group by is a clause used for defining over which fields the data should be
aggregated (grouped). The aggregation fields should be included in some way in
the expressions loaded. No other fields than the aggregation fields may be used
outside aggregation functions in the loaded expressions.

groupbyfieldlist ::= (fieldname { ,fieldname })

order by order by is a clause used for sorting the records of a resident table before they are
processed by the load statement. The resident table can be sorted by one or more
fields in ascending or descending order. The sorting is made primarily by numeric
value and secondarily by national collation order. This clause may only be used
when the data source is a resident table.
The ordering fields specify which field the resident table is sorted by. The field can
be specified by its name or by its number in the resident table (the first field is
number 1).

orderbyfieldlist ::= fieldname [sortorder] { , fieldname [sortorder] }

sortorder is either asc for ascending or desc for descending. If no sortorder is
specified, asc is assumed.

fieldname, path, filename and aliasname are text strings representing what the
respective names imply. Any field in the source table can be used as fieldname.
However, fields created through the as clause (aliasname) are out of scope and
cannot be used inside the same load statement.

If no source of data is given by means of a from, inline, resident, from_field, extension or autogenerate
clause, data will be loaded from the result of the immediately succeeding SELECT or LOAD statement. The
succeeding statement should not have a prefix.

Examples:

Loading different file formats
Load a delimited data file with default options:

LOAD * from data1.csv;

Load a delimited data file from a library connection (DataFiles):

LOAD * from 'lib://DataFiles/data1.csv';

Load all delimited data files from a library connection (DataFiles):

LOAD * from 'lib://DataFiles/*.csv';

Load a delimited file, specifying comma as delimiter and with embedded labels:

LOAD * from 'c:\userfiles\data1.csv' (ansi, txt, delimiter is ',', embedded labels);

Load a delimited file specifying tab as delimiter and with embedded labels:

Script syntax and chart functions - Qlik Sense, May 2023 156

2 Script statements and keywords

LOAD * from 'c:\userfiles\data2.txt' (ansi, txt, delimiter is '\t', embedded labels);

Load a dif file with embedded headers:

LOAD * from file2.dif (ansi, dif, embedded labels);

Load three fields from a fixed record file without headers:

LOAD @1:2 as ID, @3:25 as Name, @57:80 as City from data4.fix (ansi, fix, no labels, header is

0, record is 80);

Load a QVX file, specifying an absolute path:

LOAD * from C:\qdssamples\xyz.qvx (qvx);

Loading web files
Load from the default URL set in the web file data connection:

LOAD * from [lib://MyWebFile];

Load from a specific URL, and override the URL set in the web file data connection:

LOAD * from [lib://MyWebFile] (URL is 'http://localhost:8000/foo.bar');

Load from a specific URL set in a variable using dollar-sign expansion:

SET dynamicURL = 'http://localhost/foo.bar';

LOAD * from [lib://MyWebFile] (URL is '$(dynamicURL)');

Selecting certain fields, renaming and calculating fields
Load only three specific fields from a delimited file:

LOAD FirstName, LastName, Number from data1.csv;

Rename first field as A and second field as B when loading a file without labels:

LOAD @1 as A, @2 as B from data3.txt (ansi, txt, delimiter is '\t', no labels);

Load Name as a concatenation of FirstName, a space character, and LastName:

LOAD FirstName&' '&LastName as Name from data1.csv;

Load Quantity, Price and Value (the product of Quantity and Price):

LOAD Quantity, Price, Quantity*Price as Value from data1.csv;

Selecting certain records
Load only unique records, duplicate records will be discarded:

LOAD distinct FirstName, LastName, Number from data1.csv;

Load only records where the field Litres has a value above zero:

LOAD * from Consumption.csv where Litres>0;

Script syntax and chart functions - Qlik Sense, May 2023 157

2 Script statements and keywords

Loading data not on file and auto-generated data
Load a table with inline data, two fields named CatID and Category:

LOAD * Inline

[CatID, Category

0,Regular

1,Occasional

2,Permanent];

Load a table with inline data, three fields named UserID, Password and Access:

LOAD * Inline [UserID, Password, Access

A, ABC456, User

B, VIP789, Admin];

Load a table with 10 000 rows. Field A will contain the number of the read record (1,2,3,4,5...) and field B will
contain a random number between 0 and 1:

LOAD RecNo() as A, rand() as B autogenerate(10000);

The parenthesis after autogenerate is allowed but not required.

Loading data from a previously loaded table
First we load a delimited table file and name it tab1:

tab1:

SELECT A,B,C,D from 'lib://DataFiles/data1.csv';

Load fields from the already loaded tab1 table as tab2:

tab2:

LOAD A,B,month(C),A*B+D as E resident tab1;

Load fields from already loaded table tab1 but only records where A is larger than B:

tab3:

LOAD A,A+B+C resident tab1 where A>B;

Load fields from already loaded table tab1 ordered by A:

LOAD A,B*C as E resident tab1 order by A;

Load fields from already loaded table tab1, ordered by the first field, then the second field:

LOAD A,B*C as E resident tab1 order by 1,2;

Load fields from already loaded table tab1 ordered by C descending, then B in ascending order, and then the
first field in descending order:

LOAD A,B*C as E resident tab1 order by C desc, B asc, 1 desc;

Loading data from previously loaded fields
Load field Types from previously loaded table Characters as A:

Script syntax and chart functions - Qlik Sense, May 2023 158

2 Script statements and keywords

LOAD A from_field (Characters, Types);

Loading data from a succeeding table (preceding load)
Load A, B and calculated fields X and Y from Table1 that is loaded in succeeding SELECT statement:

LOAD A, B, if(C>0,'positive','negative') as X, weekday(D) as Y;

SELECT A,B,C,D from Table1;

Grouping data
Load fields grouped (aggregated) by ArtNo:

LOAD ArtNo, round(Sum(TransAmount),0.05) as ArtNoTotal from table.csv group by ArtNo;

Load fields grouped (aggregated) by Week and ArtNo:

LOAD Week, ArtNo, round(Avg(TransAmount),0.05) as WeekArtNoAverages from table.csv group by

Week, ArtNo;

Reading one record repeatedly
In this example we have a input file Grades.csv containing the grades for each student condensed in one field:

Student,Grades

Mike,5234

John,3345

Pete,1234

Paul,3352

The grades, in a 1-5 scale, represent subjects Math, English, Science and History. We can separate the grades
into separate values by reading each record several times with a while clause, using the IterNo() function as
a counter. In each read, the grade is extracted with the Mid function and stored in Grade, and the subject is
selected using the pick function and stored in Subject. The final while clause contains the test to check if all
grades have been read (four per student in this case), which means next student record should be read.

MyTab:

LOAD Student,

mid(Grades,IterNo(),1) as Grade,

pick(IterNo(), 'Math', 'English', 'Science', 'History') as Subject from Grades.csv

while IsNum(mid(Grades,IterNo(),1));

The result is a table containing this data:

Script syntax and chart functions - Qlik Sense, May 2023 159

2 Script statements and keywords

Loading from analytic connections
The following sample data is used.

Values:

Load

Rand() as A,

Rand() as B,

Rand() as C

AutoGenerate(50);

Loading data using a function

In these examples, we assume that we have an analytic connection plugin named P that contains a custom
function Calculate(Parameter1, Parameter2). The function returns the table Results that contains the fields
Field1 and Field2.

Load * Extension P.Calculate(Values{A, C});

Load all fields that are returned when sending the fields A and C to the function.

Load Field1 Extension P.Calculate(Values{A, C});

Load only the Field1 field when sending the fields A and C to the function.

Load * Extension P.Calculate(Values);

Load all fields that are returned when sending the fields A and B to the function. As fields are not specified, A
and B are used as they are the first in order in the table.

Load * Extension P.Calculate(Values {C, C});

Load all fields that are returned when sending the field C to both parameters of the function.

Load * Extension P.Calculate(Values {String(A), Mixed(B)});

Load all fields that are returned when sending the field A forced as a string and B forced as a numeric to the
function.

Script syntax and chart functions - Qlik Sense, May 2023 160

2 Script statements and keywords

Loading data by evaluating a script

Load A as A_echo, B as B_echo Extension R.ScriptEval('q;', Values{A, B});

Load the table returned by the script q when sending the values of A and B.

Load * Extension R.ScriptEval('$(My_R_Script)', Values{A, B});

Load the table returned by the script stored in the My_R_Script variable when sending the values of A and B.

Load * Extension R.ScriptEval('$(My_R_Script)', Values{B as D, *});

Load the table returned by the script stored in the My_R_Script variable when sending the values of B
renamed to D, A and C. Using * sends the remaining unreferenced fields.

The file extension of DataFiles connections is case sensitive. For example: .qvd.

Format specification items
Each format specification item defines a certain property of the table file:

fspec-item ::= [ansi | oem | mac | UTF-8 | Unicode | txt | fix | dif | biff | ooxml | html | xml | kml |
qvd | qvx delimiter is char | no eof | embedded labels | explicit labels | no labels | table is [tablename]
| header is n | header is line | header is n lines | comment is string | record is n | record is line |
record is n lines | no quotes |msq | URL is string | userAgent is string]

Character set

Character set is a file specifier for the LOAD statement that defines the character set used in the
file.

The ansi, oem and mac specifiers were used in QlikView and will still work. However, they will not be
generated when creating the LOAD statement with Qlik Sense.

Syntax:
utf8 | unicode | ansi | oem | mac | codepage is

Arguments:

Argument Description

utf8 UTF-8 character set

unicode Unicode character set

ansi Windows, codepage 1252

oem DOS, OS/2, AS400 and others

mac Codepage 10000

codepage is With the codepage specifier, it is possible to use any Windows codepage as N .

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 161

2 Script statements and keywords

Limitations:

Conversion from the oem character set is not implemented for macOS. If nothing is specified, codepage 1252
is assumed under Windows.

Example:

LOAD * from a.txt (utf8, txt, delimiter is ',' , embedded labels)

LOAD * from a.txt (unicode, txt, delimiter is ',' , embedded labels)

LOAD * from a.txt (codepage is 10000, txt, delimiter is ',' , no labels)

See also:

p Load (page 151)

Table format

The table format is a file specifier for the LOAD statement that defines the file type. If nothing is
specified, a .txt file is assumed.

Type Description

txt In a delimited text file the columns in the table are separated by a delimiter character.

fix In a fixed record file, each field is exactly a certain number of characters.

Typically, many fixed record length files contains records separated by a linefeed, but
there are more advanced options to specify record size in bytes or to span over more
than one line with Record is.

If the data contains multi-byte characters, field breaks can become
misaligned as the format is based on a fixed length in bytes.

dif In a .dif file, (Data Interchange Format) a special format for defining the table is used.

biff Qlik Sense can also interpret data in standard Excel files by means of the biff format
(Binary Interchange File Format).

ooxml Excel 2007 and later versions use the ooxml .xslx format.

html If the table is part of an html page or file, html should be used.

xml xml (Extensible Markup Language) is a common markup language that is used to
represent data structures in a textual format.

qvd The format qvd is the proprietary QVD files format, exported from a Qlik Sense app.

qvx qvx is a file/stream format for high performance output to Qlik Sense.

Table format types

Script syntax and chart functions - Qlik Sense, May 2023 162

2 Script statements and keywords

Delimiter is

For delimited table files, an arbitrary delimiter can be specified through the delimiter is
specifier. This specifier is relevant only for delimited .txt files.

Syntax:
delimiter is char

Arguments:

Argument Description

char Specifies a single character from the 127 ASCII characters.

Arguments

Additionally, the following values can be used:

Value Description

'\t' representing a tab sign, with or without quotation marks.

'\\' representing a backslash (\) character.

'spaces' representing all combinations of one or more spaces. Non-printable
characters with an ASCII-value below 32, with the exception of CR and
LF, will be interpreted as spaces.

Optional values

If nothing is specified, delimiter is ',' is assumed.

Example:

LOAD * from a.txt (utf8, txt, delimiter is ',' , embedded labels);

See also:

p Load (page 151)

No eof
The no eof specifier is used to disregard end-of-file character when loading delimited .txt files.

Syntax:
no eof

If the no eof specifier is used, characters with code point 26, which otherwise denotes end-of-file, are
disregarded and can be part of a field value.

It is relevant only for delimited text files.

Script syntax and chart functions - Qlik Sense, May 2023 163

2 Script statements and keywords

Example:

LOAD * from a.txt (txt, utf8, embedded labels, delimiter is ' ', no eof);

See also:

p Load (page 151)

Labels
Labels is a file specifier for the LOAD statement that defines where in a file the field names can be found.

Syntax:
embedded labels|explicit labels|no labels

The field names can be found in different places of the file. If the first record contains the field names,
embedded labels should be used. If there are no field names to be found, no labels should be used. In dif
files, a separate header section with explicit field names is sometimes used. In such a case, explicit labels
should be used. If nothing is specified, embedded labels is assumed, also for dif files.

Example 1:

LOAD * from a.txt (unicode, txt, delimiter is ',' , embedded labels

Example 2:

LOAD * from a.txt (codePage is 1252, txt, delimiter is ',' , no labels)

See also:

p Load (page 151)

Header is
Specifies the header size in table files. An arbitrary header length can be specified through the header is
specifier. A header is a text section not used by Qlik Sense.

Syntax:
header is n
header is line
header is n lines

The header length can be given in bytes (header is n), or in lines (header is line or header is n lines). n must
be a positive integer, representing the header length. If not specified, header is 0 is assumed. The header is
specifier is only relevant for table files.

Example:

This is an example of a data source table containing a header text line that should not be interpreted as data
by Qlik Sense.

Script syntax and chart functions - Qlik Sense, May 2023 164

2 Script statements and keywords

*Header line

Col1,Col2

a,B

c,D

Using the header is 1 lines specifier, the first line will not be loaded as data. In the example, the embedded
labels specifier tells Qlik Sense to interpret the first non-excluded line as containing field labels.

LOAD Col1, Col2

FROM 'lib://files/header.txt'

(txt, embedded labels, delimiter is ',', msq, header is 1 lines);

The result is a table with two fields, Col1 and Col2.

See also:

p Load (page 151)

Record is

For fixed record length files, the record length must be specified through the record is specifier.

Syntax:
Record is n
Record is line
Record is n lines

Arguments:

Argument Description

n Specifies the record length in bytes.

line Specifies the record length as one line.

n lines Specifies the record length in lines where n is a positive integer representing the record
length.

Arguments

Limitations:

The record is specifier is only relevant for fix files.

See also:

p Load (page 151)

Script syntax and chart functions - Qlik Sense, May 2023 165

2 Script statements and keywords

Quotes
Quotes is a file specifier for the LOAD statement that defines whether quotes can be used and the precedence
between quotes and separators. For text files only.

Syntax:
no quotes
msq
If the specifier is omitted, standard quoting is used, that is, the quotes " " or ' ' can be used, but only if they
are the first and last non blank character of a field value.

Arguments:

Argument Description

no quotes Used if quotation marks are not to be accepted in a text file.

msq Used to specify modern style quoting, allowing multi-line content in fields. Fields
containing end-of-line characters must be enclosed within double quotes.

One limitation of the msq option is that single double-quote (") characters appearing as
first or last character in field content will be interpreted as start or end of multi-line
content, which may lead to unpredicted results in the data set loaded. In this case you
should use standard quoting instead, omitting the specifier.

Arguments

XML

This script specifier is used when loading xml files. Valid options for the XML specifier are listed
in syntax.

You cannot load DTD files in Qlik Sense.

Syntax:
xmlsimple

See also:

p Load (page 151)

KML
This script specifier is used when loading KML files to use in a map visualization.

Syntax:
kml

Script syntax and chart functions - Qlik Sense, May 2023 166

2 Script statements and keywords

The KML file can represent either area data (for example, countries or regions) represented by polygons, line
data (for example tracks or roads), or point data (for example, cities or places) represented by points in the
form [long, lat].

URL is

This script specifier is used to set the URL of a web file data connection when loading a web file.

Syntax:
URL is string

Arguments:

Argument Description

string Specifies the URL of the file to load. This will override the URL set in the web file connection
that is used.

Arguments

Limitations:

The URL is specifier is only relevant for web files. You need to use an existing web file data connection.

See also:

p Load (page 151)

userAgent is

This script specifier is used to set the browser user agent when loading a web file.

Syntax:
userAgent is string

Arguments:

Argument Description

string Specifies the browser user agent string. This will override the default browser user agent
"Mozilla/5.0".

Arguments

Limitations:

The userAgent is specifier is only relevant for web files.

See also:

p Load (page 151)

Script syntax and chart functions - Qlik Sense, May 2023 167

2 Script statements and keywords

Let
The let statement is a complement to the set statement, used for defining script variables. The
let statement, in opposition to the set statement, evaluates the expression on the right side of
the ' =' at script run time before it is assigned to the variable.

Syntax:
Let variablename=expression

Examples and results:

Example Result

Set x=3+4;

Let y=3+4;

z=$(y)+1;

$(x) will be evaluated as ' 3+4 '

$(y) will be evaluated as ' 7 '

$(z) will be evaluated as ' 8 '

Note the difference between the Set and Let statements. The Set statement
assigns the string '3+4' to the variable, whereas the Let statement evaluates
the string and assigns 7 to the variable.

Let T=now(); $(T) will be given the value of the current time.

Loosen Table
One or more Qlik Sense internal data tables can be explicitly declared loosely coupled during script execution
by using a Loosen Table statement. When a table is loosely coupled, all associations between field values in
the table are removed. A similar effect could be achieved by loading each field of the loosely coupled table as
independent, unconnected tables. Loosely coupled can be useful during testing to temporarily isolate
different parts of the data structure. A loosely coupled table can be identified in the table viewer by the dotted
lines. The use of one or more Loosen Table statements in the script will make Qlik Sense disregard any
setting of tables as loosely coupled made before the script execution.

Syntax:
Loosen Tabletablename [, tablename2 ...]
Loosen Tablestablename [, tablename2 ...]

Either syntax: Loosen Table or Loosen Tables can be used.

Should Qlik Sense find circular references in the data structure which cannot be broken by tables
declared loosely coupled interactively or explicitly in the script, one or more additional tables will be
forced loosely coupled until no circular references remain. When this happens, the Loop Warning
dialog, gives a warning.

Script syntax and chart functions - Qlik Sense, May 2023 168

2 Script statements and keywords

Example:

Tab1:

SELECT * from Trans;

Loosen Table Tab1;

Map
The map ... using statement is used for mapping a certain field value or expression to the
values of a specific mapping table. The mapping table is created through the Mapping
statement.

Syntax:
Map fieldlist Using mapname

The automatic mapping is done for fields loaded after the Map … Using statement until the end of the script
or until an Unmap statement is encountered.

The mapping is done last in the chain of events leading up to the field being stored in the internal table in Qlik
Sense. This means that mapping is not done every time a field name is encountered as part of an expression,
but rather when the value is stored under the field name in the internal table. If mapping on the expression
level is required, the Applymap() function has to be used instead.

Arguments:

Argument Description

fieldlist A comma separated list of the fields that should be mapped from this point in the script.
Using * as field list indicates all fields. The wildcard characters * and ? are allowed in field
names. Quoting of field names may be necessary when wildcards are used.

mapname The name of a mapping table previously read in a mapping load or mapping select
statement.

Arguments

Example Result

Map Country Using
Cmap;

Enables mapping of the field Country using the map Cmap.

Map A, B, C Using X; Enables mapping of the fields A, B and C using the map X.

Map * Using GenMap; Enables mapping of all fields using GenMap.

Examples and results:

Script syntax and chart functions - Qlik Sense, May 2023 169

2 Script statements and keywords

NullAsNull
The NullAsNull statement turns off the conversion of NULL values to string values previously set
by a NullAsValue statement.

Syntax:
NullAsNull *fieldlist

The NullAsValue statement operates as a switch and can be turned on or off several times in the script, using
either a NullAsValue or a NullAsNull statement.

Arguments:

Argument Description

*fieldlist A comma separated list of the fields for which NullAsNull should be turned on. Using * as
field list indicates all fields. The wildcard characters * and ? are allowed in field names.
Quoting of field names may be necessary when wildcards are used.

Arguments

Example:

NullAsNull A,B;

LOAD A,B from x.csv;

NullAsValue
The NullAsValue statement specifies for which fields that NULL should be converted to a value.

Syntax:
NullAsValue *fieldlist

By default, Qlik Sense considers NULL values to be missing or undefined entities. However, certain database
contexts imply that NULL values are to be considered as special values rather than simply missing values. The
fact that NULL values are normally not allowed to link to other NULL values can be suspended by means of
the NullAsValue statement.

The NullAsValue statement operates as a switch and will operate on subsequent loading statements. It can be
switched off again by means of the NullAsNull statement.

Script syntax and chart functions - Qlik Sense, May 2023 170

2 Script statements and keywords

Arguments:

Argument Description

*fieldlist A comma separated list of the fields for which NullAsValue should be turned on. Using * as
field list indicates all fields. The wildcard characters * and ? are allowed in field names.
Quoting of field names may be necessary when wildcards are used.

Arguments

Example:

NullAsValue A,B;

Set NullValue = 'NULL';

LOAD A,B from x.csv;

Qualify
The Qualify statement is used for switching on the qualification of field names, i.e. field names
will get the table name as a prefix.

Syntax:
Qualify *fieldlist

The automatic join between fields with the same name in different tables can be suspended by means of the
qualify statement, which qualifies the field name with its table name. If qualified, the field name(s) will be
renamed when found in a table. The new name will be in the form of tablename.fieldname. Tablename is
equivalent to the label of the current table, or, if no label exists, to the name appearing after from in LOAD
and SELECT statements.

The qualification will be made for all fields loaded after the qualify statement.

Qualification is always turned off by default at the beginning of script execution. Qualification of a field name
can be activated at any time using a qualify statement. Qualification can be turned off at any time using an
Unqualify statement.

The qualify statement should not be used in conjunction with partial reload.

Arguments:

Argument Description

*fieldlist A comma separated list of the fields for which qualification should be turned on. Using * as
field list indicates all fields. The wildcard characters * and ? are allowed in field names.
Quoting of field names may be necessary when wildcards are used.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 171

2 Script statements and keywords

Example 1:

Qualify B;

LOAD A,B from x.csv;

LOAD A,B from y.csv;

The two tables x.csv and y.csv are associated only through A. Three fields will result: A, x.B, y.B.

Example 2:

In an unfamiliar database, it is often useful to start out by making sure that only one or a few fields are
associated, as illustrated in this example:

qualify *;

unqualify TransID;

SQL SELECT * from tab1;

SQL SELECT * from tab2;

SQL SELECT * from tab3;

Only TransID will be used for associations between the tables tab1, tab2 and tab3.

Rem
The rem statement is used for inserting remarks, or comments, into the script, or to temporarily
deactivate script statements without removing them.

Syntax:
Rem string

Everything between the rem and the next semicolon ; is considered to be a comment.

There are two alternative methods available for making comments in the script:

1. It is possible to create a comment anywhere in the script - except between two quotes - by placing the
section in question between /* and */.

2. When typing // in the script, all text that follows to the right on the same row becomes a comment.
(Note the exception //: that may be used as part of an Internet address.)

Arguments:

Argument Description

string An arbitrary text.

Arguments

Example:

Rem ** This is a comment **;

/* This is also a comment */

// This is a comment as well

Script syntax and chart functions - Qlik Sense, May 2023 172

2 Script statements and keywords

Rename
The Rename script keyword can be used to rename tables or fields that are already loaded.

Rename field

This script function renames one or more existing Qlik Sense field(s) after they have been
loaded.

It is not recommended to name a variable identically to a field or a function in Qlik Sense.

Either syntax: rename field or rename fields can be used.

Syntax:
Rename Field (using mapname | oldname to newname{ , oldname to newname })
Rename Fields (using mapname | oldname to newname{ , oldname to newname })

Arguments:

Argument Description

mapname The name of a previously loaded mapping table containing one or more pairs of old and
new field names.

oldname The old field name.

newname The new field name.

Limitations:

You cannot rename two fields to having the same name.

Example 1:

Rename Field XAZ0007 to Sales;

Example 2:

FieldMap:

Mapping SQL SELECT oldnames, newnames from datadictionary;

Rename Fields using FieldMap;

Rename table

This script function renames one or more existing Qlik Sense internal table(s) after they have
been loaded.

Either syntax: rename table or rename tables can be used.

Script syntax and chart functions - Qlik Sense, May 2023 173

2 Script statements and keywords

Syntax:
Rename Table (using mapname | oldname to newname{ , oldname to newname })
Rename Tables (using mapname | oldname to newname{ , oldname to newname })

Arguments:

Argument Description

mapname The name of a previously loaded mapping table containing one or more pairs of old and
new table names.

oldname The old table name.

newname The new table name.

Arguments

Limitations:

Two differently named tables cannot be renamed to having the same name. The script will generate an error if
you try to rename a table to the same name as an existing table.

Example 1:

Tab1:

SELECT * from Trans;

Rename Table Tab1 to Xyz;

Example 2:

TabMap:

Mapping LOAD oldnames, newnames from tabnames.csv;

Rename Tables using TabMap;

Search

The Search statement is used for including or excluding fields in smart search.

Syntax:
Search Include *fieldlist
Search Exclude *fieldlist

You can use several Search statements to refine your selection of fields to include. The statements are
evaluated from top to bottom.

Script syntax and chart functions - Qlik Sense, May 2023 174

2 Script statements and keywords

Arguments:

Argument Description

*fieldlist A comma separated list of the fields to include or exclude from searches in smart search.
Using * as field list indicates all fields. The wildcard characters * and ? are allowed in field
names. Quoting of field names may be necessary when wildcards are used.

Arguments

Example:

Statement Description

Search Include *; Include all fields in searches in smart search.

Search Exclude [*ID]; Exclude all fields ending with ID from searches in smart search.

Search Exclude '*ID'; Exclude all fields ending with ID from searches in smart search.

Search Include ProductID; Include the field ProductID in searches in smart search.

Search examples

The combined result of these three statements, in this sequence, is that all fields ending with ID except
ProductID are excluded from searches in smart search.

Section
With the section statement, it is possible to define whether the subsequent LOAD and SELECT statements
should be considered as data or as a definition of the access rights.

Syntax:
Section (access | application)

If nothing is specified, section application is assumed. The section definition is valid until a new section
statement is made.

Example:

Section access;

Section application;

Select
The selection of fields from an ODBC data source or OLE DB provider is made through standard
SQL SELECT statements. However, whether the SELECT statements are accepted depends on
the ODBC driver or OLE DB provider used. Use of the SELECT statement requires an open data
connection to the source.

Script syntax and chart functions - Qlik Sense, May 2023 175

2 Script statements and keywords

Syntax:
Select [all | distinct | distinctrow | top n [percent]] fieldlist

From tablelist

[where criterion]

[group by fieldlist [having criterion]]

[order by fieldlist [asc | desc]]

[(Inner | Left | Right | Full) join tablename on fieldref = fieldref]

Furthermore, several SELECT statements can sometimes be concatenated into one through the use of a union
operator:

selectstatement Union selectstatement

The SELECT statement is interpreted by the ODBC driver or OLE DB provider, so deviations from the general
SQL syntax might occur depending on the capabilities of the ODBC drivers or OLE DB provider, for example:.

l as is sometimes not allowed, i.e. aliasname must follow immediately after fieldname.
l as is sometimes compulsory if an aliasname is used.
l distinct, as, where, group by, order by, or union is sometimes not supported.
l The ODBC driver sometimes does not accept all the different quotation marks listed above.

This is not a complete description of the SQL SELECT statement! E.g. SELECT statements can be
nested, several joins can be made in one SELECT statement, the number of functions allowed in
expressions is sometimes very large, etc.

Arguments:

Argument Description

distinct distinct is a predicate used if duplicate combinations of values in the selected fields only
should be loaded once.

distinctrow distinctrow is a predicate used if duplicate records in the source table only should be
loaded once.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 176

2 Script statements and keywords

Argument Description

fieldlist fieldlist ::= (*| field) {, field }
A list of the fields to be selected. Using * as field list indicates all fields in the table.
fieldlist ::= field {, field }
A list of one or more fields, separated by commas.
field ::= (fieldref | expression) [as aliasname]
The expression can e.g. be a numeric or string function based on one or several other
fields. Some of the operators and functions usually accepted are: +, -, *, /, & (string
concatenation), sum(fieldname), count(fieldname), avg(fieldname)(average), month
(fieldname), etc. See the documentation of the ODBC driver for more information.
fieldref ::= [tablename.] fieldname
The tablename and the fieldname are text strings identical to what they imply. They must
be enclosed by straight double quotation marks if they contain e.g. spaces.
The as clause is used for assigning a new name to the field.

from tablelist ::= table {, table }

The list of tables that the fields are to be selected from.

table ::= tablename [[as] aliasname]

The tablename may or may not be put within quotes.

where where is a clause used for stating whether a record should be included in the selection or
not.
criterion is a logical expression that can sometimes be very complex. Some of the
operators accepted are: numeric operators and functions, =, <> or #(not equal), >, >=, <,
<=, and, or, not, exists, some, all, in and also new SELECT statements. See the
documentation of the ODBC driver or OLE DB providerfor more information.

group by group by is a clause used for aggregating (group) several records into one. Within one
group, for a certain field, all the records must either have the same value, or the field can
only be used from within an expression, e.g. as a sum or an average. The expression based
on one or several fields is defined in the expression of the field symbol.

having having is a clause used for qualifying groups in a similar manner to how the where clause
is used for qualifying records.

order by order by is a clause used for stating the sort order of the resulting table of the SELECT
statement.

join join is a qualifier stating if several tables are to be joined together into one. Field names
and table names must be put within quotes if they contain blank spaces or letters from the
national character sets. When the script is automatically generated by Qlik Sense, the
quotation mark used is the one preferred by the ODBC driver or OLE DB provider specified
in the data source definition of the data source in the Connect statement.

Example 1:

SELECT * FROM `Categories`;

Script syntax and chart functions - Qlik Sense, May 2023 177

2 Script statements and keywords

Example 2:

SELECT `Category ID`, `Category Name` FROM `Categories`;

Example 3:

SELECT `Order ID`, `Product ID`,

`Unit Price` * Quantity * (1-Discount) as NetSales

FROM `Order Details`;

Example 4:

SELECT `Order Details`.`Order ID`,

Sum(`Order Details`.`Unit Price` * `Order Details`.Quantity) as `Result`

FROM `Order Details`, Orders

where Orders.`Order ID` = `Order Details`.`Order ID`

group by `Order Details`.`Order ID`;

Set
The set statement is used for defining script variables. These can be used for substituting strings, paths,
drives, and so on.

Syntax:
Set variablename=string

Example 1:

Set FileToUse=Data1.csv;

Example 2:

Set Constant="My string";

Example 3:

Set BudgetYear=2012;

Sleep
The sleep statement pauses script execution for a specified time.

Syntax:
Sleep n

Arguments:

Argument Description

n Stated in milliseconds, where n is a positive integer no larger than 3600000 (i.e. 1 hour). The
value may be an expression.

Script syntax and chart functions - Qlik Sense, May 2023 178

2 Script statements and keywords

Example 1:

Sleep 10000;

Example 2:

Sleep t*1000;

SQL
The SQL statement allows you to send an arbitrary SQL command through an ODBC or OLE DB connection.

Syntax:
SQL sql_command

Sending SQL statements which update the database will return an error if Qlik Sense has opened the ODBC
connection in read-only mode.

The syntax:

SQL SELECT * from tab1;

is allowed, and is the preferred syntax for SELECT, for reasons of consistency. The SQL prefix will, however,
remain optional for SELECT statements.

Arguments:

Argument Description

sql_command A valid SQL command.

Example 1:

SQL leave;

Example 2:

SQL Execute <storedProc>;

SQLColumns
The sqlcolumns statement returns a set of fields describing the columns of an ODBC or OLE DB data source,
to which a connect has been made.

Syntax:
SQLcolumns

The fields can be combined with the fields generated by the sqltables and sqltypes commands in order to
give a good overview of a given database. The twelve standard fields are:

Script syntax and chart functions - Qlik Sense, May 2023 179

2 Script statements and keywords

TABLE_QUALIFIER

TABLE_OWNER

TABLE_NAME

COLUMN_NAME

DATA_TYPE

TYPE_NAME

PRECISION

LENGTH

SCALE

RADIX

NULLABLE

REMARKS

For a detailed description of these fields, see an ODBC reference handbook.

Example:

Connect to 'MS Access 7.0 Database; DBQ=C:\Course3\DataSrc\QWT.mbd';

SQLcolumns;

Some ODBC drivers may not support this command. Some ODBC drivers may produce additional
fields.

SQLTables
The sqltables statement returns a set of fields describing the tables of an ODBC or OLE DB data source, to
which a connect has been made.

Syntax:
SQLTables

The fields can be combined with the fields generated by the sqlcolumns and sqltypes commands in order to
give a good overview of a given database. The five standard fields are:

TABLE_QUALIFIER

TABLE_OWNER

TABLE_NAME

TABLE_TYPE

Script syntax and chart functions - Qlik Sense, May 2023 180

2 Script statements and keywords

REMARKS

For a detailed description of these fields, see an ODBC reference handbook.

Example:

Connect to 'MS Access 7.0 Database; DBQ=C:\Course3\DataSrc\QWT.mbd';

SQLTables;

Some ODBC drivers may not support this command. Some ODBC drivers may produce additional
fields.

SQLTypes
The sqltypes statement returns a set of fields describing the types of an ODBC or OLE DB data source, to
which a connect has been made.

Syntax:
SQLTypes

The fields can be combined with the fields generated by the sqlcolumns and sqltables commands in order to
give a good overview of a given database. The fifteen standard fields are:

TYPE_NAME

DATA_TYPE

PRECISION

LITERAL_PREFIX

LITERAL_SUFFIX

CREATE_PARAMS

NULLABLE

CASE_SENSITIVE

SEARCHABLE

UNSIGNED_ATTRIBUTE

MONEY

AUTO_INCREMENT

LOCAL_TYPE_NAME

MINIMUM_SCALE

MAXIMUM_SCALE

Script syntax and chart functions - Qlik Sense, May 2023 181

2 Script statements and keywords

For a detailed description of these fields, see an ODBC reference handbook.

Example:

Connect to 'MS Access 7.0 Database; DBQ=C:\Course3\DataSrc\QWT.mbd';

SQLTypes;

Some ODBC drivers may not support this command. Some ODBC drivers may produce additional
fields.

Star
The string used for representing the set of all the values of a field in the database can be set
through the star statement. It affects the subsequent LOAD and SELECT statements.

Syntax:
Star is[string]

Arguments:

Argument Description

string An arbitrary text. Note that the string must be enclosed by quotation marks if it contains
blanks.

If nothing is specified, star is; is assumed, i.e. there is no star symbol available unless
explicitly specified. This definition is valid until a new star statement is made.

Arguments

The Star is statement is not recommended for use in the data part of the script (under Section Application) if
section access is used. The star character is however fully supported for the protected fields in the Section
Access part of the script. In this case you do not need to use the explicit Star is statement since this is always
implicit in section access.

Limitations
l You cannot use the star character with key fields; that is, fields that link tables.
l You cannot use the star character with any fields affected by the Unqualify statement as this can affect

fields that link tables.
l You cannot use the star character with non-logical tables, for example, info-load tables or mapping-

load tables.
l When the star character is used in a reducing field (a field that links to the data) in section access , it

represents the values listed in this field in section access. It does not represent other values that may
exist in the data but are not listed in section access.

l You cannot use the star character with fields affected by any form of data reduction outside the
Section Access area.

Script syntax and chart functions - Qlik Sense, May 2023 182

2 Script statements and keywords

Example
The example below is an extract of a data load script featuring section access.

Star is *;

Section Access;

LOAD * INLINE [

ACCESS, USERID, OMIT

ADMIN, ADMIN,

USER, USER1, SALES

USER, USER2, WAREHOUSE

USER, USER3, EMPLOYEES

USER, USER4, SALES

USER, USER4, WAREHOUSE

USER, USER5, *

];

Section Application;

LOAD * INLINE [

SALES, WAREHOUSE, EMPLOYEES, ORDERS

1, 2, 3, 4

];

The following applies:

l The Star sign is *.
l The user ADMIN sees all fields. Nothing is omitted.
l The user USER1 is not able to see the field SALES.
l The user USER2 is not able to see the field WAREHOUSE .
l The user USER3 cannot see the field EMPLOYEES.
l The user USER4 is added twice to the solution to OMIT two fields for this user, SALES and WAREHOUSE.
l The USER5 has a “*” added which means that all listed fields in OMIT are unavailable, that is, user

USER5 cannot see the fields SALES, WAREHOUSE and EMPLOYEES but this user can see the field ORDERS.

Store
The Store statement creates a QVD, or text file.

Syntax:
Store [fieldlist from] table into filename [format-spec];

The statement will create an explicitly named QVD, or text file.

The statement can only export fields from one data table. If fields from several tables are to be exported, an
explicit join must be made previously in the script to create the data table that should be exported.

The text values are exported to the CSV file in UTF-8 format. A delimiter can be specified, see LOAD. The store
statement to a CSV file does not support BIFF export.

Script syntax and chart functions - Qlik Sense, May 2023 183

2 Script statements and keywords

Arguments:

Argument Description

fieldlist::= (* | field) { , field }) A list of the fields to be selected. Using * as field list indicates
all fields.

field::= fieldname [as aliasname]

fieldname is a text that is identical to a field name in table.
(Note that the field name must be enclosed b straight double
quotation marks or square brackets if it contains spaces or
other non-standard characters.)

aliasname is an alternate name for the field to be used in the
resulting QVD or CSV file.

table A script label representing an already loaded table to be used
as source for data.

filename The name of the target file including a valid path to an existing
folder data connection.

Example: 'lib://Table Files/target.qvd'

In legacy scripting mode, the following path formats are also
supported:

l absolute

Example: c:\data\sales.qvd

l relative to the Qlik Sense app working directory.

Example: data\sales.qvd

If the path is omitted, Qlik Sense stores the file in the
directory specified by the Directory statement. If there
is no Directory statement, Qlik Sense stores the file in
the working directory, C:\Users\
{user}\Documents\Qlik\Sense\Apps.

format-spec ::=((txt | qvd)) You can set the format specification to either of these file
formats. If the format specification is omitted, qvd is assumed.

l txt for text files.
l qvd for qvd files.

Store command arguments

Script syntax and chart functions - Qlik Sense, May 2023 184

2 Script statements and keywords

Examples:

Store mytable into xyz.qvd (qvd);

Store * from mytable into 'lib://FolderConnection/myfile.qvd';

Store Name, RegNo from mytable into xyz.qvd;

Store Name as a, RegNo as b from mytable into 'lib://FolderConnection/myfile.qvd';

Store mytable into myfile.txt (txt);

Store * from mytable into 'lib://FolderConnection/myfile.qvd';

The file extension of DataFiles connections is case sensitive. For example: .qvd.

Table/Tables
The Table and Tables script keywords are used in Drop, Comment and Rename statements, as
well as a format specifier in Load statements.

Tag
This script statement provides a way to assign tags to one or more fields or tables. If an attempt
to tag a field or table not present in the app is made, the tagging will be ignored. If conflicting
occurrences of a field or tag name are found, the last value is used.

Syntax:
Tag [field|fields] fieldlist with tagname

Tag [field|fields] fieldlist using mapname

Tag table tablelist with tagname

Argument Description

fieldlist One or several fields that should be tagged, in a comma separated list.

mapname The name of a mapping table previously loaded in a mapping Load or mapping Select
statement.

tablelist A comma separated list of the tables that should be tagged.

tagname The name of the tag that should be applied to the field.

Arguments

Example 1:

tagmap:

mapping LOAD * inline [

a,b

Alpha,MyTag

Num,MyTag

];

tag fields using tagmap;

Script syntax and chart functions - Qlik Sense, May 2023 185

2 Script statements and keywords

Example 2:

tag field Alpha with 'MyTag2';

Trace
The trace statement writes a string to the Script Execution Progress window and to the script log file, when
used. It is very useful for debugging purposes. Using $-expansions of variables that are calculated prior to the
trace statement, you can customize the message.

Syntax:
Trace string

Example 1:

The following statement can be used right after the Load statement that loads the 'Main' table.

Trace Main table loaded;

This will display the text ‘Main table loaded’ in the script execution dialog and in the log file.

Example 2:

The following statements can be used right after the Load statement that loads the 'Main' table.

Let MyMessage = NoOfRows('Main') & ' rows in Main table';

Trace $(MyMessage);

This will display a text showing the number of rows in the script execution dialog and in the log file, for
example, ‘265,391 rows in Main table’ .

Unmap
The Unmap statement disables field value mapping specified by a previous Map … Using
statement for subsequently loaded fields.

Syntax:
Unmap *fieldlist

Arguments:

Argument Description

*fieldlist a comma separated list of the fields that should no longer be mapped from this point in the
script. Using * as field list indicates all fields. The wildcard characters * and ? are allowed in
field names. Quoting of field names may be necessary when wildcards are used.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 186

2 Script statements and keywords

Examples and results:

Example Result

Unmap Country; Disables mapping of field Country.

Unmap A, B, C; Disables mapping of fields A, B and C.

Unmap * ; Disables mapping of all fields.

Unqualify
The Unqualify statement is used for switching off the qualification of field names that has been
previously switched on by the Qualify statement.

Syntax:
Unqualify *fieldlist

Arguments:

Argument Description

*fieldlist A comma separated list of the fields for which qualification should be turned on. Using * as
field list indicates all fields. The wildcard characters * and ? are allowed in field names.
Quoting of field names may be necessary when wildcards are used.

Refer to the documentation for the Qualify statement for further information.

Arguments

Example 1:

In an unfamiliar database, it is often useful to start out by making sure that only one or a few fields are
associated, as illustrated in this example:

qualify *;

unqualify TransID;

SQL SELECT * from tab1;

SQL SELECT * from tab2;

SQL SELECT * from tab3;

First, qualification is turned on for all fields.
Then qualification is turned off for TransID.
Only TransID will be used for associations between the tables tab1, tab2 and tab3. All other fields will be
qualified with the table name.

Untag
This script statement provides a way to remove tags from fields or tables. If an attempt to untag
a field or table not present in the app is made, the untagging will be ignored.

Syntax:
Untag [field|fields] fieldlist with tagname

Script syntax and chart functions - Qlik Sense, May 2023 187

2 Script statements and keywords

Untag [field|fields] fieldlist using mapname

Untag table tablelist with tagname

Arguments:

Argument Description

fieldlist One or several fields which tags should be removed, in a comma separated list.

mapname The name of a mapping table previously loaded in a mapping LOAD or mapping SELECT
statement.

tablelist A comma separated list of the tables that should be untagged.

tagname The name of the tag that should be removed from the field.

Arguments

Example 1:

tagmap:

mapping LOAD * inline [

a,b

Alpha,MyTag

Num,MyTag

];

Untag fields using tagmap;

Example 2:

Untag field Alpha with MyTag2;

2.6 Working directory
If you are referencing a file in a script statement and the path is omitted, Qlik Sense searches for
the file in the following order:

1. The directory specified by a Directory statement (only supported in legacy scripting mode).

2. If there is no Directory statement, Qlik Sense searches in the working directory.

Qlik Sense Desktop working directory
In Qlik Sense Desktop, the working directory is C:\Users\{user}\Documents\Qlik\Sense\Apps.

Qlik Sense working directory
In a Qlik Sense server installation, the working directory is specified in Qlik Sense Repository Service, by
default it is C:\ProgramData\Qlik\Sense\Apps. See the Qlik Management Console help for more information.

Script syntax and chart functions - Qlik Sense, May 2023 188

2 Working with variables in the data load editor

2 Working with variables in the data load editor
A variable in Qlik Sense is a container storing a static value or a calculation, for example a
numeric or alphanumeric value. When you use the variable in the app, any change made to the
variable is applied everywhere the variable is used. You can define variables in the variables
overview, or in the script using the data load editor. You set the value of a variable using Let or
Set statements in the data load script.

You can also work with the Qlik Sense variables from the variables overview when editing a sheet.

2.7 Overview
If the first character of a variable value is an equals sign ' = ' Qlik Sense will try to evaluate the value as a
formula (Qlik Sense expression) and then display or return the result rather than the actual formula text.

When used, the variable is substituted by its value. Variables can be used in the script for dollar sign expansion
and in various control statements. This is very useful if the same string is repeated many times in the script,
for example, a path.

Some special system variables will be set by Qlik Sense at the start of the script execution regardless of their
previous values.

2.8 Defining a variable
Variables provide the ability to store static values or the result of a calculation. When defining a variable, use
the following syntax:

set variablename = string

or

let variable = expression

The Set statement is used for string assignment. It assigns the text to the right of the equal sign to the
variable. The Let statement evaluates an expression to the right of the equal sign at script run time and
assigns the result of the expression to the variable.

Variables are case sensitive.

It is not recommended to name a variable identically to a field or a function in Qlik Sense.

Examples:

set x = 3 + 4; // the variable will get the string '3 + 4' as the value.

let x = 3 + 4; // returns 7 as the value.

Script syntax and chart functions - Qlik Sense, May 2023 189

2 Working with variables in the data load editor

set x = Today(); // returns 'Today()' as the value.

let x = Today(); // returns today's date as the value, for example, ‘9/27/2021’.

2.9 Deleting a variable
If you remove a variable from the script and reload the data, the variable stays in the app. If you want to fully
remove the variable from the app, you must also delete the variable from the variables dialog.

2.10 Loading a variable value as a field value
If you want to load a variable value as a field value in a LOAD statement and the result of the dollar expansion
is text rather than numeric or an expression then you need to enclose the expanded variable in single quotes.

Example:

This example loads the system variable containing the list of script errors to a table. You can note that the
expansion of ScriptErrorCount in the If clause does not require quotes, while the expansion of ScriptErrorList
requires quotes.

IF $(ScriptErrorCount) >= 1 THEN

LOAD '$(ScriptErrorList)' AS Error AutoGenerate 1;

END IF

2.11 Variable calculation
There are several ways to use variables with calculated values in Qlik Sense, and the result depends on how
you define it and how you call it in an expression.

In this example, we load some inline data:

LOAD * INLINE [

Dim, Sales

A, 150

A, 200

B, 240

B, 230

C, 410

C, 330

];

Let's define two variables:

Let vSales = 'Sum(Sales)' ;

Let vSales2 = '=Sum(Sales)' ;

In the second variable, we add an equal sign before the expression. This will cause the variable to be
calculated before it is expanded and the expression is evaluated.

If you use the vSales variable as it is, for example in a measure, the result will be the string Sum(Sales), that is,
no calculation is performed.

Script syntax and chart functions - Qlik Sense, May 2023 190

2 Working with variables in the data load editor

If you add a dollar-sign expansion and call $(vSales) in the expression, the variable is expanded, and the sum
of Sales is displayed.

Finally, if you call $(vSales2), the variable will be calculated before it is expanded. This means that the result
displayed is the total sum of Sales. The difference between using =$(vSales) and =$(vSales2) as measure
expressions is seen in this chart showing the results:

Dim $(vSales) $(vSales2)

A 350 1560

B 470 1560

C 740 1560

Results

As you can see, $(vSales) results in the partial sum for a dimension value, while $(vSales2) results in the total
sum.

The following script variables are available:

l Error variables (page 262)
l Number interpretation variables (page 199)
l System variables (page 191)
l Value handling variables (page 197)

2.12 System variables
System variables, some of which are system-defined, provide information about the system and
the Qlik Sense app.

System variables overview
Some of the functions are described further after the overview. For those functions, you can click the function
name in the syntax to immediately access the details for that specific function.

CreateSearchIndexOnReload
This variable defines if search index files should be created during data reload.

CreateSearchIndexOnReload

Floppy
Returns the drive letter of the first floppy drive found, normally a:. This is a system-defined variable.

Floppy

This variable is not supported in standard mode.

Script syntax and chart functions - Qlik Sense, May 2023 191

2 Working with variables in the data load editor

CD
Returns the drive letter of the first CD-ROM drive found. If no CD-ROM is found, then c: is returned. This is a
system-defined variable.

CD

This variable is not supported in standard mode.

HidePrefix
All field names beginning with this text string will be hidden in the same manner as the system fields. This is a
user-defined variable.

HidePrefix

HideSuffix
All field names ending with this text string will be hidden in the same manner as the system fields. This is a
user-defined variable.

HideSuffix

Include
The Include/Must_Include variable specifies a file that contains text that should be included in the script and
evaluated as script code. It is not used to add data. You can store parts of your script code in a separate text
file and reuse it in several apps. This is a user-defined variable.

$(Include=filename)
$(Must_Include=filename)

OpenUrlTimeout
This variable defines the timeout in seconds that Qlik Sense should respect when getting data from URL
sources (e.g. HTML pages). If omitted, the timeout is about 20 minutes.

OpenUrlTimeout

QvPath
Returns the browse string to the Qlik Sense executable. This is a system-defined variable.

QvPath

This variable is not supported in standard mode.

QvRoot
Returns the root directory of the Qlik Sense executable. This is a system-defined variable.

QvRoot

This variable is not supported in standard mode.

Script syntax and chart functions - Qlik Sense, May 2023 192

2 Working with variables in the data load editor

QvWorkPath
Returns the browse string to the current Qlik Sense app. This is a system-defined variable.

QvWorkPath

This variable is not supported in standard mode.

QvWorkRoot
Returns the root directory of the current Qlik Sense app. This is a system-defined variable.

QvWorkRoot

This variable is not supported in standard mode.

StripComments
If this variable is set to 0, stripping of /*..*/ and // comments in the script will be inhibited. If this variable is
not defined, stripping of comments will always be performed.

StripComments

Verbatim
Normally all field values are automatically stripped of leading and trailing blanks (ASCII 32) before being
loaded into the Qlik Sense database. Setting this variable to 1 suspends the stripping of blanks. Tab (ASCII 9)
and hard space (ANSI 160) characters are never stripped.

Verbatim

WinPath
Returns the browse string to Windows. This is a system-defined variable.

WinPath

This variable is not supported in standard mode.

WinRoot
Returns the root directory of Windows. This is a system-defined variable.

WinRoot

This variable is not supported in standard mode.

CollationLocale
Specifies which locale to use for sort order and search matching. The value is the culture name of a locale, for
example 'en-US'.This is a system-defined variable.

CollationLocale

Script syntax and chart functions - Qlik Sense, May 2023 193

2 Working with variables in the data load editor

CreateSearchIndexOnReload
This variable defines if search index files should be created during data reload.

Syntax:
CreateSearchIndexOnReload
You can define if search index files should be created during data reload, or if they should be created after the
first search request of the user. The benefit of creating search index files during data reload is that you avoid
the waiting time experienced by the first user making a search. This needs to be weighed against the longer
data reload time required by search index creation.

If this variable is omitted, search index files will not be created during data reload.

For session apps, search index files will not be created during data reload, regardless of the setting
of this variable.

Example 1: Create search index fields during data reload

set CreateSearchIndexOnReload=1;

Example 2: Create search index fields after first search request

set CreateSearchIndexOnReload=0;

HidePrefix
All field names beginning with this text string will be hidden in the same manner as the system
fields. This is a user-defined variable.

Syntax:
HidePrefix

Example:

set HidePrefix='_' ;

If this statement is used, the field names beginning with an underscore will not be shown in the field name
lists when the system fields are hidden.

HideSuffix
All field names ending with this text string will be hidden in the same manner as the system
fields. This is a user-defined variable.

Syntax:
HideSuffix

Script syntax and chart functions - Qlik Sense, May 2023 194

2 Working with variables in the data load editor

Example:

set HideSuffix='%';

If this statement is used, the field names ending with a percentage sign will not be shown in the field name
lists when the system fields are hidden.

Include
The Include/Must_Include variable specifies a file that contains text that should be included in
the script and evaluated as script code. It is not used to add data. You can store parts of your
script code in a separate text file and reuse it in several apps. This is a user-defined variable.

This variable supports only folder data connections in standard mode.

Syntax:
$(Include=filename)

$(Must_Include=filename)

There are two versions of the variable:

l Include does not generate an error if the file cannot be found, it will fail silently.
l Must_Include generates an error if the file cannot be found.

If you don't specify a path, the filename will be relative to the Qlik Sense app working directory. You can also
specify an absolute file path, or a path to a lib:// folder connection. Do not put a space character before or
after the equal sign.

The construction set Include =filename is not applicable.

Examples:

$(Include=abc.txt);

$(Must_Include=lib://DataFiles/abc.txt);

Limitations

Limited cross-compatibility between UTF-8 encoded files under Windows versus Linux.
It is optional to use UTF-8 with BOM (Byte Order Mark). BOM can interfere with the use of UTF-8 in software
that does not expect non-ASCII bytes at the start of a file, but that could otherwise handle the text stream.

l Windows systems use BOM in UTF-8 to identify that a file is UTF-8 encoded, despite the fact that there
is no ambiguity in the byte storage.

Script syntax and chart functions - Qlik Sense, May 2023 195

2 Working with variables in the data load editor

l Unix/Linux use UTF-8 for Unicode, but does not use the BOM as this interferes with the syntax for
command files.

This has some implications for Qlik Sense.

l In Windows any file that begins with an UTF-8 BOM is considered a UTF-8 script file. Otherwise ANSI
encoding is assumed.

l In Linux, the system default 8 bit code page is UTF-8. This is why the UTF-8 works although it does not
contain a BOM.

As a result, portability cannot be guaranteed. It is not always possible to create a file on Windows that can be
interpreted by Linux and vice versa. There is no cross compatibility between the two systems regarding UTF-8
encoded files due to different handling of the BOM.

OpenUrlTimeout
This variable defines the timeout in seconds that Qlik Sense should respect when getting data
from URL sources (e.g. HTML pages). If omitted, the timeout is about 20 minutes.

Syntax:
OpenUrlTimeout

Example:

set OpenUrlTimeout=10;

StripComments
If this variable is set to 0, stripping of /*..*/ and // comments in the script will be inhibited. If this
variable is not defined, stripping of comments will always be performed.

Syntax:
StripComments

Certain database drivers use /*..*/ as optimization hints in SELECT statements. If this is the case, the
comments should not be stripped before sending the SELECT statement to the database driver.

It is recommended that this variable be reset to 1 immediately after the statement(s) where it is
needed.

Example:

set StripComments=0;

SQL SELECT * /* <optimization directive> */ FROM Table ;

set StripComments=1;

Script syntax and chart functions - Qlik Sense, May 2023 196

2 Working with variables in the data load editor

Verbatim
Normally all field values are automatically stripped of leading and trailing blanks (ASCII 32)
before being loaded into the Qlik Sense database. Setting this variable to 1 suspends the
stripping of blanks. Tab (ASCII 9) and hard space (ANSI 160) characters are never stripped.

Syntax:
Verbatim

Example:

set Verbatim = 1;

2.13 Value handling variables
This section describes variables that are used for handling NULL and other values.

Value handling variables overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

NullDisplay
The defined symbol will substitute all NULL values from ODBC, and connectors, on the lowest level of data.
This is a user-defined variable.

NullDisplay

NullInterpret
The defined symbol will be interpreted as NULL when it occurs in a text file, Excel file or an inline statement.
This is a user-defined variable.

NullInterpret

NullValue
If the NullAsValue statement is used, the defined symbol will substitute all NULL values in the NullAsValue
specified fields with the specified string.

NullValue

OtherSymbol
Defines a symbol to be treated as 'all other values' before a LOAD/SELECT statement. This is a user-defined
variable.

OtherSymbol

Script syntax and chart functions - Qlik Sense, May 2023 197

2 Working with variables in the data load editor

NullDisplay
The defined symbol will substitute all NULL values from ODBC, and connectors, on the lowest
level of data. This is a user-defined variable.

Syntax:
NullDisplay

Example:

set NullDisplay='<NULL>';

NullInterpret
The defined symbol will be interpreted as NULL when it occurs in a text file, Excel file or an
inline statement. This is a user-defined variable.

Syntax:
NullInterpret

Examples:

set NullInterpret=' ';

set NullInterpret =;

will not return NULL values for blank values in Excel, but it will for a CSV text file.

set NullInterpret ='';

will return NULL values for blank values in Excel.

NullValue
If the NullAsValue statement is used, the defined symbol will substitute all NULL values in the
NullAsValue specified fields with the specified string.

Syntax:
NullValue

Example:

NullAsValue Field1, Field2;

set NullValue='<NULL>';

OtherSymbol
Defines a symbol to be treated as 'all other values' before a LOAD/SELECT statement. This is a
user-defined variable.

Syntax:
OtherSymbol

Script syntax and chart functions - Qlik Sense, May 2023 198

2 Working with variables in the data load editor

Example:

set OtherSymbol='+';

LOAD * inline

[X, Y

a, a

b, b];

LOAD * inline

[X, Z

a, a

+, c];

The field value Y='b' will now link to Z='c' through the other symbol.

2.14 Number interpretation variables
Number interpretation variables are system defined. The variables are included at the top of the
load script and apply number formatting settings at the time of the script execution. They can
be deleted, edited, or duplicated.

Number interpretation variables are automatically generated according to the current regional settings of the
operating system when a new app is created. In Qlik Sense Desktop, this is according to the settings of the
computer operating system. In Qlik Sense, it is according to the operating system of the server where Qlik
Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Currency formatting
MoneyDecimalSep
The decimal separator defined replaces the decimal symbol for currency set by your regional settings.

MoneyDecimalSep

MoneyFormat
The symbol defined replaces the currency symbol set by your regional settings.

MoneyFormat

MoneyThousandSep
The thousands separator defined replaces the digit grouping symbol for currency set by your regional settings.

MoneyThousandSep

Number formatting
DecimalSep
The decimal separator defined replaces the decimal symbol set by your regional settings.

DecimalSep

Script syntax and chart functions - Qlik Sense, May 2023 199

2 Working with variables in the data load editor

ThousandSep
The thousands separator defined replaces the digit grouping symbol of the operating system (regional
settings).

ThousandSep

NumericalAbbreviation
The numerical abbreviation sets which abbreviation to use for scale prefixes of numerals, for example M for
mega or a million (106), and µ for micro (10-6).

NumericalAbbreviation

Time formatting
DateFormat
This environment variable defines the date format used as the default in the app. The format is used both to
interpret and format dates. If the variable is not defined, the date format of the regional settings of the
operating system will be fetched when the script runs.

DateFormat

TimeFormat
The format defined replaces the time format of the operating system (regional settings).

TimeFormat

TimestampFormat
The format defined replaces the date and time formats of the operating system (regional settings).

TimestampFormat

MonthNames
The format defined replaces the month names convention of the regional settings.

MonthNames

LongMonthNames
The format defined replaces the long month names convention in the regional settings.

LongMonthNames

DayNames
The format defined replaces the weekday names convention set by your regional settings.

DayNames

LongDayNames
The format defined replaces the long weekday names convention in the regional settings.

LongDayNames

Script syntax and chart functions - Qlik Sense, May 2023 200

2 Working with variables in the data load editor

FirstWeekDay
Integer that defines which day to use as the first day of the week.

FirstWeekDay

BrokenWeeks
This setting defines if weeks are broken or not.

BrokenWeeks

ReferenceDay
The setting defines which day in January to set as reference day to define week 1.

ReferenceDay

FirstMonthOfYear
The setting defines which month to use as first month of the year, which can be used to define financial years
that use a monthly offset, for example starting April 1.

This setting is currently unused but reserved for future use.

Valid settings are 1 (January) to 12 (December). Default setting is 1.

Syntax:
FirstMonthOfYear

Example:

Set FirstMonthOfYear=4; //Sets the year to start in April

BrokenWeeks
This setting defines if weeks are broken or not.

Syntax:
BrokenWeeks
 In Qlik Sense, the regional settings are fetched when the app is created, and the corresponding settings are
stored in the script as environment variables.

A North American app developer often gets Set BrokenWeeks=1; in the script, corresponding to broken
weeks. A European app developer often gets Set BrokenWeeks=0; in the script, corresponding to unbroken
weeks.

Unbroken weeks means that:

l In some years, week 1 starts in December, and in other years, the last week of previous year continues
into January.

l According to ISO 8601, week 1 always has at least 4 days in January. In Qlik Sense, this can be
configured using the ReferenceDay variable.

Broken weeks means that:

Script syntax and chart functions - Qlik Sense, May 2023 201

2 Working with variables in the data load editor

l The last week of the year never continues into January.
l Week 1 starts on January 1 and is, in most cases, not a full week.

The following values can be used:

l 0 (=use unbroken weeks)
l 1 (= use broken weeks)

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Examples:

If you want ISO settings for weeks and week numbers, make sure to have the following in the script:

Set FirstWeekDay=0;

Set BrokenWeeks=0; //(use unbroken weeks)

Set ReferenceDay=4;

If you want US settings, make sure to have the following in the script:

Set FirstWeekDay=6;

Set BrokenWeeks=1; //(use broken weeks)

Set ReferenceDay=1;

DateFormat
This environment variable defines the date format used as the default in the app and by date
returning functions like date() and date#(). The format is used to interpret and format dates. If
the variable is not defined, the date format set by your regional settings is fetched when the
script runs.

Syntax:
DateFormat

Example Result

Set DateFormat='M/D/YY'; //(US

format)
This use of the DateFormat function defines the date as the US
format, month/day/year.

DateFormat Function examples

Script syntax and chart functions - Qlik Sense, May 2023 202

2 Working with variables in the data load editor

Example Result

Set DateFormat='DD/MM/YY'; //(UK

date format)
This use of the DateFormat function defines the date as the UK
format, day/month/year.

Set DateFormat='YYYY/MM/DD'; //

(ISO date format)
This use of the DateFormat function defines the date as the ISO
format, year/month/day.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – System variables default
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates.
l The DateFormat function, which will use the US date format.

In this example, a dataset is loaded into a table named 'Transactions'. It includes a date field. The US
DateFormat definition is used. This pattern will be used for implicit text to date conversion when the text
dates are loaded.

Load script

Set DateFormat='MM/DD/YYYY';

Transactions:

LOAD

date,

month(date) as month,

id,

amount

INLINE

[

date,id,amount

Script syntax and chart functions - Qlik Sense, May 2023 203

2 Working with variables in the data load editor

01/01/2022,1,1000

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l month

Create this measure:

=sum(amount)

date month =sum(amount)

01/01/2022 Jan 1000

02/01/2022 Feb 2123

03/01/2022 Mar 4124

04/01/2022 Apr 2431

Results table

The DateFormat definition MM/DD/YYYY is used for implicit conversion of text to dates, which is why the date

field is properly interpreted as a date. The same format is used to display the date, as shown in the results
table.

Example 2 – Change system variable
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the previous example.
l The DateFormat function, which will use the ‘DD/MM/YYYY’ format.

Load script

SET DateFormat='DD/MM/YYYY';

Transactions:

LOAD

date,

month(date) as month,

id,

amount

Script syntax and chart functions - Qlik Sense, May 2023 204

2 Working with variables in the data load editor

INLINE

[

date,id,amount

01/01/2022,1,1000

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l month

Create this measure:

=sum(amount)

date month =sum(amount)

01/01/2022 Jan 1000

02/01/2022 Jan 2123

03/01/2022 Jan 4124

04/01/2022 Jan 2431

Results table

Because the DateFormat definition was set to ‘DD/MM/YYYY’, you can see that the two digits after the first “/”
symbol have been interpreted as the month, resulting in all records being from the month of January.

Example 3 – Date interpretation
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset with dates in numerical format.
l The DateFormat variable, which will use the ‘DD/MM/YYYY’ format.
l The date() variable.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

Script syntax and chart functions - Qlik Sense, May 2023 205

2 Working with variables in the data load editor

date(numerical_date),

month(date(numerical_date)) as month,

id,

amount

Inline

[

numerical_date,id,amount

43254,1,1000

43255,2,2123

43256,3,4124

43258,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l month

Create this measure:

=sum(amount)

date month =sum(amount)

06/03/2022 Jun 1000

06/04/2022 Jun 2123

06/05/2022 Jun 4124

06/07/2022 Jun 2431

Results table

In the load script, you use the date() function to convert the numerical date into a date format. Because you
do not provide a specified format as a second argument in the function, the DateFormat is used. This results in
the date field using the format ‘MM/DD/YYYY’.

Example 4 – Foreign date formatting
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates.
l The DateFormat variable, which uses the ‘DD/MM/YYYY' format but is uncommented by forward

slashes.

Script syntax and chart functions - Qlik Sense, May 2023 206

2 Working with variables in the data load editor

Load script

// SET DateFormat='DD/MM/YYYY';

Transactions:

Load

date,

month(date) as month,

id,

amount

Inline

[

date,id,amount

22-05-2022,1,1000

23-05-2022,2,2123

24-05-2022,3,4124

25-05-2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l month

Create this measure:

=sum(amount)

date month =sum(amount)

22-05-2022 - 1000

23-05-2022 - 2123

24-05-2022 - 4124

25-05-2022 - 2431

Results table

In the initial load script, the DateFormat being used is the default ‘MM/DD/YYYY’. Because the date field in the
transactions dataset is not in this format, the field is not interpreted as a date. This is shown in the results
table where the month field values are null.

You can verify the interpreted data types in the Data model viewer by inspecting the date field’s “Tags”
properties:

Script syntax and chart functions - Qlik Sense, May 2023 207

2 Working with variables in the data load editor

Preview of the Transactions table. Note the “Tags” for the date field indicating that the textual input data has not been
implicitly converted to a date/timestamp.

This can be solved by enabling the DateFormat system variable:

// SET DateFormat='DD/MM/YYYY';

Remove the double forward slashes and reload the data.

Preview of the Transactions table. Note the “Tags” for the date field indicating that the textual input data has been
implicitly converted to a date/timestamp.

DayNames
The format defined replaces the weekday names convention set by your regional settings.

Syntax:
DayNames
When modifying the variable, a semicolon ; is required to separate the individual values.

Function example Result definition

Set

DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';
This use of the DayNames function defines day names
in their abbreviated form.

DayName Function examples

Script syntax and chart functions - Qlik Sense, May 2023 208

2 Working with variables in the data load editor

Function example Result definition

Set DayNames='M;Tu;W;Th;F;Sa;Su'; This use of the DayNames function defines day names
by their first letters.

The DayNames function is often used in combination with the following functions:

Function Interaction

weekday (page 1037) Script function to return DayNames as field values .

Date (page 1193) Script function to return DayNames as field values.

LongDayNames (page 219) Long form values of DayNames.

Related functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - System variables default
Load script and results

Overview

In this example, the dates in the dataset are set in the MM/DD/YYYY format.

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset with dates, which will be loaded into a table named, Transactions.
l A date field.
l The default DayNames definition.

Load script

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

Transactions:

LOAD

Script syntax and chart functions - Qlik Sense, May 2023 209

2 Working with variables in the data load editor

date,

WeekDay(date) as dayname,

id,

amount

INLINE

[

date,id,amount

01/01/2022,1,1000

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l dayname

Create this measure:

sum(amount)

date dayname sum(amount)

01/01/2022 Sat 1000

02/01/2022 Tue 2123

03/01/2022 Tue 4124

04/01/2022 Fri 2431

Results table

In the load script, the WeekDay function is used with the date field as the provided argument. In the results
table, the output of this WeekDay function displays the days of the week in the format of the DayNames

definition.

Example 2 - Change system variable
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab. The same dataset and scenario from
the first example are used.

However, at the start of the script, the DayNames definition is modified to use the abbreviated days of the week
in Afrikaans.

Script syntax and chart functions - Qlik Sense, May 2023 210

2 Working with variables in the data load editor

Load script

SET DayNames='Ma;Di;Wo;Do;Vr;Sa;So';

Transactions:

Load

date,

WeekDay(date) as dayname,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,1000

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l dayname

Create this measure:

sum(amount)

date dayname sum(amount)

01/01/2022 Sa 1000

02/01/2022 Di 2123

03/01/2022 Di 4124

04/01/2022 Vr 2431

Results table

In the results table, the output of this WeekDay function displays the days of the week in the format of the
DayNames definition.

It is important to remember that if the language for the DayNames is modified like it has been in this example,
the LongDayNames would still contain the days of the week in English. This would need to be modified as well
if both variables are used in the application.

Example 3 – Date function
Load script and results

Script syntax and chart functions - Qlik Sense, May 2023 211

2 Working with variables in the data load editor

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset with dates, which will be loaded into a table named, Transactions.
l A date field.
l The default DayNames definition.

Load script

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

Transactions:

Load

date,

Date(date,'WWW') as dayname,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,1000

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l dayname

Create this measure:

sum(amount)

date dayname sum(amount)

01/01/2022 Sat 1000

02/01/2022 Tue 2123

03/01/2022 Tue 4124

04/01/2022 Fri 2431

Results table

The default DayNamesdefinition is used. In the load script, the Date function is used with the date field as the
first argument. The second argument is WWW. This formatting converts the result into the values stored in the
DayNames definition. This is displayed in the output of the results table.

Script syntax and chart functions - Qlik Sense, May 2023 212

2 Working with variables in the data load editor

DecimalSep
The decimal separator defined replaces the decimal symbol set by your regional settings.

Qlik Sense automatically interprets text as numbers whenever a recognizable number pattern is encountered.
The ThousandSep and DecimalSep system variables determine the makeup of the patterns applied when
parsing text as numbers. The ThousandSep and DecimalSep variables set the default number format pattern
when visualizing numeric content in front-end charts and tables. That is, it directly impacts the Number
formatting options for any front end expression.

Assuming a thousand separator of comma ‘,’ and a decimal separator of ‘.’, these are examples of patterns
that would be implicitly converted to numeric equivalent values:

0,000.00

0000.00

0,000

These are examples of patterns that would remain unchanged as text; that is, not converted to numeric:

0.000,00

0,00

Syntax:
DecimalSep

Example Result

Set DecimalSep='.'; Sets ‘.’ as the decimal separator.

Set DecimalSep=','; Sets ‘,’ as the decimal separator.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example – Effect of setting number separator variables on different input data
Load script and results

Script syntax and chart functions - Qlik Sense, May 2023 213

2 Working with variables in the data load editor

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of sums and dates with the sums set in different format patterns.
l A table named Transactions.
l The DecimalSep variable which is set to ‘.’.
l The ThousandSep variable which is set to ','.
l The delimiter variable that is set as the '|' character to separate the different fields in a line.

Load script

Set ThousandSep=',';

Set DecimalSep='.';

Transactions:

Load date,

id,

amount as amount

Inline

[

date|id|amount

01/01/2022|1|1.000-45

01/02/2022|2|23.344

01/03/2022|3|4124,35

01/04/2022|4|2431.36

01/05/2022|5|4,787

01/06/2022|6|2431.84

01/07/2022|7|4132.5246

01/08/2022|8|3554.284

01/09/2022|9|3.756,178

01/10/2022|10|3,454.356

] (delimiter is '|');

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: amount.

Create this measure:

=sum(amount)

Amount =Sum(amount)

Totals 20814.7086

1.000-45

Results table

Script syntax and chart functions - Qlik Sense, May 2023 214

2 Working with variables in the data load editor

Amount =Sum(amount)

3.756,178

4124,35

23.344 23.344

2431.36 2431.36

2431.84 2431.84

3,454.356 3454.356

3554.284 3554.284

4132.5246 4132.5246

4,787 4787

Any value not interpreted as number remains as text and is aligned to the left by default. Any successfully
converted values are aligned to the right, retaining the original input format.

The expression column shows the numeric equivalent, which is by default formatted with only a decimal
separator ‘.’. This can be overridden with the Number formatting drop down setting in the expression
configuration.

FirstWeekDay
Integer that defines which day to use as the first day of the week.

Syntax:
FirstWeekDay
Monday is the first day of the week according to ISO 8601, the international standard for the representation of
dates and times. Monday is also used as the first day of the week in a number of countries, for example on the
UK, France, Germany and Sweden.

But in other countries, like in the United States and Canada, Sunday is considered to be the start of the week.

In Qlik Sense, the regional settings are fetched when the app is created, and the corresponding settings are
stored in the script as environment variables.

A North American app developer often gets Set FirstWeekDay=6; in the script, corresponding to Sunday. A
European app developer often gets Set FirstWeekDay=0; in the script, corresponding to Monday.

Value Day

0 Monday

1 Tuesday

2 Wednesday

Values that can be set for
FirstWeekDay

Script syntax and chart functions - Qlik Sense, May 2023 215

2 Working with variables in the data load editor

Value Day

3 Thursday

4 Friday

5 Saturday

6 Sunday

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Examples:

If you want ISO settings for weeks and week numbers, make sure to have the following in the script:

Set FirstWeekDay=0; // Monday as first week day

Set BrokenWeeks=0;

Set ReferenceDay=4;

If you want US settings, make sure to have the following in the script:

Set FirstWeekDay=6; // Sunday as first week day

Set BrokenWeeks=1;

Set ReferenceDay=1;

Example 1 – Using default value (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

In this example, the load script uses the default Qlik Sense system variable value, FirstWeekDay=6. This data
contains data for the first 14 days in 2020.

Load script

// Example 1: Load Script using the default value of FirstWeekDay=6, i.e. Sunday

Script syntax and chart functions - Qlik Sense, May 2023 216

2 Working with variables in the data load editor

SET FirstWeekDay = 6;

Sales:

LOAD

date,

sales,

week(date) as week,

weekday(date) as weekday

Inline [

date,sales

01/01/2021,6000

01/02/2021,3000

01/03/2021,6000

01/04/2021,8000

01/05/2021,5000

01/06/2020,7000

01/07/2020,3000

01/08/2020,5000

01/09/2020,9000

01/10/2020,5000

01/11/2020,7000

01/12/2020,7000

01/13/2020,7000

01/14/2020,7000

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week

l weekday

Date week weekday

01/01/2021 1 Wed

01/02/2021 1 Thu

01/03/2021 1 Fri

01/04/2021 1 Sat

01/05/2021 2 Sun

01/06/2020 2 Mon

01/07/2020 2 Tue

01/08/2020 2 Wed

01/09/2020 2 Thu

Results table

Script syntax and chart functions - Qlik Sense, May 2023 217

2 Working with variables in the data load editor

Date week weekday

01/10/2020 2 Fri

01/11/2020 2 Sat

01/12/2020 3 Sun

01/13/2020 3 Mon

01/14/2020 3 Tue

Because the default settings are being used, the FirstWeekDay system variable is set to 6. In the results table,
each new week can be seen beginning on Sunday (the 5th and 12th of January).

Example 2 – Changing the FirstWeekDay variable (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

In this example, the data contains the first 14 days in 2020. At the start of the script, we set the FirstWeekDay

variable to 3.

Load script

// Example 2: Load Script setting the value of FirstWeekDay=3, i.e. Thursday

SET FirstWeekDay = 3;

Sales:

LOAD

date,

sales,

week(date) as week,

weekday(date) as weekday

Inline [

date,sales

01/01/2021,6000

01/02/2021,3000

01/03/2021,6000

01/04/2021,8000

01/05/2021,5000

01/06/2020,7000

01/07/2020,3000

01/08/2020,5000

01/09/2020,9000

01/10/2020,5000

01/11/2020,7000

01/12/2020,7000

01/13/2020,7000

01/14/2020,7000

Script syntax and chart functions - Qlik Sense, May 2023 218

2 Working with variables in the data load editor

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week

l weekday

Date week weekday

01/01/2021 52 Wed

01/02/2021 1 Thu

01/03/2021 1 Fri

01/04/2021 1 Sat

01/05/2021 1 Sun

01/06/2020 1 Mon

01/07/2020 1 Tue

01/08/2020 1 Wed

01/09/2020 2 Thu

01/10/2020 2 Fri

01/11/2020 2 Sat

01/12/2020 2 Sun

01/13/2020 2 Mon

01/14/2020 2 Tue

Results table

Because the FirstWeekDay system variable is set to 3, the first day of each week will be a Thursday. In the
results table, each new week can be seen beginning on Thursday (the 2nd and 9th of January).

LongDayNames
The format defined replaces the long weekday names convention in the regional settings.

Syntax:
LongDayNames
The following example of the LongDayNames function defines day names in full:

Set LongDayNames='Monday;Tuesday;Wednesday;Thursday;Friday;Saturday;Sunday';

When modifying the variable, a semicolon ; is required to separate the individual values.

Script syntax and chart functions - Qlik Sense, May 2023 219

2 Working with variables in the data load editor

The LongDayNames function can be used in combination with the Date (page 1193) function which returns
DayNames as field values.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - System variable default
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset with dates, which will be loaded into a table named, Transactions.
l A date field.
l The default LongDayNames definition.

Load script

SET LongDayNames='Monday;Tuesday;Wednesday;Thursday;Friday;Saturday;Sunday';

Transactions:

LOAD

date,

Date(date,'WWWW') as dayname,

id,

amount

INLINE

[

date,id,amount

01/01/2022,1,1000

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Script syntax and chart functions - Qlik Sense, May 2023 220

2 Working with variables in the data load editor

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l dayname

Create this measure:

=sum(amount)

date dayname =sum(amount)

01/01/2022 Saturday 1000

02/01/2022 Tuesday 2123

03/01/2022 Tuesday 4124

04/01/2022 Friday 2431

Results table

In the load script, to create a field called, dayname, the Date function is used with the date field as the first
argument. The second argument in the function is the formatting WWWW.

Using this formatting converts the values from the first argument into the corresponding full day name that is
set in the variable LongDayNames. In the results table, the field values of our created field dayname display this.

Example 2 – Change system variable
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The same dataset and scenario from the first example are used. However, at the start of the script, the
LongDayNames definition is modified to use the days of the week in Spanish.

Load Script

SET LongDayNames='Lunes;Martes;Miércoles;Jueves;Viernes;Sábado;Domingo';

Transactions:

LOAD

date,

Date(date,'WWWW') as dayname,

id,

amount

INLINE

[

date,id,amount

01/01/2022,1,1000

Script syntax and chart functions - Qlik Sense, May 2023 221

2 Working with variables in the data load editor

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l dayname

Create this measure:

=sum(amount)

date dayname =sum(amount)

01/01/2022 Sábado 1000

02/01/2022 Martes 2123

03/01/2022 Martes 4124

04/01/2022 Viernes 2431

Results table

In the load script, the LongDayNames variable is modified to list the days of the week in Spanish.

Then, you create a field called, dayname, which is the Date function used with the date field as the first
argument.

The second argument in the function is the formatting WWWW. By using this formatting Qlik Sense converts the
values from the first argument into the corresponding full day name set in the variable LongDayNames.

In the results table, the field values of our created field dayname displays the days of the week written in
Spanish and in full.

LongMonthNames
The format defined replaces the long month names convention in the regional settings.

Syntax:
LongMonthNames
When modifying the variable, the ; needs to be used to separate the individual values.

The following example of the LongMonthNames function defines month names in full:

Set

LongMonthNames='January;February;March;April;May;June;July;August;September;October;November;D

ecember';

The LongMonthNames function is often used in combination with the following functions:

Script syntax and chart functions - Qlik Sense, May 2023 222

2 Working with variables in the data load editor

Function Interaction

Date (page 1193) Script function to return DayNamesas field values.

LongDayNames (page 219) Long form values of DayNames.

Related functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - System variables default
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates that is loaded into a table named Transactions.
l A date field.
l The default LongMonthNames definition.

Load script

SET

LongMonthNames='January;February;March;April;May;June;July;August;September;October;November;D

ecember';

Transactions:

Load

date,

Date(date,’MMMM’) as monthname,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,1000.45

01/02/2022,2,2123.34

Script syntax and chart functions - Qlik Sense, May 2023 223

2 Working with variables in the data load editor

01/03/2022,3,4124.35

01/04/2022,4,2431.36

01/05/2022,5,4787.78

01/06/2022,6,2431.84

01/07/2022,7,2854.83

01/08/2022,8,3554.28

01/09/2022,9,3756.17

01/10/2022,10,3454.35

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l monthname

Create this measure:

=sum(amount)

date monthname sum(amount)

01/01/2022 January 1000.45

01/02/2022 January 2123.34

01/03/2022 January 4124.35

01/04/2022 January 2431.36

01/05/2022 January 4787.78

01/06/2022 January 2431.84

01/07/2022 January 2854.83

01/08/2022 January 3554.28

01/09/2022 January 3756.17

01/10/2022 January 3454.35

Results table

The default LongMonthNames definition is used. In the load script, to create a field called, month, the Date

function is used with the date field as the first argument. The second argument in the function is the
formatting MMMM.

Using this formatting Qlik Sense converts the values from the first argument into the corresponding full month
name set in the variable LongMonthNames. In the results table, the field values of our created field month

display this.

Example 2 - Change system variable
Load script and results

Script syntax and chart functions - Qlik Sense, May 2023 224

2 Working with variables in the data load editor

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates that is loaded into a table named Transactions.
l A date field.
l The LongMonthNames variable that is modified to use the abbreviated days of the week in Spanish.

Load script

SET

LongMonthNames='Enero;Febrero;Marzo;Abril;Mayo;Junio;Julio;Agosto;Septiembre;OctubreNoviembre;

Diciembre';

Transactions:

LOAD

date,

Date(date,'MMMM') as monthname,

id,

amount

INLINE

[

date,id,amount

01/01/2022,1,1000

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add sum(amount) as a measure and these fields as
dimensions:

l date

l monthname

Create this measure:

=sum(amount)

date monthname sum(amount)

01/01/2022 Enero 1000.45

01/02/2022 Enero 2123.34

01/03/2022 Enero 4124.35

Results table

Script syntax and chart functions - Qlik Sense, May 2023 225

2 Working with variables in the data load editor

date monthname sum(amount)

01/04/2022 Enero 2431.36

01/05/2022 Enero 4787.78

01/06/2022 Enero 2431.84

01/07/2022 Enero 2854.83

01/08/2022 Enero 3554.28

01/09/2022 Enero 3756.17

01/10/2022 Enero 3454.35

In the load script, the LongMonthNames variable is modified to list the months of the year in Spanish. Then, to
create a field called, monthname, theDate function is used with the date field as the first argument. The second
argument in the function is the formatting MMMM.

Using this formatting Qlik Sense converts the values from the first argument into the corresponding full month
name set in the variable LongMonthNames. In the results table, the field values of our created field monthname

display the month name written in Spanish.

MoneyDecimalSep
The decimal separator defined replaces the decimal symbol for currency set by your regional
settings.

By default, Qlik Sense displays numbers and text differently in table charts. Numbers are right-
aligned, and text is left-aligned. This makes it easy to find text-to-number conversion issues. Any
tables on this page that show Qlik Sense results will use this formatting.

Syntax:
MoneyDecimalSep
Qlik Sense applications will interpret text fields that conform to this formatting as monetary values. The text
field must contain the currency symbol that is defined in the MoneyFormat system variable. MoneyDecimalSep
is particularly helpful when handling data sources received from multiple different regional settings.

The following example shows a possible use of the MoneyDecimalSep system variable:

Set MoneyDecimalSep='.';

This function is often used together with the following functions:

Function Interaction

MoneyFormat In instances of text field interpretation, the MoneyFormat symbol will be used as
part of the interpretation. For Number Formatting, the MoneyFormat formatting will
be used by Qlik Sense in Chart Objects.

Related functions

Script syntax and chart functions - Qlik Sense, May 2023 226

2 Working with variables in the data load editor

Function Interaction

MoneyThousandSep In instances of text field interpretation, the MoneyThousandSep function must also
be adhered to.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - MoneyDecimalSep dot (.) notation
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table named Transactions.
l Provided data that has its monetary field in text format with a dot ‘.’ used as the decimal separator.

Each record is also prefixed by a ‘$’ symbol, except for the last record, which is prefixed by a ‘£’
symbol.

Keep in mind that the MoneyFormat system variable defines dollar ‘$’ as the default currency.

Load script

SET MoneyThousandSep=',';

SET MoneyDecimalSep='.';

SET MoneyFormat='$###0.00;-$###0.00';

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,'$14.41'

Script syntax and chart functions - Qlik Sense, May 2023 227

2 Working with variables in the data load editor

01/02/2022,2,'$2,814.32'

01/03/2022,3,'$249.36'

01/04/2022,4,'$24.37'

01/05/2022,5,'$7.54'

01/06/2022,6,'$243.63'

01/07/2022,7,'$545.36'

01/08/2022,8,'$3.55'

01/09/2022,9,'$3.436'

01/10/2022,10,'£345.66'

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:amount.

Add the following measures:

l isNum(amount)

l sum(amount)

Review the results below, demonstrating the correct interpretation of all dollar ‘$’ values only.

amount =isNum(amount) =Sum(amount)

Totals 0 $3905.98

£345.66 0 $0.00

$3.436 -1 $3.44

$3.55 -1 $3.55

$7.54 -1 $7.54

$14.41 -1 $14.41

$24.37 -1 $24.37

243.63 -1 $243.63

$249.36 -1 $249.36

$545.36 -1 $545.36

$2,814.32 -1 $2814.32

Results table

The results table above shows how the amount field has been interpreted correctly for all dollar ($) prefixed
values, whilst the pound (£) prefixed amount has not been converted to a monetary value.

Script syntax and chart functions - Qlik Sense, May 2023 228

2 Working with variables in the data load editor

Example 2 - MoneyDecimalSep comma (,) notation
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table named Transactions.
l Provided data that has its monetary field in text format with a comma ‘,’ used as the decimal

separator. Each record is also prefixed by a ‘$’ symbol, except for the last record, which erroneously
uses the dot decimal separator '.'.

Keep in mind that the MoneyFormat system variable defines dollar ‘$’ as the default currency.

Load script

SET MoneyThousandSep='.';

SET MoneyDecimalSep=',';

SET MoneyFormat='$###0.00;-$###0.00';

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,'$14,41'

01/02/2022,2,'$2.814,32'

01/03/2022,3,'$249,36'

01/04/2022,4,'$24,37'

01/05/2022,5,'$7,54'

01/06/2022,6,'$243,63'

01/07/2022,7,'$545,36'

01/08/2022,8,'$3,55'

01/09/2022,9,'$3,436'

01/10/2022,10,'$345.66'

];

Results

Paragraph text for Results.

Load the data and open a sheet. Create a new table and add this field as a dimension:amount.

Add the following measures:

Script syntax and chart functions - Qlik Sense, May 2023 229

2 Working with variables in the data load editor

l isNum(amount)

l sum(amount)

Review the results below, demonstrating the correct interpretation of all values, except for the amount in
which the decimal separator uses dot '.' notation. In that case, a comma should have been used instead.

amount =isNum(amount) =Sum(amount)

Totals 0 $3905.98

$345.66 0 $0.00

$3,436 -1 $3.44

$3,55 -1 $3.55

$7,54 -1 $7.54

$14,41 -1 $14.41

$24,37 -1 $24.37

$243,63 -1 $243.63

$249,36 -1 $249.36

$545,36 -1 $545.36

$2.814,32 -1 $2814.32

Results table

MoneyFormat
This system variable defines the format pattern used by Qlik for automatic translation of text to
number where the number is prefixed by a monetary symbol. It also defines how measures
whose Number Formatting properties are set to ‘Money’ will be displayed in chart objects.

The symbol defined as part of the format pattern in the MoneyFormat system variable replaces the currency
symbol set by your regional settings.

By default, Qlik Sense displays numbers and text differently in table charts. Numbers are right-
aligned, and text is left-aligned. This makes it easy to find text-to-number conversion issues. Any
tables on this page that show Qlik Sense results will use this formatting.

Syntax:
MoneyFormat
Set MoneyFormat='$ #,##0.00; ($ #,##0.00)';

This formatting will be displayed in chart objects when a numerical field’s Number Formatting property is set
to Money. Further, when numerical text fields are interpreted by Qlik Sense, if the currency symbol of the text
field matches that of the symbol defined in the MoneyFormat variable, Qlik Sense will interpret this field as a
monetary value.

Script syntax and chart functions - Qlik Sense, May 2023 230

2 Working with variables in the data load editor

This function is often used together with the following functions:

Function Interaction

MoneyDecimalSep (page
226)

For Number Formatting, MoneyDecimalSep will be used in field formatting of
objects.

MoneyThousandSep (page
234)

For Number Formatting, MoneyThousandSep will be used in field formatting of
objects.

Related functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - MoneyFormat
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains a dataset which is loaded into a table named Transactions. The default MoneyFormat
variable definition is used.

Load script

SET MoneyThousandSep=',';

SET MoneyDecimalSep='.';

SET MoneyFormat='$###0.00;-$###0.00';

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,$10000000441

Script syntax and chart functions - Qlik Sense, May 2023 231

2 Working with variables in the data load editor

01/02/2022,2,$21237492432

01/03/2022,3,$249475336

01/04/2022,4,$24313369837

01/05/2022,5,$7873578754

01/06/2022,6,$24313884663

01/07/2022,7,$545883436

01/08/2022,8,$35545828255

01/09/2022,9,$37565817436

01/10/2022,10,$3454343566

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l amount

Add this measure:

=Sum(amount)

Under Number formatting, select Money to configure Sum(amount) as a monetary value.

date Amount =Sum(amount)

Totals $165099674156.00

01/01/2022 $10000000441 $10000000441.00

01/02/2022 $21237492432 $21237492432.00

01/03/2022 $249475336 $249475336.00

01/04/2022 $24313369837 $24313369837.00

01/05/2022 $7873578754 $7873578754.00

01/06/2022 $24313884663 $24313884663.00

01/07/2022 $545883436 $545883436.00

01/08/2022 $35545828255 $35545828255.00

01/09/2022 $37565817436 $37565817436.00

01/10/2022 $3454343566 $3454343566.00

Results table

The default MoneyFormat definition is used. This looks as follows: $###0.00;-$###0.00. In the results table,
the format of the amount field displays the currency symbol and the decimal point and decimal places have
been included.

Script syntax and chart functions - Qlik Sense, May 2023 232

2 Working with variables in the data load editor

Example 2 - MoneyFormat with thousands separator and mixed input formats
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A mixed-input format dataset, which is loaded into a table named Transactions with thousands
separators and decimal separators interspersed.

l A modification of the MoneyFormat definition is modified to include a comma as the thousands
separator.

l One of the rows of data erroneously delimited with thousands separator commas in the wrong places.
Note how this amount is left as text and not interpretable as a number.

Load script

SET MoneyThousandSep=',';

SET MoneyDecimalSep='.';

SET MoneyFormat = '$#,##0.00;-$#,##0.00';

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,'$10,000,000,441.45'

01/02/2022,2,'$212,3749,24,32.23'

01/03/2022,3,$249475336.45

01/04/2022,4,$24,313,369,837

01/05/2022,5,$7873578754

01/06/2022,6,$24313884663

01/07/2022,7,$545883436

01/08/2022,8,$35545828255

01/09/2022,9,$37565817436

01/10/2022,10,$3454343566

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l amount

Add this measure:

Script syntax and chart functions - Qlik Sense, May 2023 233

2 Working with variables in the data load editor

=Sum(amount)

Under Number formatting, select Money to configure Sum(amount) as a monetary value.

date Amount =Sum(amount)

Totals $119,548,811,911.90

01/01/2022 $10,000,000,441.45 $10,000,000,441.45

01/02/2022 $212,3749,24,32.23 $0.00

01/03/2022 $249475336.45 $249,475,336.45

01/04/2022 $24 $24.00

01/05/2022 $7873578754 $7,873,578,754.00

01/06/2022 $24313884663 $24,313,884,663.00

01/07/2022 $545883436 $545,883,436.00

01/08/2022 $35545828255 $35,545,828,255.00

01/09/2022 $37565817436 $37,565,817,436.00

01/10/2022 $3454343566 $3,454,343,566.00

Results table

At the start of the script, the MoneyFormat system variable is modified to include a comma as a thousands
separator. In the Qlik Sense table, the formatting can be seen to include this separator. Furthermore, the row
with the erroneous separator has not been interpreted correctly and remains as text. This is why it does not
contribute towards the summation of the amount.

MoneyThousandSep
The thousands separator defined replaces the digit grouping symbol for currency set by your
regional settings.

By default, Qlik Sense displays numbers and text differently in table charts. Numbers are right-
aligned, and text is left-aligned. This makes it easy to find text-to-number conversion issues. Any
tables on this page that show Qlik Sense results will use this formatting.

Syntax:
MoneyThousandSep
Qlik Sense applications will interpret text fields that conform to this formatting as monetary values. The text
field must contain the currency symbol that is defined in the MoneyFormat system variable. MoneyThousandSep
is particularly helpful when handling data sources received from multiple different regional settings.

The following example shows a possible use of the MoneyThousandSep system variable:

Set MoneyDecimalSep=',';

This function is often used together with the following functions:

Script syntax and chart functions - Qlik Sense, May 2023 234

2 Working with variables in the data load editor

Function Interaction

MoneyFormat In instances of text field interpretation, the MoneyFormat symbol will be used as part
of the interpretation. For Number Formatting, the MoneyFormat formatting will be
used by Qlik Sense in chart objects.

MoneyDecimalSep In instances of text field interpretation, the MoneyDecimalSep function must also be
adhered to.

Related functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - MoneyThousandSep comma (,) notation
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table named Transactions.
l Provided data that has its monetary field in text format with a comma used as the thousands

separator. Each record is also prefixed by a ‘$’ symbol.

Keep in mind that the MoneyFormat system variable defines dollar ‘$’ as the default currency.

Load script

SET MoneyThousandSep=',';

SET MoneyDecimalSep='.';

SET MoneyFormat='$###0.00;-$###0.00';

Transactions:

Load

date,

id,

amount

Script syntax and chart functions - Qlik Sense, May 2023 235

2 Working with variables in the data load editor

Inline

[

date,id,amount

01/01/2022,1,'$10,000,000,441'

01/02/2022,2,'$21,237,492,432'

01/03/2022,3,'$249,475,336'

01/04/2022,4,'$24,313,369,837'

01/05/2022,5,'$7,873,578,754'

01/06/2022,6,'$24,313,884,663'

01/07/2022,7,'$545,883,436'

01/08/2022,8,'$35,545,828,255'

01/09/2022,9,'$37,565,817,436'

01/10/2022,10,'$3.454.343.566'

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:amount.

Add the following measures:

l isNum(amount)

l sum(amount)

Review the results below. The table demonstrates the correct interpretation of all values using comma ‘,’
notation as the thousands separator.

The amount field has been interpreted correctly for all values, with the exception of one value which used a
dot '.' as the thousands separator.

amount =isNum(amount) =Sum(amount)

Totals 0 $161645330590.00

$3.454.343.566 0 $0.00

$249,475,336 -1 $249475336.00

$545,883,436 -1 $545883436.00

$7,873,578,754 -1 $7873578754.00

$10,000,000,441 -1 $10000000441.00

$21,237,492,432 -1 $21237492432.00

$24,313,369,837 -1 $24313369837.00

$24,33,884,663 -1 $24313884663.00

$35,545,828,255 -1 $35545828255.00

$37,565,817,436 -1 $37565817436.00

Results table

Script syntax and chart functions - Qlik Sense, May 2023 236

2 Working with variables in the data load editor

Example 2 - MoneyThousandSep dot (.) notation
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table named Transactions.
l Provided data that has its monetary field in text format with a dot '.' used as the thousands separator.

Each record is also prefixed by a ‘$’ symbol.

Keep in mind that the MoneyFormat system variable defines dollar ‘$’ as the default currency.

Load script

SET MoneyThousandSep='.';

SET MoneyDecimalSep=',';

SET MoneyFormat='$###0.00;-$###0.00';

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,'$10.000.000.441'

01/02/2022,2,'$21.237.492.432'

01/03/2022,3,'$249.475.336'

01/04/2022,4,'$24.313.369.837'

01/05/2022,5,'$7.873.578.754'

01/06/2022,6,'$24.313.884.663'

01/07/2022,7,'$545.883.436'

01/08/2022,8,'$35.545.828.255'

01/09/2022,9,'$37.565.817.436'

01/10/2022,10,'$3,454,343,566'

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:amount.

Add the following measures:

l isNum(amount)

l sum(amount)

Script syntax and chart functions - Qlik Sense, May 2023 237

2 Working with variables in the data load editor

Review the results below, demonstrating the correct interpretation of all values using dot ‘.’ notation as the
thousand separator.

The amount field has been interpreted correctly for all values, with the exception of one value which used a
comma ',' as the thousands separator.

amount =isNum(amount) =Sum(amount)

Totals 0 $161645330590.00

$3,545,343,566 0 $0.00

$249.475.336 -1 $249475336.00

$545.883.436 -1 545883436.00

$7.873.578.754 -1 $7873578754.00

$10.000.000.441 -1 $10000000441.00

$21.237.492.432 -1 $21237492432.00

$24.313.884.663 -1 $24313884663.00

$24.313.884.663 -1 $24313884663.00

$35.545.828.255 -1 $35545828255.00

$37.565.817.436 -1 $37565817436.00

Results table

MonthNames
The format defined replaces the month names convention of the regional settings.

Syntax:
MonthNames
When modifying the variable, the ; needs to be used to separate the individual values.

Example Results

Set MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec'; This use of the
MonthNames function
defines month
names in English
and their
abbreviated form.

Set

MonthNames='Enero;Feb;Marzo;Abr;Mayo;Jun;Jul;Agosto;Set;Oct;Nov;Dic';

This use of the
MonthNames

function defines
month names in
Spanish and their
abbreviated form.

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 238

2 Working with variables in the data load editor

The MonthNames function can be used in combination with the following functions:

Function Interaction

month (page 882) Script function to return values defined in MonthNames as field values

Date (page 1193) Script function to return values defined in MonthNames as field values based on a
formatting argument provided

LongMonthNames
(page 222)

Long form values of MonthNames

Related functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – System variables default
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates that is loaded into a table named Transactions.
l A date field.
l The default MonthNames definition.

Load script

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

Transactions:

LOAD

date,

Month(date) as monthname,

id,

amount

INLINE

Script syntax and chart functions - Qlik Sense, May 2023 239

2 Working with variables in the data load editor

[

date,id,amount

01/01/2022,1,1000.45

01/02/2022,2,2123.34

01/03/2022,3,4124.35

01/04/2022,4,2431.36

01/05/2022,5,4787.78

01/06/2022,6,2431.84

01/07/2022,7,2854.83

01/08/2022,8,3554.28

01/09/2022,9,3756.17

01/10/2022,10,3454.35

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l monthname

Create this measure:

=sum(amount)

date monthname sum(amount)

01/01/2022 Jan 1000.45

01/02/2022 Jan 2123.34

01/03/2022 Jan 4124.35

01/04/2022 Jan 2431.36

01/05/2022 Jan 4787.78

01/06/2022 Jan 2431.84

01/07/2022 Jan 2854.83

01/08/2022 Jan 3554.28

01/09/2022 Jan 3756.17

01/10/2022 Jan 3454.35

Results table

The default MonthNames definition is used. In the load script, the Month function is used with the date field as
the provided argument.

In the results table, the output of this Month function displays the months of the year in the format of the
MonthNames definition.

Example 2 - Change system variable
Load script and results

Script syntax and chart functions - Qlik Sense, May 2023 240

2 Working with variables in the data load editor

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates that is loaded into a table named Transactions.
l A date field.
l The MonthNames variable that is modified to use the abbreviated months in Spanish.

Load script

Set MonthNames='Enero;Feb;Marzo;Abr;Mayo;Jun;Jul;Agosto;Set;Oct;Nov;Dic';

Transactions:

LOAD

date,

month(date) as month,

id,

amount

INLINE

[

date,id,amount

01/01/2022,1,1000

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l monthname

Create this measure:

=sum(amount)

date monthname sum(amount)

01/01/2022 Enero 1000.45

01/02/2022 Enero 2123.34

01/03/2022 Enero 4124.35

01/04/2022 Enero 2431.36

01/05/2022 Enero 4787.78

Results table

Script syntax and chart functions - Qlik Sense, May 2023 241

2 Working with variables in the data load editor

date monthname sum(amount)

01/06/2022 Enero 2431.84

01/07/2022 Enero 2854.83

01/08/2022 Enero 3554.28

01/09/2022 Enero 3756.17

01/10/2022 Enero 3454.35

In the load script, first the MonthNames variable is modified to list the months of the year abbreviated in
Spanish. The Month function is used with the date field as the provided argument.

In the results table, the output of this Month function displays the months of the year in the format of the
MonthNames definition.

It is important to remember that if the language for the MonthNames variable is modified like it has been in this
example, the LongMonthNames variable would still contain the months of the year in English. The
LongMonthNames variable would have to be modified if both variables are used in the application.

Example 3 – Date function
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates that is loaded into a table named Transactions.
l A date field.
l The default MonthNames definition.

Load script

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

Transactions:

LOAD

date,

Month(date, ’MMM’) as monthname,

id,

amount

INLINE

[

date,id,amount

01/01/2022,1,1000.45

01/02/2022,2,2123.34

01/03/2022,3,4124.35

01/04/2022,4,2431.36

01/05/2022,5,4787.78

Script syntax and chart functions - Qlik Sense, May 2023 242

2 Working with variables in the data load editor

01/06/2022,6,2431.84

01/07/2022,7,2854.83

01/08/2022,8,3554.28

01/09/2022,9,3756.17

01/10/2022,10,3454.35

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l monthname

Create this measure:

=sum(amount)

date monthname sum(amount)

01/01/2022 Jan 1000.45

01/02/2022 Jan 2123.34

01/03/2022 Jan 4124.35

01/04/2022 Jan 2431.36

01/05/2022 Jan 4787.78

01/06/2022 Jan 2431.84

01/07/2022 Jan 2854.83

01/08/2022 Jan 3554.28

01/09/2022 Jan 3756.17

01/10/2022 Jan 3454.35

Results table

The default MonthNames definition is used. In the load script, the Date function is used with the date field as
the first argument. The second argument is MMM.

Using this formatting Qlik Sense converts the values from the first argument into the corresponding month
name set in the variable MonthNames. In the results table, the field values of our created field month display
this.

NumericalAbbreviation
The numerical abbreviation sets which abbreviation to use for scale prefixes of numerals, for example M for
mega or a million (106), and µ for micro (10-6).

Syntax:
NumericalAbbreviation

Script syntax and chart functions - Qlik Sense, May 2023 243

2 Working with variables in the data load editor

You set the NumericalAbbreviation variable to a string containing a list of abbreviation definition pairs,
delimited by semi colon. Each abbreviation definition pair should contain the scale (the exponent in decimal
base) and the abbreviation separated by a colon, for example, 6:M for a million.

The default setting is '3:k;6:M;9:G;12:T;15:P;18:E;21:Z;24:Y;-3:m;-6:µ;-9:n;-12:p;-15:f;-18:a;-
21:z;-24:y'.

Examples:

This setting will change the prefix for a thousand to t and the prefix for a billion to B. This would be useful for
financial applications where you would expect abbreviations like t$, M$, and B$.

Set NumericalAbbreviation='3:t;6:M;9:B;12:T;15:P;18:E;21:Z;24:Y;-3:m;-6:µ;-9:n;-12:p;-15:f;-

18:a;-21:z;-24:y';

ReferenceDay
The setting defines which day in January to set as reference day to define week 1. In other
words, this setting prescribes how many days in week 1 must be dates within January.

Syntax:
ReferenceDay

ReferenceDay sets how many days are included in the first week of the year. ReferenceDay can be set to any
value between 1 and 7. Any value outside of the 1-7 range is interpreted as the midpoint of the week (4),
which is equivalent to ReferenceDay being set to 4.

If you do not select a value for the ReferenceDay setting, then the default value will show ReferenceDay=0

which will be interpreted as the midpoint of the week (4), as seen in the ReferenceDay values table below.

The ReferenceDay function is often used in combination with the following functions:

Variable Interaction

BrokenWeeks
(page 201)

If the Qlik Sense app is operating with unbroken weeks, the ReferenceDay variable
setting will be enforced. However, if broken weeks are being used, week 1 will begin on
January 1 and terminate in conjunction with the FirstWeekDay variable setting and
ignore the ReferenceDay flag.

FirstWeekDay
(page 215)

Integer that defines which day to use as the first day of the week.

Related functions

Qlik Sense allows the following values to be set for ReferenceDay:

Value Reference day

0 (default) January 4

1 January 1

ReferenceDay values

Script syntax and chart functions - Qlik Sense, May 2023 244

2 Working with variables in the data load editor

Value Reference day

2 January 2

3 January 3

4 January 4

5 January 5

6 January 6

7 January 7

In the following example the ReferenceDay = 3 defines January 3 as the reference day:

SET ReferenceDay=3; //(set January 3 as the reference day)

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Examples:

If you want ISO settings for weeks and week numbers, make sure to have the following in the script:

Set FirstWeekDay=0;

Set BrokenWeeks=0;

Set ReferenceDay=4; // Jan 4th is always in week 1

If you want US settings, make sure to have the following in the script:

Set FirstWeekDay=6;

Set BrokenWeeks=1;

Set ReferenceDay=1; // Jan 1st is always in week 1

Example 1 - Load script using the default value; ReferenceDay=0
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2023 245

2 Working with variables in the data load editor

l The ReferenceDay variable that is set to 0.
l The BrokenWeeks variable that is set to 0 which forces the app to use unbroken weeks.
l A dataset of dates from the end of 2019 to the start of 2020.

Load script

SET BrokenWeeks = 0;

SET ReferenceDay = 0;

Sales:

LOAD

date,

sales,

week(date) as week,

weekday(date) as weekday

Inline [

date,sales

12/27/2019,5000

12/28/2019,6000

12/29/2019,7000

12/30/2019,4000

12/31/2019,3000

01/01/2020,6000

01/02/2020,3000

01/03/2020,6000

01/04/2020,8000

01/05/2020,5000

01/06/2020,7000

01/07/2020,3000

01/08/2020,5000

01/09/2020,9000

01/10/2020,5000

01/11/2020,7000

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week

l weekday

date week weekday

12/27/2019 52 Fri

12/28/2019 52 Sat

12/29/2019 1 Sun

Results table

Script syntax and chart functions - Qlik Sense, May 2023 246

2 Working with variables in the data load editor

date week weekday

12/30/2019 1 Mon

12/31/2019 1 Tue

01/01/2020 1 Wed

01/02/2020 1 Thu

01/03/2020 1 Fri

01/04/2020 1 Sat

01/05/2020 2 Sun

01/06/2020 2 Mon

01/07/2020 2 Tue

01/08/2020 2 Wed

01/09/2020 2 Thu

01/10/2020 2 Fri

01/11/2020 2 Sat

Week 52 concludes on Saturday, December 28. Because ReferenceDay requires January 4 to be included in
week 1, week 1 therefore begins on December 29 and concludes on Saturday, January 4.

Example - ReferenceDay variable set to 5
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The ReferenceDay variable that is set to 5.
l The BrokenWeeks variable that is set to 0 which forces the app to use unbroken weeks.
l A dataset of dates from the end of 2019 to the start of 2020.

Load script

SET BrokenWeeks = 0;

SET ReferenceDay = 5;

Sales:

LOAD

date,

sales,

week(date) as week,

weekday(date) as weekday

Inline [

Script syntax and chart functions - Qlik Sense, May 2023 247

2 Working with variables in the data load editor

date,sales

12/27/2019,5000

12/28/2019,6000

12/29/2019,7000

12/30/2019,4000

12/31/2019,3000

01/01/2020,6000

01/02/2020,3000

01/03/2020,6000

01/04/2020,8000

01/05/2020,5000

01/06/2020,7000

01/07/2020,3000

01/08/2020,5000

01/09/2020,9000

01/10/2020,5000

01/11/2020,7000

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week

l weekday

date week weekday

12/27/2019 52 Fri

12/28/2019 52 Sat

12/29/2019 53 Sun

12/30/2019 53 Mon

12/31/2019 53 Tue

01/01/2020 53 Wed

01/02/2020 53 Thu

01/03/2020 53 Fri

01/04/2020 53 Sat

01/05/2020 1 Sun

01/06/2020 1 Mon

01/07/2020 1 Tue

01/08/2020 1 Wed

01/09/2020 1 Thu

Results table

Script syntax and chart functions - Qlik Sense, May 2023 248

2 Working with variables in the data load editor

date week weekday

01/10/2020 1 Fri

01/11/2020 1 Sat

Week 52 concludes on Saturday, December 28. The BrokenWeeks variable forces the app to use unbroken
weeks. The reference day value of 5 requires January 5 to be included in week 1.

However, this is eight days after the conclusion of week 52 of the previous year. Therefore, week 53 begins on
December 29 and concludes on January 4. Week 1 begins on Sunday, January 5.

ThousandSep
The thousands separator defined replaces the digit grouping symbol of the operating system
(regional settings).

Syntax:
ThousandSep
Qlik Sense object using the ThousandSep variable (with thousands separator)

Qlik Sense apps interpret text fields that conform to this formatting as numbers. This formatting will be
displayed in chart objects when a numerical field’s Number formatting property is set to Number.

ThousandSep is helpful when handling data sources received from multiple regional settings.

If the ThousandSep variable is modified after objects have already been created and formatted in the
application, the user will need to re-format each relevant field by de-selecting and then re-selecting
the Number formatting property Number.

The following examples show possible uses of the ThousandSep system variable:

Set ThousandSep=','; //(for example, seven billion will be displayed as: 7,000,000,000)

Set ThousandSep=' '; //(for example, seven billion will be displayed as: 7 000 000 000)

These topics may help you work with this function:

Script syntax and chart functions - Qlik Sense, May 2023 249

2 Working with variables in the data load editor

Topic Description

DecimalSep
(page 213)

In instances of text field interpretation, the decimal separator settings, as provided by this
function, must also be respected. For number formatting, DecimalSep will be used by Qlik
Sense where necessary.

Related topics

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - Default system variables
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table named Transactions.
l Use of the default ThousandSep variable definition.

Load script

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,10000000441

01/02/2022,2,21237492432

01/03/2022,3,41249475336

01/04/2022,4,24313369837

01/05/2022,5,47873578754

01/06/2022,6,24313884663

01/07/2022,7,28545883436

Script syntax and chart functions - Qlik Sense, May 2023 250

2 Working with variables in the data load editor

01/08/2022,8,35545828255

01/09/2022,9,37565817436

01/10/2022,10,3454343566

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add this field as a dimension:date.

2. Add the following measure:
=sum(amount)

3. In the properties panel, under Data, select the measure.

4. Under Number formatting, select Number.

Adjusting number formatting for a chart measure

date =sum(amount)

01/01/2022 10,000,000,441.00

01/02/2022 21,237,492,432.00

01/03/2022 41,249,475,336.00

01/04/2022 24,313,369,837.00

01/05/2022 47,873,578,754.00

01/06/2022 24,313,884,663.00

01/07/2022 28,545,883,436.00

Results table

Script syntax and chart functions - Qlik Sense, May 2023 251

2 Working with variables in the data load editor

date =sum(amount)

01/08/2022 35,545,828,255.00

01/09/2022 37,565,817,436.00

01/10/2022 3,454,343,566.00

In this example, the default ThousandSep definition, which is set to comma format (‘,’), is used. In the results
table, the format of the amount field displays a comma between thousand groupings.

Example 2 - Changing system variable
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the first example, which is loaded into a table named Transactions.
l Modification of the ThousandSep definition, at the start of the script, to display a '*' character as the

thousands separator. This is an extreme example, and is used solely to demonstrate the functionality
of the variable.

The modification used in this example is extreme and not commonly used, but is shown here to demonstrate
the functionality of the variable.

Load script

SET ThousandSep='*';

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,10000000441

01/02/2022,2,21237492432

01/03/2022,3,41249475336

01/04/2022,4,24313369837

01/05/2022,5,47873578754

01/06/2022,6,24313884663

01/07/2022,7,28545883436

01/08/2022,8,35545828255

01/09/2022,9,37565817436

01/10/2022,10,3454343566

];

Script syntax and chart functions - Qlik Sense, May 2023 252

2 Working with variables in the data load editor

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add this field as a dimension:date.

2. Add the following measure:
=sum(amount)

3. In the properties panel, under Data, select the measure.

4. Under Number formatting, select Custom.

date =sum(amount)

01/01/2022 10*000*000*441.00

01/02/2022 21*237*492*432.00

01/03/2022 41*249*475*336.00

01/04/2022 24*313*369*837.00

01/05/2022 47*873*578*754.00

01/06/2022 24*313*884*663.00

01/07/2022 28*545*883*436.00

01/08/2022 35*545*828*255.00

01/09/2022 37*565*817*436.00

01/10/2022 3*454*343*566.00

Results table

At the start of the script, the ThousandSep system variable is modified to a '*'. In the results table, the format
of the amount field can be seen to display a ‘*’ between thousand grouping.

Example 3 - Text interpretation
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table named Transactions.
l Data which has its numerical field in text format, with a comma used as the thousands separator.
l Use of the default ThousandSep system variable.

Script syntax and chart functions - Qlik Sense, May 2023 253

2 Working with variables in the data load editor

Load script

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,'10,000,000,441'

01/02/2022,2,'21,492,432'

01/03/2022,3,'4,249,475,336'

01/04/2022,4,'24,313,369,837'

01/05/2022,5,'4,873,578,754'

01/06/2022,6,'313,884,663'

01/07/2022,7,'2,545,883,436'

01/08/2022,8,'545,828,255'

01/09/2022,9,'37,565,817,436'

01/10/2022,10,'3,454,343,566'

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add this field as a dimension:date.

2. Add the following measure:
=sum(amount)

3. In the properties panel, under Data, select the measure.

4. Under Number formatting, select Number.

5. Add the following measure to evaluate whether or not the amount field is a numerical value:
=isnum(amount)

date =sum(amount) =isnum(amount)

01/01/2022 10,000,000,441.00 -1

01/02/2022 21,492,432.00 -1

01/03/2022 4,249,475,336.00 -1

01/04/2022 24,313,369,837.00 -1

01/05/2022 4,873,578,754.00 -1

01/06/2022 313,884,663.00 -1

01/07/2022 2,545,883,436.00 -1

01/08/2022 545,828,255.00 -1

Results table

Script syntax and chart functions - Qlik Sense, May 2023 254

2 Working with variables in the data load editor

date =sum(amount) =isnum(amount)

01/09/2022 37,565,817,436.00 -1

01/10/2022 3*454*343*566.00 -1

Once the data is loaded, we can see that Qlik Sense has interpreted the amount field as a numerical value,
due to the data conforming to the ThousandSep variable. This is demonstrated by the isnum() function, which
evaluates each entry to -1, or TRUE.

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

TimeFormat
The format defined replaces the time format of the operating system (regional settings).

Syntax:
TimeFormat

Example:

Set TimeFormat='hh:mm:ss';

TimestampFormat
The format defined replaces the date and time formats of the operating system (regional
settings).

Syntax:
TimestampFormat

Example:

The following examples use 1983-12-14T13:15:30Z as timestamp data to show the results of different SET
TimestampFormat statements. The date format used is YYYYMMDD and the time format is h:mm:ss TT. The
date format is specified in the SET DateFormat statement and the time format is specified in the SET
TimeFormat statement, at the top of the data load script.

Example Result

SET TimestampFormat='YYYYMMDD'; 19831214

SET TimestampFormat='M/D/YY hh:mm:ss[.fff]'; 12/14/83 13:15:30

SET TimestampFormat='DD/MM/YYYY hh:mm:ss[.fff]'; 14/12/1983 13:15:30

SET TimestampFormat='DD/MM/YYYY hh:mm:ss[.fff] TT'; 14/12/1983 1:15:30 PM

SET TimestampFormat='YYYY-MM-DD hh:mm:ss[.fff] TT'; 1983-12-14 01:15:30

Results

Script syntax and chart functions - Qlik Sense, May 2023 255

2 Working with variables in the data load editor

Examples: Load script
Example: Load script
In the first load script SET TimestampFormat='DD/MM/YYYY h:mm:ss[.fff] TT' is used. In the second load script
the timestamp format is changed to SET TimestampFormat='MM/DD/YYYY hh:mm:ss[.fff]'. The different results
show how the SET TimeFormat statement works with different time data formats.

The table below shows the data set that is used in the load scripts that follow. The second column of the table
shows the format of each timestamp in the data set. The first five timestamps follow ISO 8601 rules but the
sixth does not.

Data set

transaction_timestamp time data format

2018-08-30 YYYY-MM-DD

20180830T193614.857 YYYYMMDDhhmmss.sss

20180830T193614.857+0200 YYYYMMDDhhmmss.sss±hhmm

2018-09-16T12:30-02:00 YYYY-MM-DDhh:mm±hh:mm

2018-09-16T13:15:30Z YYYY-MM-DDhh:mmZ

9/30/18 19:36:14 M/D/YY hh:mm:ss

Table showing the time data used and the format for each timestamp
in the data set.

In the Data load editor, create a new section, and then add the example script and run it. Then add, at least,
the fields listed in the results column to a sheet in your app to see the result.

Load script

SET FirstWeekDay=0;

SET BrokenWeeks=1;

SET ReferenceDay=0;

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

SET LongDayNames='Monday;Tuesday;Wednesday;Thursday;Friday;Saturday;Sunday';

SET DateFormat='YYYYMMDD';

SET TimestampFormat='DD/MM/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

Timestamp(transaction_timestamp, 'YYYY-MM-DD hh:mm:ss[.fff]') as LogTimestamp

;

Load * Inline [

transaction_id, transaction_timestamp, transaction_amount, transaction_quantity, discount,

customer_id, size, color_code

3750, 2018-08-30, 12423.56, 23, 0,2038593, L, Red

3751, 20180830T193614.857, 5356.31, 6, 0.1, 203521, m, orange

Script syntax and chart functions - Qlik Sense, May 2023 256

2 Working with variables in the data load editor

3752, 20180830T193614.857+0200, 15.75, 1, 0.22, 5646471, S, blue

3753, 2018-09-16T12:30-02:00, 1251, 7, 0, 3036491, l, Black

3754, 2018-09-16T13:15:30Z, 21484.21, 1356, 75, 049681, xs, Red

3755, 9/30/18 19:36:14, -59.18, 2, 0.333333333333333, 2038593, M, Blue

];

Results

transaction_id transaction_timestamp LogTimeStamp

3750 2018-08-30 2018-08-30 00:00:00

3751 20180830T193614.857 2018-08-30 19:36:14

3752 20180830T193614.857+0200 2018-08-30 17:36:14

3753 2018-09-16T12:30-02:00 2018-09-16 14:30:00

3754 2018-09-16T13:15:30Z 2018-09-16 13:15:30

3755 9/30/18 19:36:14 -

Qlik Sense table showing results of the TimestampFormat interpretation
variable being used in the load script. The last timestamp in the data set

does not return a correct date.

The next load script uses the same data set. However, it uses SET TimestampFormat='MM/DD/YYYY hh:mm:ss
[.fff]' to match the non-ISO 8601 format of the sixth timestamp.

In the Data load editor, replace the previous example script with the one below and run it. Then add, at least,
the fields listed in the results column to a sheet in your app to see the result.

Load script

SET FirstWeekDay=0;

SET BrokenWeeks=1;

SET ReferenceDay=0;

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

SET LongDayNames='Monday;Tuesday;Wednesday;Thursday;Friday;Saturday;Sunday';

SET DateFormat='YYYYMMDD';

SET TimestampFormat='MM/DD/YYYY hh:mm:ss[.fff]';

Transactions:

Load

*,

Timestamp(transaction_timestamp, 'YYYY-MM-DD hh:mm:ss[.fff]') as LogTimestamp

;

Load * Inline [

transaction_id, transaction_timestamp, transaction_amount, transaction_quantity, discount,

customer_id, size, color_code

3750, 2018-08-30, 12423.56, 23, 0,2038593, L, Red

3751, 20180830T193614.857, 5356.31, 6, 0.1, 203521, m, orange

3752, 20180830T193614.857+0200, 15.75, 1, 0.22, 5646471, S, blue

3753, 2018-09-16T12:30-02:00, 1251, 7, 0, 3036491, l, Black

3754, 2018-09-16T13:15:30Z, 21484.21, 1356, 75, 049681, xs, Red

Script syntax and chart functions - Qlik Sense, May 2023 257

2 Working with variables in the data load editor

3755, 9/30/18 19:36:14, -59.18, 2, 0.333333333333333, 2038593, M, Blue

];

Results

transaction_id transaction_timestamp LogTimeStamp

3750 2018-08-30 2018-08-30 00:00:00

3751 20180830T193614.857 2018-08-30 19:36:14

3752 20180830T193614.857+0200 2018-08-30 17:36:14

3753 2018-09-16T12:30-02:00 2018-09-16 14:30:00

3754 2018-09-16T13:15:30Z 2018-09-16 13:15:30

3755 9/30/18 19:36:14 2018-09-16 19:36:14

Qlik Sense table showing results of the TimestampFormat interpretation
variable being used in the load script.

2.15 Direct Discovery variables

Direct Discovery system variables
DirectCacheSeconds
You can set a caching limit to the Direct Discovery query results for visualizations. Once this time limit is
reached, Qlik Sense clears the cache when new Direct Discovery queries are made. Qlik Sense queries the
source data for the selections and creates the cache again for the designated time limit. The result for each
combination of selections is cached independently. That is, the cache is refreshed for each selection
independently, so one selection refreshes the cache only for the fields selected, and a second selection
refreshes cache for its relevant fields. If the second selection includes fields that were refreshed in the first
selection, they are not updated in cache again if the caching limit has not been reached.

The Direct Discovery cache does not apply to Table visualizations. Table selections query the data source
every time.

The limit value must be set in seconds. The default cache limit is 1800 seconds (30 minutes).

The value used for DirectCacheSeconds is the value set at the time the DIRECT QUERY statement is
executed. The value cannot be changed at runtime.

Example:

SET DirectCacheSeconds=1800;

DirectConnectionMax
You can do asynchronous, parallel calls to the database by using the connection pooling capability. The load
script syntax to set up the pooling capability is as follows:

SET DirectConnectionMax=10;

Script syntax and chart functions - Qlik Sense, May 2023 258

2 Working with variables in the data load editor

The numeric setting specifies the maximum number of database connections the Direct Discovery code should
use while updating a sheet. The default setting is 1.

This variable should be used with caution. Setting it to greater than 1 is known to cause problems
when connecting to Microsoft SQL Server.

DirectUnicodeStrings
Direct Discovery can support the selection of extended Unicode data by using the SQL standard format for
extended character string literals (N’<extended string>’) as required by some databases (notably SQL Server).
The use of this syntax can be enabled for Direct Discovery with the script variable DirectUnicodeStrings.

Setting this variable to 'true' will enable the use of the ANSI standard wide character marker “N” in front of
the string literals. Not all databases support this standard. The default setting is 'false'.

DirectDistinctSupport
When a DIMENSION field value is selected in a Qlik Sense object, a query is generated for the source database.
When the query requires grouping, Direct Discovery uses the DISTINCT keyword to select only unique values.
Some databases, however, require the GROUP BY keyword. Set DirectDistinctSupport to 'false' to generate
GROUP BY instead of DISTINCT in queries for unique values.

SET DirectDistinctSupport='false';

If DirectDistinctSupport is set to true, then DISTINCT is used. If it is not set, the default behavior is to use
DISTINCT.

DirectEnableSubquery
In high cardinality multi-table scenarios, it is possible to generate sub queries in the SQL query instead of
generating a large IN clause. This is activated by setting DirectEnableSubquery to 'true'. The default value is
'false'.

When DirectEnableSubquery is enabled, you cannot load tables that are not in Direct Discovery
mode.

SET DirectEnableSubquery='true';

Teradata query banding variables
Teradata query banding is a function that enables enterprise applications to collaborate with the underlying
Teradata database in order to provide for better accounting, prioritization, and workload management. Using
query banding you can wrap metadata, such as user credentials, around a query.

Two variables are available, both are strings that are evaluated and sent to the database.

SQLSessionPrefix
This string is sent when a connection to the database is created.

SET SQLSessionPrefix = 'SET QUERY_BAND = ' & Chr(39) & 'Who=' & OSuser() & ';' & Chr(39) & '

FOR SESSION;';

Script syntax and chart functions - Qlik Sense, May 2023 259

2 Working with variables in the data load editor

If OSuser() for example returns WA\sbt, this will be evaluated to SET QUERY_BAND = 'Who=WA\sbt;' FOR

SESSION; , which is sent to the database when the connection is created.

SQLQueryPrefix
This string is sent for each single query.

SET SQLSessionPrefix = 'SET QUERY_BAND = ' & Chr(39) & 'Who=' & OSuser() & ';' & Chr(39) & '

FOR TRANSACTION;';

Direct Discovery character variables
DirectFieldColumnDelimiter
You can set the character used as the field delimiter in Direct Query statements for databases that require a
character other than comma as the field delimiter. The specified character must be surrounded by single
quotation marks in the SET statement.

SET DirectFieldColumnDelimiter= '|'

DirectStringQuoteChar
You can specify a character to use to quote strings in a generated query. The default is a single quotation
mark. The specified character must be surrounded by single quotation marks in the SET statement.

SET DirectStringQuoteChar= '"';

DirectIdentifierQuoteStyle
You can specify that non-ANSI quoting of identifiers be used in generated queries. At this time, the only non-
ANSI quoting available is GoogleBQ. The default is ANSI. Uppercase, lowercase, and mixed case can be used
(ANSI, ansi, Ansi).

SET DirectIdentifierQuoteStyle="GoogleBQ";

For example, ANSI quoting is used in the following SELECT statement:

SELECT [Quarter] FROM [qvTest].[sales] GROUP BY [Quarter]

When DirectIdentifierQuoteStyle is set to "GoogleBQ", the SELECT statement would use quoting as follows:

SELECT [Quarter] FROM [qvTest.sales] GROUP BY [Quarter]

DirectIdentifierQuoteChar
You can specify a character to control the quoting of identifiers in a generated query. This can be set to either
one character (such as a double quotation mark) or two (such as a pair of square brackets). The default is a
double quotation mark.

SET DirectIdentifierQuoteChar='[]';

SET DirectIdentifierQuoteChar='``';

SET DirectIdentifierQuoteChar=' ';

SET DirectIdentifierQuoteChar='""';

DirectTableBoxListThreshold
When Direct Discovery fields are used in a Table visualization, a threshold is set to limit the number of rows
displayed. The default threshold is 1000 records. The default threshold setting can be changed by setting the
DirectTableBoxListThreshold variable in the load script. For example:

Script syntax and chart functions - Qlik Sense, May 2023 260

2 Working with variables in the data load editor

SET DirectTableBoxListThreshold=5000;

The threshold setting applies only to Table visualizations that contain Direct Discovery fields. Table
visualizations that contain only in-memory fields are not limited by the DirectTableBoxListThreshold setting.

No fields are displayed in the Table visualization until the selection has fewer records than the threshold limit.

Direct Discovery number interpretation variables
DirectMoneyDecimalSep
The decimal separator defined replaces the decimal symbol for currency in the SQL statement generated to
load data using Direct Discovery. This character must match the character used in DirectMoneyFormat.

Default value is '.'

Example:

Set DirectMoneyDecimalSep='.';

DirectMoneyFormat
The symbol defined replaces the currency format in the SQL statement generated to load data using Direct
Discovery. The currency symbol for the thousands separator should not be included.

Default value is '#.0000'

Example:

Set DirectMoneyFormat='#.0000';

DirectTimeFormat
The time format defined replaces the time format in the SQL statement generated to load data using Direct
Discovery.

Example:

Set DirectTimeFormat='hh:mm:ss';

DirectDateFormat
The date format defined replaces the date format in the SQL statement generated to load data using Direct
Discovery.

Example:

Set DirectDateFormat='MM/DD/YYYY';

DirectTimeStampFormat
The format defined replaces the date and time format in the SQL statement generated in the SQL statement
generated to load data using Direct Discovery.

Example:

Set DirectTimestampFormat='M/D/YY hh:mm:ss[.fff]';

Script syntax and chart functions - Qlik Sense, May 2023 261

2 Working with variables in the data load editor

2.16 Error variables
The values of all error variables will exist after the script execution. The first variable, ErrorMode, is input from
the user, and the last three are output from Qlik Sense with information on errors in the script.

Error variables overview
Each variable is described further after the overview. You can also click the variable name in the syntax to
immediately access the details for that specific variable.

Refer to the Qlik Sense online help for further details about the variables.

ErrorMode
This error variable determines what action is to be taken by Qlik Sense when an error is encountered during
script execution.

ErrorMode

ScriptError
This error variable returns the error code of the last executed script statement.

ScriptError

ScriptErrorCount
This error variable returns the total number of statements that have caused errors during the current script
execution. This variable is always reset to 0 at the start of script execution.

ScriptErrorCount

ScriptErrorList
This error variable will contain a concatenated list of all script errors that have occurred during the last script
execution. Each error is separated by a line feed.

ScriptErrorList

ErrorMode
This error variable determines what action is to be taken by Qlik Sense when an error is encountered during
script execution.

Syntax:
ErrorMode

Script syntax and chart functions - Qlik Sense, May 2023 262

2 Working with variables in the data load editor

Arguments:

Argument Description

ErrorMode=1 The default setting. The script execution will halt and the user will be prompted for
action (non-batch mode).

ErrorMode =0 Qlik Sense will simply ignore the failure and continue script execution at the next script
statement.

ErrorMode =2 Qlik Sense will trigger an "Execution of script failed..." error message immediately on
failure, without prompting the user for action beforehand.

Arguments

Example:

set ErrorMode=0;

ScriptError
This error variable returns the error code of the last executed script statement.

Syntax:
ScriptError

This variable will be reset to 0 after each successfully executed script statement. If an error occurs it will be set
to an internal Qlik Sense error code. Error codes are dual values with a numeric and a text component. The
following error codes exist:

Error
code

Description

0 No error. Dual value text
is empty.

1 General error.

2 Syntax error.

3 General ODBC error.

4 General OLE DB error.

5 General custom
database error.

6 General XML error.

7 General HTML error.

Script error codes

Script syntax and chart functions - Qlik Sense, May 2023 263

2 Working with variables in the data load editor

Error
code

Description

8 File not found.

9 Database not found.

10 Table not found.

11 Field not found.

12 File has wrong format.

16 Semantic error.

Example:

set ErrorMode=0;

LOAD * from abc.qvf;

if ScriptError=8 then

exit script;

//no file;

end if

ScriptErrorCount
This error variable returns the total number of statements that have caused errors during the current script
execution. This variable is always reset to 0 at the start of script execution.

Syntax:
ScriptErrorCount

ScriptErrorList
This error variable will contain a concatenated list of all script errors that have occurred during the last script
execution. Each error is separated by a line feed.

Syntax:
ScriptErrorList

Script syntax and chart functions - Qlik Sense, May 2023 264

2 Script expressions

2 Script expressions
Expressions can be used in both LOAD statements and SELECT statements. The syntax and
functions described here apply to the LOAD statement, and not to the SELECT statement, since
the latter is interpreted by the ODBC driver and not by Qlik Sense. However, most ODBC drivers
are often capable of interpreting a number of the functions described below.

Expressions consist of functions, fields and operators, combined in a syntax.

All expressions in a Qlik Sense script return a number and/or a string, whichever is appropriate. Logical
functions and operators return 0 for False and -1 for True. Number to string conversions and vice versa are
implicit. Logical operators and functions interpret 0 as False and all else as True.

The general syntax for an expression is:

Expression Fields Operator

expression ::= (constant constant |

expression ::= (constant fieldref |

expression ::= (constant operator1 expression |

expression ::= (constant expression operator2 expression |

expression ::= (constant function |

expression ::= (constant (expression))

General syntax

where:

l constant is a string (a text, a date or a time) enclosed by single straight quotation marks, or a number.
Constants are written with no thousands separator and with a decimal point as the decimal separator.

l fieldref is a field name of the loaded table.
l operator1 is a unary operator (working on one expression, the one to the right).
l operator2 is a binary operator (working on two expressions, one on each side).
l function ::= functionname(parameters)
l parameters ::= expression { , expression }

The number and types of parameters are not arbitrary. They depend on the function used.

Expressions and functions can thus be nested freely, and as long as the expression returns an interpretable
value, Qlik Sense will not give any error messages.

Script syntax and chart functions - Qlik Sense, May 2023 265

3 Chart expressions

3 Chart expressions
A chart (visualization) expression is a combination of functions, fields, and mathematical
operators (+ * / =), and other measures. Expressions are used to process data in the app in order
to produce a result that can be seen in a visualization. They are not limited to use in measures.
You can build visualizations that are more dynamic and powerful, with expressions for titles,
subtitles, footnotes, and even dimensions.

This means, for example, that instead of the title of a visualization being static text, it can be
made from an expression whose result changes depending on the selections made.

For detailed reference regarding script functions and chart functions, see the Script syntax and chart
functions.

3.1 Defining the aggregation scope
There are usually two factors that together determine which records are used to define the value
of aggregation in an expression. When working in visualizations, these factors are:

l Dimensional value (of the aggregation in a chart expression)
l Selections

Together, these factors define the scope of the aggregation. You may come across situations where you want
your calculation to disregard the selection, the dimension or both. In chart functions, you can achieve this by
using the TOTAL qualifier, set analysis, or a combination of the two.

Method Description

TOTAL
qualifier

Using the total qualifier inside your aggregation function disregards the dimensional value.

The aggregation will be performed on all possible field values.

The TOTAL qualifier may be followed by a list of one or more field names within angle
brackets. These field names should be a subset of the chart dimension variables. In this case,
the calculation is made disregarding all chart dimension variables except those listed, that is,
one value is returned for each combination of field values in the listed dimension fields. Also,
fields that are not currently a dimension in a chart may be included in the list. This may be
useful in the case of group dimensions, where the dimension fields are not fixed. Listing all of
the variables in the group causes the function to work when the drill-down level changes.

Set
analysis

Using set analysis inside your aggregation overrides the selection. The aggregation will be
performed on all values split across the dimensions.

Aggregation: Method and description

Script syntax and chart functions - Qlik Sense, May 2023 266

3 Chart expressions

Method Description

TOTAL
qualifier
and set
analysis

Using the TOTAL qualifier and set analysis inside your aggregation overrides the selection and
disregards the dimensions.

ALL
qualifier

Using the ALL qualifier inside your aggregation disregards the selection and the dimensions.
The equivalent can be achieved with the {1} set analysis statement and the TOTAL qualifier:

=sum(All Sales)

=sum({1} Total Sales)

Example: TOTAL qualifier

The following example shows how TOTAL can be used to calculate a relative share. Assuming that Q2 has
been selected, using TOTAL calculates the sum of all values disregarding the dimensions.

Year Quarter Sum(Amount) Sum(TOTAL Amount) Sum(Amount)/Sum(TOTAL Amount)

3000 3000 100%

2012 Q2 1700 3000 56,7%

2013 Q2 1300 3000 43,3%

Example: Total qualifier

To show the numbers as a percentage, in the properties panel, for the measure you want to show as
a percentage value, under Number formatting, select Number, and from Formatting, choose
Simple and one of the % formats.

Example: Set analysis

The following example shows how set analysis can be used to make a comparison between data sets before
any selection was made. Assuming that Q2 has been selected, using set analysis with the set definition {1}
calculates the sum of all values disregarding any selections but split by the dimensions.

Year Quarter Sum(Amount) Sum({1} Amount) Sum(Amount)/Sum({1} Amount)

3000 10800 27,8%

2012 Q1 0 1100 0%

2012 Q3 0 1400 0%

2012 Q4 0 1800 0%

2012 Q2 1700 1700 100%

Example: Set analysis

Script syntax and chart functions - Qlik Sense, May 2023 267

3 Chart expressions

Year Quarter Sum(Amount) Sum({1} Amount) Sum(Amount)/Sum({1} Amount)

2013 Q1 0 1000 0%

2013 Q3 0 1100 0%

2013 Q4 0 1400 0%

2013 Q2 1300 1300 100%

Example: TOTAL qualifier and set analysis

The following example shows how set analysis and the TOTAL qualifier can be combined to make a
comparison between data sets before any selection was made and across all dimensions. Assuming that Q2
has been selected, using set analysis with the set definition {1} and the TOTAL qualifier calculates the sum of
all values disregarding any selections and disregarding the dimensions.

Year Quarter
Sum
(Amount)

Sum({1} TOTAL
Amount)

Sum(Amount)/Sum({1} TOTAL
Amount)

3000 10800 27,8%

2012 Q2 1700 10800 15,7%

2013 Q2 1300 10800 12%

Example: TOTAL qualifier and set analysis

Data used in examples:

AggregationScope:

LOAD * inline [

Year Quarter Amount

2012 Q1 1100

2012 Q2 1700

2012 Q3 1400

2012 Q4 1800

2013 Q1 1000

2013 Q2 1300

2013 Q3 1100

2013 Q4 1400] (delimiter is ' ');

3.2 Set analysis
When you make a selection in an app, you define a subset of records in the data. Aggregation
functions, such as Sum(), Max(), Min(), Avg(), and Count() are calculated based on this subset.

In other words, your selection defines the scope of the aggregation; it defines the set of records on which
calculations are made.

Set analysis offers a way of defining a scope that is different from the set of records defined by the current
selection. This new scope can also be regarded as an alternative selection.

Script syntax and chart functions - Qlik Sense, May 2023 268

3 Chart expressions

This can be useful if you want to compare the current selection with a particular value, for example last year’s
value or the global market share.

Set expressions
Set expressions can be used inside and outside aggregation functions, and are enclosed in curly brackets.

Example: Inner set expression

Sum({$<Year={2021}>} Sales)

Example: Outer set expression

{<Year={2021}>} Sum(Sales) / Count(distinct Customer)

A set expression consists of a combination of the following elements:

l Identifiers. A set identifier represents a selection, defined elsewhere. It also represents a specific set of
records in the data. It could be the current selection, a selection from a bookmark, or a selection from
an alternate state. A simple set expression consists of a single identifier, such as the dollar sign, {$},
which means all records in the current selection.
Examples: $, 1, BookMark1, State2

l Operators. A set operator can be used to create unions, differences or intersections between different
set identifiers. This way, you can create a subset or a superset of the selections defined by the set
identifiers.
Examples: +, -, *, /

l Modifiers. A set modifier can be added to the set identifier to change its selection. A modifier can also
be used on its own and will then modify the default identifier. A modifier must be enclosed in angle
brackets <…>.
Examples: <Year={2020}>, <Supplier={ACME}>

The elements are combined to form set expressions.

Elements in a set expression

The set expression above, for example, is built from the aggregation Sum(Sales).

The first operand returns sales for the year 2021 for the current selection, which is indicated by the $ set
identifier and the modifier containing the selection of year 2021. The second operand returns Sales for
Sweden, and ignores the current selection, which is indicated by the 1 set identifier.

Script syntax and chart functions - Qlik Sense, May 2023 269

3 Chart expressions

Finally, the expression returns a set consisting of the records that belongs to any of the two set operands, as
indicated by the + set operator.

Examples
Examples that combine the set expression elements above are available in the following topics:

Natural sets
Usually, a set expression represents both a set of records in the data model, and a selection that defines this
subset of data. In this case, the set is called a natural set.

Set identifiers, with or without set modifiers, always represent natural sets.

However, a set expression using set operators also represents a subset of the records, but can generally still
not be described using a selection of field values. Such an expression is a non-natural set.

For example, the set given by {1-$} cannot always be defined by a selection. It is therefore not a natural set.
This can be shown by loading the following data, adding it to a table, and then making selections using filter
panes.

Load * Inline

[Dim1, Dim2, Number

A, X, 1

A, Y, 1

B, X, 1

B, Y, 1];

By making selections for Dim1 and Dim2, you get the view shown in the following table.

Table with natural and non-natural sets

The set expression in the first measure uses a natural set: it corresponds to the selection that is made {$}.

The second measure is different. It uses {1-$}. It is not possible to make a selection that corresponds to this
set, so it is a non-natural set.

This distinction has a number of consequences:

l Set modifiers can only be applied to set identifiers. They cannot be applied to an arbitrary set
expression. For example, it is not possible to use a set expression such as:

Script syntax and chart functions - Qlik Sense, May 2023 270

3 Chart expressions

{ (BM01 * BM02) <Field={x,y}> }

Here, the normal (round) brackets imply that the intersection between BM01 and BM02 should be
evaluated before the set modifier is applied. The reason is that there is no element set that can be
modified.

l You cannot use non-natural sets inside the P() and E() element functions. These functions return an
element set, but it is not possible to deduce the element set from a non-natural set.

l A measure using a non-natural set cannot always be attributed to the right dimensional value if the
data model has many tables. For example, in the following chart, some excluded sales numbers are
attributed to the correct Country, whereas others have NULL as Country.
Chart with non-natural set

Whether or not the assignment is made correctly depends on the data model. In this case, the number
cannot be assigned if it pertains to a country that is excluded by the selection.

Identifier Description

1 Represents the full set of all the records in the application, irrespective of any selections
made.

$ Represents the records of the current selection. The set expression {$} is thus the
equivalent to not stating a set expression.

$1 Represents the previous selection. $2 represents the previous selection-but-one, and so on.

$_1 Represents the next (forward) selection. $_2 represents the next selection-but-one, and so
on.

BM01 You can use any bookmark ID or bookmark name.

MyAltState You can reference the selections made in an alternate state by its state name.

Script syntax and chart functions - Qlik Sense, May 2023 271

3 Chart expressions

Example Result

sum ({1} Sales) Returns total sales for the app, disregarding selections but not the dimension.

sum ({$} Sales) Returns the sales for the current selection, that is, the same as sum(Sales).

sum ({$1} Sales) Returns the sales for the previous selection.

sum ({BM01} Sales) Returns the sales for the bookmark named BM01.

Example Result

sum({$<OrderDate =
DeliveryDate>} Sales)

Returns the sales for the current selection where OrderDate =
DeliveryDate.

sum({1<Region = {US}>} Sales) Returns the sales for region US, disregarding the current selection.

sum({$<Region = >} Sales) Returns the sales for the selection, but with the selection in Region
removed.

sum({<Region = >} Sales) Returns the same as the example above. When the set to modify is
omitted, $ is assumed.

sum({$<Year={2000}, Region=
{“U*”}>} Sales)

Returns the sales for the current selection, but with new selections both
in Year and in Region.

Set identifiers
A set identifier represents a set of records in the data; either all the data or a subset of the data.
It is the set of records defined by a selection. It could be the current selection, all data (no
selection), a selection from a bookmark, or a selection from an alternate state.

In the example Sum({$<Year = {2009}>} Sales), the identifier is the dollar sign: $. This represents the
current selection. It also represents all the possible records. This set can then altered by the modifier part of
the set expression: the selection 2009 in Year is added.

In a more complex set expression, two identifiers can be used together with an operator to form a union, a
difference, or an intersection of the two record sets.

The following table shows some common identifiers.

Identifier Description

1 Represents the full set of all the records in the application, irrespective of any
selections made.

$ Represents the records of the current selection in the default state. The set
expression {$} is thus usually the equivalent to not stating a set expression.

$1 Represents the previous selection in the default state. $2 represents the previous
selection-but-one, and so on.

Examples with common identifiers

Script syntax and chart functions - Qlik Sense, May 2023 272

3 Chart expressions

Identifier Description

$_1 Represents the next (forward) selection. $_2 represents the next selection-but-one,
and so on.

BM01 You can use any bookmark ID or bookmark name.

AltState You can reference an alternate state by its state name.

AltState::BM01 A bookmark contains the selections of all states, and you can reference a specific
bookmark by qualifying the bookmark name.

The following table shows examples with different identifiers.

Example Result

Sum ({1} Sales) Returns total sales for the app, disregarding selections but
not the dimension.

Sum ({$} Sales) Returns the sales for the current selection, that is, the same
as Sum(Sales).

Sum ({$1} Sales) Returns the sales for the previous selection.

Sum ({BM01}

Sales)
Returns the sales for the bookmark named BM01.

Examples with different identifiers

Set operators
Set operators are used to include, exclude, or intersect data sets. All operators use sets as operands and
return a set as result.

You can use set operators in two different situations:

l To perform a set operation on set identifiers, representing sets of records in data.
l To perform a set operation on the element sets, on the field values, or inside a set modifier.

The following table shows the operators that can be used in set expressions.

Operator Description

+ Union. This binary operation returns a set consisting of the records or elements that belong
to any of the two set operands.

- Exclusion. This binary operation returns a set consisting of the records or elements that
belong to the first but not the other of the two set operands. Also, when used as a unary
operator, it returns the complement set.

* Intersection. This binary operation returns a set consisting of the records or elements that
belong to both set operands.

/ Symmetric difference (XOR). This binary operation returns a set consisting of the records or
elements that belong to either, but not both set operands.

Operators

Script syntax and chart functions - Qlik Sense, May 2023 273

3 Chart expressions

The following table shows examples with operators.

Example Result

Sum ({1-$} Sales) Returns sales for everything excluded by current selection.

Sum ({$*BM01} Sales) Returns sales for the intersection between the selection and
bookmark BM01.

Sum ({-($+BM01)} Sales) Returns sales excluded by the selection and bookmark BM01.

Sum ({$<Year=

{2009}>+1<Country=

{'Sweden'}>} Sales)

Returns sales for the year 2009 associated with the current selections and
add the full set of data associated with the country Sweden across all years.

Sum ({$<Country={"S*"}+

{"*land"}>} Sales)
Returns the sales for countries that begin with S or end with land.

Examples with operators

Set modifiers
Set expressions are used to define the scope of a calculation. The central part of the set
expression is the set modifier that specifies a selection. This is used to modify the user selection,
or the selection in the set identifier, and the result defines a new scope for the calculation.

The set modifier consists of one or more field names, each followed by a selection that should be made on the
field. The modifier is enclosed by angled brackets: < >

For example:

l Sum ({$<Year = {2015}>} Sales)

l Count ({1<Country = {Germany}>} distinct OrderID)

l Sum ({$<Year = {2015}, Country = {Germany}>} Sales)

Element sets
An element set can be defined using the following:

l A list of values
l A search
l A reference to another field
l A set function

If the element set definition is omitted, the set modifier will clear any selection in this field. For example:

Sum({$<Year = >} Sales)

Script syntax and chart functions - Qlik Sense, May 2023 274

3 Chart expressions

Examples: Chart expressions for set modifiers based on element sets
Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

MyTable:

Load * Inline [

Country, Year, Sales

Argentina, 2014, 66295.03

Argentina, 2015, 140037.89

Austria, 2014, 54166.09

Austria, 2015, 182739.87

Belgium, 2014, 182766.87

Belgium, 2015, 178042.33

Brazil, 2014, 174492.67

Brazil, 2015, 2104.22

Canada, 2014, 101801.33

Canada, 2015, 40288.25

Denmark, 2014, 45273.25

Denmark, 2015, 106938.41

Finland, 2014, 107565.55

Finland, 2015, 30583.44

France, 2014, 115644.26

France, 2015, 30696.98

Germany, 2014, 8775.18

Germany, 2015, 77185.68

];

Chart expressions

Create a table in a Qlik Sense sheet with the following chart expressions.

Country Sum(Sales)

Sum
({1<Country=
{Belgium}>}
Sales)

Sum
({1<Country=
{"*A*"}>} Sales)

Sum
({1<Country=
{"A*"}>} Sales)

Sum({1<Year=
{$(=Max
(Year))}>} Sales)

Totals 1645397.3 360809.2 1284588.1 443238.88 788617.07

Argentina 206332.92 0 206332.92 206332.92 140037.89

Austria 236905.96 0 236905.96 236905.96 182739.87

Belgium 360809.2 360809.2 0 0 178042.33

Brazil 176596.89 0 176596.89 0 2104.22

Canada 142089.58 0 142089.58 0 40288.25

Table - Set modifiers based on element sets

Script syntax and chart functions - Qlik Sense, May 2023 275

3 Chart expressions

Country Sum(Sales)

Sum
({1<Country=
{Belgium}>}
Sales)

Sum
({1<Country=
{"*A*"}>} Sales)

Sum
({1<Country=
{"A*"}>} Sales)

Sum({1<Year=
{$(=Max
(Year))}>} Sales)

Denmark 152211.66 0 152211.66 0 106938.41

Finland 138148.99 0 138148.99 0 30583.44

France 146341.24 0 146341.24 0 30696.98

Germany 85960.86 0 85960.86 0 77185.68

Explanation

l Dimensions:
o Country

l Measures:
o Sum(Sales)

Sum Sales with no set expression.
o Sum({1<Country={Belgium}>}Sales)

Select Belgium, and then sum corresponding Sales.
o Sum({1<Country={"*A*"}>}Sales)

Select all countries that have an A, and then sum corresponding Sales.
o Sum({1<Country={"A*"}>}Sales)

Select all countries that begin with an A, and then sum corresponding Sales.
o Sum({1<Year={$(=Max(Year))}>}Sales)

Calculate the Max(Year), which is 2015, and then sum corresponding Sales.

Set modifiers based on element sets

Script syntax and chart functions - Qlik Sense, May 2023 276

3 Chart expressions

Listed values
The most common example of an element set is one that is based on a list of field values enclosed in curly
brackets. For example:

l {$<Country = {Canada, Germany, Singapore}>}

l {$<Year = {2015, 2016}>}

The inner curly brackets define the element set. The individual values are separated by commas.

Quotes and case sensitivity
If the values contain blanks or special characters, the values need to be quoted. Single quotes will be a literal,
case-sensitive match with a single field value. Double quotes imply a case-insensitive match with one or
several field values. For example:

l <Country = {'New Zealand'}>

Matches New Zealand only.
l <Country = {"New Zealand"}>

Matches New Zealand, NEW ZEALAND, and new zealand.

Dates must be enclosed in quotes and use the date format of the field in question. For example:

l <ISO_Date = {'2021-12-31'}>

l <US_Date = {'12/31/2021'}>

l <UK_Date = {'31/12/2021'}>

Double quotes can be substituted by square brackets or by grave accents.

Searches
Element sets can also be created through searches. For example:

l <Country = {"C*"}>

l <Ingredient = {"*garlic*"}>

l <Year = {">2015"}>

l <Date = {">12/31/2015"}>

Wildcards can be used in a text searches: An asterisk (*) represents any number of characters, and a question
mark (?) represents a single character. Relational operators can be used to define numeric searches.

You should always use double quotes for searches. Searches are case-insensitive.

Dollar expansions
Dollar expansions are needed if you want to use a calculation inside your element set. For example, if you
want to look at the last possible year only, you can use:

<Year = {$(=Max(Year))}>

Selected values in other fields
Modifiers can be based on the selected values of another field. For example:

Script syntax and chart functions - Qlik Sense, May 2023 277

3 Chart expressions

<OrderDate = DeliveryDate>

This modifier will take the selected values from DeliveryDate and apply those as a selection on OrderDate. If
there are many distinct values – more than a couple of hundred – then this operation is CPU intensive and
should be avoided.

Element set functions
The element set can also be based on the set functions P() (possible values) and E() (excluded values).

For example, if you want to select countries where the product Cap has been sold, you can use:

<Country = P({1<Product={Cap}>} Country)>

Similarly, if you want to pick out the countries where the product Cap has not been sold, you can use:

<Country = E({1<Product={Cap}>} Country)>

Set modifiers with searches

You can create element sets through searches with set modifiers.

For example:

l <Country = {"C*"}>

l <Year = {">2015"}>

l <Ingredient = {"*garlic*"}>

Searches should always be enclosed in double quotes, square brackets or grave accents. You can use a list
with a mixture of literal strings (single quotes) and searches (double quotes). For example:

<Product = {'Nut', "*Bolt", Washer}>

Text searches
Wildcards and other symbols can be used in text searches:

l An asterisk (*) will represent any number of characters.
l A question mark (?) will represent a single character.
l A circumflex accent (^) will mark the beginning of a word.

For example:

l <Country = {"C*", "*land"}>

Match all countries beginning with a C or ending with land.
l <Country = {"*^z*"}>

This will match all countries that have a word beginning with z, such as New Zealand.

Numeric searches
You can make numeric searches using these relational operators: >, >=, <, <=

A numeric search always begins with one of these operators. For example:

Script syntax and chart functions - Qlik Sense, May 2023 278

3 Chart expressions

l <Year = {">2015"}>

Match 2016 and subsequent years.
l <Date = {">=1/1/2015<1/1/2016"}>

Match all dates during 2015. Note the syntax for describing a time range between two dates. The date
format needs to match the date format of the field in question.

Expression searches
You can use expression searches to make more advanced searches. An aggregation is then evaluated for each
field value in the search field. All values for which the search expression returns true are selected.

An expression search always begins with an equals sign: =

For example:

<Customer = {"=Sum(Sales)>1000"}>

This will return all customers with a sales value greater than 1000. Sum(Sales) is calculated on the current
selection. This means that if you have a selection in another field, such as the Product field, you will get the
customers that fulfilled the sales condition for the selected products only.

If you want the condition to be independent of the selection, you need to use set analysis inside the search
string. For example:

<Customer = {"=Sum({1} Sales)>1000"}>

The expressions after the equals sign will be interpreted as a boolean value. This means that if it evaluates to
something else, any non-zero number will be interpreted as true, while zero and strings are interpreted as
false.

Quotes
Use quotation marks when the search strings contain blanks or special characters. Single quotes imply a
literal, case-sensitive match with a single field value. Double quotes imply a case insensitive search that
potentially matches multiple field values.

For example:

l <Country = {'New Zealand'}>

Match New Zealand only.
l <Country = {"New Zealand"}>

Match New Zealand, NEW ZEALAND, and new zealand

Double quotes can be substituted by square brackets or by grave accents.

In previous versions of Qlik Sense, there was no distinction between single quotes and double
quotes, and all quoted strings were treated as searches. To maintain backward compatibility, apps
created with older versions of Qlik Sense will continue to work as they did in previous versions. Apps
created with Qlik Sense November 2017 or later will respect the difference between the two types of
quotes.

Script syntax and chart functions - Qlik Sense, May 2023 279

3 Chart expressions

Examples: Chart expressions for set modifiers with searches
Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

MyTable:

Load

Year(Date) as Year,

Date#(Date,'YYYY-MM-DD') as ISO_Date,

Date(Date#(Date,'YYYY-MM-DD'),'M/D/YYYY') as US_Date,

Country, Product, Amount

Inline

[Date, Country, Product, Amount

2018-02-20, Canada, Washer, 6

2018-07-08, Germany, Anchor bolt, 10

2018-07-14, Germany, Anchor bolt, 3

2018-08-31, France, Nut, 2

2018-09-02, Czech Republic, Bolt, 1

2019-02-11, Czech Republic, Bolt, 3

2019-07-31, Czech Republic, Washer, 6

2020-03-13, France, Anchor bolt, 1

2020-07-12, Canada, Anchor bolt, 8

2020-09-16, France, Washer, 1];

Example 1: Chart expressions with text searches

Create a table in a Qlik Sense sheet with the following chart expressions.

Country
Sum
(Amount)

Sum({<Country=
{"C*"}>} Amount)

Sum({<Country=
{"*^R*"}>} Amount)

Sum({<Product=
{"*bolt*"}>} Amount)

Totals 41 24 10 26

Canada 14 14 0 8

Czech
Republic

10 10 10 4

France 4 0 0 1

Germany 13 0 0 13

Table - Set modifiers with text searches

Explanation

l Dimensions:
o Country

Script syntax and chart functions - Qlik Sense, May 2023 280

3 Chart expressions

l Measures:
o Sum(Amount)

Sum Amount with no set expression.
o Sum({<Country={"C*"}>}Amount)

Sum Amount for all countries that start with C, such as Canada and Czech Republic.
o Sum({<Country={"*^R*"}>}Amount)

Sum Amount for all countries that have a word that starts with R, such as Czech Republic.
o Sum({<Product={"*bolt*"}>}Amount)

Sum Amount for all products that contain the string bolt, such as Bolt and Anchor bolt.

Set modifiers with text searches

Example 2: Chart expressions with numeric searches

Create a table in a Qlik Sense sheet with the following chart expressions.

Country
Sum
(Amount)

Sum({<Year=
{">2019"}>}
Amount)

Sum({<ISO_Date=
{">=2019-07-
01"}>} Amount)

Sum({<US_Date=
{">=4/1/2018<=12/31/2018"}>}
Amount)

Totals 41 10 16 16

Canada 14 8 8 0

Czech
Republic

10 0 6 1

France 4 2 2 2

Germany 13 0 0 13

Table - Set modifiers with numeric searches

Explanation

l Dimensions:
o Country

l Measures:

Script syntax and chart functions - Qlik Sense, May 2023 281

3 Chart expressions

o Sum(Amount)

Sum Amount with no set expression.
o Sum({<Year={">2019"}>}Amount)

Sum Amount for all years after 2019.
o Sum({<ISO_Date={">=2019-07-01"}>}Amount)

Sum Amount for all dates on or after 2019-07-01. The format of the date in the search must
match the format of the field.

o Sum({<US_Date={">=4/1/2018<=12/31/2018"}>}Amount)

Sum Amount for all dates from 4/1/2018 to 12/31/2018, including the start and end dates. The
format of the dates in the search must match the format of the field.

Set modifiers with numeric searches

Example 3: Chart expressions with expression searches

Create a table in a Qlik Sense sheet with the following chart expressions.

Country
Sum
(Amount)

Sum({<Country=
{"=Sum
(Amount)>10"}>}
Amount)

Sum({<Country=
{"=Count(distinct
Product)=1"}>} Amount)

Sum({<Product=
{"=Count
(Amount)>3"}>}
Amount)

Totals 41 27 13 22

Canada 14 14 0 8

Czech
Republic

10 0 0 0

France 4 0 0 1

Germany 13 13 13 13

Table - Set modifiers with expression searches

Explanation

l Dimensions:
o Country

Script syntax and chart functions - Qlik Sense, May 2023 282

3 Chart expressions

l Measures:
o Sum(Amount)

Sum Amount with no set expression.
o Sum({<Country={"=Sum(Amount)>10"}>}Amount)

Sum Amount for all countries that have an aggregated sum of Amount greater than 10.
o Sum({<Country={"=Count(distinct Product)=1"}>}Amount)

Sum Amount for all countries that are associated with exactly one distinct product.
o Sum({<Product={"=Count(Amount)>3"}>}Amount)

Sum Amount for all countries that have more than three transactions in the data.

Set modifiers with expression searches

Examples Results

sum({$–1<Product =
{“*Internal*”, “*Domestic*”}>}
Sales)

Returns the sales for current selection, excluding transactions
pertaining to products with the string 'Internal' or 'Domestic' in the
product name.

sum({$<Customer = {“=Sum
({1<Year = {2007}>} Sales) >
1000000”}>} Sales)

Returns the sales for current selection, but with a new selection in the
'Customer' field: only customers who during 2007 had a total sales of
more than 1000000.

Set modifiers with dollar-sign expansions

Dollar-sign expansions are constructs that are calculated before the expression is parsed and
evaluated. The result is then injected into the expression instead of the $(…). The calculation of
the expression is then made using the result of the dollar expansion.

The expression editor shows a dollar expansion preview so that you can verify what your dollar-sign expansion
evaluates to.

Script syntax and chart functions - Qlik Sense, May 2023 283

3 Chart expressions

Dollar-sign expansion preview in expression editor

Use dollar-sign expansions when you want to use a calculation inside your element set.

For example, if you want to look at the last possible year only, you can use the following construction:

<Year = {$(=Max(Year))}>

Max(Year) is calculated first, and the result would be injected in the expression instead of the $(…).

The result after the dollar expansion will be an expression such as the following:

<Year = {2021}>

The expression inside the dollar expansion is calculated based on the current selection. This means that if you
have a selection in another field, the result of the expression will be affected.

If you want the calculation to be independent of the selection, use set analysis inside the dollar expansion. For
example:

<Year = {$(=Max({1} Year))}>

Strings
When you want the dollar expansion to result in a string, normal quoting rules apply. For example:

<Country = {'$(=FirstSortedValue(Country,Date)'}>

The result after the dollar expansion will be an expression such as the following:

<Country = {'New Zealand'}>

You will get a syntax error if you do not use the quotation marks.

Numbers
When you want the dollar expansion to result in a number, ensure that the expansion gets the same
formatting as the field. This means that you sometimes need to wrap the expression in a formatting function.

For example:

<Amount = {$(=Num(Max(Amount), '###0.00'))}>

The result after the dollar expansion will be an expression such as the following:

Script syntax and chart functions - Qlik Sense, May 2023 284

3 Chart expressions

<Amount = {12362.00}>

Use a hash to force the expansion to always use decimal point and no thousand separator . For example:

<Amount = {$(#=Max(Amount))}>

Dates
When you want the dollar expansion to result in a date, ensure that the expansion has the correct formatting.
This means that you sometimes need to wrap the expression in a formatting function.

For example:

<Date = {'$(=Date(Max(Date)))'}>

The result after the dollar expansion will be an expression such as the following:

<Date = {'12/31/2015'}>

Just as with strings, you need to use the correct quotes.

A common use case is that you want your calculation to be limited to the last month (or year). Then you can
use a numeric search in combination with the AddMonths() function.

For example:

<Date = {">=$(=AddMonths(Today(),-1))"}>

The result after the dollar expansion will be an expression such as the following:

<Date = {">=9/31/2021"}>

This will pick out all events that have occurred the last month.

Example: Chart expressions for set modifiers with dollar-sign expansions
Example - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

Let vToday = Today();

MyTable:

Load

Year(Date) as Year,

Date#(Date,'YYYY-MM-DD') as ISO_Date,

Date(Date#(Date,'YYYY-MM-DD'),'M/D/YYYY') as US_Date,

Country, Product, Amount

Inline

[Date, Country, Product, Amount

2018-02-20, Canada, Washer, 6

2018-07-08, Germany, Anchor bolt, 10

2018-07-14, Germany, Anchor bolt, 3

2018-08-31, France, Nut, 2

Script syntax and chart functions - Qlik Sense, May 2023 285

3 Chart expressions

2018-09-02, Czech Republic, Bolt, 1

2019-02-11, Czech Republic, Bolt, 3

2019-07-31, Czech Republic, Washer, 6

2020-03-13, France, Anchor bolt, 1

2020-07-12, Canada, Anchor bolt, 8

2021-10-15, France, Washer, 1];

Chart expressions with dollar-sign expansions

Create a table in a Qlik Sense sheet with the following chart expressions.

Country
Sum
(Amount)

Sum({<US_Date=
{'$(vToday)'}>}
Amount)

Sum({<ISO_Date=
{"$(=Date(Min(ISO_
Date),'YYYY-MM-DD'))"}>}
Amount)

Sum({<US_Date=
{">=$(=AddYears(Max
(US_Date),-1))"}>}
Amount)

Totals 41 1 6 1

Canada 14 0 6 0

Czech
Republic

10 0 0 0

France 4 1 0 1

Germany 13 0 0 0

Table - Set modifiers with dollar-sign expansions

Explanation

l Dimensions:
o Country

l Measures:
o Sum(Amount)

Sum Amount with no set expression.
o Sum({<US_Date={'$(vToday)'}>}Amount)

Sum Amount for all records where the US_Date is the same as in the variable vToday.
o Sum({<ISO_Date={"$(=Date(Min(ISO_Date),'YYYY-MM-DD'))"}>}Amount)

Sum Amount for all records where the ISO_Date is the same as the first (smallest) possible ISO_

Date. The Date() function is needed to ensure that the format of the date matches that of the
field.

o Sum({<US_Date={">=$(=AddYears(Max(US_Date),-1))"}>}Amount)

Sum Amount for all records that have a US_Date after or on the date a year before the latest
(largest) possible US_Date. The AddYears() function will return a date in the format specified by
the variable DateFormat, and this needs to match the format of the field US_Date.

Script syntax and chart functions - Qlik Sense, May 2023 286

3 Chart expressions

Set modifiers with dollar-sign expansions

Examples Results

sum({$<Year =
{$(#vLastYear)}>}
Sales)

Returns the sales for the previous year in relation to current selection. Here, a
variable vLastYear containing the relevant year is used in a dollar-sign expansion.

sum({$<Year =
{$(#=Only(Year)-1)}>}
Sales)

Returns the sales for the previous year in relation to current selection. Here, a
dollar-sign expansion is used to calculate previous year.

Set modifiers with set operators

Set operators are used to include, exclude, or intersect different element sets. They combine the
different methods to define element sets.

The operators are the same as those used for set identifiers.

Operator Description

+ Union. This binary operation returns a set consisting of the records or elements that belong
to any of the two set operands.

- Exclusion. This binary operation returns a set consisting of the records or elements that
belong to the first but not the other of the two set operands. Also, when used as a unary
operator, it returns the complement set.

* Intersection. This binary operation returns a set consisting of the records or elements that
belong to both set operands.

/ Symmetric difference (XOR). This binary operation returns a set consisting of the records or
elements that belong to either, but not both set operands.

Operators

For example, the following two modifiers define the same set of field values:

l <Year = {1997, "20*"}>

l <Year = {1997} + {"20*"}>

Script syntax and chart functions - Qlik Sense, May 2023 287

3 Chart expressions

Both expressions select 1997 and the years that begin with 20. In other words, this is the union of the two
conditions.

Set operators also allow for more complex definitions. For example:

<Year = {1997, "20*"} - {2000}>

This expression will select the same years as those above, but in addition exclude year 2000.

.

Examples: Chart expressions for set modifiers with set operators
Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

MyTable:

Load

Year(Date) as Year,

Date#(Date,'YYYY-MM-DD') as ISO_Date,

Date(Date#(Date,'YYYY-MM-DD'),'M/D/YYYY') as US_Date,

Country, Product, Amount

Inline

[Date, Country, Product, Amount

2018-02-20, Canada, Washer, 6

2018-07-08, Germany, Anchor bolt, 10

2018-07-14, Germany, Anchor bolt, 3

2018-08-31, France, Nut, 2

2018-09-02, Czech Republic, Bolt, 1

2019-02-11, Czech Republic, Bolt, 3

2019-07-31, Czech Republic, Washer, 6

2020-03-13, France, Anchor bolt, 1

2020-07-12, Canada, Anchor bolt, 8

2020-09-16, France, Washer, 1];

Chart expressions

Create a table in a Qlik Sense sheet with the following chart expressions.

Country
Sum
(Amount)

Sum({<Year=
{">2018"}-
{2020}>} Amount)

Sum({<Country=-
{Germany}>}
Amount)

Sum({<Country={Germany}+P
({<Product={Nut}>}Country)>}
Amount)

Totals 41 9 28 17

Canada 14 0 14 0

Table - Set modifiers with set operators

Script syntax and chart functions - Qlik Sense, May 2023 288

3 Chart expressions

Country
Sum
(Amount)

Sum({<Year=
{">2018"}-
{2020}>} Amount)

Sum({<Country=-
{Germany}>}
Amount)

Sum({<Country={Germany}+P
({<Product={Nut}>}Country)>}
Amount)

Totals 41 9 28 17

Czech
Republic

10 9 10 0

France 4 0 4 4

Germany 13 0 0 13

Explanation

l Dimensions:
o Country

l Measures:
o Sum(Amount)

Sum Amount with no set expression.
o Sum({<Year={">2018"}-{2020}>}Amount)

Sum Amount for all years after 2018, except 2020.
o Sum({<Country=-{Germany}>}Amount)

Sum Amount for all countries except Germany. Note the unary exclusion operator.
o Sum({<Country={Germany}+P({<Product={Nut}>}Country)>}Amount)

Sum Amount for Germany and all countries associated with the product Nut.

Set modifiers with set operators

Examples Results

sum({$<Product =
Product + {OurProduct1}
– {OurProduct2} >} Sales
)

Returns the sales for the current selection, but with the product “OurProduct1”
added to the list of selected products and “OurProduct2” removed from the list
of selected products.

Script syntax and chart functions - Qlik Sense, May 2023 289

3 Chart expressions

Examples Results

sum({$<Year = Year +
({“20*”,1997} – {2000}) >}
Sales)

Returns the sales for the current selection but with additional selections in the
field “Year”: 1997 and all that begin with “20” – however, not 2000.

Note that if 2000 is included in the current selection, it will still be included after
the modification.

sum({$<Year = (Year +
{“20*”,1997}) – {2000} >}
Sales)

Returns almost the same as above, but here 2000 will be excluded, also if it
initially is included in the current selection. The example shows the importance
of sometimes using brackets to define an order of precedence.

sum({$<Year = {“*”} –
{2000}, Product =
{“*bearing*”} >} Sales)

Returns the sales for the current selection but with a new selection in “Year”: all
years except 2000; and only for products containing the string 'bearing'.

Set modifiers with implicit set operators

The standard way to write selections in a set modifier is to use an equals sign. For example:

Year = {">2015"}

The expression to the right of the equals sign in the set modifier is called an element set. It defines a set of
distinct field values, in other words a selection.

This notation defines a new selection, disregarding the current selection in the field. So, if the set identifier
contains a selection in this field, the old selection will be replaced by the one in the element set.

When you want to base your selection on the current selection in the field, you need to use a different
expression

For example, if you want to respect the old selection, and add the requirement that the year is after 2015, you
can write the following:

Year = Year * {">2015"}

The asterisk is a set operator defining an intersection, so you will get the intersection between the current
selection in Year, and the additional requirement that the year be after 2015. An alternative way to write this
is the following:

Year *= {">2015"}

That is, the assignment operator (*=) implicitly defines an intersection.

Similarly, implicit unions, exclusions and symmetric differences can be defined using the following: +=, –=, /=

Script syntax and chart functions - Qlik Sense, May 2023 290

3 Chart expressions

Examples: Chart expressions for set modifiers with implicit set operators
Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

MyTable:

Load

Year(Date) as Year,

Date#(Date,'YYYY-MM-DD') as ISO_Date,

Date(Date#(Date,'YYYY-MM-DD'),'M/D/YYYY') as US_Date,

Country, Product, Amount

Inline

[Date, Country, Product, Amount

2018-02-20, Canada, Washer, 6

2018-07-08, Germany, Anchor bolt, 10

2018-07-14, Germany, Anchor bolt, 3

2018-08-31, France, Nut, 2

2018-09-02, Czech Republic, Bolt, 1

2019-02-11, Czech Republic, Bolt, 3

2019-07-31, Czech Republic, Washer, 6

2020-03-13, France, Anchor bolt, 1

2020-07-12, Canada, Anchor bolt, 8

2020-09-16, France, Washer, 1];

Chart expressions with implicit set operators

Create a table in a Qlik Sense sheet with the following chart expressions.

Select Canada and Czech Republic from a list of countries.

Country
Sum
(Amount)

Sum({<Country*=
{Canada}>} Amount)

Sum({<Country-=
{Canada}>} Amount)

Sum({<Country+=
{France}>} Amount)

Totals 24 14 10 28

Canada 14 14 0 14

Czech
Republic

10 0 10 10

France 0 0 0 4

Table - Chart expressions with implicit set operators

Explanation

l Dimensions:
o Country

Script syntax and chart functions - Qlik Sense, May 2023 291

3 Chart expressions

l Measures:
o Sum(Amount)

Sum Amount for the current selection. Note that only Canada and Czech Republic have non-
zero values.

o Sum({<Country*={Canada}>}Amount)

Sum Amount for the current selection, intersected with the requirement that the Country be
Canada. If Canada is not part of the user selection, the set expression returns an empty set, and
the column will have 0 on all rows.

o Sum({<Country-={Canada}>}Amount)

Sum Amount for the current selection, but first exclude Canada from the Country selection. If
Canada is not part of the user selection, the set expression will not change any numbers.

o Sum({<Country+={France}>}Amount)

Sum Amount for the current selection, but first add France to the Country selection. If France is
already part of the user selection, the set expression will not change any numbers.

Set modifiers with implicit set operators

Examples Results

sum({$<Product +=
{OurProduct1,
OurProduct2} >} Sales)

Returns the sales for the current selection, but using an implicit union to add
the products 'OurProduct1' and 'OurProduct2' to the list of selected products.

sum({$<Year +=
{“20*”,1997} – {2000} >}
Sales)

Returns the sales for the current selection but using an implicit union to add a
number of years in the selection: 1997 and all that begin with “20” – however,
not 2000.

Note that if 2000 is included in the current selection, it will still be included
after the modification. Same as <Year=Year + ({“20*”,1997}–{2000})>.

sum({$<Product *=
{OurProduct1} >} Sales)

Returns the sales for the current selection, but only for the intersection of
currently selected products and the product OurProduct1.

Script syntax and chart functions - Qlik Sense, May 2023 292

3 Chart expressions

Set modifiers using set functions

Sometimes you need to define a set of field values using a nested set definition. For example,
you may want to select all customers that have bought a specific product, without selecting the
product.

In such cases, use the element set functions P() and E(). These return the element sets of possible values and
excluded values of a field, respectively. Inside the brackets, you can specify the field in question, and a set
expression that defines the scope. For example:

P({1<Year = {2021}>} Customer)

This will return the set of customers that had transactions in 2021. You can then use this in a set modifier. For
example:

Sum({<Customer = P({1<Year = {2021}>} Customer)>} Amount)

This set expression will select these customers, but it will not restrict the selection to 2021.

These functions cannot be used in other expressions.

Additionally, only natural sets can be used inside the element set functions. That is, a set of records that can
be defined by a simple selection.

For example, the set given by {1-$} cannot always be defined through a selection, and is therefore not a
natural set. Using these functions on non-natural sets will return unexpected results.

Examples: Chart expressions for set modifiers using set functions
Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

MyTable:

Load

Year(Date) as Year,

Date#(Date,'YYYY-MM-DD') as ISO_Date,

Date(Date#(Date,'YYYY-MM-DD'),'M/D/YYYY') as US_Date,

Country, Product, Amount

Inline

[Date, Country, Product, Amount

2018-02-20, Canada, Washer, 6

2018-07-08, Germany, Anchor bolt, 10

2018-07-14, Germany, Anchor bolt, 3

2018-08-31, France, Nut, 2

2018-09-02, Czech Republic, Bolt, 1

2019-02-11, Czech Republic, Bolt, 3

2019-07-31, Czech Republic, Washer, 6

Script syntax and chart functions - Qlik Sense, May 2023 293

3 Chart expressions

2020-03-13, France, Anchor bolt, 1

2020-07-12, Canada, Anchor bolt, 8

2020-09-16, France, Washer, 1];

Chart expressions

Create a table in a Qlik Sense sheet with the following chart expressions.

Country
Sum
(Amount)

Sum({<Country=P
({<Year=
{2019}>}Country)>}
Amount)

Sum({<Product=P
({<Year=
{2019}>}Product)>}
Amount)

Sum({<Country=E
({<Product=
{Washer}>}Country)>}
Amount)

Totals 41 10 17 13

Canada 14 0 6 0

Czech
Republic

10 10 10 0

France 4 0 1 0

Germany 13 0 0 13

Table - Set modifiers using set functions

Explanation

l Dimensions:
o Country

l Measures:
o Sum(Amount)

Sum Amount with no set expression.
o Sum({<Country=P({<Year={2019}>} Country)>} Amount)

Sum Amount for the countries that are associated with year 2019. It will however not limit the
calculation to 2019.

o Sum({<Product=P({<Year={2019}>} Product)>} Amount)

Sum Amount for the products that are associated with year 2019. It will however not limit the
calculation to 2019.

o Sum({<Country=E({<Product={Washer}>} Country)>} Amount)

Sum Amount for the countries that are not associated with the product Washer.

Script syntax and chart functions - Qlik Sense, May 2023 294

3 Chart expressions

Set modifiers using set functions

Examples Results

sum(
{$<Customer =
P({1<Product=
{'Shoe'}>}
Customer)>}
Sales)

Returns the sales for current selection, but only those customers that ever have bought
the product 'Shoe'. The element function P() here returns a list of possible customers;
those that are implied by the selection 'Shoe' in the field Product.

sum(
{$<Customer =
P({1<Product=
{'Shoe'}>})>}
Sales)

Same as above. If the field in the element function is omitted, the function will return the
possible values of the field specified in the outer assignment.

sum(
{$<Customer =
P({1<Product=
{'Shoe'}>}
Supplier)>}
Sales)

Returns the sales for current selection, but only those customers that ever have supplied
the product 'Shoe', that is, the customer is also a supplier. The element function P() here
returns a list of possible suppliers; those that are implied by the selection 'Shoe' in the
field Product. The list of suppliers is then used as a selection in the field Customer.

sum(
{$<Customer =
E({1<Product=
{'Shoe'}>})>}
Sales)

Returns the sales for current selection, but only those customers that never bought the
product 'Shoe'. The element function E() here returns the list of excluded customers;
those that are excluded by the selection 'Shoe' in the field Product.

Inner and outer set expressions
Set expressions can be used inside and outside aggregation functions, and are enclosed in curly brackets.

When you use a set expression inside an aggregation function, it can look like this:

Script syntax and chart functions - Qlik Sense, May 2023 295

3 Chart expressions

Example: Inner set expression

Sum({$<Year={2021}>} Sales)

Use a set expression outside the aggregation function if you have expressions with multiple aggregations and
want to avoid writing the same set expression in every aggregation function.

If you use an outer set expression, it must be placed at the beginning of the scope.

Example: Outer set expression

{<Year={2021}>} Sum(Sales) / Count(distinct Customer)

If you use a set expression outside the aggregation function, you can also apply it on existing master
measures.

Example: Outer set expression applied to master measure

{<Year={2021}>} [Master Measure]

A set expression used outside aggregation functions affects the entire expression, unless it is enclosed in
brackets then the brackets define the scope. In the lexical scoping example below, the set expression is only
applied to the aggregation inside the brackets.

Example: Lexical scoping

({<Year={2021}>} Sum(Amount) / Count(distinct Customer)) – Avg(CustomerSales)

Rules

Lexical scope
The set expression affects the entire expression, unless it is enclosed in brackets. If so, the brackets define the
lexical scope.

Position
The set expression must be placed in the beginning of the lexical scope.

Context
The context is the selection that is relevant for the expression. Traditionally, the context has always been the
default state of current selection. But if an object is set to an alternate state, the context is the alternate state
of the current selection.

You can also define a context in the form of an outer set expression.

Inheritance
Inner set expressions have precedence over outer set expressions. If the inner set expression contains a set
identifier, it replaces the context. Otherwise, the context and the set expression will be merged.

l {$<SetExpression>} - overrides the outer set expression
l {<SetExpression>} - is merged with the outer set expression

Script syntax and chart functions - Qlik Sense, May 2023 296

3 Chart expressions

Element set assignment
The element set assignment determines how the two selections are merged. If a normal equals sign is used,
the selection in the inner set expression has precedence. Otherwise, the implicit set operator will be used.

l {<Field={value}>} - this inner selection replaces any outer selection in “Field”.
l {<Field+={value}>} - this inner selection is merged with the outer selection in “Field”, using the

union operator.
l {<Field*={value}>} - this inner selection is merged with the outer selection in “Field”, using the

intersection operator.

Inheritance in multiple steps
The inheritance can occur in multiple steps. Examples:

l Current Selection → Sum(Amount)

The aggregation function will use the context, which here is the current selection.
l Current Selection → {<Set1>} Sum(Amount)

Set1 will inherit from current selection, and the result will be the context for the aggregation function.
l Current Selection → {<Set1>} ({<Set2>} Sum(Amount))

Set2 will inherit from Set1, which in turn inherits from current selection, and the result will be the
context for the aggregation function.

The Aggr() function
The Aggr() function creates a nested aggregation that has two independent aggregations. In the example
below, a Count() is calculated for each value of Dim, and the resulting array is aggregated using the Sum()

function.

Example:

Sum(Aggr(Count(X),Dim))

Count() is the inner aggregation and Sum() is the outer aggregation.

l The inner aggregation does not inherit any context from the outer aggregation.
l The inner aggregation inherits the context from the Aggr() function, which may contain a set

expression.
l Both the Aggr() function and the outer aggregation function inherit the context from an outer set

expression.

Tutorial - Creating a set expression
You can build set expressions in Qlik Sense to support data analysis. In this context, the analysis
is often referred to as set analysis. Set analysis offers a way of defining a scope that is different
from the set of records defined by the current selection in an app.

What you will learn
This tutorial provides the data and chart expressions to build set expressions using set modifiers, identifiers
and operators.

Script syntax and chart functions - Qlik Sense, May 2023 297

3 Chart expressions

Who should complete this tutorial
This tutorial is for app developers who are comfortable working with the script editor and chart expressions.

What you need to do before you start
A Qlik Sense Enterprise professional access allocation, which allows you to load data and create apps.

Elements in a set expression
Set expressions are enclosed in an aggregation function, such as Sum(), Max(), Min(), Avg(), or Count(). Set
expressions are constructed from building blocks known as elements. These elements are set modifiers,
identifiers, and operators.

Elements in a set expression

The set expression above, for example, is built from the aggregation Sum(Sales). The set expression is
enclosed in the outer curly brackets: { }

The first operand in the expression is: $<Year={2021}>

This operand returns sales for the year 2021 for the current selection. The modifier, <Year={2021}>, contains
the selection of the year 2021. The $ set identifier indicates that the set expression is based on current
selection.

The second operand in the expression is: 1<Country={'Sweden'}>

This operand returns Sales for Sweden. The modifier, <Country={'Sweden'}>, contains the selection of the
country Sweden. The 1 set identifier indicates that selections made in the app will be ignored.

Finally, the + set operator indicates that the expression returns a set consisting of the records that belongs to
any of the two set operands.

Creating a set expression tutorial
Complete the following procedures to create the set expressions shown in this tutorial.

Script syntax and chart functions - Qlik Sense, May 2023 298

3 Chart expressions

Create a new app and load data

Do the following:

1. Create a new app.

2. Click Script editor. Alternatively, click Prepare > Data load editor in the navigation bar.

3. Create a new section in the Data load editor.

4. Copy the following data and paste it into the new section: Set expression tutorial data (page 306)

5. Click Load data. The data is loaded as an inline load.

Create set expressions with modifiers
The set modifier consists of one or more field names, each followed by a selection that should be made on the
field. The modifier is enclosed by angled brackets. For example, in this set expression:

Sum ({<Year = {2015}>} Sales)

The modifier is:

<Year = {2015}>

This modifier specifies that data from the year 2015 will be selected. The curly brackets in which the modifier
is enclosed indicate a set expression.

Do the following:

1. In a sheet, open the Assets panel from the navigation bar, and then click Charts.

2. Drag a KPI onto the sheet, and then click Add measure.

Script syntax and chart functions - Qlik Sense, May 2023 299

3 Chart expressions

3. Click Sales, and then select Sum(Sales) for the aggregation.

The KPI shows the sum of sales for all years.

Script syntax and chart functions - Qlik Sense, May 2023 300

3 Chart expressions

4. Copy and paste the KPI to create a new KPI.

5. Click the new KPI, click Sales under Measures, and then click Open Expression editor.

The expression editor open with the aggregation Sum(Sales).

Script syntax and chart functions - Qlik Sense, May 2023 301

3 Chart expressions

6. In the expression editor, create an expression to sum Sales for 2015 only:

i. Add curly brackets to indicate a set expression: Sum({}Sales)

i. Add angle brackets to indicate a set modifier: Sum({<>}Sales)

ii. In the angle brackets, add the field to be selected, in this case the field is Year, followed by an
equal sign. Next, enclose 2015 in another set of curly brackets. The resulting set modifier is:
{<Year={2015}>}.
The entire expression is:
Sum({<Year={2015}>}Sales)

iii. Click Apply to save the expression and to close the expression editor. The sum of Sales for 2015

Script syntax and chart functions - Qlik Sense, May 2023 302

3 Chart expressions

is shown in the KPI.

7. Create two more KPIs with the following expressions:
Sum({<Year={2015,2016}>}Sales)

The modifier in the above is <Year={2015,2016}>. The expression will return the sum of Sales for 2015
and 2016.
Sum({<Year={2015},Country={'Germany'}>} Sales)

The modifier in the above is <Year={2015}, Country={'Germany'}>. The expression will return the
sum of Sales for 2015, where 2015 intersects with Germany.

Script syntax and chart functions - Qlik Sense, May 2023 303

3 Chart expressions

KPIs using set modifiers

Add set identifiers
The set expressions above will use current selections as base, because an identifier was not used. Next, add
identifiers to specify the behavior when selections are made.

Do the following:

On your sheet, build or copy the following set expressions:

Sum({$<Year={"2015"}>}Sales

The $ identifier will base the set expression on the current selections made in the data. This is also the default
behavior when an identifier is not used.

Sum({1<Year={"2015"}>}Sales)

Script syntax and chart functions - Qlik Sense, May 2023 304

3 Chart expressions

The 1 identifier will cause the aggregation of Sum(Sales) on 2015 to ignore the current selection. The value of
the aggregation will not change when the user makes other selections. For example, when Germany is
selected below, the value for the aggregate sum of 2015 does not change.

KPIs using set modifiers and identifiers

Add operators
Set operators are used to include, exclude, or intersect data sets. All operators use sets as operands and
return a set as result.

You can use set operators in two different situations:

l To perform a set operation on set identifiers, representing sets of records in data.
l To perform a set operation on the element sets, on the field values, or inside a set modifier.

Do the following:

On your sheet, build or copy the following set expression:

Sum({$<Year={2015}>+1<Country={'Germany'}>}Sales)

The plus sign (+) operator produces a union of the data sets for 2015 and Germany. As explained with set
identifiers above, the dollar sign ($) identifier means current selections will be used for the first operand,
<Year={2015}>, will be respected. The 1 identifier means selection will be ignored for the second operand,
<Country={'Germany'}>.

Script syntax and chart functions - Qlik Sense, May 2023 305

3 Chart expressions

KPI using plus sign (+) operator

Alternatively, use a minus sign (-) to return a data set that consists of the records that belong to 2015 but not
Germany. Or, use an asterisk (*) to return a set consisting of the records that belong to both sets.

Sum({$<Year={2015}>-1<Country={'Germany'}>}Sales)

Sum({$<Year={2015}>*1<Country={'Germany'}>}Sales)

KPIs using operators

Set expression tutorial data
Load script
Load the following data as an inline load and then create the chart expressions in the tutorial.

//Create table SalesByCountry

SalesByCountry:

Load * Inline [

Country, Year, Sales

Argentina, 2016, 66295.03

Argentina, 2015, 140037.89

Austria, 2016, 54166.09

Austria, 2015, 182739.87

Script syntax and chart functions - Qlik Sense, May 2023 306

3 Chart expressions

Belgium, 2016, 182766.87

Belgium, 2015, 178042.33

Brazil, 2016, 174492.67

Brazil, 2015, 2104.22

Canada, 2016, 101801.33

Canada, 2015, 40288.25

Denmark, 2016, 45273.25

Denmark, 2015, 106938.41

Finland, 2016, 107565.55

Finland, 2015, 30583.44

France, 2016, 115644.26

France, 2015, 30696.98

Germany, 2016, 8775.18

Germany, 2015, 77185.68

];

Syntax for set expressions
The full syntax (not including the optional use of standard brackets to define precedence) is described using
Backus-Naur Formalism:

set_expression ::= { set_entity { set_operator set_entity } }
set_entity ::= set_identifier [set_modifier] | set_modifier
set_identifier ::= 1 | $ | $N | $_N | bookmark_id | bookmark_name
set_operator ::= + | - | * | /
set_modifier ::= < field_selection {, field_selection } >
field_selection ::= field_name [= | += | –= | *= | /=] element_set_

expression
element_set_expression ::= [-] element_set { set_operator element_set }
element_set ::= [field_name] | { element_list } | element_function
element_list ::= element { , element }
element_function ::= (P | E) ([set_expression] [field_name])
element ::= field_value | " search_mask "

3.3 General syntax for chart expressions
The following general syntax structure can be used for chart expressions, with many optional parameters:

expression ::= (constant | expressionname | operator1 expression | expression operator2

expression | function | aggregation function | (expression))

where:

constant is a string (a text, a date or a time) enclosed by single straight quotation marks, or a number.
Constants are written without thousands separator and with a decimal point as decimal separator.

expressionname is the name (label) of another expression in the same chart.

operator1 is a unary operator (working on one expression, the one to the right).

operator2 is a binary operator (working on two expressions, one on each side).

function ::= functionname (parameters)

parameters ::= expression { , expression }

The number and types of parameters are not arbitrary. They depend on the function used.

Script syntax and chart functions - Qlik Sense, May 2023 307

3 Chart expressions

aggregationfunction ::= aggregationfunctionname (parameters2)

parameters2 ::= aggrexpression { , aggrexpression }

The number and types of parameters are not arbitrary. They depend on the function used.

3.4 General syntax for aggregations
The following general syntax structure can be used for aggregations, with many optional parameters:

aggrexpression ::= (fieldref | operator1 aggrexpression | aggrexpression operator2

aggrexpression | functioninaggr | (aggrexpression))

fieldref is a field name.

functionaggr ::= functionname (parameters2)

Expressions and functions can thus be nested freely, as long as fieldref is always enclosed by exactly one
aggregation function and provided the expression returns an interpretable value, Qlik Sense does not give any
error messages.

Script syntax and chart functions - Qlik Sense, May 2023 308

4 Operators

4 Operators
This section describes the operators that can be used in Qlik Sense. There are two types of operators:

l Unary operators (take only one operand)
l Binary operators (take two operands)

Most operators are binary.

The following operators can be defined:

l Bit operators
l Logical operators
l Numeric operators
l Relational operators
l String operators

4.1 Bit operators
All bit operators convert (truncate) the operands to signed integers (32 bit) and return the result
in the same way. All operations are performed bit by bit. If an operand cannot be interpreted as
a number, the operation will return NULL.

Operator Full name Description

bitnot Bit inverse. Unary operator. The operation returns the logical inverse of the operand
performed bit by bit.

Example:

bitnot 17 returns -18

bitand Bit and. The operation returns the logical AND of the operands performed bit by bit.

Example:

17 bitand 7 returns 1

bitor Bit or. The operation returns the logical OR of the operands performed bit by bit.

Example:

17 bitor 7 returns 23

Bit operators

Script syntax and chart functions - Qlik Sense, May 2023 309

4 Operators

Operator Full name Description

bitxor Bit
exclusive
or.

The operation returns the logical exclusive or of the operands performed bit
by bit.

Example:

17 bitxor 7 returns 22

>> Bit right
shift.

The operation returns the first operand shifted to the right. The number of
steps is defined in the second operand.

Example:

8 >> 2 returns 2

<< Bit left
shift.

The operation returns the first operand shifted to the left. The number of
steps is defined in the second operand.

Example:

8 << 2 returns 32

4.2 Logical operators
All logical operators interpret the operands logically and return True (-1) or False (0) as result.

Operator Description

not Logical inverse. One of the few unary operators. The operation returns the
logical inverse of the operand.

and Logical and. The operation returns the logical and of the operands.

or Logical or. The operation returns the logical or of the operands.

Xor Logical exclusive or. The operation returns the logical exclusive or of the
operands. I.e. like logical or, but with the difference that the result is False if
both operands are True.

Logical operators

4.3 Numeric operators
All numeric operators use the numeric values of the operands and return a numeric value as
result.

Script syntax and chart functions - Qlik Sense, May 2023 310

4 Operators

Operator Description

+ Sign for positive number (unary operator) or arithmetic addition. The binary
operation returns the sum of the two operands.

- Sign for negative number (unary operator) or arithmetic subtraction. The unary
operation returns the operand multiplied by -1, and the binary the difference
between the two operands.

* Arithmetic multiplication. The operation returns the product of the two
operands.

/ Arithmetic division. The operation returns the ratio between the two operands.

Numeric operators

4.4 Relational operators
All relational operators compare the values of the operands and return True (-1) or False (0) as
the result. All relational operators are binary.

Operator Description

< Less than. A numeric comparison is made if both operands can be
interpreted numerically. The operation returns the logical value of
the evaluation of the comparison.

<= Less than or equal. A numeric comparison is made if both operands
can be interpreted numerically. The operation returns the logical
value of the evaluation of the comparison.

> Greater than. A numeric comparison is made if both operands can be
interpreted numerically. The operation returns the logical value of
the evaluation of the comparison.

>= Greater than or equal. A numeric comparison is made if both
operands can be interpreted numerically. The operation returns the
logical value of the evaluation of the comparison.

= Equals. A numeric comparison is made if both operands can be
interpreted numerically. The operation returns the logical value of
the evaluation of the comparison.

<> Not equivalent to. A numeric comparison is made if both operands
can be interpreted numerically. The operation returns the logical
value of the evaluation of the comparison.

Relational operators

Script syntax and chart functions - Qlik Sense, May 2023 311

4 Operators

Operator Description

precedes Unlike the < operator no attempt is made to make a numeric
interpretation of the argument values before the comparison. The
operation returns true if the value to the left of the operator has a
text representation which, in string comparison, comes before the
text representation of the value on the right.

Example:

'1 ' precedes ' 2' returns FALSE

' 1' precedes ' 2' returns TRUE

as the ASCII value of a space (' ') is of less value than the ASCII value
of a number.

Compare this to:

'1 ' < ' 2' returns TRUE

' 1' < ' 2' returns TRUE

follows Unlike the > operator no attempt is made to make a numeric
interpretation of the argument values before the comparison. The
operation returns true if the value to the left of the operator has a
text representation which, in string comparison, comes after the text
representation of the value on the right.

Example:

' 2' follows '1 ' returns FALSE

' 2' follows ' 1' returns TRUE

as the ASCII value of a space (' ') is of less value than the ASCII value
of a number.

Compare this to:

' 2' > ' 1' returns TRUE

' 2' > '1 ' returns TRUE

4.5 String operators
There are two string operators. One uses the string values of the operands and return a string as
result. The other one compares the operands and returns a boolean value to indicate match.

Script syntax and chart functions - Qlik Sense, May 2023 312

4 Operators

&
String concatenation. The operation returns a text string, that consists of the two operand strings, one after
another.

Example:

'abc' & 'xyz' returns 'abcxyz'

like
String comparison with wildcard characters. The operation returns a boolean True (-1) if the string before the
operator is matched by the string after the operator. The second string may contain the wildcard characters *
(any number of arbitrary characters) or ? (one arbitrary character).

Example:

'abc' like 'a*' returns True (-1)

'abcd' like 'a?c*' returns True (-1)

'abc' like 'a??bc' returns False (0)

Script syntax and chart functions - Qlik Sense, May 2023 313

5 Script and chart functions

5 Script and chart functions
Transform and aggregate data using functions in data load scripts and chart expressions.

Many functions can be used in the same way in both data load scripts and chart expressions, but there are a
number of exceptions:

l Some functions can only be used in data load scripts, denoted by - script function.
l Some functions can only be used in chart expressions, denoted by - chart function.
l Some functions can be used in both data load scripts and chart expressions, but with differences in

parameters and application. These are described in separate topics denoted by - script function or -
chart function.

5.1 Analytic connections for server-side extensions (SSE)
Functions enabled by analytic connections will only be visible if you have configured the analytic connections
and Qlik Sense has started.

You configure the analytic connections in the QMC, see the topic " Creating an analytic connection" in the
guide Manage Qlik Sense sites.

In Qlik Sense Desktop, you configure the analytic connections by editing the Settings.ini file, see the topic "
Configuring analytic connections in Qlik Sense Desktop" in the guide Qlik Sense Desktop.

5.2 Aggregation functions
The family of functions known as aggregation functions consists of functions that take multiple
field values as their input and return a single result per group, where the grouping is defined by
a chart dimension or a group by clause in the script statement.

Aggregation functions include Sum(), Count(), Min(), Max(), and many more.

Most aggregation functions can be used in both the data load script and chart expressions, but the syntax
differs.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

When naming an entity, avoid assigning the same name to more than one field, variable, or measure. There is
a strict order of precedence for resolving conflicts between entities with identical names. This order is
reflected in any objects or contexts in which these entities are used. This order of precedence is as follows:

l Inside an aggregation, a field has precedence over a variable. Measure labels are not relevant in
aggregations and are not prioritized.

Script syntax and chart functions - Qlik Sense, May 2023 314

5 Script and chart functions

l Outside an aggregation, a measure label has precedence over a variable, which in turn has precedence
over a field name.

l Additionally, outside an aggregation, a measure can be re-used by referencing its label, unless the label
is in fact a calculated one. In that situation, the measure drops in significance in order to reduce risk of
self-reference, and in this case the name will always be interpreted first as a measure label, second as
a field name, and third as a variable name.

Using aggregation functions in a data load script
Aggregation functions can only be used inside LOAD and SELECT statements.

Using aggregation functions in chart expressions
The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

An aggregation function aggregates over the set of possible records defined by the selection. However, an
alternative set of records can be defined by using a set expression in set analysis.

How aggregations are calculated
An aggregation loops over the records of a specific table, aggregating the records in it. For example, Count
(<Field>) will count the number of records in the table where <Field> resides. Should you want to aggregate
just the distinct field values, you need to use the distinct clause, such as Count(distinct <Field>).

If the aggregation function contains fields from different tables, the aggregation function will loop over the
records of the cross product of the tables of the constituent fields. This has a performance penalty, and for
this reason such aggregations should be avoided, particularly when you have large amounts of data.

Aggregation of key fields
The way aggregations are calculated means that you cannot aggregate key fields because it is not clear which
table should be used for the aggregation. For example, if the field <Key> links two tables, it is not clear
whether Count(<Key>) should return the number of records from the first or the second table.

However, if you use the distinct clause, the aggregation is well-defined and can be calculated.

So, if you use a key field inside an aggregation function without the distinct clause, Qlik Sense will return a
number which may be meaningless. The solution is to either use the distinct clause, or use a copy of the key –
a copy that resides in one table only.

For example, in the following tables, ProductID is the key between the tables.

ProductID key between Products and Details tables

Script syntax and chart functions - Qlik Sense, May 2023 315

5 Script and chart functions

Count(ProductID) can be counted either in the Products table (which has only one record per product –
ProductID is the primary key) or it can be counted in the Details table (which most likely has several records
per product). If you want to count the number of distinct products, you should use Count(distinct ProductID).
If you want to count the number of rows in a specific table, you should not use the key.

Basic aggregation functions

Basic aggregation functions overview
Basic aggregation functions are a group of the most common aggregation functions.

Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Basic aggregation functions in the data load script
FirstSortedValue
FirstSortedValue() returns the value from the expression specified in value that corresponds to the result of
sorting the sort_weight argument, for example, the name of the product with the lowest unit price. The nth
value in the sort order, can be specified in rank. If more than one resulting value shares the same sort_weight
for the specified rank, the function returns NULL. The sorted values are iterated over a number of records, as
defined by a group by clause, or aggregated across the full data set if no group by clause is defined.

FirstSortedValue ([distinct] expression, sort_weight [, rank])

Script syntax and chart functions - Qlik Sense, May 2023 316

5 Script and chart functions

Max
Max() finds the highest numeric value of the aggregated data in the expression, as defined by a group by
clause. By specifying a rank n, the nth highest value can be found.

Max (expression[, rank])

Min
Min() returns the lowest numeric value of the aggregated data in the expression, as defined by a group by
clause. By specifying a rank n, the nth lowest value can be found.

Min (expression[, rank])

Mode
Mode() returns the most commonly-occurring value, the mode value, of the aggregated data in the
expression, as defined by a group by clause. The Mode() function can return numeric values as well as text
values.

Mode (expression)

Only
Only() returns a value if there is one and only one possible result from the aggregated data. If records contain
only one value then that value is returned, otherwise NULL is returned. Use the group by clause to evaluate
over multiple records. The Only() function can return numeric and text values.

Only (expression)

Sum
Sum() calculates the total of the values aggregated in the expression, as defined by a group by clause.
Sum ([distinct]expression)

Basic aggregation functions in chart expressions
Chart aggregation functions can only be used on fields in chart expressions. The argument expression of one
aggregation function must not contain another aggregation function.

FirstSortedValue
FirstSortedValue() returns the value from the expression specified in value that corresponds to the result of
sorting the sort_weight argument, for example, the name of the product with the lowest unit price. The nth
value in the sort order, can be specified in rank. If more than one resulting value shares the same sort_weight
for the specified rank, the function returns NULL.

FirstSortedValue - chart function([{SetExpression}] [DISTINCT] [TOTAL [<fld

{,fld}>]] value, sort_weight [,rank])

Max
Max() finds the highest value of the aggregated data. By specifying a rank n, the nth highest value can be
found.
Max - chart functionMax() finds the highest value of the aggregated data. By
specifying a rank n, the nth highest value can be found. You might also want
to look at FirstSortedValue and rangemax, which have similar functionality to
the Max function. Max([{SetExpression}] [TOTAL [<fld {,fld}>]] expr [,rank])

Script syntax and chart functions - Qlik Sense, May 2023 317

#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2

5 Script and chart functions

numeric ArgumentsArgumentDescriptionexprThe expression or field containing
the data to be measured.rankThe default value of rank is 1, which corresponds
to the highest value. By specifying rank as 2, the second highest value is
returned. If rank is 3, the third highest value is returned, and so
on.SetExpressionBy default, the aggregation function will aggregate over the
set of possible records defined by the selection. An alternative set of
records can be defined by a set analysis expression. TOTALIf the word TOTAL
occurs before the function arguments, the calculation is made over all
possible values given the current selections, and not just those that pertain
to the current dimensional value, that is, it disregards the chart
dimensions. By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is
followed by a list of one or more field names as a subset of the chart
dimension variables, you create a subset of the total possible
values. DataCustomerProductUnitSalesUnitPrice
AstridaAA416AstridaAA1015AstridaBB99BetacabBB510BetacabCC220BetacabDD-
25CanutilityAA815CanutilityCC-19Examples and resultsExamplesResultsMax
(UnitSales)10, because this is the highest value in UnitSales.The value of an
order is calculated from the number of units sold in (UnitSales) multiplied
by the unit price.Max(UnitSales*UnitPrice)150, because this is the highest
value of the result of calculating all possible values of (UnitSales)*
(UnitPrice).Max(UnitSales, 2)9, which is the second highest value.Max
(TOTAL UnitSales)10, because the TOTAL qualifier means the highest possible
value is found, disregarding the chart dimensions. For a chart with Customer
as dimension, the TOTAL qualifier will ensure the maximum value across the
full dataset is returned, instead of the maximum UnitSales for each
customer.Make the selection Customer B.Max({1} TOTAL UnitSales)10,
independent of the selection made, because the Set Analysis expression {1}
defines the set of records to be evaluated as ALL, no matter what selection
is made.Data used in examples:ProductData:LOAD * inline
[Customer|Product|UnitSales|UnitPriceAstrida|AA|4|16Astrida|AA|10|15Astrida|B
B|9|9Betacab|BB|5|10Betacab|CC|2|20Betacab|DD||25Canutility|AA|8|15Canutility
|CC||19] (delimiter is '|'); FirstSortedValue RangeMax ([{SetExpression}]
[DISTINCT] [TOTAL [<fld {,fld}>]] expr [,rank])

Min
Min() finds the lowest value of the aggregated data. By specifying a rank n, the nth lowest value can be found.

Min - chart function([{SetExpression}] [DISTINCT] [TOTAL [<fld {,fld}>]] expr

[,rank])

Mode
Mode() finds the most commonly-occurring value, the mode value, in the aggregated data. The Mode()
function can process text values as well as numeric values.

Mode - chart function ({[SetExpression] [TOTAL [<fld {,fld}>]]} expr)

Script syntax and chart functions - Qlik Sense, May 2023 318

#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2

5 Script and chart functions

Only
Only() returns a value if there is one and only one possible result from the aggregated data. For example,
searching for the only product where the unit price =9 will return NULL if more than one product has a unit
price of 9.

Only - chart function([{SetExpression}] [DISTINCT] [TOTAL [<fld {,fld}>]]

expr)

Sum
Sum() calculates the total of the values given by the expression or field across the aggregated data.

Sum - chart function([{SetExpression}] [DISTINCT] [TOTAL [<fld {,fld}>]]

expr])

FirstSortedValue
FirstSortedValue() returns the value from the expression specified in value that corresponds to the result of
sorting the sort_weight argument, for example, the name of the product with the lowest unit price. The nth
value in the sort order, can be specified in rank. If more than one resulting value shares the same sort_weight
for the specified rank, the function returns NULL. The sorted values are iterated over a number of records, as
defined by a group by clause, or aggregated across the full data set if no group by clause is defined.

Syntax:
FirstSortedValue ([distinct] value, sort-weight [, rank])

Return data type: dual

Arguments:

Argument Description

value
Expression

The function finds the value of the expression value that corresponds to the result of
sorting sort_weight.

sort-weight
Expression

The expression containing the data to be sorted. The first (lowest) value of sort_weight is
found, from which the corresponding value of the value expression is determined. If you
place a minus sign in front of sort_weight, the function returns the last (highest) sorted
value instead.

rank
Expression

By stating a rank "n" larger than 1, you get the nth sorted value.

distinct If the word DISTINCT occurs before the function arguments, duplicates resulting from the
evaluation of the function arguments are disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

Script syntax and chart functions - Qlik Sense, May 2023 319

5 Script and chart functions

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Example Result

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|CustomerID

Astrida|AA|1|10|1

Astrida|AA|7|18|1

Astrida|BB|4|9|1

Astrida|CC|6|2|1

Betacab|AA|5|4|2

Betacab|BB|2|5|2

Betacab|DD|12|25|2

Canutility|AA|3|8|3

Canutility|CC|13|19|3

Divadip|AA|9|16|4

Divadip|AA|10|16|4

Divadip|DD|11|10|4

] (delimiter is '|');

FirstSortedValue:

LOAD Customer,FirstSortedValue(Product, UnitSales)

as MyProductWithSmallestOrderByCustomer Resident

Temp Group By Customer;

Customer

MyProductWithSmallestOrderByCustomer

Astrida CC

Betacab AA

Canutility AA

Divadip DD

The function sorts UnitSales from smallest
to largest, looking for the value of Customer
with the smallest value of UnitSales, the
smallest order.

Because CC corresponds to the smallest
order (value of UnitSales=2) for customer
Astrida. AA corresponds to the smallest
order (4) for customer Betacab, AA
corresponds to the smallest order (8) for
customer Canutility, and DD corresponds to
the smallest order (10) for customer
Divadip..

Given that the Temp table is loaded as in the previous
example:

LOAD Customer,FirstSortedValue(Product, -UnitSales)

as MyProductWithLargestOrderByCustomer Resident

Temp Group By Customer;

Customer

MyProductWithLargestOrderByCustomer

Astrida AA

Betacab DD

Canutility CC

Divadip -

A minus sign precedes the sort_weight
argument, so the function sorts the largest
first.

Because AA corresponds to the largest order
(value of UnitSales:18) for customer Astrida,
DD corresponds to the largest order (12) for
customer Betacab, and CC corresponds to
the largest order (13) for customer
Canutility. There are two identical values for
the largest order (16) for customer Divadip,
therefore this produces a null result.

Scripting examples

Script syntax and chart functions - Qlik Sense, May 2023 320

5 Script and chart functions

Example Result

Given that the Temp table is loaded as in the previous
example:

LOAD Customer,FirstSortedValue(distinct Product, -

UnitSales) as MyProductWithSmallestOrderByCustomer

Resident Temp Group By Customer;

Customer

MyProductWithLargestOrderByCustomer

Astrida AA

Betacab DD

Canutility CC

Divadip AA

This is the same as the previous example,
except the distinct qualifier is used. This
causes the duplicate result for Divadip to be
disregarded, allowing a non-null value to be
returned.

FirstSortedValue - chart function
FirstSortedValue() returns the value from the expression specified in value that corresponds to the result of
sorting the sort_weight argument, for example, the name of the product with the lowest unit price. The nth
value in the sort order, can be specified in rank. If more than one resulting value shares the same sort_weight
for the specified rank, the function returns NULL.

Syntax:
FirstSortedValue([{SetExpression}] [DISTINCT] [TOTAL [<fld {,fld}>]] value,

sort_weight [,rank])

Return data type: dual

Arguments:

Argument Description

value Output field. The function finds the value of the expression value that corresponds to
the result of sorting sort_weight.

sort_weight Input field. The expression containing the data to be sorted. The first (lowest) value of
sort_weight is found, from which the corresponding value of the value expression is
determined. If you place a minus sign in front of sort_weight, the function returns the
last (highest) sorted value instead.

rank By stating a rank "n" larger than 1, you get the nth sorted value.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 321

5 Script and chart functions

Argument Description

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Examples and results:

Customer Product UnitSales UnitPrice

Astrida AA 4 16

Astrida AA 10 15

Astrida BB 9 9

Betacab BB 5 10

Betacab CC 2 20

Betacab DD - 25

Canutility AA 8 15

Canutility CC - 19

Data

Example Result

firstsortedvalue (Product,

UnitPrice)
BB, which is the Productwith the lowest UnitPrice(9).

firstsortedvalue (Product,

UnitPrice, 2)
BB, which is the Productwith the second-lowest UnitPrice(10).

firstsortedvalue (Customer, -

UnitPrice, 2)
Betacab, which is the Customerwith the Product that has second-
highest UnitPrice(20).

firstsortedvalue (Customer,

UnitPrice, 3)
NULL, because there are two values of Customer (Astrida and
Canutility) with the samerank (third-lowest) UnitPrice(15).

Use the distinct qualifier to make sure unexpected null results do not
occur.

firstsortedvalue (Customer, -

UnitPrice*UnitSales, 2)
Canutility, which is the Customer with the second-highest sales order
value UnitPrice multiplied by UnitSales (120).

Examples and results

Data used in examples:

Script syntax and chart functions - Qlik Sense, May 2023 322

5 Script and chart functions

ProductData:

LOAD * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|CC|2|20

Betacab|DD||25

Canutility|AA|8|15

Canutility|CC||19

] (delimiter is '|');

Max
Max() finds the highest numeric value of the aggregated data in the expression, as defined by a group by
clause. By specifying a rank n, the nth highest value can be found.

Syntax:
Max (expr [, rank])

Return data type: numeric

Arguments:

Argument Description

expr
Expression

The expression or field containing the data to be measured.

rank
Expression

The default value of rank is 1, which corresponds to the highest value. By specifying rank
as 2, the second highest value is returned. If rank is 3, the third highest value is returned,
and so on.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Example:

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|CustomerID

Astrida|AA|1|10|1

Astrida|AA|7|18|1

Astrida|BB|4|9|1

Astrida|CC|6|2|1

Betacab|AA|5|4|2

Betacab|BB|2|5|2

Script syntax and chart functions - Qlik Sense, May 2023 323

5 Script and chart functions

Betacab|DD

Canutility|DD|3|8

Canutility|CC

] (delimiter is '|');

Max:

LOAD Customer, Max(UnitSales) as MyMax Resident Temp Group By Customer;

Customer MyMax

Astrida 18

Betacab 5

Canutility 8

Resulting table

Example:

Given that the Temp table is loaded as in the previous example:

LOAD Customer, Max(UnitSales,2) as MyMaxRank2 Resident Temp Group By Customer;

Customer MyMaxRank2

Astrida 10

Betacab 4

Canutility -

Resulting table

Max - chart function
Max() finds the highest value of the aggregated data. By specifying a rank n, the nth highest value can be
found.

You might also want to look at FirstSortedValue and rangemax, which have similar functionality to
the Max function.

Syntax:
Max([{SetExpression}] [TOTAL [<fld {,fld}>]] expr [,rank])

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 324

5 Script and chart functions

Argument Description

rank The default value of rank is 1, which corresponds to the highest value. By specifying
rank as 2, the second highest value is returned. If rank is 3, the third highest value is
returned, and so on.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Examples and results:

Customer Product UnitSales UnitPrice

Astrida AA 4 16

Astrida AA 10 15

Astrida BB 9 9

Betacab BB 5 10

Betacab CC 2 20

Betacab DD - 25

Canutility AA 8 15

Canutility CC - 19

Data

Examples Results

Max(UnitSales) 10, because this is the highest value in UnitSales.

Examples and results

Script syntax and chart functions - Qlik Sense, May 2023 325

5 Script and chart functions

Examples Results

The value of an order is
calculated from the
number of units sold in
(UnitSales) multiplied by
the unit price.

Max

(UnitSales*UnitPrice)

150, because this is the highest value of the result of calculating all possible
values of (UnitSales)*(UnitPrice).

Max(UnitSales, 2) 9, which is the second highest value.

Max(TOTAL UnitSales) 10, because the TOTAL qualifier means the highest possible value is found,
disregarding the chart dimensions. For a chart with Customer as dimension,
the TOTAL qualifier will ensure the maximum value across the full dataset is
returned, instead of the maximum UnitSales for each customer.

Make the selection
Customer B.

Max({1}

TOTAL UnitSales)

10, independent of the selection made, because the Set Analysis expression
{1} defines the set of records to be evaluated as ALL, no matter what
selection is made.

Data used in examples:

ProductData:

LOAD * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|CC|2|20

Betacab|DD||25

Canutility|AA|8|15

Canutility|CC||19

] (delimiter is '|');

See also:

p FirstSortedValue - chart function (page 321)
p RangeMax (page 1304)

Min

Min() returns the lowest numeric value of the aggregated data in the expression, as defined by a
group by clause. By specifying a rank n, the nth lowest value can be found.

Syntax:
Min (expr [, rank])

Script syntax and chart functions - Qlik Sense, May 2023 326

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

expr
Expression

The expression or field containing the data to be measured.

rank
Expression

The default value of rank is 1, which corresponds to the lowest value. By specifying rank as
2, the second lowest value is returned. If rank is 3, the third lowest value is returned, and
so on.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Example:

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|CustomerID

Astrida|AA|1|10|1

Astrida|AA|7|18|1

Astrida|BB|4|9|1

Astrida|CC|6|2|1

Betacab|AA|5|4|2

Betacab|BB|2|5|2

Betacab|DD

Canutility|DD|3|8

Canutility|CC

] (delimiter is '|');

Min:

LOAD Customer, Min(UnitSales) as MyMin Resident Temp Group By Customer;

Customer MyMin

Astrida 2

Betacab 4

Canutility 8

Resulting table

Example:

Given that the Temp table is loaded as in the previous example:

Script syntax and chart functions - Qlik Sense, May 2023 327

5 Script and chart functions

LOAD Customer, Min(UnitSales,2) as MyMinRank2 Resident Temp Group By Customer;

Customer MyMinRank2

Astrida 9

Betacab 5

Canutility -

Resulting table

Min - chart function
Min() finds the lowest value of the aggregated data. By specifying a rank n, the nth lowest value can be found.

You might also want to look at FirstSortedValue and rangemin, which have similar functionality to
the Min function.

Syntax:
Min({[SetExpression] [TOTAL [<fld {,fld}>]]} expr [,rank])

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

rank The default value of rank is 1, which corresponds to the lowest value. By specifying
rank as 2, the second lowest value is returned. If rank is 3, the third lowest value is
returned, and so on.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 328

5 Script and chart functions

Examples and results:

Customer Product UnitSales UnitPrice

Astrida AA 4 16

Astrida AA 10 15

Astrida BB 9 9

Betacab BB 5 10

Betacab CC 2 20

Betacab DD - 25

Canutility AA 8 15

Canutility CC - 19

Data

The Min() function must return a non-NULL value from the array of values given by the expression, if
there is one. So in the examples, because there are NULL values in the data, the function returns the
first non-NULL value evaluated from the expression.

Examples Results

Min(UnitSales) 2, because this is the lowest non-NULL value in UnitSales.

The value of an order is
calculated from the
number of units sold in
(UnitSales) multiplied by
the unit price.

Min

(UnitSales*UnitPrice)

40, because this is the lowest non-NULL value result of calculating all
possible values of (UnitSales)*(UnitPrice).

Min(UnitSales, 2) 4, which is the second lowest value (after the NULL values).

Min(TOTAL UnitSales) 2, because the TOTAL qualifier means the lowest possible value is found,
disregarding the chart dimensions. For a chart with Customer as dimension,
the TOTAL qualifier will ensure the minimum value across the full dataset is
returned, instead of the minimum UnitSales for each customer.

Make the selection
Customer B.

Min({1}

TOTAL UnitSales)

2, which is independent of the selection of Customer B.

The Set Analysis expression {1} defines the set of records to be evaluated as
ALL, no matter what selection is made.

Examples and results

Script syntax and chart functions - Qlik Sense, May 2023 329

5 Script and chart functions

Data used in examples:

ProductData:

LOAD * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|CC|2|20

Betacab|DD||25

Canutility|AA|8|15

Canutility|CC||19

] (delimiter is '|');

See also:

p FirstSortedValue - chart function (page 321)
p RangeMin (page 1307)

Mode

Mode() returns the most commonly-occurring value, the mode value, of the aggregated data in
the expression, as defined by a group by clause. The Mode() function can return numeric values
as well as text values.

Syntax:
Mode (expr)

Return data type: dual

Argument Description

expr Expression The expression or field containing the data to be measured.

Arguments

Limitations:

If more than one value is equally commonly occurring, NULL is returned.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Script syntax and chart functions - Qlik Sense, May 2023 330

5 Script and chart functions

Example Result

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|CustomerID

Astrida|AA|1|10|1

Astrida|AA|7|18|1

Astrida|BB|4|9|1

Astrida|CC|6|2|1

Betacab|AA|5|4|2

Betacab|BB|2|5|2

Betacab|DD

Canutility|DD|3|8

Canutility|CC

] (delimiter is '|');

Mode:

LOAD Customer, Mode(Product) as MyMostOftenSoldProduct

Resident Temp Group By Customer;

MyMostOftenSoldProduct

AA

because AA is the only product
sold more than once.

Scripting examples

Mode - chart function
Mode() finds the most commonly-occurring value, the mode value, in the aggregated data. The Mode()
function can process text values as well as numeric values.

Syntax:
Mode({[SetExpression] [TOTAL [<fld {,fld}>]]} expr)

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 331

5 Script and chart functions

Examples and results:

Customer Product UnitSales UnitPrice

Astrida AA 4 16

Astrida AA 10 15

Astrida BB 9 9

Betacab BB 5 10

Betacab CC 2 20

Betacab DD - 25

Canutility AA 8 15

Canutility CC - 19

Data

Examples Results

Mode(UnitPrice)

Make the selection
Customer A.

15, because this is the most commonly-occurring value in UnitSales.

Returns NULL (-). No single value occurs more often than another.

Mode(Product)

Make the selection
Customer A

AA, because this is the most commonly occurring value in Product.

Returns NULL (-). No single value occurs more often than another.

Mode

(TOTAL UnitPrice)
15, because the TOTAL qualifier means the most commonly occurring value is still
15, even disregarding the chart dimensions.

Make the selection
Customer B.

Mode({1}

TOTAL UnitPrice)

15, independent of the selection made, because the Set Analysis expression {1}
defines the set of records to be evaluated as ALL, no matter what selection is
made.

Examples and results

Data used in examples:

ProductData:

LOAD * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|CC|2|20

Betacab|DD||25

Canutility|AA|8|15

Canutility|CC||19

Script syntax and chart functions - Qlik Sense, May 2023 332

5 Script and chart functions

] (delimiter is '|');

See also:

p Avg - chart function (page 390)
p Median - chart function (page 427)

Only

Only() returns a value if there is one and only one possible result from the aggregated data. If
records contain only one value then that value is returned, otherwise NULL is returned. Use the
group by clause to evaluate over multiple records. The Only() function can return numeric and
text values.

Syntax:
Only (expr)

Return data type: dual

Argument Description

expr Expression The expression or field containing the data to be measured.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|CustomerID

Astrida|AA|1|10|1

Astrida|AA|7|18|1

Astrida|BB|4|9|1

Astrida|CC|6|2|1

Betacab|AA|5|4|2

Betacab|BB|2|5|2

Betacab|DD

Canutility|DD|3|8

Canutility|CC

] (delimiter is '|');

Only:

LOAD Customer, Only(CustomerID) as MyUniqIDCheck Resident Temp Group By Customer;

Script syntax and chart functions - Qlik Sense, May 2023 333

5 Script and chart functions

Customer MyUniqIDCheck

Astrida 1

because only customer Astrida has complete records that include CustomerID.

Resulting table

Only - chart function
Only() returns a value if there is one and only one possible result from the aggregated data. For example,
searching for the only product where the unit price =9 will return NULL if more than one product has a unit
price of 9.

Syntax:
Only([{SetExpression}] [TOTAL [<fld {,fld}>]] expr)

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Arguments

Use Only() when you want a NULL result if there are multiple possible values in the sample data.

Examples and results:

Customer Product UnitSales UnitPrice

Astrida AA 4 16

Astrida AA 10 15

Data

Script syntax and chart functions - Qlik Sense, May 2023 334

5 Script and chart functions

Customer Product UnitSales UnitPrice

Astrida BB 9 9

Betacab BB 5 10

Betacab CC 2 20

Betacab DD - 25

Canutility AA 8 15

Canutility CC - 19

Examples Results

Only({<UnitPrice=

{9}>} Product)
BB, because this is the only Productthat has a UnitPrice of '9'.

Only({<Product={DD}>}

Customer)
Betacab, because it is the only Customer selling a Product called 'DD'.

Only({<UnitPrice=

{20}>} UnitSales)
The number of UnitSales where UnitPrice is 20 is 2, because there is only one
value of UnitSales where the UnitPrice =20.

Only({<UnitPrice=

{15}>} UnitSales)
NULL, because there are two values of UnitSales where the UnitPrice =15.

Examples and results

Data used in examples:

ProductData:

LOAD * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|CC|2|20

Betacab|DD||25

Canutility|AA|8|15

Canutility|CC||19

] (delimiter is '|');

Sum

Sum() calculates the total of the values aggregated in the expression, as defined by a group by
clause.

Syntax:
sum ([distinct] expr)

Script syntax and chart functions - Qlik Sense, May 2023 335

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

distinct If the word distinct occurs before the expression, all duplicates will be disregarded.

expr Expression The expression or field containing the data to be measured.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|CustomerID

Astrida|AA|1|10|1

Astrida|AA|7|18|1

Astrida|BB|4|9|1

Astrida|CC|6|2|1

Betacab|AA|5|4|2

Betacab|BB|2|5|2

Betacab|DD

Canutility|DD|3|8

Canutility|CC

] (delimiter is '|');

Sum:

LOAD Customer, Sum(UnitSales) as MySum Resident Temp Group By Customer;

Customer MySum

Astrida 39

Betacab 9

Canutility 8

Resulting table

Sum - chart function
Sum() calculates the total of the values given by the expression or field across the aggregated data.

Syntax:
Sum([{SetExpression}] [DISTINCT] [TOTAL [<fld {,fld}>]] expr])

Script syntax and chart functions - Qlik Sense, May 2023 336

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

Although the DISTINCT qualifier is supported, use it only with extreme caution
because it may mislead the reader into thinking a total value is shown when
some data has been omitted.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Arguments

Examples and results:

Customer Product UnitSales UnitPrice

Astrida AA 4 16

Astrida AA 10 15

Astrida BB 9 9

Betacab BB 5 10

Betacab CC 2 20

Betacab DD - 25

Canutility AA 8 15

Canutility CC - 19

Data

Script syntax and chart functions - Qlik Sense, May 2023 337

5 Script and chart functions

Examples Results

Sum(UnitSales) 38. The total of the values in UnitSales.

Sum(UnitSales*UnitPrice) 505. The total of UnitPrice multiplied by UnitSales aggregated.

Sum

(TOTAL UnitSales*UnitPrice)
505 for all rows in the table as well as the total, because the TOTAL
qualifier means the sum is still 505, disregarding the chart dimensions.

Make the selection Customer B.

Sum({1}

TOTAL UnitSales*UnitPrice)

505, independent of the selection made, because the Set Analysis
expression {1} defines the set of records to be evaluated as ALL, no
matter what selection is made.

Examples and results

Data used in examples:

ProductData:

LOAD * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|CC|2|20

Betacab|DD||25

Canutility|AA|8|15

Canutility|CC||19

] (delimiter is '|');

Counter aggregation functions
Counter aggregation functions return various types of counts of an expression over a number of records in a
data load script, or a number of values in a chart dimension.

Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Counter aggregation functions in the data load script
Count
Count() returns the number of values aggregated in expression, as defined by a group by clause.

Count ([distinct] expression | *)

MissingCount
MissingCount() returns the number of missing values aggregated in the expression, as defined by a group by
clause.

MissingCount ([distinct] expression)

Script syntax and chart functions - Qlik Sense, May 2023 338

5 Script and chart functions

NullCount
NullCount() returns the number of NULL values aggregated in the expression, as defined by a group by
clause.

NullCount ([distinct] expression)

NumericCount
NumericCount() returns the number of numeric values found in the expression, as defined by a group by
clause.

NumericCount ([distinct] expression)

TextCount
TextCount() returns the number of field values that are non-numeric aggregated in the expression, as defined
by a group by clause.

TextCount ([distinct] expression)

Counter aggregation functions in chart expressions
The following counter aggregation functions can be used in charts:

Count
Count() is used to aggregate the number of values, text and numeric, in each chart dimension.

Count - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]}

expr)

MissingCount
MissingCount() is used to aggregate the number of missing values in each chart dimension. Missing values are
all non-numeric values.

MissingCount - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld

{,fld}>]] expr)

NullCount
NullCount() is used to aggregate the number of NULL values in each chart dimension.

NullCount - chart function({[SetExpression][DISTINCT] [TOTAL [<fld {,fld}>]]}

expr)

NumericCount
NumericCount() aggregates the number of numeric values in each chart dimension.

NumericCount - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld

{,fld}>]]} expr)

TextCount
TextCount() is used to aggregate the number of field values that are non-numeric in each chart dimension.

TextCount - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld

{,fld}>]]} expr)

Script syntax and chart functions - Qlik Sense, May 2023 339

5 Script and chart functions

Count

Count() returns the number of values aggregated in expression, as defined by a group by
clause.

Syntax:
Count([distinct] expr)

Return data type: integer

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates are disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Example Result

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|10|15

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB|1|25| 25

Canutility|AA|3|8|15

Canutility|CC|||19

Divadip|CC|2|4|16

Divadip|DD|3|1|25

] (delimiter is '|');

Count1:

LOAD Customer,Count(OrderNumber) as

OrdersByCustomer Resident Temp Group By Customer;

Customer OrdersByCustomer

Astrida 3

Betacab 3

Canutility 2

Divadip 2

As long as the dimension Customer is
included in the table on the sheet, otherwise
the result for OrdersByCustomer is 3, 2.

Scripting examples

Script syntax and chart functions - Qlik Sense, May 2023 340

5 Script and chart functions

Example Result

Given that the Temp table is loaded as in the previous
example:

LOAD Count(OrderNumber) as TotalOrderNumber

Resident Temp;

TotalOrderNumber

10

Given that the Temp table is loaded as in the first
example:

LOAD Count(distinct OrderNumber) as

TotalOrderNumber Resident Temp;

TotalOrderNumber

8

Because there are two values of
OrderNumber with the same value, 1, and
one null value.

Count - chart function
Count() is used to aggregate the number of values, text and numeric, in each chart dimension.

Syntax:
Count({[SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]} expr)

Return data type: integer

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 341

5 Script and chart functions

Examples and results:

Customer Product OrderNumber UnitSales Unit Price

Astrida AA 1 4 16

Astrida AA 7 10 15

Astrida BB 4 9 9

Betacab BB 6 5 10

Betacab CC 5 2 20

Betacab DD 1 25 25

Canutility AA 3 8 15

Canutility CC 19

Divadip AA 2 4 16

Divadip DD 3 25

Data

The following examples assume that all customers are selected, except where stated.

Example Result

Count(OrderNumber) 10, because there are 10 fields that could have a value for OrderNumber, and
all records, even empty ones, are counted.

"0" counts as a value and not an empty cell. However, if a
measure aggregates to 0 for a dimension, that dimension will not
be included in charts.

Count(Customer) 10, because Count evaluates the number of occurrences in all fields.

Count(DISTINCT

[Customer])
4, because using the Distinct qualifier, Count only evaluates unique
occurrences.

Given that customer
Canutility is selected

Count

(OrderNumber)/Count({1}

TOTAL OrderNumber)

0.2, because the expression returns the number of orders from the selected
customer as a percentage of orders from all customers. In this case 2 / 10.

Examples and results

Script syntax and chart functions - Qlik Sense, May 2023 342

5 Script and chart functions

Example Result

Given that customers
Astrida and Canutility are
selected

Count(TOTAL <Product>

OrderNumber)

5, because that is the number of orders placed on products for the selected
customers only and empty cells are counted.

Data used in examples:

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|10|15

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB|1|25| 25

Canutility|AA|3|8|15

Canutility|CC|||19

Divadip|CC|2|4|16

Divadip|DD|3|1|25

] (delimiter is '|');

MissingCount

MissingCount() returns the number of missing values aggregated in the expression, as defined
by a group by clause.

Syntax:
MissingCount ([distinct] expr)

Return data type: integer

Arguments:

Argument Description

expr Expression The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates are disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

Script syntax and chart functions - Qlik Sense, May 2023 343

5 Script and chart functions

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Example Result

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|10|15

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB||| 25

Canutility|AA|||15

Canutility|CC| ||19

Divadip|CC|2|4|16

Divadip|DD|3|1|25

] (delimiter is '|');

MissCount1:

LOAD Customer,MissingCount(OrderNumber) as

MissingOrdersByCustomer Resident Temp Group By Customer;

Load MissingCount(OrderNumber) as TotalMissingCount Resident

Temp;

Customer

MissingOrdersByCustomer

Astrida 0

Betacab 1

Canutility 2

Divadip 0

The second statement gives:

TotalMissingCount

3

in a table with that dimension.

Given that the Temp table is loaded as in the previous example:

LOAD MissingCount(distinct OrderNumber) as

TotalMissingCountDistinct Resident Temp;

TotalMissingCountDistinct

1

Because there is only
oneOrderNumber one missing
value.

Scripting examples

MissingCount - chart function
MissingCount() is used to aggregate the number of missing values in each chart dimension. Missing values are
all non-numeric values.

Syntax:
MissingCount({[SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]} expr)

Return data type: integer

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 344

5 Script and chart functions

Argument Description

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Examples and results:

Customer Product OrderNumber UnitSales Unit Price

Astrida AA 1 4 16

Astrida AA 7 10 15

Astrida BB 4 9 9

Betacab BB 6 5 10

Betacab CC 5 2 20

Betacab DD 25

Canutility AA 15

Canutility CC 19

Divadip AA 2 4 16

Divadip DD 3 25

Data

Script syntax and chart functions - Qlik Sense, May 2023 345

5 Script and chart functions

Example Result

MissingCount([OrderNumber]) 3 because 3 of the 10 OrderNumber fields are empty

"0" counts as a value and not an empty cell. However, if a
measure aggregates to 0 for a dimension, that dimension
will not be included in charts.

MissingCount

([OrderNumber])/MissingCount

({1} Total [OrderNumber])

The expression returns the number of incomplete orders from the
selected customer as a fraction of incomplete orders from all
customers. There is a total of 3 missing values for OrderNumber for
all customers. So, for each Customer that has a missing value for
Product the result is 1/3.

Examples and results

Data used in example:

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|10|15

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB||| 25

Canutility|AA|||15

Canutility|CC| ||19

Divadip|CC|2|4|16

Divadip|DD|3|1|25

] (delimiter is '|');

NullCount

NullCount() returns the number of NULL values aggregated in the expression, as defined by a
group by clause.

Syntax:
NullCount ([distinct] expr)

Return data type: integer

Arguments:

Argument Description

expr Expression The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates are disregarded.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 346

5 Script and chart functions

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Example Result

Set NULLINTERPRET = NULL;

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|CustomerID

Astrida|AA|1|10|1

Astrida|AA|7|18|1

Astrida|BB|4|9|1

Astrida|CC|6|2|1

Betacab|AA|5|4|2

Betacab|BB|2|5|2

Betacab|DD|||

Canutility|AA|3|8|

Canutility|CC|NULL||

] (delimiter is '|');

Set NULLINTERPRET=;

NullCount1:

LOAD Customer,NullCount(OrderNumber) as

NullOrdersByCustomer Resident Temp Group By

Customer;

LOAD NullCount(OrderNumber) as TotalNullCount

Resident Temp;

Customer NullOrdersByCustomer

Astrida 0

Betacab 0

Canutility 1

The second statement gives:

TotalNullCount

1

in a table with that dimension, because
only one record contains a null value.

Scripting examples

NullCount - chart function
NullCount() is used to aggregate the number of NULL values in each chart dimension.

Syntax:
NullCount({[SetExpression][DISTINCT] [TOTAL [<fld {,fld}>]]} expr)

Return data type: integer

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 347

5 Script and chart functions

Argument Description

set_
expression

By default, the aggregation function will aggregate over the set of possible records defined
by the selection. An alternative set of records can be defined by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from the
evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over all
possible values given the current selections, and not just those that pertain to the current
dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of the
total possible values.

Examples and results:

Example Result

NullCount
([OrderNumber])

1 because we have introduced a null value using NullInterpret in the inline LOAD
statement.

Examples and results

Data used in example:

Set NULLINTERPRET = NULL;

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|CustomerID

Astrida|AA|1|10|1

Astrida|AA|7|18|1

Astrida|BB|4|9|1

Astrida|CC|6|2|1

Betacab|AA|5|4|2

Betacab|BB|2|5|2

Betacab|DD|||

Canutility|AA|3|8|

Canutility|CC|NULL||

] (delimiter is '|');

Set NULLINTERPRET=;

NumericCount

NumericCount() returns the number of numeric values found in the expression, as defined by a
group by clause.

Syntax:
NumericCount ([distinct] expr)

Script syntax and chart functions - Qlik Sense, May 2023 348

5 Script and chart functions

Return data type: integer

Arguments:

Argument Description

expr Expression The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates are disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Example Result

LOAD NumericCount(OrderNumber) as

TotalNumericCount Resident Temp;
The second statement gives:
TotalNumericCount
7
in a table with that dimension.

Given that the Temp table is loaded as in the
previous example:

LOAD NumericCount(distinct OrderNumber) as

TotalNumeriCCountDistinct Resident Temp;

TotalNumericCountDistinct
6
Because there is one OrderNumber that duplicates
another, so the result is 6 that are not duplicates..

Scripting example

Example:

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|10|15

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB||| 25

Canutility|AA|||15

Canutility|CC| ||19

Divadip|CC|2|4|16

Divadip|DD|7|1|25

] (delimiter is '|');

NumCount1:

LOAD Customer,NumericCount(OrderNumber) as NumericCountByCustomer Resident Temp Group By

Customer;

Script syntax and chart functions - Qlik Sense, May 2023 349

5 Script and chart functions

Customer NumericCountByCustomer

Astrida 3

Betacab 2

Canutility 0

Divadip 2

Resulting table

NumericCount - chart function
NumericCount() aggregates the number of numeric values in each chart dimension.

Syntax:
NumericCount({[SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]} expr)

Return data type: integer

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

set_
expression

By default, the aggregation function will aggregate over the set of possible records defined
by the selection. An alternative set of records can be defined by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from the
evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over all
possible values given the current selections, and not just those that pertain to the current
dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of the
total possible values.

Arguments

Examples and results:

Customer Product OrderNumber UnitSales Unit Price

Astrida AA 1 4 16

Astrida AA 7 10 15

Astrida BB 4 9 1

Data

Script syntax and chart functions - Qlik Sense, May 2023 350

5 Script and chart functions

Customer Product OrderNumber UnitSales Unit Price

Betacab BB 6 5 10

Betacab CC 5 2 20

Betacab DD 25

Canutility AA 15

Canutility CC 19

Divadip AA 2 4 16

Divadip DD 3 25

The following examples assume that all customers are selected, except where stated.

Example Result

NumericCount

([OrderNumber])
7 because three of the 10 fields in OrderNumber are empty.

"0" counts as a value and not an empty cell. However, if a measure
aggregates to 0 for a dimension, that dimension will not be included
in charts.

NumericCount

([Product])
0 because all product names are in text. Typically you could use this to check
that no text fields have been given numeric content.

NumericCount (DISTINCT

[OrderNumber])/Count

(DISTINCT

[OrderNumber)]

Counts all the number of distinct numeric order numbers and divides it by the
number of order numbers numeric and non-numeric. This will be 1 if all field
values are numeric. Typically you could use this to check that all field values
are numeric. In the example, there are 7 distinct numeric values for
OrderNumber of 8 distinct numeric and non-numerid, so the expression
returns 0.875.

Examples and results

Data used in example:

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|10|15

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB||| 25

Canutility|AA|||15

Canutility|CC| ||19

Divadip|CC|2|4|16

Divadip|DD|3|1|25

Script syntax and chart functions - Qlik Sense, May 2023 351

5 Script and chart functions

] (delimiter is '|');

TextCount

TextCount() returns the number of field values that are non-numeric aggregated in the
expression, as defined by a group by clause.

Syntax:
TextCount ([distinct] expr)

Return data type: integer

Arguments:

Argument Description

expr Expression The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates are disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Example:

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|10|15

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB||| 25

Canutility|AA|||15

Canutility|CC| ||19

Divadip|CC|2|4|16

Divadip|DD|3|1|25

] (delimiter is '|');

TextCount1:

LOAD Customer,TextCount(Product) as ProductTextCount Resident Temp Group By Customer;

Script syntax and chart functions - Qlik Sense, May 2023 352

5 Script and chart functions

Customer ProductTextCount

Astrida 3

Betacab 3

Canutility 2

Divadip 2

Resulting table

Example:

LOAD Customer,TextCount(OrderNumber) as OrderNumberTextCount Resident Temp Group By Customer;

Customer OrderNumberTextCount

Astrida 0

Betacab 1

Canutility 2

Divadip 0

Resulting table

TextCount - chart function
TextCount() is used to aggregate the number of field values that are non-numeric in each chart dimension.

Syntax:
TextCount({[SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]} expr)

Return data type: integer

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 353

5 Script and chart functions

Argument Description

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Examples and results:

Customer Product OrderNumber UnitSales Unit Price

Astrida AA 1 4 16

Astrida AA 7 10 15

Astrida BB 4 9 1

Betacab BB 6 5 10

Betacab CC 5 2 20

Betacab DD 25

Canutility AA 15

Canutility CC 19

Divadip AA 2 4 16

Divadip DD 3 25

Data

Example Result

TextCount

([Product])
10 because all of the 10 fields in Product are text.

"0" counts as a value and not an empty cell. However, if a measure
aggregates to 0 for a dimension, that dimension will not be included in
charts. Empty cells are evaluated as being non text and are not counted
by TextCount.

TextCount

([OrderNumber])
3, because empty cells are counted. Typically, you would use this to check that no
numeric fields have been given text values or are non-zero.

Examples and results

Script syntax and chart functions - Qlik Sense, May 2023 354

5 Script and chart functions

Example Result

TextCount

(DISTINCT

[Product])/Count

([Product)]

Counts all the number of distinct text values of Product (4), and divides it by the
total number of values in Product (10). The result is 0.4.

Data used in example:

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|1|15

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB|||| 25

Canutility|AA|||15

Canutility|CC|||19

Divadip|CC|2|4|16

Divadip|DD|3|1|25

] (delimiter is '|');

Financial aggregation functions
This section describes aggregation functions for financial operations regarding payments and cash flow.

Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Financial aggregation functions in the data load script
IRR
IRR() returns the aggregated internal rate of return for a series of cash flows represented by the numbers in
the expression iterated over a number of records as defined by a group by clause.

IRR (expression)

XIRR
XIRR() returns the aggregated internal rate of return (yearly) for a schedule of cash flows (that is not
necessarily periodic) represented by paired numbers in pmt and date iterated over a number of records as
defined by a group by clause. All payments are discounted based on a 365-day year.

XIRR (valueexpression, dateexpression)

NPV
The NPV() script function takes a discount rate and multiple values ordered by period. Inflows (incomes) are
positive, and outflows (future payments) are assumed to be negative values for these calculations. These
occur at the end of each period.

NPV (rate, expression)

Script syntax and chart functions - Qlik Sense, May 2023 355

5 Script and chart functions

XNPV
XNPV() returns the aggregated net present value for a schedule of cashflows (not necessarily periodic)
represented by paired numbers in pmt and date. All payments are discounted based on a 365-day year.

XNPV (rate, valueexpression, dateexpression)

Financial aggregation functions in chart expressions
These financial aggregation functions can be used in charts.

IRR
IRR() returns the aggregated internal rate of return for a series of cash flows represented by the numbers in
the expression given by value iterated over the chart dimensions.

IRR - chart function[TOTAL [<fld {,fld}>]] value)

NPV
NPV() returns the aggregated net present value of an investment based on a discount_rate per period and a
series of future payments (negative values) and incomes (positive values,) represented by the numbers in
value, iterated over the chart dimensions. The payments and incomes are assumed to occur at the end of
each period.

NPV - chart function([TOTAL [<fld {,fld}>]] discount_rate, value)

XIRR
XIRR() returns the aggregated internal rate of return (yearly) for a schedule of cash flows (that is not
necessarily periodic) represented by paired numbers in the expressions given by pmt and date iterated over
the chart dimensions. All payments are discounted based on a 365-day year.

XIRR - chart function([TOTAL [<fld {,fld}>]] pmt, date)

XNPV
XNPV() returns the aggregated net present value for a schedule of cash flows (not necessarily periodic)
represented by paired numbers in the expressions given by pmt and date, iterated over the chart dimensions.
All payments are discounted based on a 365-day year.

XNPV - chart function([TOTAL [<fld{,fld}>]] discount_rate, pmt, date)

IRR

IRR() returns the aggregated internal rate of return for a series of cash flows represented by the
numbers in the expression iterated over a number of records as defined by a group by clause.

These cash flows do not have to be even, as they would be for an annuity. However, the cash flows must occur
at regular intervals, such as monthly or annually. The internal rate of return is the interest rate received for an
investment consisting of payments (negative values) and income (positive values) that occur at regular
periods. The function needs at least one positive and one negative value to calculate.

This function uses a simplified version of the Newton method for calculating the internal rate of return (IRR).

Syntax:
IRR(value)

Script syntax and chart functions - Qlik Sense, May 2023 356

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The expression or field containing the data to be measured.

Arguments

Limitations:

Text values, NULL values and missing values are disregarded.

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Examples and results:

Example Year IRR2013

Cashflow:

LOAD 2013 as Year, * inline [

Date|Discount|Payments

2013-01-01|0.1|-10000

2013-03-01|0.1|3000

2013-10-30|0.1|4200

2014-02-01|0.2|6800

] (delimiter is '|');

Cashflow1:

LOAD Year,IRR(Payments) as IRR2013 Resident Cashflow Group By Year;

2013 0.1634

Examples and results

IRR - chart function
IRR() returns the aggregated internal rate of return for a series of cash flows represented by the numbers in
the expression given by value iterated over the chart dimensions.

These cash flows do not have to be even, as they would be for an annuity. However, the cash flows must occur
at regular intervals, such as monthly or annually. The internal rate of return is the interest rate received for an
investment consisting of payments (negative values) and income (positive values) that occur at regular
periods. The function needs at least one positive and one negative value to calculate.

This function uses a simplified version of the Newton method for calculating the internal rate of return (IRR).

Syntax:
IRR([TOTAL [<fld {,fld}>]] value)

Script syntax and chart functions - Qlik Sense, May 2023 357

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The expression or field containing the data to be measured.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over all
possible values given the current selections, and not just those that pertain to the current
dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of the
total possible values.

Arguments

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Text values, NULL values and missing values are disregarded.

Examples and results:

Example Result

IRR

(Payments)
0.1634

The payments are assumed to be periodic in nature, for example monthly.

The Date field is used in the XIRR example where payments can be non-
periodical as long as you provide the dates on which payments were made.

Examples and results

Data used in examples:

Cashflow:

LOAD 2013 as Year, * inline [

Date|Discount|Payments

2013-01-01|0.1|-10000

2013-03-01|0.1|3000

2013-10-30|0.1|4200

2014-02-01|0.2|6800

] (delimiter is '|');

Script syntax and chart functions - Qlik Sense, May 2023 358

5 Script and chart functions

See also:

p XIRR - chart function (page 370)
p Aggr - chart function (page 525)

NPV

The NPV() script function takes a discount rate and multiple values ordered by period. Inflows
(incomes) are positive, and outflows (future payments) are assumed to be negative values for
these calculations. These occur at the end of each period.

Net Present Value, or NPV, is used to calculate the current total value of a future stream of cash flows. To
calculate NPV, we need to estimate future cash flows for each period and determine the correct discount rate.
The NPV() script function takes a discount rate and multiple values ordered by period. Inflows (incomes) are
positive, and outflows (future payments) are assumed to be negative values for these calculations. These
occur at the end of each period.

Syntax:
NPV(discount_rate, value)

Return data type: numeric. By default, the result will be formatted as currency.

The formula to calculate net present value is:

where:

l R
t

= Net cash inflow-outflows during a single period t

l i = Discount rate or return that could be earned in alternative investments
l t = Number of timer periods

Argument Description

discount_
rate

discount_rate is the percentage rate of discount applied.

A value of 0.1 would indicate a 10% discount rate.

value This field holds values for multiple periods ordered by period. The first value is assumed to
be the cashflow at the end of period 1, and so on.

Arguments

Limitations:

The NPV() function has the following limitations:

Script syntax and chart functions - Qlik Sense, May 2023 359

5 Script and chart functions

l Text values, NULL values and missing values are disregarded.
l Cashflow values must be in order of ascending period.

When to use it
NPV() is a financial function used to check project profitability and to derive other measures. This function is
useful when cashflows are available as raw data.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – Single payment (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of one project and its cashflow for one period, which is loaded into a table named CashFlow.
l A resident load from the CashFlow table, which is used to calculate the NPV field for the project in a

table named NPV.
l A hard-coded discount rate of 10% , which is used in the NPV calculation.
l A Group By statement, which is used to group all the payments for the project.

Load script

CashFlow:

Load

*

Inline

[

PrjId,PeriodId,Values

1,1,1000

];

NPV:

Load

Script syntax and chart functions - Qlik Sense, May 2023 360

5 Script and chart functions

PrjId,

NPV(0.1,Values) as NPV //Discount Rate of 10%

Resident CashFlow

Group By PrjId;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l PrjId

l NPV

PrjId NPV

1 $909.09

Results table

For a single payment of $1000 to be received at the end of one period, at a discount rate of 10% per period,
the NPV is equal to $1000 divided by (1 + discount rate). The effective NPV is equal to $909.09

Example 2 – Multiple payments (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of one project and its cashflow for multiple periods, which is loaded into a table named
CashFlow.

l A resident load from the CashFlow table, which is used to calculate the NPV field for the project in a
table named NPV.

l A hard-coded discount rate of 10% (0.1) is used in the NPV calculation.
l A Group By statement, which is used to group all the payments for the project.

Load script

CashFlow:

Load

*

Inline

[

PrjId,PeriodId,Values

1,1,1000

1,2,1000

];

NPV:

Load

Script syntax and chart functions - Qlik Sense, May 2023 361

5 Script and chart functions

PrjId,

NPV(0.1,Values) as NPV //Discount Rate of 10%

Resident CashFlow

Group By PrjId;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l PrjId

l NPV

PrjId NPV

1 $1735.54

Results table

For payments of $1000 to be received at the end of two periods, at a discount rate of 10% per period, the
effective NPV is equal to $1735.54.

Example 3 – Multiple payments (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l Discount rates for two projects, which is loaded into a table named Project.
l Cashflows for multiple periods for each project by project ID and period ID. This period ID could be

used to order the records in case the data is not ordered.
l The combination of NoConcatenate, Resident loads, and the Left Join function to create a temporary

table, tmpNPV. The table combines the records of Project and CashFlow tables into one flat table. This
table will have discount rates repeated for each period.

l A resident load from the tmpNPV table, which is used to calculate the NPV field for each project in a
table named NPV.

l The single value discount rate associated to each project. This is retrieved using the only() function
and is used in the NPV calculation for each project.

l A Group By statement, which is used to group all the payments for each project by project ID.

To avoid any synthetic or redundant data being loaded into the data model, the tmpNPV table is dropped at
the end of the script.

Load script

Project:

Load * inline [

Script syntax and chart functions - Qlik Sense, May 2023 362

5 Script and chart functions

PrjId,Discount_Rate

1,0.1

2,0.15

];

CashFlow:

Load

*

Inline

[

PrjId,PeriodId,Values

1,1,1000

1,2,1000

1,3,1000

2,1,500

2,2,500

2,3,1000

2,4,1000

];

tmpNPV:

NoConcatenate Load *

Resident Project;

Left Join

Load *

Resident CashFlow;

NPV:

Load

PrjId,

NPV(Only(Discount_Rate),Values) as NPV //Discount Rate will be 10% for Project 1 and 15% for

Project 2

Resident tmpNPV

Group By PrjId;

Drop table tmpNPV;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l PrjId

l NPV

PrjId NPV

1 $2486.85

2 $2042.12

Results table

Project ID 1 expects for payments of $1000 to be received at the end of three periods, at a discount rate of
10% per period. Therefore, the effective NPV is equal to $2486.85.

Script syntax and chart functions - Qlik Sense, May 2023 363

5 Script and chart functions

Project ID 2 expects two payments of $500 and two further payments of $1000 across four periods at a
discount rate of 15%. Therefore, the effective NPV is equal to $2042.12.

Example 4 – Project profitability example (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l Discount rates and initial investments (period 0) for two projects, loaded into a table named Project.
l Cashflows for multiple periods for each project by project ID and period ID. This period ID could be

used to order the records in case the data is not ordered.
l The combination of NoConcatenate, Resident loads, and the Left Join function to create a temporary

table, tmpNPV. The table combines the records of Project and CashFlow tables into one flat table. This
table will have discount rates repeated for each period.

l The single value discount rate associated to each project, which is retrieved using the only() function
and is used in the NPV calculation for each project.

l A resident load from the tmpNPV table is used to calculate the NPV field for each project in a table
named NPV.

l An additional field that divides the NPV by the initial investment of each project is created to calculate
the project profitability index.

l A group by statement, grouping by project ID, is used to group all the payments for each project.

To avoid any synthetic or redundant data being loaded into the data model, the tmpNPV table is dropped at
the end of the script.

Load script

Project:

Load * inline [

PrjId,Discount_Rate, Initial_Investment

1,0.1,100000

2,0.15,100000

];

CashFlow:

Load

*

Inline

[

PrjId,PeriodId,Values,

1,1,35000

1,2,35000

1,3,35000

2,1,30000

2,2,40000

Script syntax and chart functions - Qlik Sense, May 2023 364

5 Script and chart functions

2,3,50000

2,4,60000

];

tmpNPV:

NoConcatenate Load *

Resident Project;

Left Join

Load *

Resident CashFlow;

NPV:

Load

PrjId,

NPV(Only(Discount_Rate),Values) as NPV, //Discount Rate will be 10% for Project 1 and

15% for Project 2

NPV(Only(Discount_Rate),Values)/ Only(Initial_Investment) as Profitability_Index

Resident tmpNPV

Group By PrjId;

Drop table tmpNPV;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l PrjId

l NPV

Create the following measure:

=only(Profitability_Index)

PrjId NPV =only(Profitability_Index)

1 $87039.82 0.87

2 $123513.71 1.24

Results table

Project ID 1 has an effective NPV of $87039.82 and an initial investment of $100000. Therefore, the profitability
index is equal to 0.87. Because it is less than 1, the project is not profitable.

Project ID 2 has an effective NPV of $123513.71 and an initial investment of $100000. Therefore, the
profitability index is equal to 1.24. Because it is greater than 1, the project is profitable.

NPV - chart function
NPV() returns the aggregated net present value of an investment based on a discount_rate per period and a
series of future payments (negative values) and incomes (positive values,) represented by the numbers in
value, iterated over the chart dimensions. The payments and incomes are assumed to occur at the end of
each period.

Script syntax and chart functions - Qlik Sense, May 2023 365

5 Script and chart functions

Syntax:
NPV([TOTAL [<fld {,fld}>]] discount_rate, value)

Return data type: numeric By default, the result will be formatted as currency.

Arguments:

Argument Description

discount_
rate

discount_rate is the rate of discount over the length of the period.discount_rate is the
percentage rate of discount applied.

value The expression or field containing the data to be measured.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over all
possible values given the current selections, and not just those that pertain to the current
dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of the
total possible values.

The TOTAL qualifier may be followed by a list of one or more field names within angle
brackets. These field names should be a subset of the chart dimension variables. In this
case, the calculation is made disregarding all chart dimension variables except those listed,
that is, one value is returned for each combination of field values in the listed dimension
fields. Also, fields that are not currently a dimension in a chart may be included in the list.
This may be useful in the case of group dimensions, where the dimension fields are not
fixed. Listing all of the variables in the group causes the function to work when the drill-
down level changes.

Arguments

Limitations:

discount_rate and value must not contain aggregation functions, unless these inner aggregations contain the
TOTAL qualifier. For more advanced nested aggregations, use the advanced function Aggr, in combination
with a specified dimension.

Text values, NULL values and missing values are disregarded.

Examples and results:

Example Result

NPV(Discount, Payments) -$540.12

Examples and results

Data used in examples:

Cashflow:

Script syntax and chart functions - Qlik Sense, May 2023 366

5 Script and chart functions

LOAD 2013 as Year, * inline [

Date|Discount|Payments

2013-01-01|0.1|-10000

2013-03-01|0.1|3000

2013-10-30|0.1|4200

2014-02-01|0.2|6800

] (delimiter is '|');

See also:

p XNPV - chart function (page 380)
p Aggr - chart function (page 525)

XIRR

XIRR() returns the aggregated internal rate of return (yearly) for a schedule of cash flows (that is
not necessarily periodic) represented by paired numbers in pmt and date iterated over a
number of records as defined by a group by clause. All payments are discounted based on a 365-
day year.

Qlik's XIRR functionality (XIRR() and RangeXIRR() functions) uses the following equation, solving for the Rate

value, to determine the correct XIRR value:

XNPV(Rate, pmt, date) = 0

The equation is solved using a simplified version of the Newton method.

Syntax:
XIRR(pmt, date)

Return data type: numeric

Argument Description

pmt Payments. The expression or field containing the cash flows corresponding to the payment
schedule given in date.

date The expression or field containing the schedule of dates corresponding to the cash flow
payments given in pmt.

Arguments

When working with this function, the following limitations apply:

l Text values, NULL values and missing values in any or both pieces of a data-pair will result in the entire
data-pair to be disregarded.

l This function requires at least one valid negative and at least one valid positive payment (with
corresponding valid dates). If these payments are not provided, a NULL value is returned.

These topics might help you work with this function:

Script syntax and chart functions - Qlik Sense, May 2023 367

5 Script and chart functions

l XNPV (page 373): Use this function to calculate aggregated net present value for a schedule of cash
flows.

l RangeXIRR (page 1325): RangeXIRR() is the equivalent range function for the XIRR() function.

Across different versions of Qlik Sense Client-Managed, there are variations in the underlying
algorithm used by this function. For more information about recent updates to the algorithm, see
support article XIRR function Fix and Update.

Example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l Transaction data for a series of cashflows.
l The use of the XIRR() function to compute internal yearly rate of return for these cashflows.

Load script

Cashflow:

LOAD 2013 as Year, * inline [

Date|Payments

2013-01-01|-10000

2013-03-01|3000

2013-10-30|4200

2014-02-01|6800

] (delimiter is '|');

Cashflow1:

LOAD Year,XIRR(Payments, Date) as XIRR2013 Resident Cashflow Group By Year;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l Year

l XIRR2013

Year XIRR2013

2013 0.5385

Results table

Script syntax and chart functions - Qlik Sense, May 2023 368

https://community.qlik.com/t5/Member-Articles/XIRR-function-Fix-and-Update/ta-p/2049021

5 Script and chart functions

Interpreting the XIRR return value
The XIRR functionality is usually used to analyze an investment, where there is an outgoing (negative)
payment in the beginning, and then a series of smaller income (positive) payments later on. Here is a
simplified example with only one negative and one positive payment:

Cashflow:

LOAD * inline [

Date|Payments

2023-01-01|-100

2024-01-01|110

] (delimiter is '|');

We make an initial payment of 100 and get 110 back after exactly one year. This represents a rate of return of
10% per year. XIRR(Payments, Date) returns a value of 0.1.

The return value of the XIRR functionality can be positive or negative. In the case of an investment, a negative
result indicates that the investment is a loss. The amount of gain or loss can be calculated simply by making a
sum aggregation over the payments field.

In the example above, we are lending out our money for one year. The rate of return can be thought of as
interest. It is also possible to use XIRR's functionality when you are on the other side of the transaction (for
example, if you are the borrower instead of the lender).

Consider this example:

Cashflow:

LOAD * inline [

Date|Payments

2023-01-01|100

2024-01-01|-110

] (delimiter is '|');

This is the same as the first example but inverted. Here, we are borrowing 100 for one year and we repay it
with a 10% interest. In this example, the XIRR calculation returns 0.1 (10%), the same value as the first
example.

Note that in the first example, we received a profit of 10, and in the second example, we experienced a loss of
10, but the return value of the XIRR functionality is positive for both these examples. This is because the XIRR
functionality calculates the hidden interest in the transaction, regardless of which side you are on in the
transaction.

Limitations with multiple solutions
Qlik's XIRR functionality is defined by the following equation, in which the Rate value is solved:

XNPV(Rate, pmt, date) = 0

It is sometimes possible for this equation to have more than one solution. This is known as the “multiple-IRR
problem”, and is caused by a non-normal cash flow stream (also called an unconventional cash flow). The
following load script shows an example of this:

Cashflow:

LOAD * inline [

Date|Payments

Script syntax and chart functions - Qlik Sense, May 2023 369

5 Script and chart functions

2021-01-01|-200

2022-01-01|500

2023-01-01|-250

] (delimiter is '|');

In this example, there is one negative solution and one positive solution (Rate = -0.3 and Rate = 0.8). XIRR()
will return 0.8.

When Qlik's XIRR functionality searches for a solution, it starts at Rate = 0 and increases the rate in steps until
it finds a solution. If there is more than one positive solution, it will return the first one that it encounters. If it
cannot find a positive solution, it will reset the Rate back to zero and start searching for a solution in the
negative direction.

Note that a “normal” cash flow stream is guaranteed to have only one solution. “Normal” cash flow stream
means that all payments with the same sign (positive or negative) are in a continuous group.

See also:

p XNPV (page 373)
p RangeXIRR (page 1325)
≤ XIRR function Fix and Update

XIRR - chart function
XIRR() returns the aggregated internal rate of return (yearly) for a schedule of cash flows (that is not
necessarily periodic) represented by paired numbers in the expressions given by pmt and date iterated over
the chart dimensions. All payments are discounted based on a 365-day year.

Qlik's XIRR functionality (XIRR() and RangeXIRR() functions) uses the following equation, solving for the Rate

value, to determine the correct XIRR value:

XNPV(Rate, pmt, date) = 0

The equation is solved using a simplified version of the Newton method.

Syntax:
XIRR([TOTAL [<fld {,fld}>]] pmt, date)

Return data type: numeric

Argument Description

pmt Payments. The expression or field containing the cash flows corresponding to the payment
schedule given in date.

date The expression or field containing the schedule of dates corresponding to the cash flow
payments given in pmt.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 370

https://community.qlik.com/t5/Member-Articles/XIRR-function-Fix-and-Update/ta-p/2049021

5 Script and chart functions

Argument Description

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over all
possible values given the current selections, and not just those that pertain to the current
dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of the
total possible values.

When working with this function, the following limitations apply:

l pmt and date must not contain aggregation functions, unless these inner aggregations contain the
TOTAL qualifier. For more advanced nested aggregations, use the advanced function Aggr, in
combination with a specified dimension.

l Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

l This function requires at least one valid negative and at least one valid positive payment (with
corresponding valid dates). If these payments are not provided, a NULL value is returned.

These topics might help you work with this function:

l XNPV - chart function (page 380): Use this function to calculate aggregated net present value for a
schedule of cash flows.

l RangeXIRR (page 1325): RangeXIRR() is the equivalent range function for the XIRR() function.

Across different versions of Qlik Sense Client-Managed, there are variations in the underlying
algorithm used by this function. For more information about recent updates to the algorithm, see
support article XIRR function Fix and Update.

Example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing cashflow transactions.
l Information stored in a table called Cashflow.

Load script

Cashflow:

LOAD 2013 as Year, * inline [

Date|Payments

Script syntax and chart functions - Qlik Sense, May 2023 371

https://community.qlik.com/t5/Member-Articles/XIRR-function-Fix-and-Update/ta-p/2049021

5 Script and chart functions

2013-01-01|-10000

2013-03-01|3000

2013-10-30|4200

2014-02-01|6800

] (delimiter is '|');

Results

Do the following:

Load the data and open a sheet. Create a new table and add the following calculation as a measure:

=XIRR(Payments, Date)

=XIRR(Payments, Date)

0.5385

Results table

Interpreting the XIRR return value
The XIRR functionality is usually used to analyze an investment, where there is an outgoing (negative)
payment in the beginning, and then a series of smaller income (positive) payments later on. Here is a
simplified example with only one negative and one positive payment:

Cashflow:

LOAD * inline [

Date|Payments

2023-01-01|-100

2024-01-01|110

] (delimiter is '|');

We make an initial payment of 100 and get 110 back after exactly one year. This represents a rate of return of
10% per year. XIRR(Payments, Date) returns a value of 0.1.

The return value of the XIRR functionality can be positive or negative. In the case of an investment, a negative
result indicates that the investment is a loss. The amount of gain or loss can be calculated simply by making a
sum aggregation over the payments field.

In the example above, we are lending out our money for one year. The rate of return can be thought of as
interest. It is also possible to use XIRR's functionality when you are on the other side of the transaction (for
example, if you are the borrower instead of the lender).

Consider this example:

Cashflow:

LOAD * inline [

Date|Payments

2023-01-01|100

2024-01-01|-110

] (delimiter is '|');

Script syntax and chart functions - Qlik Sense, May 2023 372

5 Script and chart functions

This is the same as the first example but inverted. Here, we are borrowing 100 for one year and we repay it
with a 10% interest. In this example, the XIRR calculation returns 0.1 (10%), the same value as the first
example.

Note that in the first example, we received a profit of 10, and in the second example, we experienced a loss of
10, but the return value of the XIRR functionality is positive for both these examples. This is because the XIRR
functionality calculates the hidden interest in the transaction, regardless of which side you are on in the
transaction.

Limitations with multiple solutions
Qlik's XIRR functionality is defined by the following equation, in which the Rate value is solved:

XNPV(Rate, pmt, date) = 0

It is sometimes possible for this equation to have more than one solution. This is known as the “multiple-IRR
problem”, and is caused by a non-normal cash flow stream (also called an unconventional cash flow). The
following load script shows an example of this:

Cashflow:

LOAD * inline [

Date|Payments

2021-01-01|-200

2022-01-01|500

2023-01-01|-250

] (delimiter is '|');

In this example, there is one negative solution and one positive solution (Rate = -0.3 and Rate = 0.8). XIRR()
will return 0.8.

When Qlik's XIRR functionality searches for a solution, it starts at Rate = 0 and increases the rate in steps until
it finds a solution. If there is more than one positive solution, it will return the first one that it encounters. If it
cannot find a positive solution, it will reset the Rate back to zero and start searching for a solution in the
negative direction.

Note that a “normal” cash flow stream is guaranteed to have only one solution. “Normal” cash flow stream
means that all payments with the same sign (positive or negative) are in a continuous group.

See also:

p IRR - chart function (page 357)
p Aggr - chart function (page 525)
≤ XIRR function Fix and Update

XNPV

XNPV() returns the aggregated net present value for a schedule of cashflows (not necessarily
periodic) represented by paired numbers in pmt and date. All payments are discounted based
on a 365-day year.

Syntax:
XNPV(discount_rate, pmt, date)

Script syntax and chart functions - Qlik Sense, May 2023 373

https://community.qlik.com/t5/Member-Articles/XIRR-function-Fix-and-Update/ta-p/2049021

5 Script and chart functions

Return data type: numeric

By default, the result will be formatted as currency.

The formula to calculate XNPV is shown below:

XNPV aggregation formula

where:

l P
i

= Net cash inflow-outflows during a single period i

l d
1

= the first payment date
l d

i
= the i

th payment date
l rate = discount rate

Net present value, or NPV, is used to calculate the current total value of a future stream of cash flows given a
discount rate. To calculate XNPV, we need to estimate future cash flows with corresponding dates. After this,
for each payment, we apply the compounded discount rate based on the date of the payment.

Performing the XNPV aggregation over a series of payments is similar to performing a Sum aggregation over
those payments. The difference is that each amount is modified (or “discounted”) according to the chosen
discount rate (similar to interest rate) and how far into the future the payment is. Performing XNPV with the
discount_rate parameter set to zero will make XNPV equivalent to a Sum operation (the payments will not be
modified before being summed). In general, the closer the discount_rate is set to zero, the more similar the
XNPV result will be to that of a Sum aggregation.

Argument Description

discount_rate discount_rate is the yearly rate that the payments should be discounted by.

A value of 0.1 would indicate a 10% discount rate.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 374

5 Script and chart functions

Argument Description

pmt Payments. The expression or field containing the cash flows corresponding to the
payment schedule given in date. Positive values are assumed to be inflows, and
negative values are assumed to be outflows.

XNPV() does not discount the initial cash flow since it will always happen
on the start date. Subsequent payments are discounted based on a 365-
day year. This is different from NPV(), where also the first payment is
discounted.

date The expression or field containing the schedule of dates corresponding to the cash
flow payments given in pmt. The first value is used as the start date for calculating
the time offsets for future cashflows.

When working with this function, the following limitations apply:

l Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

When to use it
l XNPV() is used in financial modeling for calculating the net present value (NPV) of an investment

opportunity.
l Due to its higher precision, XNPV is preferred over NPV, for all types of financial models.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – Single payment (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2023 375

5 Script and chart functions

l A dataset of one project and its cashflow for one year, in a table named CashFlow. The initial date for
calculation is set to July 1, 2022, with a net cashflow of 0. After one year, a cashflow of $1000 occurs.

l A resident load from the CashFlow table, which is used to calculate the XNPV field for the project in a
table named XNPV.

l A hard-coded discount rate of 10% (0.1) is used in the XNPV calculation.
l A Group By statement is used to group all the payments for the project.

Load script

CashFlow:

Load

*

Inline

[

PrjId,Dates,Values

1,'07/01/2022',0

1,'07/01/2023',1000

];

XNPV:

Load

PrjId,

XNPV(0.1,Values,Dates) as XNPV //Discount Rate of 10%

Resident CashFlow

Group By PrjId;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l PrjId

l XNPV

PrjId XNPV

1 $909.09

Results table

As per the formula, the XNPV value for the first record is 0, and for the second record, the XNPV value is
$909.09 Thus, the total XNPV is $909.09.

Example 2 – Multiple payments (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2023 376

5 Script and chart functions

l A dataset of one project and its cashflow for one year, in a table named CashFlow.
l A resident load from the CashFlow table, which is used to calculate the XNPV field for the project in a

table named XNPV.
l A hard-coded discount rate of 10% (0.1) is used in the XNPV calculation.
l A Group By statement is used to group all the payments for the project.

Load script

CashFlow:

Load

*

Inline

[

PrjId,Dates,Values

1,'07/01/2022',0

1,'07/01/2024',500

1,'07/01/2023',1000

];

XNPV:

Load

PrjId,

XNPV(0.1,Values,Dates) as XNPV //Discount Rate of 10%

Resident CashFlow

Group By PrjId;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l PrjId

l XNPV

PrjId XNPV

1 $1322.21

Results table

In this example, a payment of $1000 is received at the end of first year, and a payment of $500 is received at
the end of second year. With a discount rate of 10% per period, the effective XNPV is equal to $1322.21.

Note that only the first row of data should refer to the base date for calculations. For rest of the rows, order is
not important, since the date parameter is used to calculate the elapsed period.

Script syntax and chart functions - Qlik Sense, May 2023 377

5 Script and chart functions

Example 3 – Multiple payments and irregular cashflows (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l Discount rates for two projects in a table named Project.
l Cashflows for multiple periods for each project by project ID and Dates. The Dates field is used to

calculate the duration for which discount rate is applied to the cash flow. Apart from the first record
(initial cashflow and date), order of records is not important, and changing it should not impact the
calculations.

l Using a combination of NoConcatenate, Resident loads, and the Left Join function, a temporary
table, tmpNPV, is created that combines the records of the Project and CashFlow tables in one flat
table. This table will have discount rates repeated for each cashflow.

l A resident load from the tmpNPV table, which is used to calculate the XNPV field for each project in a
table named XNPV.

l The single value discount rate associated to each project is fetched using the only() function and is
used in the XNPV calculation for each project.

l A Group By statement, grouping by project ID, is used to group all the payments and corresponding
dates for each project.

l To avoid any synthetic or redundant data being loaded into the data model, the tmpXNPV table is
dropped at the end of the script.

Load script

Project:

Load * inline [

PrjId,Discount_Rate

1,0.1

2,0.15

];

CashFlow:

Load

*

Inline

[

PrjId,Dates,Values

1,'07/01/2021',0

1,'07/01/2022',1000

1,'07/01/2023',1000

2,'07/01/2020',0

2,'07/01/2023',500

2,'07/01/2024',1000

2,'07/01/2022',500

];

Script syntax and chart functions - Qlik Sense, May 2023 378

5 Script and chart functions

tmpXNPV:

NoConcatenate Load *

Resident Project;

Left Join

Load *

Resident CashFlow;

XNPV:

Load

PrjId,

XNPV(Only(Discount_Rate),Values,Dates) as XNPV //Discount Rate will be 10% for Project 1 and

15% for Project 2

Resident tmpXNPV

Group By PrjId;

Drop table tmpXNPV;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l PrjId

l XNPV

PrjId XNPV

1 $1735.54

2 $278.36

Results table

Project ID 1 has an initial cashflow of $0 on July 1, 2021. There are two payments of $1000 to be received at
the end of two subsequent years, at a discount rate of 10% per period. Therefore, the effective XNPV is equal
to $1735.54.

Project ID 2 has an initial outflow of $1000 (thus the negative sign) on July 1, 2020. After two years, a payment
of $500 is expected. After 3 years, another $500 payment is expected. Finally, on July 1, 2024, a payment of
$1000 is expected. With the discount rate of 15%, the effective XNPV is equal to $278.36.

See also:

p Drop table (page 147)
p group by (page 156)
p Join (page 69)
p Max (page 323)
p NoConcatenate (page 87)
p NPV - chart function (page 365)
p Only (page 333)

Script syntax and chart functions - Qlik Sense, May 2023 379

5 Script and chart functions

XNPV - chart function
XNPV() returns the aggregated net present value for a schedule of cash flows (not necessarily periodic)
represented by paired numbers in the expressions given by pmt and date, iterated over the chart dimensions.
All payments are discounted based on a 365-day year.

Syntax:
XNPV([TOTAL [<fld{,fld}>]] discount_rate, pmt, date)

Return data type: numeric

By default, the result will be formatted as currency.

The formula to calculate XNPV is shown below:

XNPV aggregation formula

where:

l P
i

= Net cash inflow-outflows during a single period i

l d
1

= the first payment date
l d

i
= the i

th payment date
l rate = discount rate

Net present value, or NPV, is used to calculate the current total value of a future stream of cash flows given a
discount rate. To calculate XNPV, we need to estimate future cash flows with corresponding dates. After this,
for each payment, we apply the compounded discount rate based on the date of the payment.

Performing the XNPV aggregation over a series of payments is similar to performing a Sum aggregation over
those payments. The difference is that each amount is modified (or “discounted”) according to the chosen
discount rate (similar to interest rate) and how far into the future the payment is. Performing XNPV with the
discount_rate parameter set to zero will make XNPV equivalent to a Sum operation (the payments will not be
modified before being summed). In general, the closer the discount_rate is set to zero, the more similar the
XNPV result will be to that of a Sum aggregation.

Argument Description

discount_
rate

discount_rate is the yearly rate that the payments should be discounted by.

A value of 0.1 would indicate a 10% discount rate.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 380

5 Script and chart functions

Argument Description

pmt Payments. The expression or field containing the cash flows corresponding to the payment
schedule given in date. Positive values are assumed to be inflows, and negative values are
assumed to be outflows.

XNPV() does not discount the initial cash flow since it will always happen on the
start date. Subsequent payments are discounted based on a 365-day year. This is
different from NPV(), where also the first payment is discounted.

date The expression or field containing the schedule of dates corresponding to the cash flow
payments given in pmt. The first value is used as the start date for calculating the time
offsets for future cash flows.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over all
possible values given the current selections, and not just those that pertain to the current
dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of the
total possible values.

When working with this function, the following limitations apply:

l discount_rate, pmt and date must not contain aggregation functions, unless these inner aggregations
contain the TOTAL or ALL qualifiers. For more advanced nested aggregations, use the advanced
function Aggr, in combination with a specified dimension.

l Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

When to use it
l XNPV() is used in financial modeling for calculating the net present value (NPV) of an investment

opportunity.
l Due to its higher precision, XNPV is preferred over NPV, for all types of financial models.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Script syntax and chart functions - Qlik Sense, May 2023 381

5 Script and chart functions

Example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing cashflow transactions.
l Information stored in a table called Cashflow.

Load script

Cashflow:

LOAD 2013 as Year, * inline [

Date|Payments

2013-01-01|-10000

2013-03-01|3000

2013-10-30|4200

2014-02-01|6800

] (delimiter is '|');

Results

Do the following:

Load the data and open a sheet. Create a new table and add the following calculation as a measure:

=XNPV(0.09, Payments, Date)

=XNPV(0.09, Payments, Date)

$3062.49

Results table

See also:

p NPV - chart function (page 365)
p Aggr - chart function (page 525)

Statistical aggregation functions
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Statistical aggregation functions in the data load script
The following statistical aggregation functions can be used in scripts.

Script syntax and chart functions - Qlik Sense, May 2023 382

5 Script and chart functions

Avg
Avg() finds the average value of the aggregated data in the expression over a number of records as defined by
a group by clause.

Avg ([distinct] expression)

Correl
Correl() returns the aggregated correlation coefficient for a series of coordinates represented by paired
numbers in x-expression and y-expression iterated over a number of records as defined by a group by clause.

Correl (x-expression, y-expression)

Fractile
Fractile() finds the value that corresponds to the inclusive fractile (quantile) of the aggregated data in the
expression over a number of records as defined by a group by clause.

Fractile (expression, fractile)

FractileExc
FractileExc() finds the value that corresponds to the exclusive fractile (quantile) of the aggregated data in the
expression over a number of records as defined by a group by clause.

FractileExc (expression, fractile)

Kurtosis
Kurtosis() returns the kurtosis of the data in the expression over a number of records as defined by a group
by clause.

Kurtosis ([distinct] expression)

LINEST_B
LINEST_B() returns the aggregated b value (y-intercept) of a linear regression defined by the equation y=mx+b
for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a
number of records as defined by a group by clause.

LINEST_B (y-expression, x-expression [, y0 [, x0]])

LINEST_df
LINEST_DF() returns the aggregated degrees of freedom of a linear regression defined by the equation
y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-expression iterated
over a number of records as defined by a group by clause.

LINEST_DF (y-expression, x-expression [, y0 [, x0]])

LINEST_f
This script function returns the aggregated F statistic (r2/(1-r2)) of a linear regression defined by the equation
y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-expression iterated
over a number of records as defined by a group by clause.

LINEST_F (y-expression, x-expression [, y0 [, x0]])

Script syntax and chart functions - Qlik Sense, May 2023 383

5 Script and chart functions

LINEST_m
LINEST_M() returns the aggregated m value (slope) of a linear regression defined by the equation y=mx+b for
a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a
number of records as defined by a group by clause.

LINEST_M (y-expression, x-expression [, y0 [, x0]])

LINEST_r2
LINEST_R2() returns the aggregated r2 value (coefficient of determination) of a linear regression defined by
the equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-
expression iterated over a number of records as defined by a group by clause.

LINEST_R2 (y-expression, x-expression [, y0 [, x0]])

LINEST_seb
LINEST_SEB() returns the aggregated standard error of the b value of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-expression
iterated over a number of records as defined by a group by clause.

LINEST_SEB (y-expression, x-expression [, y0 [, x0]])

LINEST_sem
LINEST_SEM() returns the aggregated standard error of the m value of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-expression
iterated over a number of records as defined by a group by clause.

LINEST_SEM (y-expression, x-expression [, y0 [, x0]])

LINEST_sey
LINEST_SEY() returns the aggregated standard error of the y estimate of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-expression
iterated over a number of records as defined by a group by clause.

LINEST_SEY (y-expression, x-expression [, y0 [, x0]])

LINEST_ssreg
LINEST_SSREG() returns the aggregated regression sum of squares of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-expression
iterated over a number of records as defined by a group by clause.

LINEST_SSREG (y-expression, x-expression [, y0 [, x0]])

Linest_ssresid
LINEST_SSRESID() returns the aggregated residual sum of squares of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-expression
iterated over a number of records as defined by a group by clause.

LINEST_SSRESID (y-expression, x-expression [, y0 [, x0]])

Script syntax and chart functions - Qlik Sense, May 2023 384

5 Script and chart functions

Median
Median() returns the aggregated median of the values in the expression over a number of records as defined
by a group by clause.

Median (expression)

Skew
Skew() returns the skewness of expression over a number of records as defined by a group by clause.

Skew ([distinct] expression)

Stdev
Stdev() returns the standard deviation of the values given by the expression over a number of records as
defined by a group by clause.

Stdev ([distinct] expression)

Sterr
Sterr() returns the aggregated standard error (stdev/sqrt(n)) for a series of values represented by the
expression iterated over a number of records as defined by a group by clause.

Sterr ([distinct] expression)

STEYX
STEYX() returns the aggregated standard error of the predicted y-value for each x-value in the regression for a
series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number
of records as defined by a group by clause.

STEYX (y-expression, x-expression)

Statistical aggregation functions in chart expressions
The following statistical aggregation functions can be used in charts.

Avg
Avg() returns the aggregated average of the expression or field iterated over the chart dimensions.

Avg - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld{, fld}>]]}

expr)

Correl
Correl() returns the aggregated correlation coefficient for two data sets. The correlation function is a measure
of the relationship between the data sets and is aggregated for (x,y) value pairs iterated over the chart
dimensions.

Correl - chart function({[SetExpression] [TOTAL [<fld {, fld}>]]} value1,

value2)

Fractile
Fractile() finds the value that corresponds to the inclusive fractile (quantile) of the aggregated data in the
range given by the expression iterated over the chart dimensions.

Script syntax and chart functions - Qlik Sense, May 2023 385

5 Script and chart functions

Fractile - chart function({[SetExpression] [TOTAL [<fld {, fld}>]]} expr,

fraction)

FractileExc
FractileExc() finds the value that corresponds to the exclusive fractile (quantile) of the aggregated data in the
range given by the expression iterated over the chart dimensions.

FractileExc - chart function({[SetExpression] [TOTAL [<fld {, fld}>]]} expr,

fraction)

Kurtosis
Kurtosis() finds the kurtosis of the range of data aggregated in the expression or field iterated over the chart
dimensions.

Kurtosis - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld{, fld}>]]}

expr)

LINEST_b
LINEST_B() returns the aggregated b value (y-intercept) of a linear regression defined by the equation y=mx+b
for a series of coordinates represented by paired numbers in the expressions given by the expressions x_value
and y_value, iterated over the chart dimensions.

LINEST_R2 - chart function({[SetExpression] [TOTAL [<fld{ ,fld}>]] }y_value,

x_value[, y0_const[, x0_const]])

LINEST_df
LINEST_DF() returns the aggregated degrees of freedom of a linear regression defined by the equation
y=mx+b for a series of coordinates represented by paired numbers in the expressions given by x_value and y_
value, iterated over the chart dimensions.

LINEST_DF - chart function({[SetExpression] [TOTAL [<fld{, fld}>]]} y_value,

x_value [, y0_const [, x0_const]])

LINEST_f
LINEST_F() returns the aggregated F statistic (r2/(1-r2)) of a linear regression defined by the equation y=mx+b
for a series of coordinates represented by paired numbers in the expressions given by x_value and the y_
value, iterated over the chart dimensions.

LINEST_F - chart function({[SetExpression] [TOTAL[<fld{, fld}>]]} y_value, x_

value [, y0_const [, x0_const]])

LINEST_m
LINEST_M() returns the aggregated m value (slope) of a linear regression defined by the equation y=mx+b for
a series of coordinates represented by paired numbers given by the expressions x_value and y_value, iterated
over the chart dimensions.

LINEST_M - chart function({[SetExpression] [TOTAL[<fld{, fld}>]]} y_value, x_

value [, y0_const [, x0_const]])

Script syntax and chart functions - Qlik Sense, May 2023 386

5 Script and chart functions

LINEST_r2
LINEST_R2() returns the aggregated r2 value (coefficient of determination) of a linear regression defined by
the equation y=mx+b for a series of coordinates represented by paired numbers given by the expressions x_
value and y_value, iterated over the chart dimensions.

LINEST_R2 - chart function({[SetExpression] [TOTAL [<fld{ ,fld}>]] }y_value,

x_value[, y0_const[, x0_const]])

LINEST_seb
LINEST_SEB() returns the aggregated standard error of the b value of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers given by the expressions x_value
and y_value, iterated over the chart dimensions.

LINEST_SEB - chart function({[SetExpression] [TOTAL [<fld{ ,fld}>]] }y_value,

x_value[, y0_const[, x0_const]])

LINEST_sem
LINEST_SEM() returns the aggregated standard error of the m value of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers given by the expressions x_value
and y_value, iterated over the chart dimensions.

LINEST_SEM - chart function([{set_expression}][distinct] [total [<fld

{,fld}>]] y-expression, x-expression [, y0 [, x0]])

LINEST_sey
LINEST_SEY() returns the aggregated standard error of the y estimate of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers given by the expressions x_value
and y_value, iterated over the chart dimensions.

LINEST_SEY - chart function({[SetExpression] [TOTAL [<fld{ ,fld}>]] }y_value,

x_value[, y0_const[, x0_const]])

LINEST_ssreg
LINEST_SSREG() returns the aggregated regression sum of squares of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers given by the expressions x_value
and y_value, iterated over the chart dimensions.

LINEST_SSREG - chart function({[SetExpression] [TOTAL [<fld{ ,fld}>]] }y_

value, x_value[, y0_const[, x0_const]])

LINEST_ssresid
LINEST_SSRESID() returns the aggregated residual sum of squares of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in the expressions given by x_
value and y_value, iterated over the chart dimensions.

LINEST_SSRESID - chart functionLINEST_SSRESID() returns the aggregated
residual sum of squares of a linear regression defined by the equation y=mx+b
for a series of coordinates represented by paired numbers in the expressions
given by x_value and y_value, iterated over the chart dimensions. LINEST_
SSRESID([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_value

Script syntax and chart functions - Qlik Sense, May 2023 387

#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6

5 Script and chart functions

[, y0_const[, x0_const]]) numeric ArgumentsArgumentDescriptiony_valueThe
expression or field containing the range of y-values to be measured.x_
valueThe expression or field containing the range of x-values to be
measured.y0, x0An optional value y0 may be stated forcing the regression line
to pass through the y-axis at a given point. By stating both y0 and x0 it is
possible to force the regression line to pass through a single fixed
coordinate. Unless both y0 and x0 are stated, the function requires at least
two valid data-pairs to calculate. If y0 and x0 are stated, a single data
pair will do. SetExpressionBy default, the aggregation function will
aggregate over the set of possible records defined by the selection. An
alternative set of records can be defined by a set analysis expression.
DISTINCTIf the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.
TOTALIf the word TOTAL occurs before the function arguments, the calculation
is made over all possible values given the current selections, and not just
those that pertain to the current dimensional value, that is, it disregards
the chart dimensions. By using TOTAL [<fld {.fld}>], where the TOTAL
qualifier is followed by a list of one or more field names as a subset of the
chart dimension variables, you create a subset of the total possible
values.An optional value y0 may be stated forcing the regression line to pass
through the y-axis at a given point. By stating both y0 and x0 it is possible
to force the regression line to pass through a single fixed coordinate. The
parameter of the aggregation function must not contain other aggregation
functions, unless these inner aggregations contain the TOTAL qualifier. For
more advanced nested aggregations, use the advanced function Aggr, in
combination with a specified dimension. Text values, NULL values and missing
values in any or both pieces of a data-pair result in the entire data-pair
being disregarded. An example of how to use linest functionsavg
({[SetExpression] [TOTAL [<fld{ ,fld}>]] }y_value, x_value[, y0_const[, x0_

const]])

Median
Median() returns the median value of the range of values aggregated in the expression iterated over the chart
dimensions.

Median - chart function({[SetExpression] [TOTAL [<fld{, fld}>]]} expr)

MutualInfo
MutualInfo calculates the mutual information (MI) between two fields or between aggregated values in Aggr
().

MutualInfo - chart function{[SetExpression] [DISTINCT] [TOTAL target, driver

[, datatype [, breakdownbyvalue [, samplesize]]])

Skew
Skew() returns the aggregated skewness of the expression or field iterated over the chart dimensions.

Script syntax and chart functions - Qlik Sense, May 2023 388

#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6

5 Script and chart functions

Skew - chart function{[SetExpression] [DISTINCT] [TOTAL [<fld{ ,fld}>]]}

expr)

Stdev
Stdev() finds the standard deviation of the range of data aggregated in the expression or field iterated over
the chart dimensions.

Stdev - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld{, fld}>]]}

expr)

Sterr
Sterr() finds the value of the standard error of the mean, (stdev/sqrt(n)), for the series of values aggregated in
the expression iterated over the chart dimensions.

Sterr - chart function({[SetExpression] [DISTINCT] [TOTAL[<fld{, fld}>]]}

expr)

STEYX
STEYX() returns the aggregated standard error when predicting y-values for each x-value in a linear regression
given by a series of coordinates represented by paired numbers in the expressions given by y_value and x_
value.

STEYX - chart function{[SetExpression] [TOTAL [<fld{, fld}>]]} y_value, x_

value)

Avg

Avg() finds the average value of the aggregated data in the expression over a number of records
as defined by a group by clause.

Syntax:
Avg([DISTINCT] expr)

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

DISTINCT If the word distinct occurs before the expression, all duplicates will be disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Script syntax and chart functions - Qlik Sense, May 2023 389

5 Script and chart functions

Example Result

Temp:

crosstable (Month, Sales) load * inline [

Customer|Jan|Feb|Mar||Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

Avg1:

LOAD Customer, Avg(Sales) as MyAverageSalesByCustomer

Resident Temp Group By Customer;

Customer

MyAverageSalesByCustomer

Astrida 48.916667

Betacab 44.916667

Canutility 56.916667

Divadip 63.083333

This can be checked in the sheet by
creating a table including the
measure:
Sum(Sales)/12

Given that the Temp table is loaded as in the previous example:

LOAD Customer,Avg(DISTINCT Sales) as MyAvgSalesDistinct

Resident Temp Group By Customer;

Customer

MyAverageSalesByCustomer

Astrida 43.1

Betacab 43.909091

Canutility 55.909091

Divadip 61

Only the distinct values are
counted. Divide the total by the
number of non-duplicate values.

Resulting data

Avg - chart function
Avg() returns the aggregated average of the expression or field iterated over the chart dimensions.

Syntax:
Avg([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] expr)

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 390

5 Script and chart functions

Argument Description

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Examples and results:

Customer Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Astrida 46 60 70 13 78 20 45 65 78 12 78 22

Betacab 65 56 22 79 12 56 45 24 32 78 55 15

Canutility 77 68 34 91 24 68 57 36 44 90 67 27

Divadip 57 36 44 90 67 27 57 68 47 90 80 94

Example table

Example Result

Avg(Sales) For a table including the dimension Customer and the measure Avg([Sales]), if Totals
are shown, the result is 2566.

Avg([TOTAL

(Sales))
53.458333 for all values of Customer, because the TOTAL qualifier means that
dimensions are disregarded.

Avg(DISTINCT

(Sales))
51.862069 for the total, because using the Distinct qualifier means only unique values in
Sales for each Customer are evaluated.

Function examples

Data used in examples:

Monthnames:

LOAD *, Dual(MonthText,MonthNumber) as Month INLINE [

MonthText, MonthNumber

Jan, 1

Feb, 2

Mar, 3

Apr, 4

May, 5

Jun, 6

Jul, 7

Script syntax and chart functions - Qlik Sense, May 2023 391

5 Script and chart functions

Aug, 8

Sep, 9

Oct, 10

Nov, 11

Dec, 12

];

Sales2013:

Crosstable (MonthText, Sales) LOAD * inline [

Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

See also:

p Aggr - chart function (page 525)

Correl

Correl() returns the aggregated correlation coefficient for a series of coordinates represented by
paired numbers in x-expression and y-expression iterated over a number of records as defined
by a group by clause.

Syntax:
Correl(value1, value2)

Return data type: numeric

Arguments:

Argument Description

value1,
value2

The expressions or fields containing the two sample sets for which the correlation
coefficient is to be measured.

Arguments

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Script syntax and chart functions - Qlik Sense, May 2023 392

5 Script and chart functions

Example Result

Salary:

Load *, 1 as Grp;

LOAD * inline [

"Employee name"|Gender|Age|Salary

Aiden Charles|Male|20|25000

Brenda Davies|Male|25|32000

Charlotte Edberg|Female|45|56000

Daroush Ferrara|Male|31|29000

Eunice Goldblum|Female|31|32000

Freddy Halvorsen|Male|25|26000

Gauri Indu|Female|36|46000

Harry Jones|Male|38|40000

Ian Underwood|Male|40|45000

Jackie Kingsley|Female|23|28000

] (delimiter is '|');

Correl1:

LOAD Grp,

Correl(Age,Salary) as Correl_

Salary Resident Salary Group By

Grp;

In a table with the dimension Correl_Salary, the result of the
Correl() calculation in the data load script will be shown:
0.9270611

Resulting data

Correl - chart function
Correl() returns the aggregated correlation coefficient for two data sets. The correlation function is a measure
of the relationship between the data sets and is aggregated for (x,y) value pairs iterated over the chart
dimensions.

Syntax:
Correl([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] value1, value2)

Return data type: numeric

Arguments:

Argument Description

value1, value2 The expressions or fields containing the two sample sets for which the correlation
coefficient is to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 393

5 Script and chart functions

Argument Description

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

Examples and results:

Example Result

Correl(Age,

Salary)
For a table including the dimension Employee name and the measure Correl(Age,

Salary), the result is 0.9270611. The result is only displayed for the totals cell.

Correl

(TOTAL Age,

Salary))

0.927. This and the following results are shown to three decimal places for readability.

If you create a filter pane with the dimension Gender, and make selections from it, you see
the result 0.951 when Female is selected and 0.939 if Male is selected. This is because the
selection excludes all results that do not belong to the other value of Gender.

Correl({1}

TOTAL Age,

Salary))

0.927. Independent of selections. This is because the set expression {1} disregards all
selections and dimensions.

Correl

(TOTAL

<Gender>

Age,

Salary))

0.927 in the total cell, 0.939 for all values of Male, and 0.951 for all values of Female. This
corresponds to the results from making the selections in a filter pane based on Gender.

Function examples

Data used in examples:

Salary:

LOAD * inline [

"Employee name"|Gender|Age|Salary

Aiden Charles|Male|20|25000

Brenda Davies|Male|25|32000

Charlotte Edberg|Female|45|56000

Daroush Ferrara|Male|31|29000

Eunice Goldblum|Female|31|32000

Freddy Halvorsen|Male|25|26000

Script syntax and chart functions - Qlik Sense, May 2023 394

5 Script and chart functions

Gauri Indu|Female|36|46000

Harry Jones|Male|38|40000

Ian Underwood|Male|40|45000

Jackie Kingsley|Female|23|28000

] (delimiter is '|');

See also:

p Aggr - chart function (page 525)
p Avg - chart function (page 390)
p RangeCorrel (page 1295)

Fractile

Fractile() finds the value that corresponds to the inclusive fractile (quantile) of the aggregated
data in the expression over a number of records as defined by a group by clause.

You can use FractileExc (page 398) to calculate the exclusive fractile.

Syntax:
Fractile(expr, fraction)

Return data type: numeric

The function returns the value corresponding to the rank as defined by rank = fraction * (N-1) + 1 where
N is the number of values in expr. If rank is a non-integer number, an interpolation is made between the two
closest values.

Arguments:

Argument Description

expr The expression or field containing the data to use when calculating the fractile.

fraction A number between 0 and 1 corresponding to the fractile (quantile expressed as a fraction)
to be calculated.

Arguments

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Script syntax and chart functions - Qlik Sense, May 2023 395

5 Script and chart functions

Example Result

Table1:

crosstable LOAD recno() as ID, *

inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

Fractile1:

LOAD Type,

Fractile(Value,0.75) as MyFractile

Resident Table1 Group By Type;

In a table with the dimensions Type and MyFractile, the results
of the Fractile() calculations in the data load script are:

Type MyFractile

Comparison 27.5

Observation 36

Resulting data

Fractile - chart function
Fractile() finds the value that corresponds to the inclusive fractile (quantile) of the aggregated data in the
range given by the expression iterated over the chart dimensions.

You can use FractileExc - chart function (page 400) to calculate the exclusive fractile.

Syntax:
Fractile([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] expr, fraction)

Return data type: numeric

The function returns the value corresponding to the rank as defined by rank = fraction * (N-1) + 1 where
N is the number of values in expr. If rank is a non-integer number, an interpolation is made between the two
closest values.

Script syntax and chart functions - Qlik Sense, May 2023 396

5 Script and chart functions

Arguments:

Argument Description

expr The expression or field containing the data to use when calculating the fractile.

fraction A number between 0 and 1 corresponding to the fractile (quantile expressed as a
fraction) to be calculated.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Arguments

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Examples and results:

Customer Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Astrida 46 60 70 13 78 20 45 65 78 12 78 22

Betacab 65 56 22 79 12 56 45 24 32 78 55 15

Canutility 77 68 34 91 24 68 57 36 44 90 67 27

Divadip 57 36 44 90 67 27 57 68 47 90 80 94

Example table

Example Result

Fractile

(Sales,

0.75)

For a table including the dimension Customer and the measure Fractile([Sales]), if
Totals are shown, the result is 71.75. This is the point in the distribution of values of Sales
that 75% of the values fall beneath.

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 397

5 Script and chart functions

Example Result

Fractile

(TOTAL

Sales,

0.75))

71.75 for all values of Customer, because the TOTAL qualifier means that dimensions are
disregarded.

Fractile

(DISTINCT

Sales,

0.75)

70 for the total, because using the DISTINCT qualifier means only unique values in Sales

for each Customer are evaluated.

Data used in examples:

Monthnames:

LOAD *, Dual(MonthText,MonthNumber) as Month INLINE [

MonthText, MonthNumber

Jan, 1

Feb, 2

Mar, 3

Apr, 4

May, 5

Jun, 6

Jul, 7

Aug, 8

Sep, 9

Oct, 10

Nov, 11

Dec, 12

];

Sales2013:

Crosstable (MonthText, Sales) LOAD * inline [

Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

See also:

p Aggr - chart function (page 525)

FractileExc

FractileExc() finds the value that corresponds to the exclusive fractile (quantile) of the
aggregated data in the expression over a number of records as defined by a group by clause.

You can use Fractile (page 395) to calculate the inclusive fractile.

Script syntax and chart functions - Qlik Sense, May 2023 398

5 Script and chart functions

Syntax:
FractileExc(expr, fraction)

Return data type: numeric

The function returns the value corresponding to the rank as defined by rank = fraction * (N+1) where N is
the number of values in expr. If rank is a non-integer number, an interpolation is made between the two
closest values.

Arguments:

Argument Description

expr The expression or field containing the data to use when calculating the fractile.

fraction A number between 0 and 1 corresponding to the fractile (quantile expressed as a fraction)
to be calculated.

Arguments

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Script syntax and chart functions - Qlik Sense, May 2023 399

5 Script and chart functions

Example Result

Table1:

crosstable LOAD recno() as ID, *

inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

Fractile1:

LOAD Type,

FractileExc(Value,0.75) as

MyFractile Resident Table1 Group By

Type;

In a table with the dimensions Type and MyFractile, the
results of the FractileExc() calculations in the data load script
are:

Type MyFractile

Comparison 28.5

Observation 38

Resulting data

FractileExc - chart function
FractileExc() finds the value that corresponds to the exclusive fractile (quantile) of the aggregated data in the
range given by the expression iterated over the chart dimensions.

You can use Fractile - chart function (page 396) to calculate the inclusive fractile.

Syntax:
FractileExc([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] expr,

fraction)

Return data type: numeric

The function returns the value corresponding to the rank as defined by rank = fraction * (N+1) where N is
the number of values in expr. If rank is a non-integer number, an interpolation is made between the two
closest values.

Script syntax and chart functions - Qlik Sense, May 2023 400

5 Script and chart functions

Arguments:

Argument Description

expr The expression or field containing the data to use when calculating the fractile.

fraction A number between 0 and 1 corresponding to the fractile (quantile expressed as a
fraction) to be calculated.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Arguments

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Examples and results:

Customer Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Astrida 46 60 70 13 78 20 45 65 78 12 78 22

Betacab 65 56 22 79 12 56 45 24 32 78 55 15

Canutility 77 68 34 91 24 68 57 36 44 90 67 27

Divadip 57 36 44 90 67 27 57 68 47 90 80 94

Example table

Example Result

FractileExc

(Sales, 0.75)
For a table including the dimension Customer and the measure FractileExc([Sales]), if
Totals are shown, the result is 75.25. This is the point in the distribution of values of
Sales that 75% of the values fall beneath.

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 401

5 Script and chart functions

Example Result

FractileExc

(TOTAL Sales,

0.75))

75.25 for all values of Customer, because the TOTAL qualifier means that dimensions are
disregarded.

FractileExc

(DISTINCT

Sales, 0.75)

73.50 for the total, because using the DISTINCT qualifier means only unique values in
Sales for each Customer are evaluated.

Data used in examples:

Monthnames:

LOAD *, Dual(MonthText,MonthNumber) as Month INLINE [

MonthText, MonthNumber

Jan, 1

Feb, 2

Mar, 3

Apr, 4

May, 5

Jun, 6

Jul, 7

Aug, 8

Sep, 9

Oct, 10

Nov, 11

Dec, 12

];

Sales2013:

Crosstable (MonthText, Sales) LOAD * inline [

Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

See also:

p Aggr - chart function (page 525)

Kurtosis

Kurtosis() returns the kurtosis of the data in the expression over a number of records as defined
by a group by clause.

Syntax:
Kurtosis([distinct] expr)

Script syntax and chart functions - Qlik Sense, May 2023 402

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates will be disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Example Result

Table1:

crosstable LOAD recno()

as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is

'|');

Kurtosis1:

LOAD Type,

Kurtosis(Value) as

MyKurtosis1,

Kurtosis(DISTINCT Value)

as MyKurtosis2

Resident Table1 Group By

Type;

In a table with the dimensions Type, MyKurtosis1,and MyKurtosis2, the
results of the Kurtosis() calculations in the data load script are:

Type MyKurtosis1 MyKurtosis2

Comparison -1.1612957 -1.4982366

Observation -1.1148768 -0.93540144

Resulting data

Script syntax and chart functions - Qlik Sense, May 2023 403

5 Script and chart functions

Kurtosis - chart function
Kurtosis() finds the kurtosis of the range of data aggregated in the expression or field iterated over the chart
dimensions.

Syntax:
Kurtosis([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] expr)

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Arguments

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Examples and results:

Type
Val
ue

Compar
ison

2 2
7

3
8

3
1

1 1
9

1 3
4

3 1 2 3 2 1 2 1 3 2
9

3
7

2

Observa
tion

35 4
0

1
2

1
5

2
1

1
4

4
6

1
0

2
8

4
8

1
6

3
0

3
2

4
8

3
1

2
2

1
2

3
9

1
9

2
5

Example table

Script syntax and chart functions - Qlik Sense, May 2023 404

5 Script and chart functions

Example Result

Kurtosis

(Value)
For a table including the dimension Type and the measure Kurtosis(Value), if Totals are
shown for the table, and number formatting is set to 3 significant figures, the result is 1.252.
For Comparison it is 1.161 and for Observation it is 1.115.

Kurtosis

(TOTAL

Value))

1.252 for all values of Type, because the TOTAL qualifier means that dimensions are
disregarded.

Function examples

Data used in examples:

Table1:

crosstable LOAD recno() as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

See also:

p Avg - chart function (page 390)

LINEST_B

LINEST_B() returns the aggregated b value (y-intercept) of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and
y-expression iterated over a number of records as defined by a group by clause.

Syntax:
LINEST_B (y_value, x_value[, y0 [, x0]])

Script syntax and chart functions - Qlik Sense, May 2023 405

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the y-axis at
a given point. By stating both y0 and x0 it is possible to force the regression line to pass
through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to
calculate. If y0 and x0 are stated, a single data pair will do.

Arguments

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)

LINEST_B - chart function
LINEST_B() returns the aggregated b value (y-intercept) of a linear regression defined by the equation y=mx+b
for a series of coordinates represented by paired numbers in the expressions given by the expressions x_value
and y_value, iterated over the chart dimensions.

Syntax:
LINEST_B([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_value

[, y0_const [, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 406

5 Script and chart functions

Argument Description

y0_const, x0_
const

An optional value y0 may be stated forcing the regression line to pass through the y-axis
at a given point. By stating both y0 and x0 it is possible to force the regression line to
pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid
data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)
p Avg - chart function (page 390)

LINEST_DF

LINEST_DF() returns the aggregated degrees of freedom of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and
y-expression iterated over a number of records as defined by a group by clause.

Syntax:
LINEST_DF (y_value, x_value[, y0 [, x0]])

Script syntax and chart functions - Qlik Sense, May 2023 407

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the y-axis at
a given point. By stating both y0 and x0 it is possible to force the regression line to pass
through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to
calculate. If y0 and x0 are stated, a single data pair will do.

Arguments

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)

LINEST_DF - chart function
LINEST_DF() returns the aggregated degrees of freedom of a linear regression defined by the equation
y=mx+b for a series of coordinates represented by paired numbers in the expressions given by x_value and y_
value, iterated over the chart dimensions.

Syntax:
LINEST_DF([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_

value [, y0_const [, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 408

5 Script and chart functions

Argument Description

y0, x0 An optional value y0 may be stated forcing the regression line to pass through the y-axis
at a given point. By stating both y0 and x0 it is possible to force the regression line to
pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid
data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)
p Avg - chart function (page 390)

LINEST_F

This script function returns the aggregated F statistic (r
2
/(1-r

2
)) of a linear regression defined by

the equation y=mx+b for a series of coordinates represented by paired numbers in x-expression
and y-expression iterated over a number of records as defined by a group by clause.

Syntax:
LINEST_F (y_value, x_value[, y0 [, x0]])

Script syntax and chart functions - Qlik Sense, May 2023 409

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the y-axis at
a given point. By stating both y0 and x0 it is possible to force the regression line to pass
through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to
calculate. If y0 and x0 are stated, a single data pair will do.

Arguments

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)

LINEST_F - chart function
LINEST_F() returns the aggregated F statistic (r2/(1-r2)) of a linear regression defined by the equation y=mx+b
for a series of coordinates represented by paired numbers in the expressions given by x_value and the y_
value, iterated over the chart dimensions.

Syntax:
LINEST_F([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_value

[, y0_const [, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 410

5 Script and chart functions

Argument Description

y0, x0 An optional value y0 may be stated forcing the regression line to pass through the y-axis
at a given point. By stating both y0 and x0 it is possible to force the regression line to
pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid
data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)
p Avg - chart function (page 390)

LINEST_M

LINEST_M() returns the aggregated m value (slope) of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and
y-expression iterated over a number of records as defined by a group by clause.

Syntax:
LINEST_M (y_value, x_value[, y0 [, x0]])

Script syntax and chart functions - Qlik Sense, May 2023 411

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the y-axis at
a given point. By stating both y0 and x0 it is possible to force the regression line to pass
through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to
calculate. If y0 and x0 are stated, a single data pair will do.

Arguments

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)

LINEST_M - chart function
LINEST_M() returns the aggregated m value (slope) of a linear regression defined by the equation y=mx+b for
a series of coordinates represented by paired numbers given by the expressions x_value and y_value, iterated
over the chart dimensions.

Syntax:
LINEST_M([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_value

[, y0_const [, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 412

5 Script and chart functions

Argument Description

y0, x0 An optional value y0 may be stated forcing the regression line to pass through the y-axis
at a given point. By stating both y0 and x0 it is possible to force the regression line to
pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid
data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)
p Avg - chart function (page 390)

LINEST_R2

LINEST_R2() returns the aggregated r
2

value (coefficient of determination) of a linear regression
defined by the equation y=mx+b for a series of coordinates represented by paired numbers in x-
expression and y-expression iterated over a number of records as defined by a group by clause.

Syntax:
LINEST_R2 (y_value, x_value[, y0 [, x0]])

Script syntax and chart functions - Qlik Sense, May 2023 413

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the y-axis at
a given point. By stating both y0 and x0 it is possible to force the regression line to pass
through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to
calculate. If y0 and x0 are stated, a single data pair will do.

Arguments

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)

LINEST_R2 - chart function
LINEST_R2() returns the aggregated r2 value (coefficient of determination) of a linear regression defined by
the equation y=mx+b for a series of coordinates represented by paired numbers given by the expressions x_
value and y_value, iterated over the chart dimensions.

Syntax:
LINEST_R2([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_

value[, y0_const[, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 414

5 Script and chart functions

Argument Description

y0, x0 An optional value y0 may be stated forcing the regression line to pass through the y-axis
at a given point. By stating both y0 and x0 it is possible to force the regression line to
pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid
data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)
p Avg - chart function (page 390)

LINEST_SEB

LINEST_SEB() returns the aggregated standard error of the b value of a linear regression
defined by the equation y=mx+b for a series of coordinates represented by paired numbers in x-
expression and y-expression iterated over a number of records as defined by a group by clause.

Syntax:
LINEST_SEB (y_value, x_value[, y0 [, x0]])

Script syntax and chart functions - Qlik Sense, May 2023 415

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the y-axis at
a given point. By stating both y0 and x0 it is possible to force the regression line to pass
through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to
calculate. If y0 and x0 are stated, a single data pair will do.

Arguments

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)

LINEST_SEB - chart function
LINEST_SEB() returns the aggregated standard error of the b value of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers given by the expressions x_value
and y_value, iterated over the chart dimensions.

Syntax:
LINEST_SEB([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_

value[, y0_const[, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 416

5 Script and chart functions

Argument Description

y0, x0 An optional value y0 may be stated forcing the regression line to pass through the y-axis
at a given point. By stating both y0 and x0 it is possible to force the regression line to
pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid
data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)
p Avg - chart function (page 390)

LINEST_SEM

LINEST_SEM() returns the aggregated standard error of the m value of a linear regression
defined by the equation y=mx+b for a series of coordinates represented by paired numbers in x-
expression and y-expression iterated over a number of records as defined by a group by clause.

Syntax:
LINEST_SEM (y_value, x_value[, y0 [, x0]])

Script syntax and chart functions - Qlik Sense, May 2023 417

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the y-axis at
a given point. By stating both y0 and x0 it is possible to force the regression line to pass
through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to
calculate. If y0 and x0 are stated, a single data pair will do.

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)

LINEST_SEM - chart function
LINEST_SEM() returns the aggregated standard error of the m value of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers given by the expressions x_value
and y_value, iterated over the chart dimensions.

Syntax:
LINEST_SEM([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_

value[, y0_const[, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 418

5 Script and chart functions

Argument Description

y0, x0 An optional value y0 may be stated forcing the regression line to pass through the y-axis
at a given point. By stating both y0 and x0 it is possible to force the regression line to
pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid
data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)
p Avg - chart function (page 390)

LINEST_SEY

LINEST_SEY() returns the aggregated standard error of the y estimate of a linear regression
defined by the equation y=mx+b for a series of coordinates represented by paired numbers in x-
expression and y-expression iterated over a number of records as defined by a group by clause.

Syntax:
LINEST_SEY (y_value, x_value[, y0 [, x0]])

Script syntax and chart functions - Qlik Sense, May 2023 419

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the y-axis at
a given point. By stating both y0 and x0 it is possible to force the regression line to pass
through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to
calculate. If y0 and x0 are stated, a single data pair will do.

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)

LINEST_SEY - chart function
LINEST_SEY() returns the aggregated standard error of the y estimate of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers given by the expressions x_value
and y_value, iterated over the chart dimensions.

Syntax:
LINEST_SEY([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_

value[, y0_const[, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 420

5 Script and chart functions

Argument Description

y0, x0 An optional value y0 may be stated forcing the regression line to pass through the y-axis
at a given point. By stating both y0 and x0 it is possible to force the regression line to
pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid
data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)
p Avg - chart function (page 390)

LINEST_SSREG

LINEST_SSREG() returns the aggregated regression sum of squares of a linear regression
defined by the equation y=mx+b for a series of coordinates represented by paired numbers in x-
expression and y-expression iterated over a number of records as defined by a group by clause.

Syntax:
LINEST_SSREG (y_value, x_value[, y0 [, x0]])

Script syntax and chart functions - Qlik Sense, May 2023 421

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the y-axis at
a given point. By stating both y0 and x0 it is possible to force the regression line to pass
through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to
calculate. If y0 and x0 are stated, a single data pair will do.

Arguments

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)

LINEST_SSREG - chart function
LINEST_SSREG() returns the aggregated regression sum of squares of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers given by the expressions x_value
and y_value, iterated over the chart dimensions.

Syntax:
LINEST_SSREG([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_

value[, y0_const[, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 422

5 Script and chart functions

Argument Description

y0, x0 An optional value y0 may be stated forcing the regression line to pass through the y-axis
at a given point. By stating both y0 and x0 it is possible to force the regression line to
pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid
data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)
p Avg - chart function (page 390)

LINEST_SSRESID

LINEST_SSRESID() returns the aggregated residual sum of squares of a linear regression defined
by the equation y=mx+b for a series of coordinates represented by paired numbers in x-
expression and y-expression iterated over a number of records as defined by a group by clause.

Syntax:
LINEST_SSRESID (y_value, x_value[, y0 [, x0]])

Script syntax and chart functions - Qlik Sense, May 2023 423

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the y-axis at
a given point. By stating both y0 and x0 it is possible to force the regression line to pass
through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to
calculate. If y0 and x0 are stated, a single data pair will do.

Arguments

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)

LINEST_SSRESID - chart function
LINEST_SSRESID() returns the aggregated residual sum of squares of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in the expressions given by x_
value and y_value, iterated over the chart dimensions.

Syntax:
LINEST_SSRESID([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value,

x_value[, y0_const[, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 424

5 Script and chart functions

Argument Description

y0, x0 An optional value y0 may be stated forcing the regression line to pass through the y-axis
at a given point. By stating both y0 and x0 it is possible to force the regression line to
pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid
data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

An optional value y0 may be stated forcing the regression line to pass through the y-axis at a given point. By
stating both y0 and x0 it is possible to force the regression line to pass through a single fixed coordinate.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

See also:

p Examples of how to use linest functions (page 444)
p Avg - chart function (page 390)

Median

Median() returns the aggregated median of the values in the expression over a number of
records as defined by a group by clause.

Syntax:
Median (expr)

Script syntax and chart functions - Qlik Sense, May 2023 425

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Arguments

Example: Script expression using Median
Example - script expression

Load script
Load the following inline data and script expression in the data load editor for this example.

Table 1:

Load RecNo() as RowNo, Letter, Number Inline

[Letter, Number

A,1

A,3

A,4

A,9

B,2

B,8

B,9];

Median:

LOAD Letter,

Median(Number) as MyMedian

Resident Table1 Group By Letter;

Create a visualization
Create a table visualization in a Qlik Sense sheet with Letter and MyMedian as dimensions.

Result

Explanation
The median is considered the "middle" number when the numbers have been sorted in order from smallest to
greatest. If the data set has an even number of values, the function returns the average of the two middle
values. In this example, the median is calculated for each set of values of A and B, which is 3.5 and 8,
respectively.

Script syntax and chart functions - Qlik Sense, May 2023 426

5 Script and chart functions

Median - chart function
Median() returns the median value of the range of values aggregated in the expression iterated over the chart
dimensions.

Syntax:
Median([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] expr)

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Arguments

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Example: Chart expression using Median
Example - chart expression

Load script
Load the following data as an inline load in the data load editor to create the chart expression example below.

Load RecNo() as RowNo, Letter, Number Inline

[Letter, Number

A,1

A,3

A,4

A,9

B,2

Script syntax and chart functions - Qlik Sense, May 2023 427

5 Script and chart functions

B,8

B,9];

Create a visualization
Create a table visualization in a Qlik Sense sheet with Letter as a dimension.

Chart expression
Add the following expression to the table, as a measure:

Median(Number)

Result

Explanation
The median is considered the "middle" number when the numbers have been sorted in order from smallest to
greatest. If the data set has an even number of values, the function returns the average of the two middle
values. In this example, the median is calculated for each set of values of A and B, which is 3.5 and 8,
respectively.

The median for Totals is calculated from all values, which equals 4.

See also:

p Avg - chart function (page 390)

MutualInfo - chart function

MutualInfo calculates the mutual information (MI) between two fields or between aggregated
values in Aggr().

MutualInfo returns the aggregated mutual information for two datasets. This allows key driver analysis
between a field and a potential driver. Mutual information measures the relationship between the datasets
and is aggregated for (x,y) pair values iterated over the chart dimensions. Mutual information is measured
between 0 and 1 and can be formatted as a percentile value. MutualInfo is defined by either selections or by a
set expression.

MutualInfo allows different kinds of MI analysis:

Script syntax and chart functions - Qlik Sense, May 2023 428

5 Script and chart functions

l Pair-wise MI: Calculate the MI between a driver field and a target field.
l Driver breakdown by value: The MI is calculated between individual field values in the driver and target

fields.
l Feature selection: Use MutualInfo in a grid chart to create a matrix where all fields are compared to

each other based on MI.

MutualInfo does not necessarily indicate causality between fields sharing mutual information. Two fields may
share mutual information, but may not be equal drivers for each other. For example, when comparing ice
cream sales and outdoor temperature, MutualInfo will show mutual information between the two. It will not
indicate if it is outdoor temperature driving ice cream sales, which is likely, or if it is ice cream sales that drives
outdoor temperature, which is unlikely.

When calculating mutual information, associations affect the correspondence between and the frequency of
values from fields that are from different tables.

Returned values for the same fields or selections may vary slightly. This is due to each MutualInfo call
operating on a randomly selected sample and the inherent randomness of the MutualInfo algorithm.

MutualInfo can be applied to the Aggr() function.

Syntax:
MutualInfo({SetExpression}] [DISTINCT] [TOTAL] field1, field2 , datatype [,

breakdownbyvalue [, samplesize]])

Return data type: numeric

Arguments:

Argument Description

field1, field2 The expressions or fields containing the two sample sets for which the mutual
information to be measured.

datatype The data types contained in the target and driver,

1 or 'dd' for discrete:discrete

2 or 'cc' for continuous:continuous

3 or 'cd' for continuous:discrete

4 or 'dc' for discrete:continuous

Data types are not case sensitive.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 429

5 Script and chart functions

Argument Description

breakdownbyvalue A static value corresponding to a value in the driver. If supplied, the calculation will
calculate the MI contribution for that value. You can use ValueList() or ValueLoop
(). If Null() is added, the calculation will calculate the overall MI for all values in the
driver.

Breaking down by value requires the driver contain discrete data.

samplesize The number of values to sample from the target and driver. Sampling is random.
MutualInfo requires a minimum sample size of 80. By default, MutualInfo only
samples up to 10,000 data-pairs as MutualInfo can be resource intensive. You can
specify greater numbers of data-pairs in the sample size. If MutualInfo times out,
reduce the sample size.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set
analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting
from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made
over all possible values given the current selections, and not just those that pertain
to the current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of
one or more field names as a subset of the chart dimension variables, you create a
subset of the total possible values.

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Example Result

mutualinfo(Age,

Salary, 1)
For a table including the dimension Employee name and the measure mutualinfo(Age,

Salary, 1), the result is 0.99820986. The result is only displayed for the totals cell.

mutualinfo

(TOTAL Age,

Salary, 1, null

(), 81)

If you create a filter pane with the dimension Gender, and make selections from it, you
see the result 0.99805677 when Female is selected and 0.99847373 if Male is selected.
This is because the selection excludes all results that do not belong to the other value
of Gender.

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 430

5 Script and chart functions

Example Result

mutualinfo

(TOTAL Age,

Gender, 1,

ValueLoop

(25,35))

0.68196996. Selecting any value from Gender will change this to 0.

mutualinfo({1}

TOTAL Age,

Salary, 1, null

())

0.99820986. This is independent of selections. The set expression {1} disregards all
selections and dimensions.

Data used in examples:

Salary:

LOAD * inline [

"Employee name"|Age|Gender|Salary

Aiden Charles|20|Male|25000

Ann Lindquist|69|Female|58000

Anna Johansen|37|Female|36000

Anna Karlsson|42|Female|23000

Antonio Garcia|20|Male|61000

Benjamin Smith|42|Male|27000

Bill Yang|49|Male|50000

Binh Protzmann|69|Male|21000

Bob Park|51|Male|54000

Brenda Davies|25|Male|32000

Celine Gagnon|48|Female|38000

Cezar Sandu|50|Male|46000

Charles Ingvar Jönsson|27|Male|58000

Charlotte Edberg|45|Female|56000

Cindy Lynn|69|Female|28000

Clark Wayne|63|Male|31000

Daroush Ferrara|31|Male|29000

David Cooper|37|Male|64000

David Leg|58|Male|57000

Eunice Goldblum|31|Female|32000

Freddy Halvorsen|25|Male|26000

Gauri Indu|36|Female|46000

George van Zaant|59|Male|47000

Glenn Brown|58|Male|40000

Harry Jones|38|Male|40000

Helen Brolin|52|Female|66000

Hiroshi Ito|24|Male|42000

Ian Underwood|40|Male|45000

Ingrid Hendrix|63|Female|27000

Ira Baumel|39|Female|39000

Jackie Kingsley|23|Female|28000

Jennica Williams|36|Female|48000

Jerry Tessel|31|Male|57000

Jim Bond|50|Male|58000

Joan Callins|60|Female|65000

Joan Cleaves|25|Female|61000

Joe Cheng|61|Male|41000

John Doe|36|Male|59000

John Lemon|43|Male|21000

Karen Helmkey|54|Female|25000

Script syntax and chart functions - Qlik Sense, May 2023 431

5 Script and chart functions

Karl Berger|38|Male|68000

Karl Straubaum|30|Male|40000

Kaya Alpan|32|Female|60000

Kenneth Finley|21|Male|25000

Leif Shine|63|Male|70000

Lennart Skoglund|63|Male|24000

Leona Korhonen|46|Female|50000

Lina André|50|Female|65000

Louis Presley|29|Male|36000

Luke Langston|50|Male|63000

Marcus Salvatori|31|Male|46000

Marie Simon|57|Female|23000

Mario Rossi|39|Male|62000

Markus Danzig|26|Male|48000

Michael Carlen|21|Male|45000

Michelle Tyson|44|Female|69000

Mike Ashkenaz|45|Male|68000

Miro Ito|40|Male|39000

Nina Mihn|62|Female|57000

Olivia Nguyen|35|Female|51000

Olivier Simenon|44|Male|31000

Östen Ärlig|68|Male|57000

Pamala Garcia|69|Female|29000

Paolo Romano|34|Male|45000

Pat Taylor|67|Female|69000

Paul Dupont|34|Male|38000

Peter Smith|56|Male|53000

Pierre Clouseau|21|Male|37000

Preben Jørgensen|35|Male|38000

Rey Jones|65|Female|20000

Ricardo Gucci|55|Male|65000

Richard Ranieri|30|Male|64000

Rob Carsson|46|Male|54000

Rolf Wesenlund|25|Male|51000

Ronaldo Costa|64|Male|39000

Sabrina Richards|57|Female|40000

Sato Hiromu|35|Male|21000

Sehoon Daw|57|Male|24000

Stefan Lind|67|Male|35000

Steve Cioazzi|58|Male|23000

Sunil Gupta|45|Male|40000

Sven Svensson|45|Male|55000

Tom Lindwall|46|Male|24000

Tomas Nilsson|27|Male|22000

Trinity Rizzo|52|Female|48000

Vanessa Lambert|54|Female|27000

] (delimiter is '|');

Skew

Skew() returns the skewness of expression over a number of records as defined by a group by
clause.

Syntax:
Skew([distinct] expr)

Script syntax and chart functions - Qlik Sense, May 2023 432

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

DISTINCT If the word distinct occurs before the expression, all duplicates will be disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. Then build a straight table with Type and MySkew as
dimensions.

Example Result

Table1:

crosstable LOAD recno() as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

Skew1:

LOAD Type,

Skew(Value) as MySkew

Resident Table1 Group By Type;

The results of the Skew() calculation are:

l Type is MySkew
l Comparison is 0.86414768
l Observation is 0.32625351

Resulting data

Skew - chart function
Skew() returns the aggregated skewness of the expression or field iterated over the chart dimensions.

Script syntax and chart functions - Qlik Sense, May 2023 433

5 Script and chart functions

Syntax:
Skew([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] expr)

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Arguments

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Examples and results:

Add the example script to your app and run it. Then build a straight table with Type as dimension and Skew

(Value) as measure.

Totals should be enabled in the properties of the table.

Script syntax and chart functions - Qlik Sense, May 2023 434

5 Script and chart functions

Example Result

Table1:

crosstable LOAD recno()

as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is

'|');

The results of the Skew(Value) calculation are:

l Total is 0.23522195
l Comparison is 0.86414768
l Observation is 0.32625351

See also:

p Avg - chart function (page 390)

Stdev

Stdev() returns the standard deviation of the values given by the expression over a number of
records as defined by a group by clause.

Syntax:
Stdev([distinct] expr)

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates will be disregarded.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 435

5 Script and chart functions

Examples and results:

Add the example script to your app and run it. Then build a straight table with Type and MyStdev as
dimensions.

Example Result

Table1:

crosstable LOAD recno() as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

Stdev1:

LOAD Type,

Stdev(Value) as MyStdev

Resident Table1 Group By Type;

The results of the Stdev() calculation are:

l Type is MyStdev
l Comparison is 14.61245
l Observation is 12.507997

Resulting data

Stdev - chart function
Stdev() finds the standard deviation of the range of data aggregated in the expression or field iterated over
the chart dimensions.

Syntax:
Stdev([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] expr)

Script syntax and chart functions - Qlik Sense, May 2023 436

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Arguments

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Examples and results:

Add the example script to your app and run it. Then build a straight table with Type as dimension and Stdev

(Value) as measure.

Totals should be enabled in the properties of the table.

Script syntax and chart functions - Qlik Sense, May 2023 437

5 Script and chart functions

Example Result

Stdev(Value)

Table1:

crosstable LOAD recno()

as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is

'|');

The results of the Stdev(Value) calculation are:

l Total is 15.47529
l Comparison is 14.61245
l Observation is 12.507997

See also:

p Avg - chart function (page 390)
p STEYX - chart function (page 442)

Sterr

Sterr() returns the aggregated standard error (stdev/sqrt(n)) for a series of values represented
by the expression iterated over a number of records as defined by a group by clause.

Syntax:
Sterr ([distinct] expr)

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates will be disregarded.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 438

5 Script and chart functions

Limitations:

Text values, NULL values and missing values are disregarded.

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Example Result

Table1:

crosstable LOAD recno() as

ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

Sterr1:

LOAD Type,

Sterr(Value) as MySterr

Resident Table1 Group By

Type;

In a table with the dimensions Type and MySterr, the results of the Sterr()
calculation in the data load script are:

Type MySterr

Comparison 3.2674431

Observation 2.7968733

Resulting data

Sterr - chart function
Sterr() finds the value of the standard error of the mean, (stdev/sqrt(n)), for the series of values aggregated in
the expression iterated over the chart dimensions.

Syntax:
Sterr([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] expr)

Script syntax and chart functions - Qlik Sense, May 2023 439

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Arguments

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Text values, NULL values and missing values are disregarded.

Examples and results:

Add the example script to your app and run it. Then build a straight table with Type as dimension and Sterr

(Value) as measure.

Totals should be enabled in the properties of the table.

Script syntax and chart functions - Qlik Sense, May 2023 440

5 Script and chart functions

Example Result

Table1:

crosstable LOAD recno() as

ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

The results of the Sterr(Value) calculation are:

l Total is 2.4468583
l Comparison is 3.2674431
l Observation is 2.7968733

See also:

p Avg - chart function (page 390)
p STEYX - chart function (page 442)

STEYX

STEYX() returns the aggregated standard error of the predicted y-value for each x-value in the
regression for a series of coordinates represented by paired numbers in x-expression and y-
expression iterated over a number of records as defined by a group by clause.

Syntax:
STEYX (y_value, x_value)

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 441

5 Script and chart functions

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Example Result

Trend:

Load *, 1 as Grp;

LOAD * inline [

Month|KnownY|KnownX

Jan|2|6

Feb|3|5

Mar|9|11

Apr|6|7

May|8|5

Jun|7|4

Jul|5|5

Aug|10|8

Sep|9|10

Oct|12|14

Nov|15|17

Dec|14|16

] (delimiter is '|');

STEYX1:

LOAD Grp,

STEYX(KnownY, KnownX)

as MySTEYX

Resident Trend Group

By Grp;

In a table with the dimension MySTEYX, the result of the STEYX() calculation in
the data load script is 2.0714764.

Resulting data

STEYX - chart function
STEYX() returns the aggregated standard error when predicting y-values for each x-value in a linear regression
given by a series of coordinates represented by paired numbers in the expressions given by y_value and x_
value.

Syntax:
STEYX([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_value)

Script syntax and chart functions - Qlik Sense, May 2023 442

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of known y-values to be measured.

x_value The expression or field containing the range of known x-values to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Arguments

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these inner
aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair
being disregarded.

Examples and results:

Add the example script to your app and run it. Then build a straight table with KnownY and KnownX as
dimension and Steyx(KnownY,KnownX) as measure.

Totals should be enabled in the properties of the table.

Script syntax and chart functions - Qlik Sense, May 2023 443

5 Script and chart functions

Example Result

Trend:

LOAD * inline [

Month|KnownY|KnownX

Jan|2|6

Feb|3|5

Mar|9|11

Apr|6|7

May|8|5

Jun|7|4

Jul|5|5

Aug|10|8

Sep|9|10

Oct|12|14

Nov|15|17

Dec|14|16

] (delimiter is '|');

The result of the STEYX(KnownY,KnownX) calculation is 2.071 (If number
formatting is set to 3 decimal places.)

See also:

p Avg - chart function (page 390)
p Sterr - chart function (page 439)

Examples of how to use linest functions
The linest functions are used to find values associated with linear regression analysis. This section describes
how to build visualizations using sample data to find the values of the linest functions available in Qlik Sense.
The linest functions can be used in the data load script and in chart expressions.

Refer to the individual linest chart function and script function topics for descriptions of syntax and
arguments.

Data and script expressions used in the examples
Load the following inline data and script expressions in the data load editor for the linest() examples below.

T1:

LOAD *, 1 as Grp;

LOAD * inline [

X|Y

1|0

2|1

3|3

4|8

5|14

6|20

7|0

8|50

9|25

10|60

11|38

12|19

13|26

14|143

15|98

Script syntax and chart functions - Qlik Sense, May 2023 444

5 Script and chart functions

16|27

17|59

18|78

19|158

20|279] (delimiter is '|');

R1:

LOAD

Grp,

linest_B(Y,X) as Linest_B,

linest_DF(Y,X) as Linest_DF,

linest_F(Y,X) as Linest_F,

linest_M(Y,X) as Linest_M,

linest_R2(Y,X) as Linest_R2,

linest_SEB(Y,X,1,1) as Linest_SEB,

linest_SEM(Y,X) as Linest_SEM,

linest_SEY(Y,X) as Linest_SEY,

linest_SSREG(Y,X) as Linest_SSREG,

linest_SSRESID(Y,X) as Linest_SSRESID

resident T1 group by Grp;

Example 1: Script expressions using linest
Example: Script expressions

Create a visualization from the data load script calculations
Create a table visualization in a Qlik Sense sheet with the following fields as columns:

l Linest_B
l Linest_DF
l Linest_F
l Linest_M
l Linest_R2
l Linest_SEB
l Linest_SEM
l Linest_SEY
l Linest_SSREG
l Linest_SSRESID

Result
The table containing the results of the linest calculations made in the data load script should look like this:

Linest_B Linest_DF Linest_F Linest_M Linest_R2 Linest_SEB

-35.047 18 20.788 8.605 0.536 22.607

Results table

Script syntax and chart functions - Qlik Sense, May 2023 445

5 Script and chart functions

Linest_SEM Linest_SEY Linest_SSREG Linest_SSRESID

1.887 48.666 49235.014 42631.186

Results table

Example 2: Chart expressions using linest
Example: Chart expressions
Create a table visualization in a Qlik Sense sheet with the following fields as dimensions:

ValueList('Linest_b', 'Linest_df','Linest_f', 'Linest_m','Linest_r2','Linest_SEB','Linest_

SEM','Linest_SEY','Linest_SSREG','Linest_SSRESID')

This expression uses the synthetic dimensions function to create labels for the dimensions with the names of
the linest functions. You can change the label to Linest functions to save space.

Add the following expression to the table as a measure:

Pick(Match(ValueList('Linest_b', 'Linest_df','Linest_f', 'Linest_m','Linest_r2','Linest_

SEB','Linest_SEM','Linest_SEY','Linest_SSREG','Linest_SSRESID'),'Linest_b', 'Linest_

df','Linest_f', 'Linest_m','Linest_r2','Linest_SEB','Linest_SEM','Linest_SEY','Linest_

SSREG','Linest_SSRESID'),Linest_b(Y,X),Linest_df(Y,X),Linest_f(Y,X),Linest_m(Y,X),Linest_r2

(Y,X),Linest_SEB(Y,X,1,1),Linest_SEM(Y,X),Linest_SEY(Y,X),Linest_SSREG(Y,X),Linest_SSRESID

(Y,X))

This expression displays the value of the result of each linest function against the corresponding name in the
synthetic dimension. The result of Linest_b(Y,X) is displayed next to linest_b, and so on.

Result

Linest functions Linest function results

Linest_b -35.047

Linest_df 18

Linest_f 20.788

Linest_m 8.605

Linest_r2 0.536

Linest_SEB 22.607

Linest_SEM 1.887

Linest_SEY 48.666

Linest_SSREG 49235.014

Linest_SSRESID 42631.186

Results table

Example 3: Chart expressions using linest
Example: Chart expressions

1. Create a barchart visualization in a Qlik Sense sheet with X as a dimension and Y as a measure.

2. Add a linear trend line to the Y measure.

Script syntax and chart functions - Qlik Sense, May 2023 446

5 Script and chart functions

3. Add a KPI visualization to the sheet.

1. Add slope as a label for the KPI.

2. Add sum(Linest_M) as an expression for the KPI.

4. Add a second KPI visualization to the sheet.

1. Add intercept as a label for the KPI.

2. Add Sum(Linest_B) as an expression for the KPI.

5. Add a third KPI visualization to the sheet.

1. Add coefficient of determination as a label for the KPI.

2. Add Sum(Linest_R2) as an expression for the KPI.

Result

Explanation
The barchart shows the plotting of the X and Y data. Relevant linest() functions provide values for the linear
regression equation that the trend line is based on, namely y = m * x + b. The equation uses the "least
squares" method to calculate a straight line (trend line) by returning an array that describes a line that best
fits the data.

The KPIs display the results of the linest() functions sum(Linest_M) for slope and sum(Linest_B) for the Y
intercept, which are variables in the linear regression equation, and the corresponding aggregated R2 value
for coefficient of determination.

Statistical test functions
Statistical test functions can be used in both the data load script and chart expressions, but the
syntax differs.

Chi-2 test functions
Generally used in the study of qualitative variables. One can compare observed frequencies in a one-way
frequency table with expected frequencies, or study the connection between two variables in a contingency
table.

Script syntax and chart functions - Qlik Sense, May 2023 447

5 Script and chart functions

T-test functions
T-test functions are used for statistical examination of two population means. A two-sample t-test examines
whether two samples are different and is commonly used when two normal distributions have unknown
variances and when an experiment uses a small sample size.

Z-test functions
A statistical examination of two population means. A two sample z-test examines whether two samples are
different and is commonly used when two normal distributions have known variances and when an
experiment uses a large sample size.

Chi2-test functions

Generally used in the study of qualitative variables. One can compare observed frequencies in a
one-way frequency table with expected frequencies, or study the connection between two
variables in a contingency table.Chi-squared test functions are used to determine whether there
is a statistically significant difference between the expected frequencies and the observed
frequencies in one or more groups. Often a histogram is used, and the different bins are
compared to an expected distribution.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Chi2Test_chi2
Chi2Test_chi2() returns the aggregated chi2-test value for one or two series of values.

Chi2Test_chi2() returns the aggregated chi2-test value for one or two series
of values.(col, row, actual_value[, expected_value])

Chi2Test_df
Chi2Test_df() returns the aggregated chi2-test df value (degrees of freedom) for one or two series of values.

Chi2Test_df() returns the aggregated chi2-test df value (degrees of freedom)
for one or two series of values.(col, row, actual_value[, expected_value])

Chi2Test_p
Chi2Test_p() returns the aggregated chi2-test p value (significance) for one or two series of values.

Chi2Test_p - chart function(col, row, actual_value[, expected_value])

See also:

p T-test functions (page 451)
p Z-test functions (page 485)

Script syntax and chart functions - Qlik Sense, May 2023 448

5 Script and chart functions

Chi2Test_chi2

Chi2Test_chi2() returns the aggregated chi2-test value for one or two series of values.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

All Qlik Sense chi2 -test functions have the same arguments.

Syntax:
Chi2Test_chi2(col, row, actual_value[, expected_value])

Return data type: numeric

Arguments:

Argument Description

col, row The specified column and row in the matrix of values being tested.

actual_value The observed value of the data at the specified col and row.

expected_value The expected value for the distribution at the specified col and row.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

Chi2Test_chi2(Grp, Grade, Count)

Chi2Test_chi2(Gender, Description, Observed, Expected)

See also:

p Examples of how to use chi2-test functions in charts (page 500)
p Examples of how to use chi2-test functions in the data load script (page 503)

Chi2Test_df

Chi2Test_df() returns the aggregated chi2-test df value (degrees of freedom) for one or two
series of values.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Script syntax and chart functions - Qlik Sense, May 2023 449

5 Script and chart functions

All Qlik Sense chi2 -test functions have the same arguments.

Syntax:
Chi2Test_df(col, row, actual_value[, expected_value])

Return data type: numeric

Arguments:

Argument Description

col, row The specified column and row in the matrix of values being tested.

actual_value The observed value of the data at the specified col and row.

expected_value The expected value for the distribution at the specified col and row.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

Chi2Test_df(Grp, Grade, Count)

Chi2Test_df(Gender, Description, Observed, Expected)

See also:

p Examples of how to use chi2-test functions in charts (page 500)
p Examples of how to use chi2-test functions in the data load script (page 503)

Chi2Test_p - chart function

Chi2Test_p() returns the aggregated chi2-test p value (significance) for one or two series of
values. The test can be done either on the values in actual_value, testing for variations within
the specified col and row matrix, or by comparing values in actual_value with corresponding
values in expected_value, if specified.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

All Qlik Sense chi2 -test functions have the same arguments.

Script syntax and chart functions - Qlik Sense, May 2023 450

5 Script and chart functions

Syntax:
Chi2Test_p(col, row, actual_value[, expected_value])

Return data type: numeric

Arguments:

Argument Description

col, row The specified column and row in the matrix of values being tested.

actual_value The observed value of the data at the specified col and row.

expected_value The expected value for the distribution at the specified col and row.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

Chi2Test_p(Grp, Grade, Count)

Chi2Test_p(Gender, Description, Observed, Expected)

See also:

p Examples of how to use chi2-test functions in charts (page 500)
p Examples of how to use chi2-test functions in the data load script (page 503)

T-test functions

T-test functions are used for statistical examination of two population means. A two-sample t-
test examines whether two samples are different and is commonly used when two normal
distributions have unknown variances and when an experiment uses a small sample size.

In the following sections, the t-test statistical test functions are grouped according to the sample student test
that applies to each type of function.

Creating a typical t-test report (page 504)

Two independent samples t-tests
The following functions apply to two independent samples student's t-tests.

ttest_conf
TTest_conf returns the aggregated t-test confidence interval value for two independent samples.

TTest_conf returns the aggregated t-test confidence interval value for two
independent samples. (grp, value [, sig[, eq_var]])

Script syntax and chart functions - Qlik Sense, May 2023 451

5 Script and chart functions

ttest_df
TTest_df() returns the aggregated student's t-test value (degrees of freedom) for two independent series of
values.

TTest_df() returns the aggregated student's t-test value (degrees of freedom)
for two independent series of values. (grp, value [, eq_var)

ttest_dif
TTest_dif() is a numeric function that returns the aggregated student's t-test mean difference for two
independent series of values.

TTest_dif() is a numeric function that returns the aggregated student's t-
test mean difference for two independent series of values. (grp, value)

ttest_lower
TTest_lower() returns the aggregated value for the lower end of the confidence interval for two independent
series of values.

TTest_lower() returns the aggregated value for the lower end of the
confidence interval for two independent series of values. (grp, value [, sig

[, eq_var]])

ttest_sig
TTest_sig() returns the aggregated student's t-test 2-tailed level of significance for two independent series of
values.

TTest_sig() returns the aggregated student's t-test 2-tailed level of
significance for two independent series of values. (grp, value [, eq_var])

ttest_sterr
TTest_sterr() returns the aggregated student's t-test standard error of the mean difference for two
independent series of values.

TTest_sterr() returns the aggregated student's t-test standard error of the
mean difference for two independent series of values. (grp, value [, eq_var])

ttest_t
TTest_t() returns the aggregated t value for two independent series of values.

TTest_t() returns the aggregated t value for two independent series of
values. (grp, value [, eq_var])

ttest_upper
TTest_upper() returns the aggregated value for the upper end of the confidence interval for two independent
series of values.

TTest_upper() returns the aggregated value for the upper end of the
confidence interval for two independent series of values. (grp, value [, sig

[, eq_var]])

Script syntax and chart functions - Qlik Sense, May 2023 452

5 Script and chart functions

Two independent weighted samples t-tests
The following functions apply to two independent samples student's t-tests where the input data series is
given in weighted two-column format.

ttestw_conf
TTestw_conf() returns the aggregated t value for two independent series of values.

TTestw_conf() returns the aggregated t value for two independent series of
values. (weight, grp, value [, sig[, eq_var]])

ttestw_df
TTestw_df() returns the aggregated student's t-test df value (degrees of freedom) for two independent series
of values.

TTestw_df() returns the aggregated student's t-test df value (degrees of
freedom) for two independent series of values. (weight, grp, value [, eq_

var])

ttestw_dif
TTestw_dif() returns the aggregated student's t-test mean difference for two independent series of values.

TTestw_dif() returns the aggregated student's t-test mean difference for two
independent series of values. (weight, grp, value)

ttestw_lower
TTestw_lower() returns the aggregated value for the lower end of the confidence interval for two
independent series of values.

TTestw_lower() returns the aggregated value for the lower end of the
confidence interval for two independent series of values. (weight, grp, value

[, sig[, eq_var]])

ttestw_sig
TTestw_sig() returns the aggregated student's t-test 2-tailed level of significance for two independent series
of values.

TTestw_sig() returns the aggregated student's t-test 2-tailed level of
significance for two independent series of values. (weight, grp, value [,

eq_var])

ttestw_sterr
TTestw_sterr() returns the aggregated student's t-test standard error of the mean difference for two
independent series of values.

TTestw_sterr() returns the aggregated student's t-test standard error of the
mean difference for two independent series of values. (weight, grp, value [,

eq_var])

ttestw_t
TTestw_t() returns the aggregated t value for two independent series of values.

Script syntax and chart functions - Qlik Sense, May 2023 453

5 Script and chart functions

TTestw_t() returns the aggregated t value for two independent series of
values. (weight, grp, value [, eq_var])

ttestw_upper
TTestw_upper() returns the aggregated value for the upper end of the confidence interval for two
independent series of values.

TTestw_upper() returns the aggregated value for the upper end of the
confidence interval for two independent series of values. (weight, grp, value

[, sig [, eq_var]])

One sample t-tests
The following functions apply to one-sample student's t-tests.

ttest1_conf
TTest1_conf() returns the aggregated confidence interval value for a series of values.

TTest1_conf() returns the aggregated confidence interval value for a series
of values. (value [, sig])

ttest1_df
TTest1_df() returns the aggregated student's t-test df value (degrees of freedom) for a series of values.

TTest1_df() returns the aggregated student's t-test df value (degrees of
freedom) for a series of values. (value)

ttest1_dif
TTest1_dif() returns the aggregated student's t-test mean difference for a series of values.

TTest1_dif() returns the aggregated student's t-test mean difference for a
series of values. (value)

ttest1_lower
TTest1_lower() returns the aggregated value for the lower end of the confidence interval for a series of
values.

TTest1_lower() returns the aggregated value for the lower end of the
confidence interval for a series of values. (value [, sig])

ttest1_sig
TTest1_sig() returns the aggregated student's t-test 2-tailed level of significance for a series of values.

TTest1_sig() returns the aggregated student's t-test 2-tailed level of
significance for a series of values. (value)

ttest1_sterr
TTest1_sterr() returns the aggregated student's t-test standard error of the mean difference for a series of
values.

TTest1_sterr() returns the aggregated student's t-test standard error of the
mean difference for a series of values. (value)

Script syntax and chart functions - Qlik Sense, May 2023 454

5 Script and chart functions

ttest1_t
TTest1_t() returns the aggregated t value for a series of values.

TTest1_t() returns the aggregated t value for a series of values. (value)

ttest1_upper
TTest1_upper() returns the aggregated value for the upper end of the confidence interval for a series of
values.

TTest1_upper() returns the aggregated value for the upper end of the
confidence interval for a series of values. (value [, sig])

One weighted sample t-tests
The following functions apply to one-sample student's t-tests where the input data series is given in weighted
two-column format.

ttest1w_conf
TTest1w_conf() is a numeric function that returns the aggregated confidence interval value for a series of
values.

TTest1w_conf() is a numeric function that returns the aggregated confidence
interval value for a series of values. (weight, value [, sig])

ttest1w_df
TTest1w_df() returns the aggregated student's t-test df value (degrees of freedom) for a series of values.

TTest1w_df() returns the aggregated student's t-test df value (degrees of
freedom) for a series of values. (weight, value)

ttest1w_dif
TTest1w_dif() returns the aggregated student's t-test mean difference for a series of values.

TTest1w_dif() returns the aggregated student's t-test mean difference for a
series of values. (weight, value)

ttest1w_lower
TTest1w_lower() returns the aggregated value for the lower end of the confidence interval for a series of
values.

TTest1w_lower() returns the aggregated value for the lower end of the
confidence interval for a series of values. (weight, value [, sig])

ttest1w_sig
TTest1w_sig() returns the aggregated student's t-test 2-tailed level of significance for a series of values.

TTest1w_sig() returns the aggregated student's t-test 2-tailed level of
significance for a series of values. (weight, value)

Script syntax and chart functions - Qlik Sense, May 2023 455

5 Script and chart functions

ttest1w_sterr
TTest1w_sterr() returns the aggregated student's t-test standard error of the mean difference for a series of
values.

TTest1w_sterr() returns the aggregated student's t-test standard error of the
mean difference for a series of values. (weight, value)

ttest1w_t
TTest1w_t() returns the aggregated t value for a series of values.

TTest1w_t() returns the aggregated t value for a series of values. (weight,

value)

ttest1w_upper
TTest1w_upper() returns the aggregated value for the upper end of the confidence interval for a series of
values.

TTest1w_upper() returns the aggregated value for the upper end of the
confidence interval for a series of values. (weight, value [, sig])

TTest_conf
TTest_conf returns the aggregated t-test confidence interval value for two independent samples.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest_conf (grp, value [, sig [, eq_var]])

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 456

5 Script and chart functions

Argument Description

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest_conf(Group, Value)

TTest_conf(Group, Value, Sig, false)

See also:

p Creating a typical t-test report (page 504)

TTest_df
TTest_df() returns the aggregated student's t-test value (degrees of freedom) for two independent series of
values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest_df (grp, value [, eq_var])

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 457

5 Script and chart functions

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest_df(Group, Value)

TTest_df(Group, Value, false)

See also:

p Creating a typical t-test report (page 504)

TTest_dif
TTest_dif() is a numeric function that returns the aggregated student's t-test mean difference for two
independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest_dif (grp, value [, eq_var])

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Script syntax and chart functions - Qlik Sense, May 2023 458

5 Script and chart functions

Examples:

TTest_dif(Group, Value)

TTest_dif(Group, Value, false)

See also:

p Creating a typical t-test report (page 504)

TTest_lower
TTest_lower() returns the aggregated value for the lower end of the confidence interval for two independent
series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest_lower (grp, value [, sig [, eq_var]])

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Script syntax and chart functions - Qlik Sense, May 2023 459

5 Script and chart functions

Examples:

TTest_lower(Group, Value)

TTest_lower(Group, Value, Sig, false)

See also:

p Creating a typical t-test report (page 504)

TTest_sig
TTest_sig() returns the aggregated student's t-test 2-tailed level of significance for two independent series of
values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest_sig (grp, value [, eq_var])

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest_sig(Group, Value)

TTest_sig(Group, Value, false)

Script syntax and chart functions - Qlik Sense, May 2023 460

5 Script and chart functions

See also:

p Creating a typical t-test report (page 504)

TTest_sterr
TTest_sterr() returns the aggregated student's t-test standard error of the mean difference for two
independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest_sterr (grp, value [, eq_var])

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest_sterr(Group, Value)

TTest_sterr(Group, Value, false)

See also:

p Creating a typical t-test report (page 504)

Script syntax and chart functions - Qlik Sense, May 2023 461

5 Script and chart functions

TTest_t
TTest_t() returns the aggregated t value for two independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest_t(grp, value[, eq_var])

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

TTest_t(Group, Value, false)

See also:

p Creating a typical t-test report (page 504)

TTest_upper
TTest_upper() returns the aggregated value for the upper end of the confidence interval for two independent
series of values.

This function applies to independent samples student's t-tests.

Script syntax and chart functions - Qlik Sense, May 2023 462

5 Script and chart functions

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest_upper (grp, value [, sig [, eq_var]])

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest_upper(Group, Value)

TTest_upper(Group, Value, sig, false)

See also:

p Creating a typical t-test report (page 504)

TTestw_conf
TTestw_conf() returns the aggregated t value for two independent series of values.

This function applies to two independent samples student's t-tests where the input data series is given in
weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

Script syntax and chart functions - Qlik Sense, May 2023 463

5 Script and chart functions

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTestw_conf (weight, grp, value [, sig [, eq_var]])

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a corresponding weight
value in weight.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTestw_conf(Weight, Group, Value)

TTestw_conf(Weight, Group, Value, sig, false)

See also:

p Creating a typical t-test report (page 504)

TTestw_df
TTestw_df() returns the aggregated student's t-test df value (degrees of freedom) for two independent series
of values.

This function applies to two independent samples student's t-tests where the input data series is given in
weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

Script syntax and chart functions - Qlik Sense, May 2023 464

5 Script and chart functions

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTestw_df (weight, grp, value [, eq_var])

Return data type: numeric

Arguments:

Argument Description

weight Each value in value can be counted one or more times according to a corresponding weight
value in weight.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTestw_df(Weight, Group, Value)

TTestw_df(Weight, Group, Value, false)

See also:

p Creating a typical t-test report (page 504)

TTestw_dif
TTestw_dif() returns the aggregated student's t-test mean difference for two independent series of values.

This function applies to two independent samples student's t-tests where the input data series is given in
weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Script syntax and chart functions - Qlik Sense, May 2023 465

5 Script and chart functions

Syntax:
TTestw_dif (weight, grp, value)

Return data type: numeric

Arguments:

Argument Description

weight Each value in value can be counted one or more times according to a corresponding weight
value in weight.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTestw_dif(Weight, Group, Value)

TTestw_dif(Weight, Group, Value, false)

See also:

p Creating a typical t-test report (page 504)

TTestw_lower
TTestw_lower() returns the aggregated value for the lower end of the confidence interval for two
independent series of values.

This function applies to two independent samples student's t-tests where the input data series is given in
weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTestw_lower (weight, grp, value [, sig [, eq_var]])

Script syntax and chart functions - Qlik Sense, May 2023 466

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

weight Each value in value can be counted one or more times according to a corresponding weight
value in weight.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTestw_lower(Weight, Group, Value)

TTestw_lower(Weight, Group, Value, sig, false)

See also:

p Creating a typical t-test report (page 504)

TTestw_sig
TTestw_sig() returns the aggregated student's t-test 2-tailed level of significance for two independent series
of values.

This function applies to two independent samples student's t-tests where the input data series is given in
weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTestw_sig (weight, grp, value [, eq_var])

Script syntax and chart functions - Qlik Sense, May 2023 467

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

weight Each value in value can be counted one or more times according to a corresponding weight
value in weight.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTestw_sig(Weight, Group, Value)

TTestw_sig(Weight, Group, Value, false)

See also:

p Creating a typical t-test report (page 504)

TTestw_sterr
TTestw_sterr() returns the aggregated student's t-test standard error of the mean difference for two
independent series of values.

This function applies to two independent samples student's t-tests where the input data series is given in
weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTestw_sterr (weight, grp, value [, eq_var])

Script syntax and chart functions - Qlik Sense, May 2023 468

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

weight Each value in value can be counted one or more times according to a corresponding weight
value in weight.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTestw_sterr(Weight, Group, Value)

TTestw_sterr(Weight, Group, Value, false)

See also:

p Creating a typical t-test report (page 504)

TTestw_t
TTestw_t() returns the aggregated t value for two independent series of values.

This function applies to two independent samples student's t-tests where the input data series is given in
weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ttestw_t (weight, grp, value [, eq_var])

Script syntax and chart functions - Qlik Sense, May 2023 469

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a corresponding weight
value in weight.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTestw_t(Weight, Group, Value)

TTestw_t(Weight, Group, Value, false)

See also:

p Creating a typical t-test report (page 504)

TTestw_upper

TTestw_upper() returns the aggregated value for the upper end of the confidence interval for
two independent series of values.

This function applies to two independent samples student's t-tests where the input data series is given in
weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTestw_upper (weight, grp, value [, sig [, eq_var]])

Script syntax and chart functions - Qlik Sense, May 2023 470

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

weight Each value in value can be counted one or more times according to a corresponding weight
value in weight.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTestw_upper(Weight, Group, Value)

TTestw_upper(Weight, Group, Value, sig, false)

See also:

p Creating a typical t-test report (page 504)

TTest1_conf
TTest1_conf() returns the aggregated confidence interval value for a series of values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1_conf (value [, sig])

Script syntax and chart functions - Qlik Sense, May 2023 471

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided in the
load script, the field will automatically be named Value.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest1_conf(Value)

TTest1_conf(Value, 0.005)

See also:

p Creating a typical t-test report (page 504)

TTest1_df
TTest1_df() returns the aggregated student's t-test df value (degrees of freedom) for a series of values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1_df (value)

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided in the
load script, the field will automatically be named Value.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 472

5 Script and chart functions

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

TTest1_df(Value)

See also:

p Creating a typical t-test report (page 504)

TTest1_dif
TTest1_dif() returns the aggregated student's t-test mean difference for a series of values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1_dif (value)

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided in the
load script, the field will automatically be named Value.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

TTest1_dif(Value)

See also:

p Creating a typical t-test report (page 504)

Script syntax and chart functions - Qlik Sense, May 2023 473

5 Script and chart functions

TTest1_lower
TTest1_lower() returns the aggregated value for the lower end of the confidence interval for a series of
values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1_lower (value [, sig])

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided in the
load script, the field will automatically be named Value.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest1_lower(Value)

TTest1_lower(Value, 0.005)

See also:

p Creating a typical t-test report (page 504)

TTest1_sig
TTest1_sig() returns the aggregated student's t-test 2-tailed level of significance for a series of values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Script syntax and chart functions - Qlik Sense, May 2023 474

5 Script and chart functions

Syntax:
TTest1_sig (value)

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided in the
load script, the field will automatically be named Value.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

TTest1_sig(Value)

See also:

p Creating a typical t-test report (page 504)

TTest1_sterr
TTest1_sterr() returns the aggregated student's t-test standard error of the mean difference for a series of
values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1_sterr (value)

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided in the
load script, the field will automatically be named Value.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 475

5 Script and chart functions

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

TTest1_sterr(Value)

See also:

p Creating a typical t-test report (page 504)

TTest1_t
TTest1_t() returns the aggregated t value for a series of values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1_t (value)

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided in the
load script, the field will automatically be named Value.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

TTest1_t(Value)

See also:

p Creating a typical t-test report (page 504)

Script syntax and chart functions - Qlik Sense, May 2023 476

5 Script and chart functions

TTest1_upper
TTest1_upper() returns the aggregated value for the upper end of the confidence interval for a series of
values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1_upper (value [, sig])

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided in the
load script, the field will automatically be named Value.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest1_upper(Value)

TTest1_upper(Value, 0.005)

See also:

p Creating a typical t-test report (page 504)

TTest1w_conf
TTest1w_conf() is a numeric function that returns the aggregated confidence interval value for a series of
values.

This function applies to one-sample student's t-tests where the input data series is given in weighted two-
column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

Script syntax and chart functions - Qlik Sense, May 2023 477

5 Script and chart functions

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1w_conf (weight, value [, sig])

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided in the
load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a corresponding weight
value in weight.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest1w_conf(Weight, Value)

TTest1w_conf(Weight, Value, 0.005)

See also:

p Creating a typical t-test report (page 504)

TTest1w_df
TTest1w_df() returns the aggregated student's t-test df value (degrees of freedom) for a series of values.

This function applies to one-sample student's t-tests where the input data series is given in weighted two-
column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1w_df (weight, value)

Script syntax and chart functions - Qlik Sense, May 2023 478

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided in the
load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a corresponding weight
value in weight.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

TTest1w_df(Weight, Value)

See also:

p Creating a typical t-test report (page 504)

TTest1w_dif
TTest1w_dif() returns the aggregated student's t-test mean difference for a series of values.

This function applies to one-sample student's t-tests where the input data series is given in weighted two-
column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1w_dif (weight, value)

Script syntax and chart functions - Qlik Sense, May 2023 479

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided in the
load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a corresponding weight
value in weight.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

TTest1w_dif(Weight, Value)

See also:

p Creating a typical t-test report (page 504)

TTest1w_lower
TTest1w_lower() returns the aggregated value for the lower end of the confidence interval for a series of
values.

This function applies to one-sample student's t-tests where the input data series is given in weighted two-
column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1w_lower (weight, value [, sig])

Script syntax and chart functions - Qlik Sense, May 2023 480

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided in the
load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a corresponding weight
value in weight.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest1w_lower(Weight, Value)

TTest1w_lower(Weight, Value, 0.005)

See also:

p Creating a typical t-test report (page 504)

TTest1w_sig
TTest1w_sig() returns the aggregated student's t-test 2-tailed level of significance for a series of values.

This function applies to one-sample student's t-tests where the input data series is given in weighted two-
column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1w_sig (weight, value)

Script syntax and chart functions - Qlik Sense, May 2023 481

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided in the
load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a corresponding weight
value in weight.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

TTest1w_sig(Weight, Value)

See also:

p Creating a typical t-test report (page 504)

TTest1w_sterr
TTest1w_sterr() returns the aggregated student's t-test standard error of the mean difference for a series of
values.

This function applies to one-sample student's t-tests where the input data series is given in weighted two-
column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1w_sterr (weight, value)

Script syntax and chart functions - Qlik Sense, May 2023 482

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided in the
load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a corresponding weight
value in weight.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

TTest1w_sterr(Weight, Value)

See also:

p Creating a typical t-test report (page 504)

TTest1w_t
TTest1w_t() returns the aggregated t value for a series of values.

This function applies to one-sample student's t-tests where the input data series is given in weighted two-
column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1w_t (weight, value)

Script syntax and chart functions - Qlik Sense, May 2023 483

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided in the
load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a corresponding weight
value in weight.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

TTest1w_t(Weight, Value)

See also:

p Creating a typical t-test report (page 504)

TTest1w_upper
TTest1w_upper() returns the aggregated value for the upper end of the confidence interval for a series of
values.

This function applies to one-sample student's t-tests where the input data series is given in weighted two-
column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1w_upper (weight, value [, sig])

Script syntax and chart functions - Qlik Sense, May 2023 484

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided in the
load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a corresponding weight
value in weight.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest1w_upper(Weight, Value)

TTest1w_upper(Weight, Value, 0.005)

See also:

p Creating a typical t-test report (page 504)

Z-test functions

A statistical examination of two population means. A two sample z-test examines whether two
samples are different and is commonly used when two normal distributions have known
variances and when an experiment uses a large sample size.

The z-test statistical test functions are grouped according the type of input data series that applies to the
function.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Examples of how to use z-test functions (page 507)

One column format functions
The following functions apply to z-tests with simple input data series.

Script syntax and chart functions - Qlik Sense, May 2023 485

5 Script and chart functions

ztest_conf
ZTest_conf() returns the aggregated z value for a series of values.

ZTest_conf() returns the aggregated z value for a series of values. (value [,

sigma [, sig])

ztest_dif
ZTest_dif() returns the aggregated z-test mean difference for a series of values.

ZTest_dif() returns the aggregated z-test mean difference for a series of
values. (value [, sigma])

ztest_sig
ZTest_sig() returns the aggregated z-test 2-tailed level of significance for a series of values.

ZTest_sig() returns the aggregated z-test 2-tailed level of significance for
a series of values. (value [, sigma])

ztest_sterr
ZTest_sterr() returns the aggregated z-test standard error of the mean difference for a series of values.

ZTest_sterr() returns the aggregated z-test standard error of the mean
difference for a series of values. (value [, sigma])

ztest_z
ZTest_z() returns the aggregated z value for a series of values.

ZTest_z() returns the aggregated z value for a series of values. (value [,

sigma])

ztest_lower
ZTest_lower() returns the aggregated value for the lower end of the confidence interval for two independent
series of values.

ZTest_lower() returns the aggregated value for the lower end of the
confidence interval for two independent series of values. (grp, value [, sig

[, eq_var]])

ztest_upper
ZTest_upper() returns the aggregated value for the upper end of the confidence interval for two independent
series of values.

ZTest_upper() returns the aggregated value for the upper end of the
confidence interval for two independent series of values. (grp, value [, sig

[, eq_var]])

Weighted two-column format functions
The following functions apply to z-tests where the input data series is given in weighted two-column format.

ztestw_conf
ZTestw_conf() returns the aggregated z confidence interval value for a series of values.

Script syntax and chart functions - Qlik Sense, May 2023 486

5 Script and chart functions

ZTestw_conf() returns the aggregated z confidence interval value for a series
of values. (weight, value [, sigma [, sig]])

ztestw_dif
ZTestw_dif() returns the aggregated z-test mean difference for a series of values.

ZTestw_dif() returns the aggregated z-test mean difference for a series of
values. (weight, value [, sigma])

ztestw_lower
ZTestw_lower() returns the aggregated value for the lower end of the confidence interval for two
independent series of values.

ZTestw_lower() returns the aggregated value for the lower end of the
confidence interval for two independent series of values. (weight, value [,

sigma])

ztestw_sig
ZTestw_sig() returns the aggregated z-test 2-tailed level of significance for a series of values.

ZTestw_sig() returns the aggregated z-test 2-tailed level of significance for
a series of values. (weight, value [, sigma])

ztestw_sterr
ZTestw_sterr() returns the aggregated z-test standard error of the mean difference for a series of values.

ZTestw_sterr() returns the aggregated z-test standard error of the mean
difference for a series of values. (weight, value [, sigma])

ztestw_upper
ZTestw_upper() returns the aggregated value for the upper end of the confidence interval for two
independent series of values.

ZTestw_upper() returns the aggregated value for the upper end of the
confidence interval for two independent series of values. (weight, value [,

sigma])

ztestw_z
ZTestw_z() returns the aggregated z value for a series of values.

ZTestw_z() returns the aggregated z value for a series of values. (weight,
value [, sigma])

ZTest_z

ZTest_z() returns the aggregated z value for a series of values.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Script syntax and chart functions - Qlik Sense, May 2023 487

5 Script and chart functions

Syntax:
ZTest_z(value[, sigma])

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. A population mean of 0 is assumed. If you want the test
to be performed around another mean, subtract that mean from the sample values.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the actual
sample standard deviation will be used.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

ZTest_z(Value-TestValue)

See also:

p Examples of how to use z-test functions (page 507)

ZTest_sig

ZTest_sig() returns the aggregated z-test 2-tailed level of significance for a series of values.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTest_sig(value[, sigma])

Script syntax and chart functions - Qlik Sense, May 2023 488

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. A population mean of 0 is assumed. If you want the test
to be performed around another mean, subtract that mean from the sample values.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the actual
sample standard deviation will be used.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

ZTest_sig(Value-TestValue)

See also:

p Examples of how to use z-test functions (page 507)

ZTest_dif

ZTest_dif() returns the aggregated z-test mean difference for a series of values.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTest_dif(value[, sigma])

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. A population mean of 0 is assumed. If you want the test
to be performed around another mean, subtract that mean from the sample values.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the actual
sample standard deviation will be used.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 489

5 Script and chart functions

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

ZTest_dif(Value-TestValue)

See also:

p Examples of how to use z-test functions (page 507)

ZTest_sterr

ZTest_sterr() returns the aggregated z-test standard error of the mean difference for a series of
values.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTest_sterr(value[, sigma])

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. A population mean of 0 is assumed. If you want the test
to be performed around another mean, subtract that mean from the sample values.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the actual
sample standard deviation will be used.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

ZTest_sterr(Value-TestValue)

See also:

p Examples of how to use z-test functions (page 507)

Script syntax and chart functions - Qlik Sense, May 2023 490

5 Script and chart functions

ZTest_conf

ZTest_conf() returns the aggregated z value for a series of values.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTest_conf(value[, sigma[, sig]])

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. A population mean of 0 is assumed. If you want the test
to be performed around another mean, subtract that mean from the sample values.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the actual
sample standard deviation will be used.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

ZTest_conf(Value-TestValue)

See also:

p Examples of how to use z-test functions (page 507)

ZTest_lower

ZTest_lower() returns the aggregated value for the lower end of the confidence interval for two
independent series of values.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Script syntax and chart functions - Qlik Sense, May 2023 491

5 Script and chart functions

Syntax:
ZTest_lower (grp, value [, sig [, eq_var]])

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

ZTest_lower(Group, Value)

ZTest_lower(Group, Value, sig, false)

See also:

p Examples of how to use z-test functions (page 507)

ZTest_upper

ZTest_upper() returns the aggregated value for the upper end of the confidence interval for two
independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTest_upper (grp, value [, sig [, eq_var]])

Script syntax and chart functions - Qlik Sense, May 2023 492

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

ZTest_upper(Group, Value)

ZTest_upper(Group, Value, sig, false)

See also:

p Examples of how to use z-test functions (page 507)

ZTestw_z

ZTestw_z() returns the aggregated z value for a series of values.

This function applies to z-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTestw_z (weight, value [, sigma])

Script syntax and chart functions - Qlik Sense, May 2023 493

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The values should be returned by value. A sample mean of 0 is assumed. If you want the
test to be performed around another mean, subtract that value from the sample values.

weight Each sample value in value can be counted one or more times according to a
corresponding weight value in weight.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the actual
sample standard deviation will be used.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

ZTestw_z(Weight, Value-TestValue)

See also:

p Examples of how to use z-test functions (page 507)

ZTestw_sig

ZTestw_sig() returns the aggregated z-test 2-tailed level of significance for a series of values.

This function applies to z-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTestw_sig (weight, value [, sigma])

Script syntax and chart functions - Qlik Sense, May 2023 494

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The values should be returned by value. A sample mean of 0 is assumed. If you want the
test to be performed around another mean, subtract that value from the sample values.

weight Each sample value in value can be counted one or more times according to a
corresponding weight value in weight.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the actual
sample standard deviation will be used.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

ZTestw_sig(Weight, Value-TestValue)

See also:

p Examples of how to use z-test functions (page 507)

ZTestw_dif

ZTestw_dif() returns the aggregated z-test mean difference for a series of values.

This function applies to z-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTestw_dif (weight, value [, sigma])

Script syntax and chart functions - Qlik Sense, May 2023 495

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The values should be returned by value. A sample mean of 0 is assumed. If you want the
test to be performed around another mean, subtract that value from the sample values.

weight Each sample value in value can be counted one or more times according to a
corresponding weight value in weight.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the actual
sample standard deviation will be used.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

ZTestw_dif(Weight, Value-TestValue)

See also:

p Examples of how to use z-test functions (page 507)

ZTestw_sterr

ZTestw_sterr() returns the aggregated z-test standard error of the mean difference for a series
of values.

This function applies to z-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTestw_sterr (weight, value [, sigma])

Script syntax and chart functions - Qlik Sense, May 2023 496

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The values should be returned by value. A sample mean of 0 is assumed. If you want the
test to be performed around another mean, subtract that value from the sample values.

weight Each sample value in value can be counted one or more times according to a
corresponding weight value in weight.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the actual
sample standard deviation will be used.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

ZTestw_sterr(Weight, Value-TestValue)

See also:

p Examples of how to use z-test functions (page 507)

ZTestw_conf

ZTestw_conf() returns the aggregated z confidence interval value for a series of values.

This function applies to z-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTest_conf(weight, value[, sigma[, sig]])

Script syntax and chart functions - Qlik Sense, May 2023 497

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. A population mean of 0 is assumed. If you want the test
to be performed around another mean, subtract that mean from the sample values.

weight Each sample value in value can be counted one or more times according to a
corresponding weight value in weight.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the actual
sample standard deviation will be used.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

ZTestw_conf(Weight, Value-TestValue)

See also:

p Examples of how to use z-test functions (page 507)

ZTestw_lower

ZTestw_lower() returns the aggregated value for the lower end of the confidence interval for
two independent series of values.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTestw_lower (grp, value [, sig [, eq_var]])

Script syntax and chart functions - Qlik Sense, May 2023 498

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

ZTestw_lower(Group, Value)

ZTestw_lower(Group, Value, sig, false)

See also:

p Examples of how to use z-test functions (page 507)

ZTestw_upper

ZTestw_upper() returns the aggregated value for the upper end of the confidence interval for
two independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a
group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTestw_upper (grp, value [, sig [, eq_var]])

Script syntax and chart functions - Qlik Sense, May 2023 499

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped as
specified by exactly two values in group. If a field name for the sample values is not
provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name for the
group is not provided in the load script, the field will automatically be given the name
Type.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025,
resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be assumed. If
eq_var is specified as True (1), equal variances between the samples will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

ZTestw_upper(Group, Value)

ZTestw_upper(Group, Value, sig, false)

See also:

p Examples of how to use z-test functions (page 507)

Statistical test function examples

This section includes examples of statistical test functions as applied to charts and the data load
script.

Examples of how to use chi2-test functions in charts

The chi2-test functions are used to find values associated with chi squared statistical analysis.

This section describes how to build visualizations using sample data to find the values of the chi-squared
distribution test functions available in Qlik Sense. Please refer to the individual chi2-test chart function topics
for descriptions of syntax and arguments.

Loading the data for the samples
There are three sets of sample data describing three different statistical samples to be loaded into the script.

Do the following:

Script syntax and chart functions - Qlik Sense, May 2023 500

5 Script and chart functions

1. Create a new app.

2. In the data load, enter the following:
// Sample_1 data is pre-aggregated... Note: make sure you set your DecimalSep='.' at the

top of the script.

Sample_1:

LOAD * inline [

Grp,Grade,Count

I,A,15

I,B,7

I,C,9

I,D,20

I,E,26

I,F,19

II,A,10

II,B,11

II,C,7

II,D,15

II,E,21

II,F,16

];

// Sample_2 data is pre-aggregated: If raw data is used, it must be aggregated using

count()...

Sample_2:

LOAD * inline [

Sex,Opinion,OpCount

1,2,58

1,1,11

1,0,10

2,2,35

2,1,25

2,0,23] (delimiter is ',');

// Sample_3a data is transformed using the crosstable statement...

Sample_3a:

crosstable(Gender, Actual) LOAD

Description,

[Men (Actual)] as Men,

[Women (Actual)] as Women;

LOAD * inline [

Men (Actual),Women (Actual),Description

58,35,Agree

11,25,Neutral

10,23,Disagree] (delimiter is ',');

// Sample_3b data is transformed using the crosstable statement...

Sample_3b:

crosstable(Gender, Expected) LOAD

Description,

[Men (Expected)] as Men,

[Women (Expected)] as Women;

LOAD * inline [

Men (Expected),Women (Expected),Description

45.35,47.65,Agree

17.56,18.44,Neutral

16.09,16.91,Disagree] (delimiter is ',');

// Sample_3a and Sample_3b will result in a (fairly harmless) Synthetic Key...

3. Click to load data.

Script syntax and chart functions - Qlik Sense, May 2023 501

5 Script and chart functions

Creating the chi2-test chart function visualizations

Example: Sample 1

Do the following:

1. In the data load editor, click to go to the app view and then click the sheet you created before.
The sheet view is opened.

2. Click Edit sheet to edit the sheet.

3. From Charts add a table, and from Fields add Grp, Grade, and Count as dimensions.
This table shows the sample data.

4. Add another table with the following expression as a dimension:
ValueList('p','df','Chi2')

This uses the synthetic dimensions function to create labels for the dimensions with the names of the
three chi2-test functions.

5. Add the following expression to the table as a measure:
IF(ValueList('p','df','Chi2')='p',Chi2Test_p(Grp,Grade,Count),

IF(ValueList('p','df','Chi2')='df',Chi2Test_df(Grp,Grade,Count),

Chi2Test_Chi2(Grp,Grade,Count)))

This has the effect of putting the resulting value of each chi2-test function in the table next to its
associated synthetic dimension.

6. Set the Number formatting of the measure to Number and 3Significant figures.

In the expression for the measure, you could use the following expression instead: Pick(Match
(ValueList('p','df','Chi2'),'p','df','Chi2'),Chi2Test_p(Grp,Grade,Count),Chi2Test_

df(Grp,Grade,Count),Chi2Test_Chi2(Grp,Grade,Count))

Result:

The resulting table for the chi2-test functions for the Sample 1 data will contain the following values:

p df Chi2

0.820 5 2.21

Results table

Example: Sample 2

Do the following:

1. In the sheet you were editing in the example Sample 1, from Charts add a table, and from Fields add
Sex, Opinion, and OpCount as dimensions.

2. Make a copy of the results table from Sample 1 using the Copy and Paste commands. Edit the
expression in the measure and replace the arguments in all three chi2-test functions with the names of
the fields used in the Sample 2 data, for example: Chi2Test_p(Sex,Opinion,OpCount).

Result:

Script syntax and chart functions - Qlik Sense, May 2023 502

5 Script and chart functions

The resulting table for the chi2-test functions for the Sample 2 data will contain the following values:

p df Chi2

0.000309 2 16.2

Results table

Example: Sample 3

Do the following:

1. Create two more tables in the same way as in the examples for Sample 1 and Sample 2 data. In the
dimensions table, use the following fields as dimensions: Gender, Description, Actual, and Expected.

2. In the results table, use the names of the fields used in the Sample 3 data, for example: Chi2Test_p
(Gender,Description,Actual,Expected).

Result:

The resulting table for the chi2-test functions for the Sample 3 data will contain the following values:

p df Chi2

0.000308 2 16.2

Results table

Examples of how to use chi2-test functions in the data load script

The chi2-test functions are used to find values associated with chi squared statistical analysis.
This section describes how to use the chi-squared distribution test functions available in Qlik
Sense in the data load script. Please refer to the individual chi2-test script function topics for
descriptions of syntax and arguments.

This example uses a table containing the number of students achieving a grade (A-F) for two groups of
students (I and II).

Group A B C D E F

I 15 7 9 20 26 19

II 10 11 7 15 21 16

Data table

Loading the sample data
Do the following:

1. Create a new app.

2. In the data load editor, enter the following:
// Sample_1 data is pre-aggregated... Note: make sure you set your DecimalSep='.' at the

top of the script.

Sample_1:

Script syntax and chart functions - Qlik Sense, May 2023 503

5 Script and chart functions

LOAD * inline [

Grp,Grade,Count

I,A,15

I,B,7

I,C,9

I,D,20

I,E,26

I,F,19

II,A,10

II,B,11

II,C,7

II,D,15

II,E,21

II,F,16

];

3. Click to load data.

You have now loaded the sample data.

Loading the chi2-test function values
Now we will load the chi2-test values based on the sample data in a new table, grouped by Grp.

Do the following:

1. In the data load editor, add the following at the end of the script:
// Sample_1 data is pre-aggregated... Note: make sure you set your DecimalSep='.' at the

top of the script.

Chi2_table:

LOAD Grp,

Chi2Test_chi2(Grp, Grade, Count) as chi2,

Chi2Test_df(Grp, Grade, Count) as df,

Chi2Test_p(Grp, Grade, Count) as p

resident Sample_1 group by Grp;

2. Click to load data.

You have now loaded the chi2-test values in a table named Chi2_table.

Results
You can view the resulting chi2-test values in the data model viewer under Preview, they should look like this:

Grp chi2 df p

I 16.00 5 0.007

II 9.40 5 0.094

Results

Creating a typical t-test report

A typical student t-test report can include tables with Group Statistics and Independent
Samples Test results.

Script syntax and chart functions - Qlik Sense, May 2023 504

5 Script and chart functions

In the following sections we will build these tables using Qlik Senset-test functions applied to two
independent groups of samples, Observation and Comparison. The corresponding tables for these samples
would look like this:

Type N Mean Standard Deviation Standard Error Mean

Comparison 20 11.95 14.61245 3.2674431

Observation 20 27.15 12.507997 2.7968933

Group statistics

Independent Sample Test

Type t df
Sig. (2-
tailed)

Mean
Difference

Standard
Error
Difference

95%
Confidence
Interval of
the
Difference
(Lower)

95%
Confidence
Interval of
the
Difference
(Upper)

Equal
Variance
not
Assumed

3.534 37.11671733582
3

0.001 15.2 4.30101 6.48625 23.9137

Equal
Variance
Assumed

3.534 38 0.001 15.2 4.30101 6.49306 23.9069

Independent Sample Test

Loading the sample data
Do the following:

1. Create a new app with a new sheet and open that sheet.

2. Enter the following in the data load editor:
Table1:

crosstable LOAD recno() as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

Script syntax and chart functions - Qlik Sense, May 2023 505

5 Script and chart functions

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

In this load script, recno() is included because crosstable requires three arguments. So, recno()
simply provides an extra argument, in this case an ID for each row. Without it, Comparison sample
values would not be loaded.

3. Click to load data.

Creating the Group Statistics table
Do the following:

1. In the data load editor, click to go to app view, and then click the sheet you created before.
This opens the sheet view.

2. Click Edit sheet to edit the sheet.

3. From Charts, add a table, and from Fields, add the following expressions as measures:

Label Expression

N Count(Value)

Mean Avg(Value)

Standard Deviation Stdev(Value)

Standard Error Mean Sterr(Value)

Example expressions

4. Add Type as a dimension to the table.

5. Click Sorting and move Type to the top of the sorting list.

Result:

A Group Statistics table for these samples would look like this:

Type N Mean Standard Deviation Standard Error Mean

Comparison 20 11.95 14.61245 3.2674431

Observation 20 27.15 12.507997 2.7968933

Group statistics

Creating the Two Independent Sample Student's T-test table
Do the following:

1. Click Edit sheet to edit the sheet.

2. Add the following expression as a dimension to the table. =ValueList (Dual('Equal Variance not

Assumed', 0), Dual('Equal Variance Assumed', 1))

Script syntax and chart functions - Qlik Sense, May 2023 506

5 Script and chart functions

3. From Charts add a table with the following expressions as measures:

Label Expression

conf if(ValueList (Dual('Equal Variance not Assumed', 0), Dual('Equal Variance
Assumed', 1)),TTest_conf(Type, Value),TTest_conf(Type, Value, 0))

t if(ValueList (Dual('Equal Variance not Assumed', 0), Dual('Equal Variance
Assumed', 1)),TTest_t(Type, Value),TTest_t(Type, Value, 0))

df if(ValueList (Dual('Equal Variance not Assumed', 0), Dual('Equal Variance
Assumed', 1)),TTest_df(Type, Value),TTest_df(Type, Value, 0))

Sig. (2-tailed) if(ValueList (Dual('Equal Variance not Assumed', 0), Dual('Equal Variance
Assumed', 1)),TTest_sig(Type, Value),TTest_sig(Type, Value, 0))

Mean Difference TTest_dif(Type, Value)

Standard Error
Difference

if(ValueList (Dual('Equal Variance not Assumed', 0), Dual('Equal Variance
Assumed', 1)),TTest_sterr(Type, Value),TTest_sterr(Type, Value, 0))

95% Confidence
Interval of the
Difference (Lower)

if(ValueList (Dual('Equal Variance not Assumed', 0), Dual('Equal Variance
Assumed', 1)),TTest_lower(Type, Value,(1-(95)/100)/2),TTest_lower(Type,
Value,(1-(95)/100)/2, 0))

95% Confidence
Interval of the
Difference (Upper)

if(ValueList (Dual('Equal Variance not Assumed', 0), Dual('Equal Variance
Assumed', 1)),TTest_upper(Type, Value,(1-(95)/100)/2),TTest_upper(Type,
Value,(1-(95)/100)/2, 0))

Example expressions

Result:

Type t df
Sig.
(2-
tailed)

Mean
Differenc
e

Standard
Error
Differenc
e

95%
Confidenc
e Interval
of the
Difference
(Lower)

95%
Confidenc
e Interval
of the
Difference
(Upper)

Equal
Variance
not
Assumed

3.534 37.1167173358
23

0.001 15.2 4.30101 6.48625 23.9137

Equal
Variance
Assumed

3.534 38 0.001 15.2 4.30101 6.49306 23.9069

Independent sample test

Examples of how to use z-test functions

The z-test functions are used to find values associated with z-test statistical analysis for large
data samples, usually greater than 30, and where the variance is known.

Script syntax and chart functions - Qlik Sense, May 2023 507

5 Script and chart functions

This section describes how to build visualizations using sample data to find the values of the z-test functions
available in Qlik Sense. Please refer to the individual z-test chart function topics for descriptions of syntax and
arguments.

Loading the sample data
The sample data used here is the same as that used in the t-test function examples. The sample data size
would normally be considered too small for z-test analysis, but is sufficient for the purposes of illustrating the
use of the different z-test functions in Qlik Sense.

Do the following:

1. Create a new app with a new sheet and open that sheet.

If you created an app for the t-test functions, you could use that and create a new sheet for
these functions.

2. In the data load editor, enter the following:
Table1:

crosstable LOAD recno() as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

In this load script, recno() is included because crosstable requires three arguments. So, recno()
simply provides an extra argument, in this case an ID for each row. Without it, Comparison sample
values would not be loaded.

3. Click to load data.

Creating z-test chart function visualizations
Do the following:

1. In the data load editor, click to go to app view, and then click the sheet you created when loading
the data.
The sheet view is opened.

Script syntax and chart functions - Qlik Sense, May 2023 508

5 Script and chart functions

2. Click Edit sheet to edit the sheet.

3. From Charts add a table, and from Fields add Type as a dimension.

4. Add the following expressions to the table as measures.

Label Expression

ZTest Conf ZTest_conf(Value)

ZTest Dif ZTest_dif(Value)

ZTest Sig ZTest_sig(Value)

ZTest Sterr ZTest_sterr(Value)

ZTest Z ZTest_z(Value)

Example expressions

You might wish to adjust the number formatting of the measures in order to see meaningful values.
The table will be easier to read if you set number formatting on most of the measures to
Number>Simple, instead of Auto. But for ZTest Sig, for example, use the number formatting:
Custom, and then adjust the format pattern to # ##.

Result:

The resulting table for the z-test functions for the sample data will contain the following values:

Type ZTest Conf ZTest Dif ZTest Sig ZTest Sterr ZTest Z

Comparison 6.40 11.95 0.000123 3.27 3.66

Value 5.48 27.15 0.001 2.80 9.71

Results table

Creating z-testw chart function visualizations
The z-testw functions are for use when the input data series occurs in weighted two-column format. The
expressions require a value for the argument weight. The examples here use the value 2 throughout, but you
could use an expression, which would define a value for weight for each observation.

Examples and results:

Using the same sample data and number formatting as for the z-test functions, the resulting table for the z-
testw functions will contain the following values:

Type ZTestw Conf ZTestw Dif ZTestw Sig ZTestw Sterr ZTestw Z

Comparison 3.53 2.95 5.27e-005 1.80 3.88

Value 2.97 34.25 0 4.52 20.49

Results table

Script syntax and chart functions - Qlik Sense, May 2023 509

5 Script and chart functions

String aggregation functions
This section describes string-related aggregation functions.

Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

String aggregation functions in the data load script
Concat
Concat() is used to combine string values. The script function returns the aggregated string concatenation of
all values of the expression iterated over a number of records as defined by a group by clause.

Concat ([distinct] expression [, delimiter [, sort-weight]])

FirstValue
FirstValue() returns the value that was loaded first from the records defined by the expression, sorted by a
group by clause.

This function is only available as a script function.

FirstValue (expression)

LastValue
LastValue() returns the value that was loaded last from the records defined by the expression, sorted by a
group by clause.

This function is only available as a script function.

LastValue (expression)

MaxString
MaxString() finds string values in the expression and returns the last text value sorted alphabetically over a
number of records, as defined by a group by clause.

MaxString (expression)

MinString
MinString() finds string values in the expression and returns the first text value sorted alphabetically over a
number of records, as defined by a group by clause.

MinString (expression)

String aggregation functions in charts
The following chart functions are available for aggregating strings in charts.

Script syntax and chart functions - Qlik Sense, May 2023 510

5 Script and chart functions

Concat
Concat() is used to combine string values. The function returns the aggregated string concatenation of all the
values of the expression evaluated over each dimension.

Concat - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld{, fld}>]]

string[, delimiter[, sort_weight]])

MaxString
MaxString() finds string values in the expression or field and returns the last text value in alphabetical sort
order.

MaxString - chart function({[SetExpression] [TOTAL [<fld{, fld}>]]} expr)

MinString
MinString() finds string values in the expression or field and returns the first text value in alphabetical sort
order.

MinString - chart function({[SetExpression] [TOTAL [<fld {, fld}>]]} expr)

Concat

Concat() is used to combine string values. The script function returns the aggregated string
concatenation of all values of the expression iterated over a number of records as defined by a
group by clause.

Syntax:
Concat ([distinct] string [, delimiter [, sort-weight]])

Return data type: string

Arguments:

The expression or field containing the string to be processed.

Argument Description

string The expression or field containing the string to be processed.

delimiter Each value may be separated by the string found in delimiter.

sort-weight The order of concatenation may be determined by the value of the dimension sort-weight,
if present, with the string corresponding to the lowest value appearing first in the
concatenation.

distinct If the word distinct occurs before the expression, all duplicates are disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Script syntax and chart functions - Qlik Sense, May 2023 511

5 Script and chart functions

Example Result Results once added to a sheet

TeamData:

LOAD * inline [

SalesGroup|Team|Date|Amount

East|Gamma|01/05/2013|20000

East|Gamma|02/05/2013|20000

West|Zeta|01/06/2013|19000

East|Alpha|01/07/2013|25000

East|Delta|01/08/2013|14000

West|Epsilon|01/09/2013|17000

West|Eta|01/10/2013|14000

East|Beta|01/11/2013|20000

West|Theta|01/12/2013|23000

] (delimiter is '|');

Concat1:

LOAD SalesGroup,Concat(Team) as TeamConcat1

Resident TeamData Group By SalesGroup;

SalesGroup

East

West

TeamConcat1

AlphaBetaDeltaGammaGamma

EpsilonEtaThetaZeta

Given that the TeamData table is loaded as in the
previous example:

LOAD SalesGroup,Concat(distinct Team,'-') as

TeamConcat2 Resident TeamData Group By

SalesGroup;

SalesGroup

East

West

TeamConcat2

Alpha-Beta-Delta-Gamma

Epsilon-Eta-Theta-Zeta

Given that the TeamData table is loaded as in the
previous example. Because the argument for sort-
weight is added, the results are ordered by the value
of the dimension Amount:

LOAD SalesGroup,Concat(distinct Team,'-

',Amount) as TeamConcat2 Resident TeamData

Group By SalesGroup;

SalesGroup

East

West

TeamConcat2

Delta-Beta-Gamma-Alpha

Eta-Epsilon-Zeta-Theta

Examples and results

Concat - chart function

Concat() is used to combine string values. The function returns the aggregated string
concatenation of all the values of the expression evaluated over each dimension.

Syntax:
Concat({[SetExpression] [DISTINCT] [TOTAL [<fld{, fld}>]]} string[, delimiter

[, sort_weight]])

Script syntax and chart functions - Qlik Sense, May 2023 512

5 Script and chart functions

Return data type: string

Arguments:

Argument Description

string The expression or field containing the string to be processed.

delimiter Each value may be separated by the string found in delimiter.

sort-weight The order of concatenation may be determined by the value of the dimension sort-
weight, if present, with the string corresponding to the lowest value appearing first in
the concatenation.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Arguments

Examples and results:

SalesGroup Amount Concat(Team) Concat(TOTAL <SalesGroup> Team)

East 25000 Alpha AlphaBetaDeltaGammaGamma

East 20000 BetaGammaGamma AlphaBetaDeltaGammaGamma

East 14000 Delta AlphaBetaDeltaGammaGamma

West 17000 Epsilon EpsilonEtaThetaZeta

West 14000 Eta EpsilonEtaThetaZeta

West 23000 Theta EpsilonEtaThetaZeta

West 19000 Zeta EpsilonEtaThetaZeta

Results table

Script syntax and chart functions - Qlik Sense, May 2023 513

5 Script and chart functions

Example Result

Concat(Team) The table is constructed from the dimensions SalesGroup and Amount, and variations
on the measure Concat(Team). Ignoring the Totals result, note that even though there is
data for eight values of Team spread across two values of SalesGroup, the only result of
the measure Concat(Team) that concatenates more than one Team string value in the
table is the row containing the dimension Amount 20000, which gives the result
BetaGammaGamma. This is because there are three values for the Amount 20000 in the
input data. All other results remain unconcatenated when the measure is spanned
across the dimensions because there is only one value of Team for each combination of
SalesGroup and Amount.

Concat

(DISTINCT

Team,', ')

Beta, Gamma. because the DISTINCT qualifier means the duplicate Gamma result is
disregarded. Also, the delimiter argument is defined as a comma followed by a space.

Concat (TOTAL

<SalesGroup>

Team)

All the string values for all values of Team are concatenated if the TOTAL qualifier is
used. With the field selection <SalesGroup> specified, this divides the results into the
two values of the dimension SalesGroup. For the SalesGroupEast, the results are
AlphaBetaDeltaGammaGamma. For the SalesGroupWest, the results are
EpsilonEtaThetaZeta.

Concat (TOTAL

<SalesGroup>

Team,';',

Amount)

By adding the argument for sort-weight: Amount, the results are ordered by the value
of the dimension Amount. The results becomes DeltaBetaGammaGammaAlpha and
EtaEpsilonZEtaTheta.

Function examples

Data used in example:

TeamData:

LOAD * inline [

SalesGroup|Team|Date|Amount

East|Gamma|01/05/2013|20000

East|Gamma|02/05/2013|20000

West|Zeta|01/06/2013|19000

East|Alpha|01/07/2013|25000

East|Delta|01/08/2013|14000

West|Epsilon|01/09/2013|17000

West|Eta|01/10/2013|14000

East|Beta|01/11/2013|20000

West|Theta|01/12/2013|23000

] (delimiter is '|');

FirstValue

FirstValue() returns the value that was loaded first from the records defined by the expression,
sorted by a group by clause.

This function is only available as a script function.

Script syntax and chart functions - Qlik Sense, May 2023 514

5 Script and chart functions

Syntax:
FirstValue (expr)

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Arguments

Limitations:

If no text value is found, NULL is returned.

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Example Result Results on a sheet

TeamData:

LOAD * inline [

SalesGroup|Team|Date|Amount

East|Gamma|01/05/2013|20000

East|Gamma|02/05/2013|20000

West|Zeta|01/06/2013|19000

East|Alpha|01/07/2013|25000

East|Delta|01/08/2013|14000

West|Epsilon|01/09/2013|17000

West|Eta|01/10/2013|14000

East|Beta|01/11/2013|20000

West|Theta|01/12/2013|23000

] (delimiter is '|');

FirstValue1:

LOAD SalesGroup,FirstValue(Team) as FirstTeamLoaded

Resident TeamData Group By SalesGroup;

SalesGroup

East

West

FirstTeamLoaded

Gamma

Zeta

Resulting data

LastValue

LastValue() returns the value that was loaded last from the records defined by the expression,
sorted by a group by clause.

This function is only available as a script function.

Script syntax and chart functions - Qlik Sense, May 2023 515

5 Script and chart functions

Syntax:
LastValue (expr)

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Arguments

Limitations:

If no text value is found, NULL is returned.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Example Result
Result with
custom sorting

TeamData:

LOAD * inline [

SalesGroup|Team|Date|Amount

East|Gamma|01/05/2013|20000

East|Gamma|02/05/2013|20000

West|Zeta|01/06/2013|19000

East|Alpha|01/07/2013|25000

East|Delta|01/08/2013|14000

West|Epsilon|01/09/2013|17000

West|Eta|01/10/2013|14000

East|Beta|01/11/2013|20000

West|Theta|01/12/2013|23000

] (delimiter is '|');

LastValue1:

LOAD SalesGroup,LastValue(Team) as LastTeamLoaded Resident

TeamData Group By SalesGroup;

SalesGroup

East

West

LastTeamLoaded

Beta

Theta

MaxString
MaxString() finds string values in the expression and returns the last text value sorted alphabetically over a
number of records, as defined by a group by clause.

Syntax:
MaxString (expr)

Script syntax and chart functions - Qlik Sense, May 2023 516

5 Script and chart functions

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Limitations:

If no text value is found, NULL is returned.

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Example Result

TeamData:

LOAD * inline [

SalesGroup|Team|Date|Amount

East|Gamma|01/05/2013|20000

East|Gamma|02/05/2013|20000

West|Zeta|01/06/2013|19000

East|Alpha|01/07/2013|25000

East|Delta|01/08/2013|14000

West|Epsilon|01/09/2013|17000

West|Eta|01/10/2013|14000

East|Beta|01/11/2013|20000

West|Theta|01/12/2013|23000

] (delimiter is '|');

Concat1:

LOAD SalesGroup,MaxString(Team) as MaxString1 Resident TeamData

Group By SalesGroup;

SalesGroup

East

West

MaxString1

Gamma

Zeta

Given that the TeamData table is loaded as in the previous example, and
your data load script has the SET statement:
SET DateFormat='DD/MM/YYYY';':

LOAD SalesGroup,MaxString(Date) as MaxString2 Resident TeamData

Group By SalesGroup;

SalesGroup

East

West

MaxString2

01/11/2013

01/12/2013

MaxString - chart function

MaxString() finds string values in the expression or field and returns the last text value in
alphabetical sort order.

Syntax:
MaxString({[SetExpression] [TOTAL [<fld{, fld}>]]} expr)

Script syntax and chart functions - Qlik Sense, May 2023 517

5 Script and chart functions

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Arguments

Limitations:

If the expression contains no values with a string representation NULL is returned.

Examples and results:

SalesGroup Amount MaxString(Team) MaxString(Date)

East 14000 Delta 2013/08/01

East 20000 Gamma 2013/11/01

East 25000 Alpha 2013/07/01

West 14000 Eta 2013/10/01

West 17000 Epsilon 2013/09/01

West 19000 Zeta 2013/06/01

West 23000 Theta 2013/12/01

Results table

Example Result

MaxString

(Team)
There are three values of 20000 for the dimension Amount: two of Gamma (on different
dates), and one of Beta. The result of the measure MaxString (Team) is therefore Gamma,
because this is the highest value in the sorted strings.

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 518

5 Script and chart functions

Example Result

MaxString

(Date)
2013/11/01 is the greatest Date value of the three associated with the dimension Amount.
This assumes your script has the SET statement SET DateFormat='YYYY-MM-DD';'

Data used in example:

TeamData:

LOAD * inline [

SalesGroup|Team|Date|Amount

East|Gamma|01/05/2013|20000

East|Gamma|02/05/2013|20000

West|Zeta|01/06/2013|19000

East|Alpha|01/07/2013|25000

East|Delta|01/08/2013|14000

West|Epsilon|01/09/2013|17000

West|Eta|01/10/2013|14000

East|Beta|01/11/2013|20000

West|Theta|01/12/2013|23000

] (delimiter is '|');

MinString

MinString() finds string values in the expression and returns the first text value sorted
alphabetically over a number of records, as defined by a group by clause.

Syntax:
MinString (expr)

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Arguments

Limitations:

If no text value is found, NULL is returned.

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Script syntax and chart functions - Qlik Sense, May 2023 519

5 Script and chart functions

Example Result

TeamData:

LOAD * inline [

SalesGroup|Team|Date|Amount

East|Gamma|01/05/2013|20000

East|Gamma|02/05/2013|20000

West|Zeta|01/06/2013|19000

East|Alpha|01/07/2013|25000

East|Delta|01/08/2013|14000

West|Epsilon|01/09/2013|17000

West|Eta|01/10/2013|14000

East|Beta|01/11/2013|20000

West|Theta|01/12/2013|23000

] (delimiter is '|');

Concat1:

LOAD SalesGroup,MinString(Team) as MinString1 Resident TeamData

Group By SalesGroup;

SalesGroup

East

West

MinString1

Alpha

Epsilon

Given that the TeamData table is loaded as in the previous example, and
your data load script has the SET statement:
SET DateFormat='DD/MM/YYYY';':

LOAD SalesGroup,MinString(Date) as MinString2 Resident TeamData

Group By SalesGroup;

SalesGroup

East

West

MinString2

01/05/2013

01/06/2013

Resulting data

MinString - chart function

MinString() finds string values in the expression or field and returns the first text value in
alphabetical sort order.

Syntax:
MinString({[SetExpression] [TOTAL [<fld {, fld}>]]} expr)

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 520

5 Script and chart functions

Argument Description

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Examples and results:

SalesGroup Amount MinString(Team) MinString(Date)

East 14000 Delta 2013/08/01

East 20000 Beta 2013/05/01

East 25000 Alpha 2013/07/01

West 14000 Eta 2013/10/01

West 17000 Epsilon 2013/09/01

West 19000 Zeta 2013/06/01

West 23000 Theta 2013/12/01

Sample data

Examples Results

MinString

(Team)
There are three values of 20000 for the dimension Amount: two of Gamma (on different
dates), and one of Beta. The result of the measure MinString (Team) is therefore Beta,
because this is the first value in the sorted strings.

MinString

(Date)
2013/11/01 is the earliest Date value of the three associated with the dimension Amount.
This assumes your script has the SET statement SET DateFormat='YYYY-MM-DD';'

Function examples

Data used in example:

TeamData:

LOAD * inline [

SalesGroup|Team|Date|Amount

East|Gamma|01/05/2013|20000

East|Gamma|02/05/2013|20000

West|Zeta|01/06/2013|19000

East|Alpha|01/07/2013|25000

East|Delta|01/08/2013|14000

West|Epsilon|01/09/2013|17000

West|Eta|01/10/2013|14000

East|Beta|01/11/2013|20000

West|Theta|01/12/2013|23000

] (delimiter is '|');

Script syntax and chart functions - Qlik Sense, May 2023 521

5 Script and chart functions

Synthetic dimension functions
A synthetic dimension is created in the app from values generated from the synthetic dimension functions and
not directly from fields in the data model. When values generated by a synthetic dimension function are used
in a chart as a calculated dimension, this creates a synthetic dimension. Synthetic dimensions allow you to
create, for example, charts with dimensions with values arising from your data, that is, dynamic dimensions.

Synthetic dimensions are not affected by selections.

The following synthetic dimension functions can be used in charts.

ValueList
ValueList() returns a set of listed values, which, when used in a calculated dimension, will form a synthetic
dimension.
ValueList - chart function (v1 {, Expression})

ValueLoop
ValueLoop() returns a set of iterated values which, when used in a calculated dimension, will form a synthetic
dimension.
ValueLoop - chart function(from [, to [, step]])

ValueList - chart function

ValueList() returns a set of listed values, which, when used in a calculated dimension, will form
a synthetic dimension.

In charts with a synthetic dimension created with the ValueList function it is possible to reference
the dimension value corresponding to a specific expression cell by restating the ValueList function
with the same parameters in the chart expression. The function may of course be used anywhere in
the layout, but apart from when used for synthetic dimensions it will only be meaningful inside an
aggregation function.

Synthetic dimensions are not affected by selections.

Syntax:
ValueList(v1 {,...})

Script syntax and chart functions - Qlik Sense, May 2023 522

5 Script and chart functions

Return data type: dual

Arguments:

Argument Description

v1 Static value (usually a string, but can be a number).

{,...} Optional list of static values.

Arguments

Examples and results:

Example Result

ValueList

('Number of

Orders',

'Average Order

Size', 'Total

Amount')

When used to create a dimension in a table, for example, this results in the three
string values as row labels in the table. These can then be referenced in an expression.

=IF(ValueList

('Number of

Orders',

'Average Order

Size', 'Total

Amount') =

'Number of

Orders', count

(SaleID), IF(

ValueList

('Number of

Orders',

'Average Order

Size', 'Total

Amount') =

'Average Order

Size', avg

(Amount), sum

(Amount)))

This expression takes the values from the created dimension and references them in a
nested IF statement as input to three aggregation functions:

Function examples

Data used in examples:

SalesPeople:

LOAD * INLINE [

SaleID|SalesPerson|Amount|Year

1|1|12|2013

2|1|23|2013

3|1|17|2013

4|2|9|2013

5|2|14|2013

6|2|29|2013

Script syntax and chart functions - Qlik Sense, May 2023 523

5 Script and chart functions

7|2|4|2013

8|1|15|2012

9|1|16|2012

10|2|11|2012

11|2|17|2012

12|2|7|2012

] (delimiter is '|');

ValueLoop - chart function
ValueLoop() returns a set of iterated values which, when used in a calculated dimension, will form a synthetic
dimension.
The values generated will start with the from value and end with the to value including intermediate values in
increments of step.

In charts with a synthetic dimension created with the ValueLoop function it is possible to reference
the dimension value corresponding to a specific expression cell by restating the ValueLoop function
with the same parameters in the chart expression. The function may of course be used anywhere in
the layout, but apart from when used for synthetic dimensions it will only be meaningful inside an
aggregation function.

Synthetic dimensions are not affected by selections.

Syntax:
ValueLoop(from [, to [, step]])

Return data type: dual

Arguments:

Arguments Description

from Start value in the set of values to be generated.

to End value in the set of values to be generated.

step Size of increment between values.

Arguments

Examples and results:

Example Result

ValueLoop

(1, 10)
This creates a dimension in a table, for example, that can be used for purposes such as
numbered labeling. The example here results in values numbered 1 to 10. These values can
then be referenced in an expression.

ValueLoop

(2, 10,2)
This example results in values numbered 2, 4, 6, 8, and 10 because the argument step has a
value of 2.

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 524

5 Script and chart functions

Nested aggregations
You may come across situations where you need to apply an aggregation to the result of another aggregation.
This is referred to as nesting aggregations.

You cannot nest aggregations in most chart expressions. You can, however, nest aggregations if you use the
TOTAL qualifier in the inner aggregation function.

No more than 100 levels of nesting is allowed.

Nested aggregations with the TOTAL qualifier

Example:

You want to calculate the sum of the field Sales, but only include transactions with an OrderDate equal to the
last year. The last year can be obtained via the aggregation function Max(TOTAL Year(OrderDate)).

The following aggregation would return the desired result:

Sum(If(Year(OrderDate)=Max(TOTAL Year(OrderDate)), Sales))

Qlik Sense requires the inclusion of the TOTAL qualifier this type of nesting. It is necessary for the desired
comparison. This type of nesting need is quite common and is a good practice.

See also:

p Aggr - chart function (page 525)

5.3 Aggr - chart function
Aggr() returns an array of values for the expression calculated over the stated dimension or dimensions. For
example, the maximum value of sales, per customer, per region.

The Aggr function is used for nested aggregations, in which its first parameter (the inner aggregation) is
calculated once per dimensional value. The dimensions are specified in the second parameter (and
subsequent parameters).

In addition, the Aggr function should be enclosed in an outer aggregation function, using the array of results
from the Aggr function as input to the aggregation in which it is nested.

Syntax:
Aggr({SetExpression}[DISTINCT] [NODISTINCT] expr, StructuredParameter{,

StructuredParameter})

Script syntax and chart functions - Qlik Sense, May 2023 525

5 Script and chart functions

Return data type: dual

Arguments:

Argument Description

expr An expression consisting of an aggregation function. By default, the aggregation
function will aggregate over the set of possible records defined by the selection.

StructuredParameter StructuredParameter consists of a dimension and optionally, sorting criteria in
the format: (Dimension(Sort-type, Ordering))

The dimension is a single field and cannot be an expression. The dimension is
used to determine the array of values the Aggr expression is calculated for.

If sorting criteria are included, the array of values created by the Aggr function,
calculated for the dimension, is sorted. This is important when the sort order
affects the result of the expression the Aggr function is enclosed in.

For details of how to use sorting criteria, see Adding sorting criteria to the
dimension in the structured parameter.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined by
a set analysis expression.

DISTINCT If the expression argument is preceded by the distinct qualifier or if no qualifier
is used at all, each distinct combination of dimension values will generate only
one return value. This is the normal way aggregations are made – each distinct
combination of dimension values will render one line in the chart.

NODISTINCT If the expression argument is preceded by the nodistinct qualifier, each
combination of dimension values may generate more than one return value,
depending on underlying data structure. If there is only one dimension, the aggr
function will return an array with the same number of elements as there are
rows in the source data.

Arguments

Basic aggregation functions, such as Sum, Min, and Avg, return a single numerical value, whereas the Aggr()
function can be compared to creating a temporary staged result set (a virtual table), over which another
aggregation can be made. For example, by computing an average sales value by summing the sales by
customer in an Aggr() statement, and then calculating the average of the summed results: Avg(TOTAL Aggr
(Sum(Sales),Customer)).

Use the Aggr() function in calculated dimensions if you want to create nested chart aggregations on
multiple levels.

Script syntax and chart functions - Qlik Sense, May 2023 526

5 Script and chart functions

Limitations:

Each dimension in an Aggr() function must be a single field, and cannot be an expression (calculated
dimension).

Adding sorting criteria to the dimension in the structured parameter

In its basic form, the argument StructuredParameter in the Aggr function syntax is a single dimension. The
expression: Aggr(Sum(Sales, Month)) finds the total value of sales for each month. However, when enclosed in
another aggregation function, there can be unexpected results unless sorting criteria are used. This is because
some dimensions can be sorted numerically or alphabetically, and so on.

In the StructuredParameter argument in the Aggr function, you can specify sorting criteria on the dimension in
your expression. This way, you impose a sort order on the virtual table that is produced by the Aggr function.

The argument StructuredParameter has the following syntax:

(FieldName, (Sort-type, Ordering))

Structured parameters can be nested:

(FieldName, (FieldName2, (Sort-type, Ordering)))

Sort-type can be: NUMERIC, TEXT, FREQUENCY, or LOAD_ORDER.

The Ordering types associated with each Sort-type are as follows:

Sort-type Allowed Ordering types

NUMERIC ASCENDING, DESCENDING, or REVERSE

TEXT ASCENDING, A2Z, DESCENDING, REVERSE, or Z2A

FREQUENCY DESCENDING, REVERSE or ASCENDING

LOAD_ORDER ASCENDING, ORIGINAL, DESCENDING, or REVERSE

Allowed ordering types

The ordering types REVERSE and DESCENDING are equivalent.

For Sort-type TEXT, the ordering types ASCENDING and A2Z are equivalent, and DESCENDING, REVERSE, and
Z2A are equivalent.

For Sort-type LOAD_ORDER, the ordering types ASCENDING and ORIGINAL are equivalent.

Script syntax and chart functions - Qlik Sense, May 2023 527

5 Script and chart functions

Examples: Chart expressions using Aggr
Examples - chart expressions

Chart expression example 1

Load script
Load the following data as an inline load in the data load editor to create the chart expression example below.

ProductData:

LOAD * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|CC|2|20

Betacab|DD|25|25

Canutility|AA|8|15

Canutility|CC|0|19

] (delimiter is '|');

Chart expression
Create a KPI visualization in a Qlik Sense sheet. Add the following expression to the KPI, as a measure:

Avg(Aggr(Sum(UnitSales*UnitPrice), Customer))

Result
376.7

Explanation
The expression Aggr(Sum(UnitSales*UnitPrice), Customer) finds the total value of sales by Customer, and
returns an array of values: 295, 715, and 120 for the three Customer values.

Effectively, we have built a temporary list of values without having to create an explicit table or column
containing those values.

These values are used as input to the Avg() function to find the average value of sales, 376.7.

Chart expression example 2

Load script
Load the following data as an inline load in the data load editor to create the chart expression example below.

ProductData:

LOAD * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Script syntax and chart functions - Qlik Sense, May 2023 528

5 Script and chart functions

Astrida|BB|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|BB|7|12

Betacab|CC|2|22

Betacab|CC|4|20

Betacab|DD|25|25

Canutility|AA|8|15

Canutility|AA|5|11

Canutility|CC|0|19

] (delimiter is '|');

Chart expression
Create a table visualization in a Qlik Sense sheet with Customer, Product, UnitPrice, and UnitSales as
dimensions. Add the following expression to the table, as a measure:

Aggr(NODISTINCT Max(UnitPrice), Customer, Product)

Result

Customer Product UnitPrice UnitSales
Aggr(NODISTINCT Max(UnitPrice), Customer,
Product)

Astrida AA 15 10 16

Astrida AA 16 4 16

Astrida BB 9 9 15

Astrida BB 15 10 15

Betacab BB 10 5 12

Betacab BB 12 7 12

Betacab CC 20 4 22

Betacab CC 22 2 22

Betacab DD 25 25 25

Canutility AA 11 5 15

Canutility AA 15 8 15

Canutility CC 19 0 19

Explanation
An array of values: 16, 16, 15, 15, 12, 12, 22, 22, 25, 15, 15, and 19. The nodistinct qualifier means that the
array contains one element for each row in the source data: each is the maximum UnitPrice for each
Customer and Product.

Script syntax and chart functions - Qlik Sense, May 2023 529

5 Script and chart functions

Chart expression example 3

Load script
Load the following data as an inline load in the data load editor to create the chart expression example below.

Set vNumberOfOrders = 1000;

OrderLines:

Load

RowNo() as OrderLineID,

OrderID,

OrderDate,

Round((Year(OrderDate)-2005)*1000*Rand()*Rand()*Rand1) as Sales

While Rand()<=0.5 or IterNo()=1;

Load * Where OrderDate<=Today();

Load

Rand() as Rand1,

Date(MakeDate(2013)+Floor((365*4+1)*Rand())) as OrderDate,

RecNo() as OrderID

Autogenerate vNumberOfOrders;

Calendar:

Load distinct

Year(OrderDate) as Year,

Month(OrderDate) as Month,

OrderDate

Resident OrderLines;

Chart expressions
Create a table visualization in a Qlik Sense sheet with Year and Month as dimensions. Add the following
expressions to the table as measures:

l Sum(Sales)

l Sum(Aggr(Rangesum(Above(Sum(Sales),0,12)), (Year, (Numeric, Ascending)), (Month,

(Numeric, Ascending)))) labeled as Structured Aggr() in the table.

Result

Year Month Sum(Sales) Structured Aggr()

2013 Jan 53495 53495

2013 Feb 48580 102075

2013 Mar 25651 127726

2013 Apr 36585 164311

2013 May 61211 225522

2013 Jun 23689 249211

Script syntax and chart functions - Qlik Sense, May 2023 530

5 Script and chart functions

Year Month Sum(Sales) Structured Aggr()

2013 Jul 42311 291522

2013 Aug 41913 333435

2013 Sep 28886 362361

2013 Oct 25977 388298

2013 Nov 44455 432753

2013 Dec 64144 496897

2014 Jan 67775 67775

Explanation
This example displays the aggregated values over a twelve month period for each year in chronological
ascending order, hence the structured parameters (Numeric, Ascending) part of the Aggr() expression. Two
specific dimensions are required as structured parameters: Year and Month, sorted (1) Year (numeric) and (2)
Month (numeric). These two dimensions must be used in the table or chart visualization. This is necessary for
the dimension list of the Aggr() function to correspond with the dimensions of the object used in the
visualization.

You can compare the difference between these measures in a table or in separate line charts:

l Sum(Aggr(Rangesum(Above(Sum(Sales),0,12)), (Year), (Month)))

l Sum(Aggr(Rangesum(Above(Sum(Sales),0,12)), (Year, (Numeric, Ascending)), (Month,

(Numeric, Ascending))))

It should be clear to see that only the latter expression performs the desired accumulation of aggregated
values.

See also:

p Basic aggregation functions (page 316)

5.4 Color functions
These functions can be used in expressions associated with setting and evaluating the color properties of
chart objects, as well as in data load scripts.

Qlik Sense supports the color functions Color(), qliktechblue, and qliktechgray for backwards
compatibility reasons, but use of them is not recommended.

Script syntax and chart functions - Qlik Sense, May 2023 531

5 Script and chart functions

ARGB
ARGB() is used in expressions to set or evaluate the color properties of a chart object, where the color is
defined by a red component r, a green component g, and a blue component b, with an alpha factor (opacity)
of alpha.

ARGB(alpha, r, g, b)

HSL
HSL() is used in expressions to set or evaluate the color properties of a chart object, where the color is defined
by values of hue, saturation, and luminosity between 0 and 1.

HSL (hue, saturation, luminosity)

RGB
RGB() returns an integer corresponding to the color code of the color defined by the three parameters: the red
component r, the green component g, and the blue component b. These components must have integer
values between 0 and 255. The function can be used in expressions to set or evaluate the color properties of a
chart object.

RGB (r, g, b)

Colormix1
Colormix1() is used in expressions to return an ARGB color representation from a two color gradient, based
on a value between 0 and 1.

Colormix1 (Value , ColorZero , ColorOne)
Value is a real number between 0 and 1.

l If Value = 0 ColorZero is returned.
l If Value = 1 ColorOne is returned.
l If 0 < Value< 1 the appropriate intermediate shading is returned.

ColorZero is a valid RGB color representation for the color to be associated with the low end of the interval.

ColorOne is a valid RGB color representation for the color to be associated with the high end of the interval.

Example:

Colormix1(0.5, red(), blue())

returns:

ARGB(255,64,0,64) (purple)

Colormix2
Colormix2() is used in expressions to return an ARGB color representation from a two color gradient, based
on a value between -1 and 1, with the possibility to specify an intermediate color for the center (0) position.

Colormix2 (Value ,ColorMinusOne , ColorOne[, ColorZero])
Value is a real number between -1 and 1.

Script syntax and chart functions - Qlik Sense, May 2023 532

5 Script and chart functions

l If Value = -1 the first color is returned.
l If Value = 1 the second color is returned.
l If -1 < Value< 1 the appropriate color mix is returned.

ColorMinusOne is a valid RGB color representation for the color to be associated with the low end of the
interval.

ColorOne is a valid RGB color representation for the color to be associated with the high end of the interval.

ColorZero is an optional valid RGB color representation for the color to be associated with the center of the
interval.

SysColor
SysColor() returns the ARGB color representation for the Windows system color nr, where nr corresponds to
the parameter to the Windows API function GetSysColor(nr).

SysColor (nr)

ColorMapHue
ColorMapHue() returns an ARGB value of a color from a colormap that varies the hue component of the HSV
color model. The colormap starts with red, passes through yellow, green, cyan, blue, magenta, and returns to
red. x must be specified as a value between 0 and 1.

ColorMapHue (x)

ColorMapJet
ColorMapJet() returns an ARGB value of a color from a colormap that starts with blue, passes through cyan,
yellow and orange, and returns to red. x must be specified as a value between 0 and 1.

ColorMapJet (x)

Pre-defined color functions
The following functions can be used in expressions for pre-defined colors. Each function returns an RGB color
representation.

Optionally a parameter for alpha factor can be given, in which case an ARGB color representation is returned.
An alpha factor of 0 corresponds to full transparency, and an alpha factor of 255 corresponds to full opacity. If
a value for alpha is not entered, it is assumed to be 255.

Color function RGB value

black ([alpha]) (0,0,0)

blue([alpha]) (0,0,128)

brown([alpha]) (128,128,0)

cyan([alpha]) (0,128,128)

darkgray([alpha]) (128,128,128)

Pre-defined color functions

Script syntax and chart functions - Qlik Sense, May 2023 533

5 Script and chart functions

green([alpha]) (0,128,0)

lightblue([alpha]) (0,0,255)

lightcyan([alpha]) (0,255,255)

lightgray([alpha]) (192,192,192)

lightgreen([alpha]) (0,255,0)

lightmagenta([alpha]) (255,0,255)

lightred([alpha]) (255,0,0)

magenta([alpha]) (128,0,128)

red([alpha]) (128,0,0)

white([alpha]) (255,255,255)

yellow([alpha]) (255,255,0)

Examples and results:

Examples Results

Blue() RGB(0,0,128)

Blue(128) ARGB(128,0,0,128)

Examples and results

ARGB
ARGB() is used in expressions to set or evaluate the color properties of a chart object, where the color is
defined by a red component r, a green component g, and a blue component b, with an alpha factor (opacity)
of alpha.

Syntax:
ARGB(alpha, r, g, b)

Return data type: dual

Arguments:

Argument Description

alpha Transparency value in the range 0 - 255. 0 corresponds to full transparency and 255
corresponds to full opacity.

r, g, b Red, green, and blue component values. A color component of 0 corresponds to no
contribution and one of 255 to full contribution.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 534

5 Script and chart functions

All arguments must be expressions that resolve to integers in the range 0 to 255.

If interpreting the numeric component and formatting it in hexadecimal notation, the values of the color
components are easier to see. For example, light green has the number 4 278 255 360, which in hexadecimal
notation is FF00FF00. The first two positions ‘FF’ (255) denote the alpha channel. The next two positions ‘00’
denote the amount of red, the next two positions ‘FF’ denote the amount of green, and the final two positions
‘00’ denote the amount of blue.

RGB
RGB() returns an integer corresponding to the color code of the color defined by the three parameters: the red
component r, the green component g, and the blue component b. These components must have integer
values between 0 and 255. The function can be used in expressions to set or evaluate the color properties of a
chart object.

Syntax:
RGB (r, g, b)

Return data type: dual

Arguments:

Argument Description

r, g, b Red, green, and blue component values. A color component of 0 corresponds to no
contribution and one of 255 to full contribution.

Arguments

All arguments must be expressions that resolve to integers in the range 0 to 255.

If interpreting the numeric component and formatting it in hexadecimal notation, the values of the color
components are easier to see. For example, light green has the number 4 278 255 360, which in hexadecimal
notation is FF00FF00. The first two positions ‘FF’ (255) denote the alpha channel. In the functions RGB and
HSL, this is always ‘FF’ (opaque). The next two positions ‘00’ denote the amount of red, the next two positions
‘FF’ denote the amount of green, and the final two positions ‘00’ denote the amount of blue.

Example: Chart expression
This example applies a custom color to a chart:

Data used in this example:

ProductSales:

Load * Inline

[Country,Sales,Budget

Sweden,100000,50000

Germany, 125000, 175000

Norway, 74850, 68500

Script syntax and chart functions - Qlik Sense, May 2023 535

5 Script and chart functions

Ireland, 45000, 48000

Sweden,98000,50000

Germany, 115000, 175000

Norway, 71850, 68500

Ireland, 31000, 48000

] (delimiter is ',');

Enter the following expression in the Colors and legend properties panel:

If (Sum(Sales)>Sum(Budget),RGB(255,0,0),RGB(100,80,120))

Result:

Example: Load script
The following example displays the equivalent RGB values for values in hex format:

Load

Text(R & G & B) as Text,

RGB(R,G,B) as Color;

Load

Num#(R,'(HEX)') as R,

Num#(G,'(HEX)') as G,

Num#(B,'(HEX)') as B

Inline

[R,G,B

01,02,03

AA,BB,CC];

Result:

Script syntax and chart functions - Qlik Sense, May 2023 536

5 Script and chart functions

Text Color

010203 RGB(1,2,3)

AABBCC RGB(170,187,204)

HSL
HSL() is used in expressions to set or evaluate the color properties of a chart object, where the color is defined
by values of hue, saturation, and luminosity between 0 and 1.

Syntax:
HSL (hue, saturation, luminosity)

Return data type: dual

Arguments:

Argument Description

hue, saturation, luminosity hue, saturation, and luminosity component values ranging between 0 and 1.

Arguments

All arguments must be expressions that resolve to integers in the range 0 to 1.

If interpreting the numeric component and formatting it in hexadecimal notation, the RGB values of the color
components are easier to see. For example, light green has the number 4 278 255 360, which in hexadecimal
notation is FF00FF00 and RGB (0,255,0). This is equivalent to HSL (80/240, 240/240, 120/240) - a HSL value of
(0.33, 1, 0.5).

5.5 Conditional functions
The conditional functions all evaluate a condition and then return different answers depending
on the condition value. The functions can be used in the data load script and in chart
expressions.

Conditional functions overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

alt
The alt function returns the first of the parameters that has a valid number representation. If no such match is
found, the last parameter will be returned. Any number of parameters can be used.

alt (expr1[, expr2 , expr3 , ...] , else)

Script syntax and chart functions - Qlik Sense, May 2023 537

5 Script and chart functions

class
The class function assigns the first parameter to a class interval. The result is a dual value with a<=x<b as the
textual value, where a and b are the upper and lower limits of the bin, and the lower bound as numeric value.

class (expression, interval [, label [, offset]])

coalesce
The coalesce function returns the first of the parameters that has a valid non-NULL representation. Any
number of parameters can be used.

coalesce(expr1[, expr2 , expr3 , ...])

if
The if function returns a value depending on whether the condition provided with the function evaluates as
True or False.

if (condition , then , else)

match
The match function compares the first parameter with all the following ones and returns the numeric location
of the expressions that match. The comparison is case sensitive.

match (str, expr1 [, expr2,...exprN])

mixmatch
The mixmatch function compares the first parameter with all the following ones and returns the numeric
location of the expressions that match. The comparison is case insensitive.

mixmatch (str, expr1 [, expr2,...exprN])

pick
The pick function returns the n:th expression in the list.

pick (n, expr1[, expr2,...exprN])

wildmatch
The wildmatch function compares the first parameter with all the following ones and returns the number of
the expression that matches. It permits the use of wildcard characters (* and ?) in the comparison strings. *
matches any sequence of characters. ? matches any single character. The comparison is case insensitive.

wildmatch (str, expr1 [, expr2,...exprN])

alt
The alt function returns the first of the parameters that has a valid number representation. If no
such match is found, the last parameter will be returned. Any number of parameters can be
used.

Syntax:
alt(expr1[, expr2 , expr3 , ...] , else)

Script syntax and chart functions - Qlik Sense, May 2023 538

5 Script and chart functions

Arguments:

Argument Description

expr1 The first expression to check for a valid number representation.

expr2 The second expression to check for a valid number representation.

expr3 The third expression to check for a valid number representation.

else Value to return if none of the previous parameters has a valid number representation.

Arguments

The alt function is often used with number or date interpretation functions. This way, Qlik Sense can test
different date formats in a prioritized order. It can also be used to handle NULL values in numerical
expressions.

Examples:

Example Result

alt(date#(dat , 'YYYY/MM/DD'),

date#(dat , 'MM/DD/YYYY'),

date#(dat , 'MM/DD/YY'),

'No valid date')

This expression will test if the field date contains a date
according to any of the three specified date formats. If so, it will
return a dual value containing the original string and a valid
number representation of a date. If no match is found, the text
'No valid date' will be returned (without any valid number
representation).

alt(Sales,0) + alt(Margin,0) This expression adds the fields Sales and Margin, replacing any
missing value (NULL) with a 0.

Examples

class
The class function assigns the first parameter to a class interval. The result is a dual value with
a<=x<b as the textual value, where a and b are the upper and lower limits of the bin, and the
lower bound as numeric value.

Syntax:
class(expression, interval [, label [, offset]])

Arguments:

Argument Description

interval A number that specifies the bin width.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 539

5 Script and chart functions

Argument Description

label An arbitrary string that can replace the 'x' in the result text.

offset A number that can be used as offset from the default starting point of the classification. The
default starting point is normally 0.

Examples:

Example Result

class(var,10) with var = 23 returns '20<=x<30'

class(var,5,'value') with var = 23 returns '20<= value <25'

class(var,10,'x',5) with var = 23 returns '15<=x<25'

Examples

Example - Load script using class
Example: load script

Load script

In this example, we load a table containing name and age of people. We want to add a field that classifies
each person according to an age group with a ten year interval. The original source table looks like the
following.

Name Age

John 25

Karen 42

Yoshi 53

Results

To add the age group classification field, you can add a preceding load statement using the class function.

Create a new tab in the data load editor, and then load the following data as an inline load. Create the table
below in Qlik Sense to see the results.

LOAD *,

class(Age, 10, 'age') As Agegroup;

LOAD * INLINE

[Age, Name

25, John

42, Karen

53, Yoshi];

Script syntax and chart functions - Qlik Sense, May 2023 540

5 Script and chart functions

Results

Name Age Agegroup

John 25 20 <= age < 30

Karen 42 40 <= age < 50

Yoshi 53 50 <= age < 60

Results

coalesce
The coalesce function returns the first of the parameters that has a valid non-NULL
representation. Any number of parameters can be used.

Syntax:
coalesce(expr1[, expr2 , expr3 , ...])

Arguments:

Argument Description

expr1 The first expression to check for a valid non-NULL representation.

expr2 The second expression to check for a valid non-NULL representation.

expr3 The third expression to check for a valid non-NULL representation.

Arguments

Examples:

Example Result

This expression changes all the NULL values of a field to 'N/A'.

Coalesce(ProductDescription,

ProductName, ProductCode, 'no

description available')

This expression will select between three different product
description fields, for when some fields may not have values for
the product. The first of the fields, in the order given, with a non-
null value will be returned. If none of the fields contain a value,
the result will be 'no description available'.

Coalesce(TextBetween(FileName,

'"', '"'), FileName)
This expression will trim potential enclosing quotes from the field
FileName. If the FileName given is quoted, these are removed,
and the enclosed, unquoted FileName is returned. If the
TextBetween function doesn't find the delimiters it returns null,
which the Coalesce rejects, returning instead the raw FileName.

Examples

Script syntax and chart functions - Qlik Sense, May 2023 541

5 Script and chart functions

if
The if function returns a value depending on whether the condition provided with the function
evaluates as True or False.

Syntax:
if(condition , then [, else])

Argument Description

condition Expression that is interpreted logically.

then Expression that can be of any type. If the condition is True, then the if function returns the
value of the then expression.

else Expression that can be of any type. If the condition is False, then the if function returns the
value of the else expression.

This parameter is optional. If the condition is False, NULL is returned if you have not
specified else.

Arguments

Example Result

if(Amount>= 0,

'OK', 'Alarm')
This expression tests if the amount is a positive number (0 or larger) and return
'OK' if it is. If the amount is less than 0, 'Alarm' is returned.

Example

Example - Load script using if
Example: Load script

Load script

If can be used in load script with other methods and objects, including variables. For example, if you set a
variable threshold and want to include a field in the data model based on that threshold, you can do the
following.

Create a new tab in the data load editor, and then load the following data as an inline load. Create the table
below in Qlik Sense to see the results.

Transactions:

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, customer_id, size,

color_code

3750, 20180830, 23.56, 2, 2038593, L, Red

3751, 20180907, 556.31, 6, 203521, m, orange

3752, 20180916, 5.75, 1, 5646471, S, blue

3753, 20180922, 125.00, 7, 3036491, l, Black

3754, 20180922, 484.21, 13, 049681, xs, Red

3756, 20180922, 59.18, 2, 2038593, M, Blue

Script syntax and chart functions - Qlik Sense, May 2023 542

5 Script and chart functions

3757, 20180923, 177.42, 21, 203521, XL, Black

];

set threshold = 100;

/* Create new table called Transaction_Buckets

Compare transaction_amount field from Transaction table to threshold of 100.

Output results into a new field called Compared to Threshold

*/

Transaction_Buckets:

Load

transaction_id,

If(transaction_amount > $(threshold),'Greater than $(threshold)','Less than $(threshold)')

as [Compared to Threshold]

Resident Transactions;

Results

transaction_id Compared to Threshold

3750 Less than 100

3751 Greater than 100

3752 Less than 100

3753 Greater than 100

3754 Greater than 100

3756 Less than 100

3757 Greater than 100

Qlik Sense table showing the output from
using the if function in the load script.

Examples - Chart expressions using if
Examples: Chart expressions

Chart expression 1

Load script

Create a new tab in the data load editor, and then load the following data as an inline load. After loading the
data, create the chart expression examples below in a Qlik Sense table.

MyTable:

LOAD * inline [Date, Location, Incidents

1/3/2016, Beijing, 0

1/3/2016, Boston, 12

1/3/2016, Stockholm, 3

1/3/2016, Toronto, 0

Script syntax and chart functions - Qlik Sense, May 2023 543

5 Script and chart functions

1/4/2016, Beijing, 0

1/4/2016, Boston, 8];

Date Location Incidents
if(Incidents>=10,
'Critical', 'Ok')

if(Incidents>=10, 'Critical', If(
Incidents>=1 and Incidents<10,
'Warning', 'Ok'))

1/3/2016 Beijing 0 Ok Ok

1/3/2016 Boston 12 Critical Critical

1/3/2016 Stockholm 3 Ok Warning

1/3/2016 Toronto 0 Ok Ok

1/4/2016 Beijing 0 Ok Ok

1/4/2016 Boston 8 Ok Warning

Qlik Sense table showing examples of the if function in a chart expression.

Chart expression 2

In a new app, add the following script in a new tab in the data load editor, and then load the data. You can
then create the table with the chart expressions below.

SET FirstWeekDay=0;

Load

Date(MakeDate(2022)+RecNo()-1) as Date

Autogenerate 14;

Date WeekDay(Date)
If(WeekDay
(Date)>=5,'WeekEnd','Normal
Day')

1/1/2022 Sat WeekEnd

1/2/2022 Sun WeekEnd

1/3/2022 Mon Normal Day

1/4/2022 Tue Normal Day

1/5/2022 Wed Normal Day

1/6/2022 Thu Normal Day

1/7/2022 Fri Normal Day

1/8/2022 Sat WeekEnd

1/9/2022 Sun WeekEnd

1/10/2022 Mon Normal Day

1/11/2022 Tue Normal Day

Qlik Sense table showing an example of the if function in a chart expression.

Script syntax and chart functions - Qlik Sense, May 2023 544

5 Script and chart functions

Date WeekDay(Date)
If(WeekDay
(Date)>=5,'WeekEnd','Normal
Day')

1/12/2022 Wed Normal Day

1/13/2022 Thu Normal Day

1/14/2022 Fri Normal Day

match
The match function compares the first parameter with all the following ones and returns the
numeric location of the expressions that match. The comparison is case sensitive.

Syntax:
match(str, expr1 [, expr2,...exprN])

If you want to use case insensitive comparison, use the mixmatch function. If you want to use case
insensitive comparison and wildcards, use the wildmatch function.

Example: Load script using match
Example: Load script

Load script

You can use match to load a subset of data. For example, you can return a numeric value for an expression in
the function. You can then limit the data loaded based on the numeric value. Match returns 0 if there is no
match. All expressions that are not matched in this example will therefore return 0 and will be excluded from
the data load by the WHERE statement.

Create a new tab in the data load editor, and then load the following data as an inline load. Create the table
below in Qlik Sense to see the results.

Transactions:

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, customer_id, size,

color_code

3750, 20180830, 23.56, 2, 2038593, L, Red

3751, 20180907, 556.31, 6, 203521, m, orange

3752, 20180916, 5.75, 1, 5646471, S, blue

3753, 20180922, 125.00, 7, 3036491, l, Black

3754, 20180922, 484.21, 13, 049681, xs, Red

3756, 20180922, 59.18, 2, 2038593, M, Blue

3757, 20180923, 177.42, 21, 203521, XL, Black

];

/*

Create new table called Transaction_Buckets

Create new fields called Customer, and Color code - Blue and Black

Script syntax and chart functions - Qlik Sense, May 2023 545

5 Script and chart functions

Load Transactions table.

Match returns 1 for 'Blue', 2 for 'Black'.

Does not return a value for 'blue' because match is case sensitive.

Only values that returned numeric value greater than 0

are loaded by WHERE statment into Transactions_Buckets table.

*/

Transaction_Buckets:

Load

customer_id,

customer_id as [Customer],

color_code as [Color Code Blue and Black]

Resident Transactions

Where match(color_code,'Blue','Black') > 0;

Results

Color Code Blue and Black Customer

Black 203521

Black 3036491

Blue 2038593

Qlik Sense table showing the output from
using the match function in the load script

Examples - Chart expressions using match
Examples: Chart expressions

Chart expression 1

Load script

Create a new tab in the data load editor, and then load the following data as an inline load. After loading the
data, create the chart expression examples below in a Qlik Sense table.

MyTable:

Load * inline [Cities, Count

Toronto, 123

Toronto, 234

Toronto, 231

Boston, 32

Boston, 23

Boston, 1341

Beijing, 234

Beijing, 45

Beijing, 235

Stockholm, 938

Stockholm, 39

Stockholm, 189

zurich, 2342

Script syntax and chart functions - Qlik Sense, May 2023 546

5 Script and chart functions

zurich, 9033

zurich, 0039];

The first expression in the table below returns 0 for Stockholm because 'Stockholm' is not included in the list
of expressions in the match function. It also returns 0 for 'Zurich' because the match comparison is case-
sensitive.

Cities
match(
Cities,'Toronto','Boston','Beijing','Zu
rich')

match(
Cities,'Toronto','Boston','Beijing','Stockholm','
zurich')

Beijing 3 3

Boston 2 2

Stockholm 0 4

Toronto 1 1

zurich 0 5

Qlik Sense table showing examples of the match function in a chart expression

Chart expression 2

You can use match to perform a custom sort for an expression.

By default, columns sort numerically or alphabetically, depending on the data.

Cities

Beijing

Boston

Stockholm

Toronto

zurich

Qlik Sense table showing an example of the default sort order

To change the order, do the following:

1. Open the Sorting section for your chart in the Properties panel.

2. Turn off auto sorting for the column on which you want to do a custom sort.

3. Deselect Sort numerically and Sort alphabetically.

4. Select Sort by expression, and then enter an expression similar to the following:
=match(Cities, 'Toronto','Boston','Beijing','Stockholm','zurich')

The sort order on the Cities column changes.

Script syntax and chart functions - Qlik Sense, May 2023 547

5 Script and chart functions

Cities

Toronto

Boston

Beijing

Stockholm

zurich

Qlik Sense table showing an example of changing the sort order using the match function

You can also view the numeric value that is returned.

Cities Cities & ' - ' & match (Cities, 'Toronto','Boston', 'Beijing','Stockholm','zurich')

Toronto Toronto - 1

Boston Boston - 2

Beijing Beijing - 3

Stockholm Stockholm - 4

zurich zurich - 5

Qlik Sense table showing an example of the numeric values that are returned from the match function

mixmatch
The mixmatch function compares the first parameter with all the following ones and returns the
numeric location of the expressions that match. The comparison is case insensitive.

Syntax:
mixmatch(str, expr1 [, expr2,...exprN])
If you instead want to use case sensitive comparison, use the match function. If you want to use case
insensitive comparison and wildcards, use the wildmatch function.

Example - Load script using mixmatch
Example: Load script

Load script

You can use mixmatch to load a subset of data. For example, you can return a numeric value for an expression
in the function. You can then limit the data loaded based on the numeric value. Mixmatch returns 0 if there is
no match. All expressions that are not matched in this example will therefore return 0 and will be excluded
from the data load by the WHERE statement.

Create a new tab in the data load editor, and then load the following data as an inline load. Create the table
below in Qlik Sense to see the results.

Script syntax and chart functions - Qlik Sense, May 2023 548

5 Script and chart functions

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, customer_id, size,

color_code

3750, 20180830, 23.56, 2, 2038593, L, Red

3751, 20180907, 556.31, 6, 203521, m, orange

3752, 20180916, 5.75, 1, 5646471, S, blue

3753, 20180922, 125.00, 7, 3036491, l, Black

3754, 20180922, 484.21, 13, 049681, xs, Red

3756, 20180922, 59.18, 2, 2038593, M, Blue

3757, 20180923, 177.42, 21, 203521, XL, Black

];

/*

Create new table called Transaction_Buckets

Create new fields called Customer, and Color code - Black, Blue, blue

Load Transactions table.

Mixmatch returns 1 for 'Black', 2 for 'Blue'.

Also returns 3 for 'blue' because mixmatch is not case sensitive.

Only values that returned numeric value greater than 0

are loaded by WHERE statement into Transactions_Buckets table.

*/

Transaction_Buckets:

Load

customer_id,

customer_id as [Customer],

color_code as [Color Code - Black, Blue, blue]

Resident Transactions

Where mixmatch(color_code,'Black','Blue') > 0;

Results

Color Code Black, Blue, blue Customer

Black 203521

Black 3036491

Blue 2038593

blue 5646471

Qlik Sense table showing the output from using
the mixmatch function in the load script.

Examples - Chart expressions using mixmatch
Examples: Chart expressions
Create a new tab in the data load editor, and then load the following data as an inline load. After loading the
data, create the chart expression examples below in a Qlik Sense table.

Script syntax and chart functions - Qlik Sense, May 2023 549

5 Script and chart functions

Chart expression 1

MyTable:

Load * inline [Cities, Count

Toronto, 123

Toronto, 234

Toronto, 231

Boston, 32

Boston, 23

Boston, 1341

Beijing, 234

Beijing, 45

Beijing, 235

Stockholm, 938

Stockholm, 39

Stockholm, 189

zurich, 2342

zurich, 9033

zurich, 0039];

The first expression in the table below returns 0 for Stockholm because 'Stockholm' is not included in the list
of expressions in the mixmatch function. It returns 4 for 'Zurich' because the mixmatch comparison is not
case-sensitive.

Cities
mixmatch(
Cities,'Toronto','Boston','Beijing','Zu
rich')

mixmatch(
Cities,'Toronto','Boston','Beijing','Stockholm','
Zurich')

Beijing 3 3

Boston 2 2

Stockholm 0 4

Toronto 1 1

zurich 4 5

Qlik Sense table showing examples of the mixmatch function in a chart expression

Chart expression 2

You can use mixmatch to perform a custom sort for an expression.

By default, columns sort alphabetically or numerically, depending on the data.

Cities

Beijing

Boston

Qlik Sense table showing an example of the default sort order

Script syntax and chart functions - Qlik Sense, May 2023 550

5 Script and chart functions

Cities

Stockholm

Toronto

zurich

To change the order, do the following:

1. Open the Sorting section for your chart in the Properties panel.

2. Turn off auto sorting for the column on which you want to do a custom sort.

3. Deselect Sort numerically and Sort alphabetically.

4. Select Sort by expression, and then enter the following expression:
=mixmatch(Cities, 'Toronto','Boston','Beijing','Stockholm','Zurich')

The sort order on the Cities column changes.

Cities

Toronto

Boston

Beijing

Stockholm

zurich

Qlik Sense table showing an example of changing the sort order using the mixmatch function.

You can also view the numeric value that is returned.

Cities Cities & ' - ' & mixmatch (Cities, 'Toronto','Boston', 'Beijing','Stockholm','Zurich')

Toronto Toronto - 1

Boston Boston - 2

Beijing Beijing - 3

Stockholm Stockholm - 4

zurich zurich - 5

Qlik Sense table showing an example of the numeric values that are returned from the mixmatch function.

pick
The pick function returns the n:th expression in the list.

Syntax:
pick(n, expr1[, expr2,...exprN])

Script syntax and chart functions - Qlik Sense, May 2023 551

5 Script and chart functions

Arguments:

Argument Description

n n is an integer between 1 and N.

Arguments

Example:

Example Result

pick(N, 'A','B',4, 6) returns 'B' if N = 2
returns 4 if N = 3

Example

wildmatch
The wildmatch function compares the first parameter with all the following ones and returns
the number of the expression that matches. It permits the use of wildcard characters (* and ?)
in the comparison strings. * matches any sequence of characters. ? matches any single
character. The comparison is case insensitive.

Syntax:
wildmatch(str, expr1 [, expr2,...exprN])
If you want to use comparison without wildcards, use the match or mixmatch functions.

Example: Load script using wildmatch
Example: Load script

Load script

You can use wildmatch to load a subset of data. For example, you can return a numeric value for an
expression in the function. You can then limit the data loaded based on the numeric value. Wildmatch returns
0 if there is no match. All expressions that are not matched in this example will therefore return 0 and will be
excluded from the data load by the WHERE statement.

Create a new tab in the data load editor, and then load the following data as an inline load. Create the table
below in Qlik Sense to see the results.

Transactions:

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, customer_id, size,

color_code

3750, 20180830, 23.56, 2, 2038593, L, Red

3751, 20180907, 556.31, 6, 203521, m, orange

3752, 20180916, 5.75, 1, 5646471, S, blue

3753, 20180922, 125.00, 7, 3036491, l, Black

Script syntax and chart functions - Qlik Sense, May 2023 552

5 Script and chart functions

3754, 20180922, 484.21, 13, 049681, xs, Red

3756, 20180922, 59.18, 2, 2038593, M, Blue

3757, 20180923, 177.42, 21, 203521, XL, Black

];

/*

Create new table called Transaction_Buckets

Create new fields called Customer, and Color code - Black, Blue, blue, red

Load Transactions table.

Wildmatch returns 1 for 'Black', 'Blue', and 'blue', and 2 for 'Red'.

Only values that returned numeric value greater than 0

are loaded by WHERE statement into Transactions_Buckets table.

*/

Transaction_Buckets:

Load

customer_id,

customer_id as [Customer],

color_code as [Color Code Black, Blue, blue, Red]

Resident Transactions

Where wildmatch(color_code,'Bl*','R??') > 0;

Results

Color Code Black, Blue, blue, Red Customer

Black 203521

Black 3036491

Blue 2038593

blue 5646471

Red 049681

Red 2038593

Qlik Sense table showing the output from using the
wildmatch function in the load script

Examples: Chart expressions using wildmatch
Example: Chart expression

Chart expression 1

Create a new tab in the data load editor, and then load the following data as an inline load. After loading the
data, create the chart expression examples below in a Qlik Sense table.

MyTable:

Load * inline [Cities, Count

Toronto, 123

Toronto, 234

Toronto, 231

Script syntax and chart functions - Qlik Sense, May 2023 553

5 Script and chart functions

Boston, 32

Boston, 23

Boston, 1341

Beijing, 234

Beijing, 45

Beijing, 235

Stockholm, 938

Stockholm, 39

Stockholm, 189

zurich, 2342

zurich, 9033

zurich, 0039];

The first expression in the table below returns 0 for Stockholm because 'Stockholm' is not included in the list
of expressions in the wildmatch function. It also returns 0 for 'Boston' because ? only matches on a single
character.

Cities
wildmatch(
Cities,'Tor*','?ton','Beijing','*uric
h')

wildmatch(
Cities,'Tor*','???ton','Beijing','Stockholm','*uric
h')

Beijing 3 3

Boston 0 2

Stockholm 0 4

Toronto 1 1

zurich 4 5

Qlik Sense table showing examples of the wildmatch function in a chart expression

Chart expression 2

You can use wildmatch to perform a custom sort for an expression.

By default, columns sort numerically or alphabetically, depending on the data.

Cities

Beijing

Boston

Stockholm

Toronto

zurich

Qlik Sense table showing an example of the default sort order

To change the order, do the following:

Script syntax and chart functions - Qlik Sense, May 2023 554

5 Script and chart functions

1. Open the Sorting section for your chart in the Properties panel.

2. Turn off auto sorting for the column on which you want to do a custom sort.

3. Deselect Sort numerically and Sort alphabetically.

4. Select Sort by expression, and then enter an expression similar to the following:
=wildmatch(Cities, 'Tor*','???ton','Beijing','Stockholm','*urich')

The sort order on the Cities column changes.

Cities

Toronto

Boston

Beijing

Stockholm

zurich

Qlik Sense table showing an example of changing the sort order using the wildmatch function.

You can also view the numeric value that is returned.

Cities Cities & ' - ' & wildmatch (Cities, 'Tor*','???ton','Beijing','Stockholm','*urich')

Toronto Toronto - 1

Boston Boston - 2

Beijing Beijing - 3

Stockholm Stockholm - 4

zurich zurich - 5

Qlik Sense table showing an example of the numeric values that are returned from the wildmatch function

5.6 Counter functions
This section describes functions related to record counters during LOAD statement evaluation in the data load
script. The only function that can be used in chart expressions is RowNo().

Some counter functions do not have any parameters, but the trailing parentheses are however still required.

Counter functions overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

autonumber
This script function returns a unique integer value for each distinct evaluated value of expression encountered
during the script execution. This function can be used e.g. for creating a compact memory representation of a
complex key.

Script syntax and chart functions - Qlik Sense, May 2023 555

5 Script and chart functions

autonumber (expression[, AutoID])

autonumberhash128
This script function calculates a 128-bit hash of the combined input expression values and the returns a
unique integer value for each distinct hash value encountered during the script execution. This function can
be used for example for creating a compact memory representation of a complex key.
autonumberhash128 (expression {, expression})

autonumberhash256
This script function calculates a 256-bit hash of the combined input expression values and returns a unique
integer value for each distinct hash value encountered during the script execution. This function can be used
e.g. for creating a compact memory representation of a complex key.
autonumberhash256 (expression {, expression})

IterNo
This script function returns an integer indicating for which time one single record is evaluated in a LOAD
statement with a while clause. The first iteration has number 1. The IterNo function is only meaningful if used
together with a while clause.

IterNo ()

RecNo
This script functions returns an integer for the number of the currently read row of the current table. The first
record is number 1.

RecNo ()

RowNo - script function
This function returns an integer for the position of the current row in the resulting Qlik Sense internal table.
The first row is number 1.

RowNo ()

RowNo - chart function
RowNo() returns the number of the current row within the current column segment in a table. For bitmap
charts, RowNo() returns the number of the current row within the chart's straight table equivalent.

RowNo - chart function([TOTAL])

autonumber
This script function returns a unique integer value for each distinct evaluated value of expression
encountered during the script execution. This function can be used e.g. for creating a compact
memory representation of a complex key.

You can only connect autonumber keys that have been generated in the same data load, as the
integer is generated according to the order the table is read. If you need to use keys that are
persistent between data loads, independent of source data sorting, you should use the hash128,
hash160 or hash256 functions.

Script syntax and chart functions - Qlik Sense, May 2023 556

5 Script and chart functions

Syntax:
autonumber(expression[, AutoID])

Arguments:

Argument Description

AutoID In order to create multiple counter instances if the autonumber function is used on
different keys within the script, the optional parameter AutoID can be used for naming each
counter.

Example: Creating a composite key

In this example we create a composite key using the autonumber function to conserve memory. The example
is brief for demonstration purpose, but would be meaningful with a table containing a large number of rows.

Region Year Month Sales

North 2014 May 245

North 2014 May 347

North 2014 June 127

South 2014 June 645

South 2013 May 367

South 2013 May 221

Example data

The source data is loaded using inline data. Then we add a preceding load which creates a composite key
from the Region, Year and Month fields.

RegionSales:

LOAD *,

AutoNumber(Region&Year&Month) as RYMkey;

LOAD * INLINE

[Region, Year, Month, Sales

North, 2014, May, 245

North, 2014, May, 347

North, 2014, June, 127

South, 2014, June, 645

South, 2013, May, 367

South, 2013, May, 221

];

The resulting table looks like this:

Script syntax and chart functions - Qlik Sense, May 2023 557

5 Script and chart functions

Region Year Month Sales RYMkey

North 2014 May 245 1

North 2014 May 347 1

North 2014 June 127 2

South 2014 June 645 3

South 2013 May 367 4

South 2013 May 221 4

Results table

In this example you can refer to the RYMkey, for example 1, instead of the string 'North2014May' if you need to
link to another table.

Now we load a source table of costs in a similar way. The Region, Year and Month fields are excluded in the
preceding load to avoid creating a synthetic key, we are already creating a composite key with the
autonumber function, linking the tables.

RegionCosts:

LOAD Costs,

AutoNumber(Region&Year&Month) as RYMkey;

LOAD * INLINE

[Region, Year, Month, Costs

South, 2013, May, 167

North, 2014, May, 56

North, 2014, June, 199

South, 2014, June, 64

South, 2013, May, 172

South, 2013, May, 126

];

Now we can add a table visualization to a sheet, and add the Region, Year and Month fields, as well as Sum
measures for the sales and the costs. The table will look like this:

Region Year Month Sum([Sales]) Sum([Costs])

Totals - - 1952 784

North 2014 June 127 199

North 2014 May 592 56

South 2014 June 645 64

South 2013 May 588 465

Results table

Script syntax and chart functions - Qlik Sense, May 2023 558

5 Script and chart functions

autonumberhash128
This script function calculates a 128-bit hash of the combined input expression values and the
returns a unique integer value for each distinct hash value encountered during the script
execution. This function can be used for example for creating a compact memory representation
of a complex key.

You can only connect autonumberhash128 keys that have been generated in the same data load, as
the integer is generated according to the order the table is read. If you need to use keys that are
persistent between data loads, independent of source data sorting, you should use the hash128,
hash160 or hash256 functions.

Syntax:
autonumberhash128(expression {, expression})

Example: Creating a composite key

In this example we create a composite key using the autonumberhash128 function to conserve memory. The
example is brief for demonstration purpose, but would be meaningful with a table containing a large number
of rows.

Region Year Month Sales

North 2014 May 245

North 2014 May 347

North 2014 June 127

South 2014 June 645

South 2013 May 367

South 2013 May 221

Example data

The source data is loaded using inline data. Then we add a preceding load which creates a composite key
from the Region, Year and Month fields.

RegionSales:

LOAD *,

AutoNumberHash128(Region, Year, Month) as RYMkey;

LOAD * INLINE

[Region, Year, Month, Sales

North, 2014, May, 245

North, 2014, May, 347

North, 2014, June, 127

South, 2014, June, 645

South, 2013, May, 367

Script syntax and chart functions - Qlik Sense, May 2023 559

5 Script and chart functions

South, 2013, May, 221

];

The resulting table looks like this:

Region Year Month Sales RYMkey

North 2014 May 245 1

North 2014 May 347 1

North 2014 June 127 2

South 2014 June 645 3

South 2013 May 367 4

South 2013 May 221 4

Results table

In this example you can refer to the RYMkey, for example 1, instead of the string 'North2014May' if you need to
link to another table.

Now we load a source table of costs in a similar way. The Region, Year and Month fields are excluded in the
preceding load to avoid creating a synthetic key, we are already creating a composite key with the
autonumberhash128 function, linking the tables.

RegionCosts:

LOAD Costs,

AutoNumberHash128(Region, Year, Month) as RYMkey;

LOAD * INLINE

[Region, Year, Month, Costs

South, 2013, May, 167

North, 2014, May, 56

North, 2014, June, 199

South, 2014, June, 64

South, 2013, May, 172

South, 2013, May, 126

];

Now we can add a table visualization to a sheet, and add the Region, Year and Month fields, as well as Sum
measures for the sales and the costs. The table will look like this:

Region Year Month Sum([Sales]) Sum([Costs])

Totals - - 1952 784

North 2014 June 127 199

North 2014 May 592 56

Results table

Script syntax and chart functions - Qlik Sense, May 2023 560

5 Script and chart functions

Region Year Month Sum([Sales]) Sum([Costs])

South 2014 June 645 64

South 2013 May 588 465

autonumberhash256
This script function calculates a 256-bit hash of the combined input expression values and
returns a unique integer value for each distinct hash value encountered during the script
execution. This function can be used e.g. for creating a compact memory representation of a
complex key.

You can only connect autonumberhash256 keys that have been generated in the same data load, as
the integer is generated according to the order the table is read. If you need to use keys that are
persistent between data loads, independent of source data sorting, you should use the hash128,
hash160 or hash256 functions.

Syntax:
autonumberhash256(expression {, expression})

Example: Creating a composite key

In this example we create a composite key using the autonumberhash256 function to conserve memory. The
example is brief for demonstration purpose, but would be meaningful with a table containing a large number
of rows.

Region Year Month Sales

North 2014 May 245

North 2014 May 347

North 2014 June 127

South 2014 June 645

South 2013 May 367

South 2013 May 221

Example table

The source data is loaded using inline data. Then we add a preceding load which creates a composite key
from the Region, Year and Month fields.

RegionSales:

LOAD *,

AutoNumberHash256(Region, Year, Month) as RYMkey;

LOAD * INLINE

Script syntax and chart functions - Qlik Sense, May 2023 561

5 Script and chart functions

[Region, Year, Month, Sales

North, 2014, May, 245

North, 2014, May, 347

North, 2014, June, 127

South, 2014, June, 645

South, 2013, May, 367

South, 2013, May, 221

];

The resulting table looks like this:

Region Year Month Sales RYMkey

North 2014 May 245 1

North 2014 May 347 1

North 2014 June 127 2

South 2014 June 645 3

South 2013 May 367 4

South 2013 May 221 4

Results table

In this example you can refer to the RYMkey, for example 1, instead of the string 'North2014May' if you need to
link to another table.

Now we load a source table of costs in a similar way. The Region, Year and Month fields are excluded in the
preceding load to avoid creating a synthetic key, we are already creating a composite key with the
autonumberhash256 function, linking the tables.

RegionCosts:

LOAD Costs,

AutoNumberHash256(Region, Year, Month) as RYMkey;

LOAD * INLINE

[Region, Year, Month, Costs

South, 2013, May, 167

North, 2014, May, 56

North, 2014, June, 199

South, 2014, June, 64

South, 2013, May, 172

South, 2013, May, 126

];

Now we can add a table visualization to a sheet, and add the Region, Year and Month fields, as well as Sum
measures for the sales and the costs. The table will look like this:

Script syntax and chart functions - Qlik Sense, May 2023 562

5 Script and chart functions

Region Year Month Sum([Sales]) Sum([Costs])

Totals - - 1952 784

North 2014 June 127 199

North 2014 May 592 56

South 2014 June 645 64

South 2013 May 588 465

Results table

IterNo
This script function returns an integer indicating for which time one single record is evaluated in
a LOAD statement with a while clause. The first iteration has number 1. The IterNo function is
only meaningful if used together with a while clause.

Syntax:
IterNo()

Examples and results:

Example:

LOAD

 IterNo() as Day,

 Date(StartDate + IterNo() - 1) as Date

 While StartDate + IterNo() - 1 <= EndDate;

LOAD * INLINE

[StartDate, EndDate

2014-01-22, 2014-01-26

];

This LOAD statement will generate one record per date within the range defined by StartDate and EndDate.

In this example, the resulting table will look like this:

Day Date

1 2014-01-22

2 2014-01-23

3 2014-01-24

4 2014-01-25

5 2014-01-26

Results table

Script syntax and chart functions - Qlik Sense, May 2023 563

5 Script and chart functions

RecNo
This script functions returns an integer for the number of the currently read row of the current
table. The first record is number 1.

Syntax:
RecNo()

In contrast to RowNo(), which counts rows in the resulting Qlik Sense table, RecNo(), counts the records in
the raw data table and is reset when a raw data table is concatenated to another.

Example: Data load script

Raw data table load:

Tab1:

LOAD * INLINE

[A, B

1, aa

2,cc

3,ee];

Tab2:

LOAD * INLINE

[C, D

5, xx

4,yy

6,zz];

Loading record and row numbers for selected rows:

QTab:

LOAD *,

RecNo(),

RowNo()

resident Tab1 where A<>2;

LOAD

C as A,

D as B,

RecNo(),

RowNo()

resident Tab2 where A<>5;

//We don't need the source tables anymore, so we drop them

Drop tables Tab1, Tab2;

The resulting Qlik Sense internal table:

Script syntax and chart functions - Qlik Sense, May 2023 564

5 Script and chart functions

A B RecNo() RowNo()

1 aa 1 1

3 ee 3 2

4 yy 2 3

6 zz 3 4

Results table

RowNo
This function returns an integer for the position of the current row in the resulting Qlik Sense
internal table. The first row is number 1.

Syntax:
RowNo([TOTAL])

In contrast to RecNo(), which counts the records in the raw data table, the RowNo() function does not count
records that are excluded by where clauses and is not reset when a raw data table is concatenated to
another.

If you use preceding load, that is, a number of stacked LOAD statements reading from the same
table, you can only use RowNo() in the top LOAD statement. If you use RowNo() in subsequent
LOAD statements, 0 is returned.

Example: Data load script

Raw data table load:

Tab1:

LOAD * INLINE

[A, B

1, aa

2,cc

3,ee];

Tab2:

LOAD * INLINE

[C, D

5, xx

4,yy

6,zz];

Loading record and row numbers for selected rows:

QTab:

LOAD *,

RecNo(),

RowNo()

Script syntax and chart functions - Qlik Sense, May 2023 565

5 Script and chart functions

resident Tab1 where A<>2;

LOAD

C as A,

D as B,

RecNo(),

RowNo()

resident Tab2 where A<>5;

//We don't need the source tables anymore, so we drop them

Drop tables Tab1, Tab2;

The resulting Qlik Sense internal table:

A B RecNo() RowNo()

1 aa 1 1

3 ee 3 2

4 yy 2 3

6 zz 3 4

Results table

RowNo - chart function
RowNo() returns the number of the current row within the current column segment in a table. For bitmap
charts, RowNo() returns the number of the current row within the chart's straight table equivalent.

If the table or table equivalent has multiple vertical dimensions, the current column segment will include only
rows with the same values as the current row in all dimension columns, except for the column showing the
last dimension in the inter-field sort order.

Column segments

Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this
chart function is used in any of the chart's expressions. These sort alternatives are therefore
automatically disabled. When you use this chart function in a visualization or table, the sorting of the
visualization will revert back to the sorted input to this function.

Syntax:
RowNo([TOTAL])

Script syntax and chart functions - Qlik Sense, May 2023 566

5 Script and chart functions

Return data type: integer

Arguments:

Argument Description

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current
column segment is always equal to the entire column.

Example: Chart expression using RowNo
Example - chart expression

Load script
Load the following data as an inline load in the data load editor to create the chart expression examples
below.

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|10|15

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB|1|25| 25

Canutility|AA|3|8|15

Canutility|CC|5|4|19

Divadip|CC|2|4|16

Divadip|DD|3|1|25

] (delimiter is '|');

Chart expression
Create a table visualization in a Qlik Sense sheet with Customer and UnitSales as dimensions. Add RowNo()

and RowNo(TOTAL) as measures labeled Row in Segment and Row Number, respectively. Add the following
expression to the table as a measure:

If(RowNo()=1, 0, UnitSales / Above(UnitSales))

Result

Customer UnitSales
Row in
Segment

Row
Number

If(RowNo()=1, 0, UnitSales / Above(
UnitSales))

Astrida 4 1 1 0

Astrida 9 2 2 2.25

Astrida 10 3 3 1.1111111111111

Script syntax and chart functions - Qlik Sense, May 2023 567

5 Script and chart functions

Customer UnitSales
Row in
Segment

Row
Number

If(RowNo()=1, 0, UnitSales / Above(
UnitSales))

Betacab 2 1 4 0

Betacab 5 2 5 2.5

Betacab 25 3 6 5

Canutility 4 1 7 0

Canutility 8 2 8 2

Divadip 1 1 9 0

Divadip 4 2 10 4

Explanation
The Row in Segment column shows the results 1,2,3 for the column segment containing the values of
UnitSales for customer Astrida. The row numbering then begins at 1 again for the next column segment, which
is Betacab.

The Row Number column disregards the dimensions because of the TOTAL argument for RowNo() and counts
the rows in the table.

This expression returns 0 for the first row in each column segment, so the column shows:

0, 2.25, 1.1111111, 0, 2.5, 5, 0, 2, 0, and 4.

See also:

p Above - chart function (page 1235)

5.7 Date and time functions
Qlik Sense date and time functions are used to transform and convert date and time values. All functions can
be used in both the data load script and in chart expressions.

Functions are based on a date-time serial number that equals the number of days since December 30, 1899.
The integer value represents the day and the fractional value represents the time of the day.

Qlik Sense uses the numerical value of the parameter, so a number is valid as a parameter also when it is not
formatted as a date or a time. If the parameter does not correspond to numerical value, for example, because
it is a string, then Qlik Sense attempts to interpret the string according to the date and time environment
variables.

If the time format used in the parameter does not correspond to the one set in the environment variables, Qlik
Sense will not be able to make a correct interpretation. To resolve this, either change the settings or use an
interpretation function.

Script syntax and chart functions - Qlik Sense, May 2023 568

5 Script and chart functions

In the examples for each function, the default time and date formats hh:mm:ss and YYYY-MM-DD (ISO 8601)
are assumed.

When processing a timestamp with a date or time function, Qlik Sense ignores any daylight savings
time parameters unless the date or time function includes a geographical position.

For example, ConvertToLocalTime(filetime('Time.qvd'), 'Paris') would use daylight
savings time parameters while ConvertToLocalTime(filetime('Time.qvd'), 'GMT-01:00')

would not use daylight savings time parameters.

Date and time functions overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Integer expressions of time
second
This function returns an integer representing the second when the fraction of the expression is interpreted as
a time according to the standard number interpretation.

second (expression)

minute
This function returns an integer representing the minute when the fraction of the expression is interpreted as
a time according to the standard number interpretation.

minute (expression)

hour
This function returns an integer representing the hour when the fraction of the expression is interpreted as a
time according to the standard number interpretation.

hour (expression)

day
This function returns an integer representing the day when the fraction of the expression is interpreted as a
date according to the standard number interpretation.

day (expression)

week
This function returns an integer representing the week number according to ISO 8601. The week number is
calculated from the date interpretation of the expression, according to the standard number interpretation.

week (expression)

Script syntax and chart functions - Qlik Sense, May 2023 569

5 Script and chart functions

month
This function returns a dual value: a month name as defined in the environment variable MonthNames and an
integer between 1-12. The month is calculated from the date interpretation of the expression, according to the
standard number interpretation.

month (expression)

year
This function returns an integer representing the year when the expression is interpreted as a date according
to the standard number interpretation.

year (expression)

weekyear
This function returns the year to which the week number belongs according to the environment variables. The
week number ranges between 1 and approximately 52.

weekyear (expression)

weekday
This function returns a dual value with:

l A day name as defined in the environment variable DayNames.
l An integer between 0-6 corresponding to the nominal day of the week (0-6).

weekday (date)

Timestamp functions
now
This function returns a timestamp of the current time. The function returns values in the TimeStamp system
variable format. The default timer_mode value is 1.

now ([timer_mode])

today
This function returns the current date. The function returns values in the DateFormat system variable format.

today ([timer_mode])

LocalTime
This function returns a timestamp of the current time for a specified time zone.

localtime ([timezone [, ignoreDST]])

Make functions
makedate
This function returns a date calculated from the year YYYY, the month MM and the day DD.

makedate (YYYY [, MM [, DD]])

Script syntax and chart functions - Qlik Sense, May 2023 570

5 Script and chart functions

makeweekdate
This function returns a date calculated from the year, the week number, and the day of week .

makeweekdate (YYYY [, WW [, D]])

maketime
This function returns a time calculated from the hour hh, the minute mm, and the second ss.

maketime (hh [, mm [, ss [.fff]]])

Other date functions
AddMonths
This function returns the date occurring n months after startdate or, if n is negative, the date occurring n
months before startdate.

addmonths (startdate, n , [, mode])

AddYears
This function returns the date occurring n years after startdate or, if n is negative, the date occurring n years
before startdate.

addyears (startdate, n)

yeartodate
This function finds if the input timestamp falls within the year of the date the script was last loaded, and
returns True if it does, False if it does not.

yeartodate (date [, yearoffset [, firstmonth [, todaydate]]])

Timezone functions
timezone
This function returns the time zone, as defined on the computer where the Qlik engine is running.

timezone ()

GMT
This function returns the current Greenwich Mean Time, as derived from the regional settings.

GMT ()

UTC
Returns the current Coordinated Universal Time.

UTC ()

daylightsaving
Returns the current adjustment for daylight saving time, as defined in Windows.

daylightsaving ()

Script syntax and chart functions - Qlik Sense, May 2023 571

5 Script and chart functions

converttolocaltime
Converts a UTC or GMT timestamp to local time as a dual value. The place can be any of a number of cities,
places and time zones around the world.

converttolocaltime (timestamp [, place [, ignore_dst=false]])

Set time functions
setdateyear
This function takes as input a timestamp and a year and updates the timestamp with the year specified in
input.

setdateyear (timestamp, year)

setdateyearmonth
This function takes as input a timestamp, a month and a year and updates the timestamp with the year and
the month specified in input.

setdateyearmonth (timestamp, year, month)

In... functions
inyear
This function returns True if timestamp lies inside the year containing base_date.

inyear (date, basedate , shift [, first_month_of_year = 1])

inyeartodate
This function returns True if timestamp lies inside the part of year containing base_date up until and
including the last millisecond of base_date.

inyeartodate (date, basedate , shift [, first_month_of_year = 1])

inquarter
This function returns True if timestamp lies inside the quarter containing base_date.

inquarter (date, basedate , shift [, first_month_of_year = 1])

inquartertodate
This function returns True if timestamp lies inside the part of the quarter containing base_date up until and
including the last millisecond of base_date.

inquartertodate (date, basedate , shift [, first_month_of_year = 1])

inmonth
This function returns True if timestamp lies inside the month containing base_date.

inmonth (date, basedate , shift)

inmonthtodate
Returns True if date lies inside the part of month containing basedate up until and including the last
millisecond of basedate.

Script syntax and chart functions - Qlik Sense, May 2023 572

5 Script and chart functions

inmonthtodate (date, basedate , shift)

inmonths
This function finds if a timestamp falls within the same month, bi-month, quarter, four-month period, or half-
year as a base date. It is also possible to find if the timestamp falls within a previous or following time period.

inmonths (n, date, basedate , shift [, first_month_of_year = 1])

inmonthstodate
This function finds if a timestamp falls within the part a period of the month, bi-month, quarter, four-month
period, or half-year up to and including the last millisecond of base_date. It is also possible to find if the
timestamp falls within a previous or following time period.

inmonthstodate (n, date, basedate , shift [, first_month_of_year = 1])

inweek
This function returns True if timestamp lies inside the week containing base_date.

inweek (date, basedate , shift [, weekstart])

inweektodate
This function returns True if timestamp lies inside the part of week containing base_date up until and
including the last millisecond of base_date.

inweektodate (date, basedate , shift [, weekstart])

inlunarweek
This function determines if timestamp lies inside the lunar week containing base_date. Lunar weeks in Qlik
Sense are defined by counting January 1 as the first day of the week., Apart from the final week of the year,
each week will contain exactly seven days.

inlunarweek (date, basedate , shift [, weekstart])

inlunarweektodate
This function finds if timestamp lies inside the part of the lunar week up to and including the last millisecond
of base_date. Lunar weeks in Qlik Sense are defined by counting January 1 as the first day of the week and,
apart from the final week of the year, will contain exactly seven days.

inlunarweektodate (date, basedate , shift [, weekstart])

inday
This function returns True if timestamp lies inside the day containing base_timestamp.

inday (timestamp, basetimestamp , shift [, daystart])

indaytotime
This function returns True if timestamp lies inside the part of day containing base_timestamp up until and
including the exact millisecond of base_timestamp.

indaytotime (timestamp, basetimestamp , shift [, daystart])

Script syntax and chart functions - Qlik Sense, May 2023 573

5 Script and chart functions

Start ... end functions
yearstart
This function returns a timestamp corresponding to the start of the first day of the year containing date. The
default output format will be the DateFormat set in the script.

yearstart (date [, shift = 0 [, first_month_of_year = 1]])

yearend
This function returns a value corresponding to a timestamp of the last millisecond of the last day of the year
containing date. The default output format will be the DateFormat set in the script.

yearend (date [, shift = 0 [, first_month_of_year = 1]])

yearname
This function returns a four-digit year as display value with an underlying numeric value corresponding to a
timestamp of the first millisecond of the first day of the year containing date.

yearname (date [, shift = 0 [, first_month_of_year = 1]])

quarterstart
This function returns a value corresponding to a timestamp of the first millisecond of the quarter containing
date. The default output format will be the DateFormat set in the script.

quarterstart (date [, shift = 0 [, first_month_of_year = 1]])

quarterend
This function returns a value corresponding to a timestamp of the last millisecond of the quarter containing
date. The default output format will be the DateFormat set in the script.

quarterend (date [, shift = 0 [, first_month_of_year = 1]])

quartername
This function returns a display value showing the months of the quarter (formatted according to the
MonthNames script variable) and year with an underlying numeric value corresponding to a timestamp of the
first millisecond of the first day of the quarter.

quartername (date [, shift = 0 [, first_month_of_year = 1]])

monthstart
This function returns a value corresponding to a timestamp of the first millisecond of the first day of the
month containing date. The default output format will be the DateFormat set in the script.

monthstart (date [, shift = 0])

monthend
This function returns a value corresponding to a timestamp of the last millisecond of the last day of the month
containing date. The default output format will be the DateFormat set in the script.

monthend (date [, shift = 0])

Script syntax and chart functions - Qlik Sense, May 2023 574

5 Script and chart functions

monthname
This function returns a display value showing the month (formatted according to the MonthNames script
variable) and year with an underlying numeric value corresponding to a timestamp of the first millisecond of
the first day of the month.

monthname (date [, shift = 0])

monthsstart
This function returns a value corresponding to the timestamp of the first millisecond of the month, bi-month,
quarter, four-month period, or half-year containing a base date. It is also possible to find the timestamp for a
previous or following time period.The default output format is the DateFormat set in the script.

monthsstart (n, date [, shift = 0 [, first_month_of_year = 1]])

monthsend
This function returns a value corresponding to a timestamp of the last millisecond of the month, bi-month,
quarter, four-month period, or half-year containing a base date. It is also possible to find the timestamp for a
previous or following time period.

monthsend (n, date [, shift = 0 [, first_month_of_year = 1]])

monthsname
This function returns a display value representing the range of the months of the period (formatted according
to the MonthNames script variable) as well as the year. The underlying numeric value corresponds to a
timestamp of the first millisecond of the month, bi-month, quarter, four-month period, or half-year containing
a base date.

monthsname (n, date [, shift = 0 [, first_month_of_year = 1]])

weekstart
This function returns a value corresponding to a timestamp of the first millisecond of the first day of the
calendar week containing date. The default output format is the DateFormat set in the script.

weekstart (date [, shift = 0 [,weekoffset = 0]])

weekend
This function returns a value corresponding to a timestamp of the last millisecond of the last day of the
calendar week containing date. The default output format will be the DateFormat set in the script.

weekend (date [, shift = 0 [,weekoffset = 0]])

weekname
This function returns a value showing the year and week number with an underlying numeric value
corresponding to a timestamp of the first millisecond of the first day of the week containing date.

weekname (date [, shift = 0 [,weekoffset = 0]])

Script syntax and chart functions - Qlik Sense, May 2023 575

5 Script and chart functions

lunarweekstart
This function returns a value corresponding to a timestamp of the first millisecond of the first day of the lunar
week containing date. Lunar weeks in Qlik Sense are defined by counting January 1 as the first day of the
week and, apart from the final week of the year, will contain exactly seven days.

lunarweekstart (date [, shift = 0 [,weekoffset = 0]])

lunarweekend
This function returns a value corresponding to a timestamp of the last millisecond of the last day of the lunar
week containing date. Lunar weeks in Qlik Sense are defined by counting January 1 as the first day of the
week and, apart from the final week of the year, will contain exactly seven days.

lunarweekend (date [, shift = 0 [,weekoffset = 0]])

lunarweekname
This function returns a display value showing the year and lunar week number corresponding to a timestamp
of the first millisecond of the first day of the lunar week containing date. Lunar weeks in Qlik Sense are
defined by counting January 1as the first day of the week and, apart from the final week of the year, will
contain exactly seven days.

lunarweekname (date [, shift = 0 [,weekoffset = 0]])

daystart
This function returns a value corresponding to a timestamp with the first millisecond of the day contained in
the time argument. The default output format will be the TimestampFormat set in the script.

daystart (timestamp [, shift = 0 [, dayoffset = 0]])

dayend
This function returns a value corresponding to a timestamp of the final millisecond of the day contained in
time. The default output format will be the TimestampFormat set in the script.

dayend (timestamp [, shift = 0 [, dayoffset = 0]])

dayname
This function returns a value showing the date with an underlying numeric value corresponding to a
timestamp of the first millisecond of the day containing time.

dayname (timestamp [, shift = 0 [, dayoffset = 0]])

Day numbering functions
age
The age function returns the age at the time of timestamp (in completed years) of somebody born on date_
of_birth.

age (timestamp, date_of_birth)

Script syntax and chart functions - Qlik Sense, May 2023 576

5 Script and chart functions

networkdays
The networkdays function returns the number of working days (Monday-Friday) between and including
start_date and end_date taking into account any optionally listed holiday.

networkdays (start:date, end_date {, holiday})

firstworkdate
The firstworkdate function returns the latest starting date to achieve no_of_workdays (Monday-Friday)
ending no later than end_date taking into account any optionally listed holidays. end_date and holiday
should be valid dates or timestamps.

firstworkdate (end_date, no_of_workdays {, holiday})

lastworkdate
The lastworkdate function returns the earliest ending date to achieve no_of_workdays (Monday-Friday) if
starting at start_date taking into account any optionally listed holiday. start_date and holiday should be
valid dates or timestamps.

lastworkdate (start_date, no_of_workdays {, holiday})

daynumberofyear
This function calculates the day number of the year in which a timestamp falls. The calculation is made from
the first millisecond of the first day of the year, but the first month can be offset.

daynumberofyear (date[,firstmonth])

daynumberofquarter
This function calculates the day number of the quarter in which a timestamp falls. This function is used when
creating a Master Calendar.

daynumberofquarter (date[,firstmonth])

addmonths
This function returns the date occurring n months after startdate or, if n is negative, the date
occurring n months before startdate.

Syntax:
AddMonths(startdate, n , [, mode])

Return data type: dual

The addmonths() function adds or subtracts a defined number of months, n, from a startdate and returns the
resultant date.

The mode argument will impact startdate values on or after the 28th of the month. By setting the mode

argument to 1, the addmonths() function returns a date that is equal in relative distance to the end of the
month as the startdate.

Script syntax and chart functions - Qlik Sense, May 2023 577

5 Script and chart functions

Example diagram of addmonths() function

For example, February 28 is the last day of the month. If the addmonths() function, with a mode of 1, is used to
return the date two months later, the function will return the last date of April, April 30.

Example diagram of addmonths() function, with mode=1

Argument Description

startdate The start date as a time stamp, for example '2012-10-12'.

n Number of months as a positive or negative integer.

mode Specifies if the month is added relative to the beginning or to the end of the month. Default
mode is 0 for additions relative to the beginning of the month. Set mode to 1 for additions
relative to the end of the month. When mode is set to 1 and the input date is the 28th or
above, the function checks how many days are left to reach the end of the month on the
startdate. The same number of days to reach the end of the month are set on the date
returned.

Arguments

When to use it
The addmonths() function will commonly be used in an expression to find a date a given number of months
before or after a period of time.

For example, the addmonths() function can be used to identify the end date of mobile phone contracts.

Example Result

addmonths ('01/29/2003' ,3) Returns '04/29/2003'.

addmonths ('01/29/2003',3,0) Returns '04/29/2003'.

addmonths ('01/29/2003',3,1) Returns '04/28/2003'.

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 578

5 Script and chart functions

Example Result

addmonths ('01/29/2003',1,0) Returns '02/28/2003'.

addmonths ('01/29/2003',1,1) Returns '02/26/2003'.

addmonths ('02/28/2003',1,0) Returns '03/28/2003'.

addmonths ('02/28/2003',1,1) Returns '03/31/2003'.

addmonths ('01/29/2003',-3) Returns '10/29/2002'.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, two_months_later, that returns the date for two months after the transaction

took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

addmonths(date,2) as two_months_later

;

Load

Script syntax and chart functions - Qlik Sense, May 2023 579

5 Script and chart functions

*

Inline

[

id,date,amount

8188,'01/10/2020',37.23

8189,'02/28/2020',17.17

8190,'04/09/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'02/02/2022',46.23

8205,'02/26/2022',84.21

8206,'03/07/2022',96.24

8207,'03/11/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l two_months_later

date two_months_later

01/10/2020 03/10/2020

02/28/2020 04/28/2020

04/09/2020 06/09/2020

04/16/2020 06/16/2020

05/21/2020 07/21/2020

08/14/2020 10/14/2020

10/07/2020 12/07/2020

12/05/2020 02/05/2021

01/22/2021 03/22/2021

02/03/2021 04/03/2021

Results table

Script syntax and chart functions - Qlik Sense, May 2023 580

5 Script and chart functions

date two_months_later

03/17/2021 05/17/2021

04/23/2021 06/23/2021

05/04/2021 07/04/2021

06/30/2021 08/30/2021

07/26/2021 09/26/2021

12/27/2021 02/27/2022

02/02/2022 04/02/2022

02/26/2022 04/26/2022

03/07/2022 05/07/2022

03/11/2022 05/11/2022

The two_months_later field is created in the preceding load statement by using the addmonths() function.
The first argument provided identifies which date is being evaluated. The second argument is the number of
months to add or subtract from the startdate. In this instance, the value of 2 is provided.

Diagram of addmonths() function, example with no additional arguments

Transaction 8193 took place on August 14. Therefore, the addmonths() function returns October 14, 2020 for
the two_months_later field.

Example 2 – Relative month end
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of month-end transactions in 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.

Script syntax and chart functions - Qlik Sense, May 2023 581

5 Script and chart functions

l The creation of a field, relative_two_months_prior, that returns the relative month-end date for two
months before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

addmonths(date,-2,1) as relative_two_months_prior

;

Load

*

Inline

[

id,date,amount

8188,'01/28/2022',37.23

8189,'01/31/2022',57.54

8190,'02/28/2022',17.17

8191,'04/29/2022',88.27

8192,'04/30/2022',57.42

8193,'05/31/2022',53.80

8194,'08/14/2022',82.06

8195,'10/07/2022',40.39

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l relative_two_months_prior

date relative_two_months_prior

01/28/2022 11/27/2021

01/31/2022 11/30/2021

02/28/2022 12/31/2021

04/29/2022 02/27/2022

04/30/2022 02/28/2022

05/31/2022 03/31/2022

08/14/2022 06/14/2022

10/07/2022 08/07/2022

Results table

Script syntax and chart functions - Qlik Sense, May 2023 582

5 Script and chart functions

The relative_two_months_prior field is created in the preceding load statement by using the addmonths()

function. The first argument provided identifies which date is being evaluated. The second argument is the
number of months to add or subtract from the startdate. In this instance, the value of -2 is provided. The
final argument is the mode, with a value of 1, which forces the function to calculate the relative month-end
date for all dates greater than or equal to 28.

Diagram of addmonths() function, example with n=-2

Transaction 8191 takes place on April 29, 2022. Initially, two months prior would set the month to February.
Then, due to the third argument of the function setting the mode to 1 and the day value being later than the
27th, the function calculates the relative month-end value. The function identifies that the 29th is the second
last day of April and therefore returns the second last day of February, the 27th.

Example 3– Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that returns
the date for two months after the transaction took place is created as a measure in a chart object.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'01/10/2020',37.23

8189,'02/28/2020',17.17

8190,'04/09/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

Script syntax and chart functions - Qlik Sense, May 2023 583

5 Script and chart functions

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'02/02/2022',46.23

8205,'02/26/2022',84.21

8206,'03/07/2022',96.24

8207,'03/11/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measure:

=addmonths(date,2)

date =addmonths(date,2)

01/10/2020 03/10/2020

02/28/2020 04/28/2020

04/09/2020 06/09/2020

04/16/2020 06/16/2020

05/21/2020 07/21/2020

08/14/2020 10/14/2020

10/07/2020 12/07/2020

12/05/2020 02/05/2021

01/22/2021 03/22/2021

02/03/2021 04/03/2021

03/17/2021 05/17/2021

04/23/2021 06/23/2021

05/04/2021 07/04/2021

06/30/2021 08/30/2021

07/26/2021 09/26/2021

12/27/2021 02/27/2022

02/02/2022 04/02/2022

Results table

Script syntax and chart functions - Qlik Sense, May 2023 584

5 Script and chart functions

date =addmonths(date,2)

02/26/2022 04/26/2022

03/07/2022 05/07/2022

03/11/2022 05/11/2022

The two_months_later measure is created in the chart object by using the addmonths() function. The first
argument provided identifies which date is being evaluated. The second argument is the number of months to
add or subtract from the startdate. In this instance, the value of 2 is provided.

Diagram of addmonths() function, chart object example

Transaction 8193 took place on August 14. Therefore, the addmonths() function returns the October 14, 2020
for the two_months_later field.

Example 4 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called Mobile_Plans.
l Information with the contract ID, start date, contract length, and monthly fee.

The end user would like a chart object that displays, by contract ID, the termination date of each phone
contract.

Load script

Mobile_Plans:

Load

*

Inline

[

contract_id,start_date,contract_length,monthly_fee

8188,'01/13/2020',18,37.23

8189,'02/26/2020',24,17.17

8190,'03/27/2020',36,88.27

8191,'04/16/2020',24,57.42

Script syntax and chart functions - Qlik Sense, May 2023 585

5 Script and chart functions

8192,'05/21/2020',24,53.80

8193,'08/14/2020',12,82.06

8194,'10/07/2020',18,40.39

8195,'12/05/2020',12,87.21

8196,'01/22/2021',12,95.93

8197,'02/03/2021',18,45.89

8198,'03/17/2021',24,36.23

8199,'04/23/2021',24,25.66

8200,'05/04/2021',12,82.77

8201,'06/30/2021',12,69.98

8202,'07/26/2021',12,76.11

8203,'12/27/2021',36,25.12

8204,'06/06/2022',24,46.23

8205,'07/18/2022',12,84.21

8206,'11/14/2022',12,96.24

8207,'12/12/2022',18,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l contract_id

l start_date

l contract_length

Create the following measure to calculate the end date of each contract:

=addmonths(start_date,contract_length, 0)

contract_id start_date contract_length =addmonths(start_date,contract_length,0)

8188 01/13/2020 18 07/13/2021

8189 02/26/2020 24 02/26/2022

8190 03/27/2020 36 03/27/2023

8191 04/16/2020 24 04/16/2022

8192 05/21/2020 24 05/21/2022

8193 08/14/2020 12 08/14/2021

8194 10/07/2020 18 04/07/2022

8195 12/05/2020 12 12/05/2021

8196 01/22/2021 12 01/22/2022

8197 02/03/2021 18 08/03/2022

8198 03/17/2021 24 03/17/2023

Results table

Script syntax and chart functions - Qlik Sense, May 2023 586

5 Script and chart functions

contract_id start_date contract_length =addmonths(start_date,contract_length,0)

8199 04/23/2021 24 04/23/2023

8200 05/04/2021 12 05/04/2022

8201 06/30/2021 12 06/30/2022

8202 07/26/2021 12 07/26/2022

8203 12/27/2021 36 12/27/2024

8204 06/06/2022 24 06/06/2024

8205 07/18/2022 12 07/18/2023

8206 11/14/2022 12 11/14/2023

8207 12/12/2022 18 06/12/2024

addyears
This function returns the date occurring n years after startdate or, if n is negative, the date
occurring n years before startdate.

Syntax:
AddYears(startdate, n)

Return data type: dual

Example diagram of addyears() function

The addyears() function adds or subtracts a defined number of years, n, from a startdate. It then returns the
resulting date.

Argument Description

startdate The start date as a time stamp, for example '2012-10-12'.

n Number of years as a positive or negative integer.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 587

5 Script and chart functions

Example Result

addyears ('01/29/2010',3) Returns '01/29/2013'.

addyears ('01/29/2010',-1) Returns '01/29/2009'.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – Simple example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, two_years_later, that returns the date for two years after the transaction took

place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

addyears(date,2) as two_years_later

;

Load

*

Inline

[

id,date,amount

Script syntax and chart functions - Qlik Sense, May 2023 588

5 Script and chart functions

8188,'01/10/2020',37.23

8189,'02/28/2020',17.17

8190,'04/09/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'02/02/2022',46.23

8205,'02/26/2022',84.21

8206,'03/07/2022',96.24

8207,'03/11/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l two_years_later

date two_years_later

01/10/2020 01/10/2022

02/28/2020 02/28/2022

04/09/2020 04/09/2022

04/16/2020 04/16/2022

05/21/2020 05/21/2022

08/14/2020 08/14/2022

10/07/2020 10/07/2022

12/05/2020 12/05/2022

01/22/2021 01/22/2023

02/03/2021 02/03/2023

03/17/2021 03/17/2023

04/23/2021 04/23/2023

Results table

Script syntax and chart functions - Qlik Sense, May 2023 589

5 Script and chart functions

date two_years_later

05/04/2021 05/04/2023

06/30/2021 06/30/2023

07/26/2021 07/26/2023

12/27/2021 12/27/2023

02/02/2022 02/02/2024

02/26/2022 02/26/2024

03/07/2022 03/07/2024

03/11/2022 03/11/2024

The two_years_later field is created in the preceding load statement by using the addyears() function. The
first argument provided identifies which date is being evaluated. The second argument is the number of years
to add or subtract from the start date. In this instance, the value of 2 is provided.

Diagram of addyears() function, basic example

Transaction 8193 took place on August 14, 2020. Therefore, the addyears() function returns August 14, 2022
for the two_years_later field.

Example 2 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.

In a chart object, create a measure, prior_year_date, that returns the date one year prior to when the
transaction takes place.

Script syntax and chart functions - Qlik Sense, May 2023 590

5 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'01/10/2020',37.23

8189,'02/28/2020',17.17

8190,'04/09/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'02/02/2022',46.23

8205,'02/26/2022',84.21

8206,'03/07/2022',96.24

8207,'03/11/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measure to calculate the date one year prior to each transaction:

=addyears(date,-1)

date =addyears(date,-1)

01/10/2020 01/10/2019

02/28/2020 02/28/2019

04/09/2020 04/09/2019

04/16/2020 04/16/2019

05/21/2020 05/21/2019

08/14/2020 08/14/2019

Results table

Script syntax and chart functions - Qlik Sense, May 2023 591

5 Script and chart functions

date =addyears(date,-1)

10/07/2020 10/07/2019

12/05/2020 12/05/2019

01/22/2021 01/22/2020

02/03/2021 02/03/2020

03/17/2021 03/17/2020

04/23/2021 04/23/2020

05/04/2021 05/04/2020

06/30/2021 06/30/2020

07/26/2021 07/26/2020

12/27/2021 12/27/2020

02/02/2022 02/02/2021

02/26/2022 02/26/2021

03/07/2022 03/07/2021

03/11/2022 03/11/2021

The one_year_prior measure is created in the chart object by using the addyears() function. The first
argument provided identifies which date is being evaluated. The second argument is the number of years to
add or subtract from the startdate. In this instance, the value of -1 is provided.

Diagram of addyears() function, chart object example

Transaction 8193 took place on August 14. Therefore, the addyears() function returns August 14, 2019 for the
one_year_prior field.

Example 3 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2023 592

5 Script and chart functions

l A dataset which is loaded into a table called Warranties.
l Information with the product ID, purchase date, warranty length, and purchase price.

The end user would like a chart object that displays, by product ID, the warranty termination date of each
product.

Load script

Warranties:

Load

*

Inline

[

product_id,purchase_date,warranty_length,purchase_price

8188,'01/13/2020',4,32000

8189,'02/26/2020',2,28000

8190,'03/27/2020',3,41000

8191,'04/16/2020',4,17000

8192,'05/21/2020',2,25000

8193,'08/14/2020',1,59000

8194,'10/07/2020',2,12000

8195,'12/05/2020',3,12000

8196,'01/22/2021',4,24000

8197,'02/03/2021',1,50000

8198,'03/17/2021',2,80000

8199,'04/23/2021',3,10000

8200,'05/04/2021',4,30000

8201,'06/30/2021',3,30000

8202,'07/26/2021',4,20000

8203,'12/27/2021',4,10000

8204,'06/06/2022',2,25000

8205,'07/18/2022',1,32000

8206,'11/14/2022',1,30000

8207,'12/12/2022',4,22000

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l product_id

l purchase_date

l warranty_length

Create the following measure to calculate the end date of each product's warranty:

=addyears(purchase_date,warranty_length)

Script syntax and chart functions - Qlik Sense, May 2023 593

5 Script and chart functions

product_id purchase_date warranty_length =addyears(purchase_date,warranty_length)

8188 01/13/2020 4 01/13/2024

8189 02/26/2020 2 02/26/2022

8190 03/27/2020 3 03/27/2023

8191 04/16/2020 4 04/16/2024

8192 05/21/2020 2 05/21/2022

8193 08/14/2020 1 08/14/2021

8194 10/07/2020 2 10/07/2022

8195 12/05/2020 3 12/05/2023

8196 01/22/2021 4 01/22/2025

8197 02/03/2021 1 02/03/2022

8198 03/17/2021 2 03/17/2023

8199 04/23/2021 3 04/23/2024

8200 05/04/2021 4 05/04/2025

8201 06/30/2021 3 06/30/2024

8202 07/26/2021 4 07/26/2025

8203 12/27/2021 4 12/27/2025

8204 06/06/2022 2 06/06/2024

8205 07/18/2022 1 07/18/2023

8206 11/14/2022 1 11/14/2023

8207 12/12/2022 4 12/12/2026

Results table

age
The age function returns the age at the time of timestamp (in completed years) of somebody
born on date_of_birth.

Syntax:
age(timestamp, date_of_birth)
Can be an expression.

Script syntax and chart functions - Qlik Sense, May 2023 594

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

timestamp The timestamp,or expression resolving to a timestamp, up to which to calculate the
completed number of years.

date_of_
birth

Date of birth of the person whose age is being calculated. Can be an expression.

Arguments

Examples and results:
These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat
statement at the top of your data load script. Change the format in the examples to suit your requirements.

Example Result

age('25/01/2014', '29/10/2012') Returns 1.

age('29/10/2014', '29/10/2012') Returns 2.

Scripting examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Employees:

LOAD * INLINE [

Member|DateOfBirth

John|28/03/1989

Linda|10/12/1990

Steve|5/2/1992

Birg|31/3/1993

Raj|19/5/1994

Prita|15/9/1994

Su|11/12/1994

Goran|2/3/1995

Sunny|14/5/1996

Ajoa|13/6/1996

Daphne|7/7/1998

Biffy|4/8/2000

] (delimiter is |);

AgeTable:

Load *,

age('20/08/2015', DateOfBirth) As Age

Resident Employees;

Drop table Employees;

Script syntax and chart functions - Qlik Sense, May 2023 595

5 Script and chart functions

The resulting table shows the returned values of age for each of the records in the table.

Member DateOfBirth Age

John 28/03/1989 26

Linda 10/12/1990 24

Steve 5/2/1992 23

Birg 31/3/1993 22

Raj 19/5/1994 21

Prita 15/9/1994 20

Su 11/12/1994 20

Goran 2/3/1995 20

Sunny 14/5/1996 19

Ajoa 13/6/1996 19

Daphne 7/7/1998 17

Biffy 4/8/2000 15

Results table

converttolocaltime
Converts a UTC or GMT timestamp to local time as a dual value. The place can be any of a
number of cities, places and time zones around the world.

Syntax:
ConvertToLocalTime(timestamp [, place [, ignore_dst=false]])

Return data type: dual

Arguments:

Argument Description

timestamp The timestamp, or expression resolving to a timestamp, to convert.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 596

5 Script and chart functions

Argument Description

place A place or timezone from the table of valid places and timezones below. Alternatively, you
can use GMT or UTC to define the local time. The following values and time offset ranges
are valid:

l GMT
l GMT-12:00 - GMT-01:00
l GMT+01:00 - GMT+14:00
l UTC
l UTC-12:00 - UTC-01:00
l UTC+01:00 - UTC+14:00

You can only use standard time offsets. It's not possible to use an arbitrary time
offset, for example, GMT-04:27.

ignore_dst Set to True to ignore DST (daylight saving time).

Set to False to adjust for daylight saving time.

A-C D-K L-R S-Z

Abu Dhabi Darwin La Paz Samoa

Adelaide Dhaka Lima Santiago

Alaska Eastern Time (US &
Canada)

Lisbon Sapporo

Amsterdam Edinburgh Ljubljana Sarajevo

Arizona Ekaterinburg London Saskatchewan

Astana Fiji Madrid Seoul

Athens Georgetown Magadan Singapore

Atlantic Time (Canada) Greenland Mazatlan Skopje

Auckland Greenwich Mean Time :
Dublin

Melbourne Sofia

Azores Guadalajara Mexico City Solomon Is.

Baghdad Guam Mid-Atlantic Sri
Jayawardenepura

Baku Hanoi Minsk St. Petersburg

Bangkok Harare Monrovia Stockholm

Valid places and time zones

Script syntax and chart functions - Qlik Sense, May 2023 597

5 Script and chart functions

A-C D-K L-R S-Z

Beijing Hawaii Monterrey Sydney

Belgrade Helsinki Moscow Taipei

Berlin Hobart Mountain Time (US &
Canada)

Tallinn

Bern Hong Kong Mumbai Tashkent

Bogota Indiana (East) Muscat Tbilisi

Brasilia International Date Line
West

Nairobi Tehran

Bratislava Irkutsk New Caledonia Tokyo

Brisbane Islamabad New Delhi Urumqi

Brussels Istanbul Newfoundland Warsaw

Bucharest Jakarta Novosibirsk Wellington

Budapest Jerusalem Nuku'alofa West Central Africa

Buenos Aires Kabul Osaka Vienna

Cairo Kamchatka Pacific Time (US &
Canada)

Vilnius

Canberra Karachi Paris Vladivostok

Cape Verde Is. Kathmandu Perth Volgograd

Caracas Kolkata Port Moresby Yakutsk

Casablanca Krasnoyarsk Prague Yerevan

Central America Kuala Lumpur Pretoria Zagreb

Central Time (US &
Canada)

Kuwait Quito -

Chennai Kyiv Riga -

Chihuahua - Riyadh -

Chongqing - Rome -

Copenhagen - - -

Script syntax and chart functions - Qlik Sense, May 2023 598

5 Script and chart functions

Examples and results:

Example Result

ConvertToLocalTime('2007-11-10 23:59:00','Paris') Returns '2007-11-11 00:59:00' and the
corresponding internal timestamp
representation.

ConvertToLocalTime(UTC(), 'GMT-05:00') Returns the time for the North American east
coast, for example, New York.

ConvertToLocalTime(UTC(), 'GMT-05:00', True) Returns the time for the North American east
coast, for example, New York, without
daylight-saving time adjustment.

Scripting examples

day
This function returns an integer representing the day when the fraction of the expression is
interpreted as a date according to the standard number interpretation.

The function returns the day of the month for a particular date. It is commonly used to derive a day field as
part of a calendar dimension.

Syntax:
day(expression)

Return data type: integer

Example Result

day(1971-10-12) returns 12

day(35648) returns 6, because 35648 = 1997-08-06

Function examples

Example 1 – DateFormat dataset (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates named Master_Calendar. The DateFormat system variable is set to DD/MM/YYYY.
l A preceding load that creates an additional field, named day_of_month, using the day() function.
l An additional field, named long_date, using the date() function to express the full month name.

Script syntax and chart functions - Qlik Sense, May 2023 599

5 Script and chart functions

Load script

SET DateFormat='DD/MM/YYYY';

Master_Calendar:

Load

date,

date(date,'dd-MMMM-YYYY') as long_date,

day(date) as day_of_month

Inline

[

date

03/11/2022

03/12/2022

03/13/2022

03/14/2022

03/15/2022

03/16/2022

03/17/2022

03/18/2022

03/19/2022

03/20/2022

03/21/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l long_date

l day_of_month

date long_date day_of_month

03/11/2022 11-March- 2022 11

03/12/2022 12-March- 2022 12

03/13/2022 13-March- 2022 13

03/14/2022 14-March- 2022 14

03/15/2022 15-March- 2022 15

03/16/2022 16-March- 2022 16

03/17/2022 17-March- 2022 17

03/18/2022 18-March- 2022 18

03/19/2022 19-March- 2022 19

Results table

Script syntax and chart functions - Qlik Sense, May 2023 600

5 Script and chart functions

date long_date day_of_month

03/20/2022 20-March- 2022 20

03/21/2022 21-March- 2022 21

The day of the month is correctly evaluated by the day() function in the script.

Example 2 – ANSI dates (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates named Master_Calendar. The DateFormat system variable DD/MM/YYYY is used.
However, the dates that are included in the dataset are in ANSI standard date format.

l A preceding load that creates an additional field, named day_of_month, using the date() function.
l An additional field, named long_date, using the date() function to express the date with the full

month name.

Load script

SET DateFormat='DD/MM/YYYY';

Master_Calendar:

Load

date,

date(date,'dd-MMMM-YYYY') as long_date,

day(date) as day_of_month

Inline

[

date

2022-03-11

2022-03-12

2022-03-13

2022-03-14

2022-03-15

2022-03-16

2022-03-17

2022-03-18

2022-03-19

2022-03-20

2022-03-21

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2023 601

5 Script and chart functions

l date

l long_date

l day_of_month

date long_date day_of_month

03/11/2022 11-March- 2022 11

03/12/2022 12-March- 2022 12

03/13/2022 13-March- 2022 13

03/14/2022 14-March- 2022 14

03/15/2022 15-March- 2022 15

03/16/2022 16-March- 2022 16

03/17/2022 17-March- 2022 17

03/18/2022 18-March- 2022 18

03/19/2022 19-March- 2022 19

03/20/2022 20-March- 2022 20

03/21/2022 21-March- 2022 21

Results table

The day of the month is correctly evaluated by the day() function in the script.

Example 3 – Unformatted dates (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates named Master_Calendar. The DateFormat system variable DD/MM/YYYY is used.
l A preceding load that creates an additional field, named day_of_month, using the day() function.
l The original unformatted date, named unformatted_date.
l An additional field, named long_date, using the date() is used to convert the numerical date into a

formatted date field.

Load script

SET DateFormat='DD/MM/YYYY';

Master_Calendar:

Load

Script syntax and chart functions - Qlik Sense, May 2023 602

5 Script and chart functions

unformatted_date,

date(unformatted_date,'dd-MMMM-YYYY') as long_date,

day(date) as day_of_month

Inline

[

unformatted_date

44868

44898

44928

44958

44988

45018

45048

45078

45008

45038

45068

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l unformatted_date

l long_date

l day_of_month

unformatted_date long_date day_of_month

44868 03-November- 2022 3

44898 03-December- 2022 3

44928 02-January- 2023 2

44958 01-February- 2023 1

44988 03-March- 2023 3

45008 23-March- 2023 23

45018 02-April- 2023 2

45038 22-April- 2023 22

45048 02-May- 2023 2

45068 22-May- 2023 22

45078 01-June- 2023 1

Results table

The day of the month is correctly evaluated by the day() function in the script.

Script syntax and chart functions - Qlik Sense, May 2023 603

5 Script and chart functions

Example 4 – Calculating expiry month (chart)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of orders placed in March named Orders. The table contains three fields:
o id
o order_date
o amount

Load script

Orders:

Load

id,

order_date,

amount

Inline

[

id,order_date,amount

1,03/01/2022,231.24

2,03/02/2022,567.28

3,03/03/2022,364.28

4,03/04/2022,575.76

5,03/05/2022,638.68

6,03/06/2022,785.38

7,03/07/2022,967.46

8,03/08/2022,287.67

9,03/09/2022,764.45

10,03/10/2022,875.43

11,03/11/2022,957.35

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: order_date.

To calculate the delivery date, create this measure: =day(order_date+5).

order_date =day(order_date+5)

03/11/2022 16

Results table

Script syntax and chart functions - Qlik Sense, May 2023 604

5 Script and chart functions

order_date =day(order_date+5)

03/12/2022 17

03/13/2022 18

03/14/2022 19

03/15/2022 20

03/16/2022 21

03/17/2022 22

03/18/2022 23

03/19/2022 24

03/20/2022 25

03/21/2022 26

The day() function correctly determines that an order placed on the 11th of March would be delivered on the
16th based on a 5 day delivery period.

dayend
This function returns a value corresponding to a timestamp of the final millisecond of the day
contained in time. The default output format will be the TimestampFormat set in the script.

Syntax:
DayEnd(time[, [period_no[, day_start]])

When to use it

The dayend() function is commonly used as part of an expression when the user would like the calculation to
use the fraction of the day that has not yet occurred. For example, to calculate the total expenses still to be
incurred during the day.

Return data type: dual

Argument Description

time The timestamp to evaluate.

period_no period_no is an integer, or expression that resolves to an integer, where the value 0
indicates the day that contains time. Negative values in period_no indicate preceding days
and positive values indicate succeeding days.

day_start To specify that days do not starting at midnight, indicate an offset as a fraction of a day in
day_start. For example, 0.125 to denote 3:00 AM.
In other words, to create the offset, divide the start time by 24 hours. For example, for a day
to begin at 7:00 AM, use the fraction 7/24.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 605

5 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

dayend('01/25/2013 16:45:00') Returns 01/25/2013 23:59:59. PM

dayend('01/25/2013 16:45:00', -1) Returns 01/24/2013 23:59:59. PM

dayend('01/25/2013 16:45:00', 0, 0.5) Returns 01/26/2013 11:59:59. PM

Function examples

Example 1 - Basic script
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a list of dates is loaded into a table named "Calendar".
l The default DateFormat system variable (MM/DD/YYYY).
l A preceding load to create an additional field, 'EOD_timestamp', using the dayend() function.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Calendar:

Load

date,

dayend(date) as EOD_timestamp

;

Load

date

Inline

[

date

03/11/2022 1:47:15 AM

Script syntax and chart functions - Qlik Sense, May 2023 606

5 Script and chart functions

03/12/2022 4:34:58 AM

03/13/2022 5:15:55 AM

03/14/2022 9:25:14 AM

03/15/2022 10:06:54 AM

03/16/2022 10:44:42 AM

03/17/2022 11:33:30 AM

03/18/2022 12:58:14 PM

03/19/2022 4:23:12 PM

03/20/2022 6:42:15 PM

03/21/2022 7:41:16 PM

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l EOD_timestamp

date EOD_timestamp

03/11/2022 1:47:15 AM 3/11/2022 11:59:59 PM

03/12/2022 4:34:58 AM 3/12/2022 11:59:59 PM

03/13/2022 5:15:55 AM 3/13/2022 11:59:59 PM

03/14/2022 9:25:14 AM 3/14/2022 11:59:59 PM

03/15/2022 10:06:54 AM 3/15/2022 11:59:59 PM

03/16/2022 10:44:42 AM 3/16/2022 11:59:59 PM

03/17/2022 11:33:30 AM 3/17/2022 11:59:59 PM

03/18/2022 12:58:14 PM 3/18/2022 11:59:59 PM

03/19/2022 4:23:12 PM 3/19/2022 11:59:59 PM

03/20/2022 6:42:15 PM 3/20/2022 11:59:59 PM

03/21/2022 7:41:16 PM 3/21/2022 11:59:59 PM

Results table

As you can see in the table above, the end of day timestamp is generated for each date in our dataset. The
timestamp is in the format of the system variable TimestampFormat M/D/YYYY h:mm:ss[.fff] TT.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

You will load a dataset containing service bookings into a table named 'Services'.

Script syntax and chart functions - Qlik Sense, May 2023 607

5 Script and chart functions

The dataset includes the following fields:

l service_id

l service_date

l amount

You will create two new fields in the table:

l deposit_due_date: The date when the deposit should be received. This is the end of the day three
days before the service_date.

l final_payment_due_date: The date when the final payment should be received. This is the end of the
day seven days after the service_date.

The two fields above are created in a preceding load using the dayend() function and they supply the first two
parameters, time and period_no.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Services:

Load

*,

dayend(service_date,-3) as deposit_due_date,

dayend(service_date,7) as final_payment_due_date

;

Load

service_id,

service_date,

amount

Inline

[

service_id, service_date,amount

1,03/11/2022 9:25:14 AM,231.24

2,03/12/2022 10:06:54 AM,567.28

3,03/13/2022 10:44:42 AM,364.28

4,03/14/2022 11:33:30 AM,575.76

5,03/15/2022 12:58:14 PM,638.68

6,03/16/2022 4:23:12 PM,785.38

7,03/17/2022 6:42:15 PM,967.46

8,03/18/2022 7:41:16 PM,287.67

9,03/19/2022 8:14:15 PM,764.45

10,03/20/2022 9:23:51 PM,875.43

11,03/21/2022 10:04:41 PM,957.35

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2023 608

5 Script and chart functions

l service_date

l deposit_due_date

l final_payment_due_date

service_date deposit_due_date final_payment_due_date

03/11/2022 9:25:14 AM 3/8/2022 11:59:59 PM 3/18/2022 11:59:59 PM

03/12/2022 10:06:54 AM 3/9/2022 11:59:59 PM 3/19/2022 11:59:59 PM

03/13/2022 10:44:42 AM 3/10/2022 11:59:59 PM 3/20/2022 11:59:59 PM

03/14/2022 11:33:30 AM 3/11/2022 11:59:59 PM 3/21/2022 11:59:59 PM

03/15/2022 12:58:14 PM 3/12/2022 11:59:59 PM 3/22/2022 11:59:59 PM

03/16/2022 4:23:12 PM 3/13/2022 11:59:59 PM 3/23/2022 11:59:59 PM

03/17/2022 6:42:15 PM 3/14/2022 11:59:59 PM 3/24/2022 11:59:59 PM

03/18/2022 7:41:16 PM 3/15/2022 11:59:59 PM 3/25/2022 11:59:59 PM

03/19/2022 8:14:15 PM 3/16/2022 11:59:59 PM 3/26/2022 11:59:59 PM

03/20/2022 9:23:51 PM 3/17/2022 11:59:59 PM 3/27/2022 11:59:59 PM

03/21/2022 10:04:41 PM 3/18/2022 11:59:59 PM 3/28/2022 11:59:59 PM

Results table

The values of the new fields are in the TimestampFormat M/D/YYYY h:mm:ss[.fff] TT. Because the function
dayend() was used, the timestamp values are all the last millisecond of the day.

The deposit due date values are three days before the service date because the second argument passed in
the dayend() function is negative.

The final payment due date values are seven days after the service date because the second argument passed
in the dayend() function is positive.

Example 3 – day_start script
Load script and results

Overview

Open the Data load editor and add the load script below in a new tab.

The dataset and scenario used in this example is the same as in the previous example.

As in the previous example, you will create two new fields:

l deposit_due_date: The date when the deposit should be received. This is the end of the day three
days before the service_date.

l final_payment_due_date: The date when the final payment should be received. This is the end of the
day seven days after the service_date.

Script syntax and chart functions - Qlik Sense, May 2023 609

5 Script and chart functions

However, your company would like to operate under a policy where the working day begins at 5 PM and ends
at 5 PM the following day. Your company can then monitor transactions that occur in those working hours.

To achieve these requirements, the two fields above are created in a preceding load using the dayend()

function and use all three arguments, time, period_no, and day_start.

Load Script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Services:

Load

*,

dayend(service_date,-3,17/24) as deposit_due_date,

dayend(service_date,7,17/24) as final_payment_due_date

;

Load

service_id,

service_date,

amount

Inline

[

service_id, service_date,amount

1,03/11/2022 9:25:14 AM,231.24

2,03/12/2022 10:06:54 AM,567.28

3,03/13/2022 10:44:42 AM,364.28

4,03/14/2022 11:33:30 AM,575.76

5,03/15/2022 12:58:14 PM,638.68

6,03/16/2022 4:23:12 PM,785.38

7,03/17/2022 6:42:15 PM,967.46

8,03/18/2022 7:41:16 PM,287.67

9,03/19/2022 8:14:15 PM,764.45

10,03/20/2022 9:23:51 PM,875.43

11,03/21/2022 10:04:41 PM,957.35

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l service_date

l deposit_due_date

l final_payment_due_date

service_date deposit_due_date final_payment_due_date

03/11/2022 9:25:14 AM 3/8/2022 4:59:59 PM 3/18/2022 4:59:59 PM

03/12/2022 10:06:54 AM 3/9/2022 4:59:59 PM 3/19/2022 4:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 610

5 Script and chart functions

service_date deposit_due_date final_payment_due_date

03/13/2022 10:44:42 AM 3/10/2022 4:59:59 PM 3/20/2022 4:59:59 PM

03/14/2022 11:33:30 AM 3/11/2022 4:59:59 PM 3/21/2022 4:59:59 PM

03/15/2022 12:58:14 PM 3/12/2022 4:59:59 PM 3/22/2022 4:59:59 PM

03/16/2022 4:23:12 PM 3/13/2022 4:59:59 PM 3/23/2022 4:59:59 PM

03/17/2022 6:42:15 PM 3/14/2022 4:59:59 PM 3/24/2022 4:59:59 PM

03/18/2022 7:41:16 PM 3/15/2022 4:59:59 PM 3/25/2022 4:59:59 PM

03/19/2022 8:14:15 PM 3/16/2022 4:59:59 PM 3/26/2022 4:59:59 PM

03/20/2022 9:23:51 PM 3/17/2022 4:59:59 PM 3/27/2022 4:59:59 PM

03/21/2022 10:04:41 PM 3/18/2022 4:59:59 PM 3/28/2022 4:59:59 PM

While the dates remain the same as in Example 2, the dates now have a timestamp of the last millisecond
before 5:00 PM because the value of the third argument, day_start, passed into the dayend() function is
17/24.

Example 4 – Chart example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The dataset and scenario used in this example is the same as in the previous two examples. The company
would like to operate under a policy where the working day begins at 5:00 PM and ends at 5:00 PM the
following day.

As in the previous example, you will create two new fields:

l deposit_due_date: The date when the deposit should be received. This is the end of the day three
days before the service_date.

l final_payment_due_date: The date when the final payment should be received. This is the end of the
day seven days after the service_date.

Load Script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Services:

Load

service_id,

service_date,

amount

Inline

[

service_id, service_date,amount

Script syntax and chart functions - Qlik Sense, May 2023 611

5 Script and chart functions

1,03/11/2022 9:25:14 AM,231.24

2,03/12/2022 10:06:54 AM,567.28

3,03/13/2022 10:44:42 AM,364.28

4,03/14/2022 11:33:30 AM,575.76

5,03/15/2022 12:58:14 PM,638.68

6,03/16/2022 4:23:12 PM,785.38

7,03/17/2022 6:42:15 PM,967.46

8,03/18/2022 7:41:16 PM,287.67

9,03/19/2022 8:14:15 PM,764.45

10,03/20/2022 9:23:51 PM,875.43

11,03/21/2022 10:04:41 PM,957.35

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

service_date.

To create the deposit_due_date field, create this measure:

=dayend(service_date,-3,17/24).

Then, to create the final_payment_due_date field, create this measure:

=dayend(service_date,7,17/24).

service_date =dayend(service_date,-3,17/24) =dayend(service_date,7,17/24

03/11/2022 3/8/2022 16:59:59 PM 3/18/2022 16:59:59 PM

03/12/2022 3/9/2022 16:59:59 PM 3/19/2022 16:59:59 PM

03/13/2022 3/10/2022 16:59:59 PM 3/20/2022 16:59:59 PM

03/14/2022 3/11/2022 16:59:59 PM 3/21/2022 16:59:59 PM

03/15/2022 3/12/2022 16:59:59 PM 3/22/2022 16:59:59 PM

03/16/2022 3/13/2022 16:59:59 PM 3/23/2022 16:59:59 PM

03/17/2022 3/14/2022 16:59:59 PM 3/24/2022 16:59:59 PM

03/18/2022 3/15/2022 16:59:59 PM 3/25/2022 16:59:59 PM

03/19/2022 3/16/2022 16:59:59 PM 3/26/2022 16:59:59 PM

03/20/2022 3/17/2022 16:59:59 PM 3/27/2022 16:59:59 PM

03/21/2022 3/18/2022 16:59:59 PM 3/28/2022 16:59:59 PM

Results table

The values of the new fields are in the TimestampFormat M/D/YYYY h:mm:ss[.fff] TT. Because the function
dayend() was used, the timestamp values are all the last millisecond of the day.

Script syntax and chart functions - Qlik Sense, May 2023 612

5 Script and chart functions

The payment due date values are three days before the service date because the second argument passed in
the dayend() function is negative.

The final payment due date values are seven days after the service date because the second argument passed
in the dayend() function is positive.

The dates have a timestamp of the last millisecond before 5:00 PM because the value of the third argument,
day_start,that passed into the dayend() function is 17/24.

Argument Description

time The timestamp to evaluate.

period_no period_no is an integer, or expression that resolves to an integer, where the value 0
indicates the day that contains time. Negative values in period_no indicate preceding days
and positive values indicate succeeding days.

day_start To specify that days do not starting at midnight, indicate an offset as a fraction of a day in
day_start. For example, 0.125 to denote 3:00 AM.

Arguments

daylightsaving
Returns the current adjustment for daylight saving time, as defined in Windows.

Syntax:
DaylightSaving()

Return data type: dual

Example:

daylightsaving()

dayname
This function returns a value showing the date with an underlying numeric value corresponding
to a timestamp of the first millisecond of the day containing time.

Syntax:
DayName(time[, period_no [, day_start]])

Return data type: dual

Arguments:

Argument Description

time The timestamp to evaluate.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 613

5 Script and chart functions

Argument Description

period_no period_no is an integer, or expression that resolves to an integer, where the value 0
indicates the day that contains time. Negative values in period_no indicate preceding days
and positive values indicate succeeding days.

day_start To specify that days do not starting at midnight, indicate an offset as a fraction of a day in
day_start. For example, 0.125 to denote 3:00 AM.

Examples and results:
These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat
statement at the top of your data load script. Change the format in the examples to suit your requirements.

Example Result

dayname('25/01/2013

16:45:00')
Returns 25/01/2013.

dayname('25/01/2013

16:45:00', -1)
Returns 24/01/2013.

dayname('25/01/2013

16:45:00', 0, 0.5)
Returns 25/01/2013.

Displaying the full timestamp shows the underlying numeric value
corresponds to '25/01/2013 12:00:00.000.

Scripting examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

In this example, the day name is created from the timestamp that marks the beginning of the day after each
invoice date in the table.

TempTable:

LOAD RecNo() as InvID, * Inline [

InvDate

28/03/2012

10/12/2012

5/2/2013

31/3/2013

19/5/2013

15/9/2013

11/12/2013

2/3/2014

14/5/2014

13/6/2014

7/7/2014

4/8/2014

];

InvoiceData:

LOAD *,

Script syntax and chart functions - Qlik Sense, May 2023 614

5 Script and chart functions

DayName(InvDate, 1) AS DName

Resident TempTable;

Drop table TempTable;

The resulting table contains the original dates and a column with the return value of the dayname() function.
You can display the full timestamp by specifying the formatting in the properties panel.

InvDate DName

28/03/2012 29/03/2012 00:00:00

10/12/2012 11/12/2012 00:00:00

5/2/2013 07/02/2013 00:00:00

31/3/2013 01/04/2013 00:00:00

19/5/2013 20/05/2013 00:00:00

15/9/2013 16/09/2013 00:00:00

11/12/2013 12/12/2013 00:00:00

2/3/2014 03/03/2014 00:00:00

14/5/2014 15/05/2014 00:00:00

13/6/2014 14/06/2014 00:00:00

7/7/2014 08/07/2014 00:00:00

4/8/2014 05/08/2014 00:00:00

Results table

daynumberofquarter
This function calculates the day number of the quarter in which a timestamp falls. This function
is used when creating a Master Calendar.

Syntax:
DayNumberOfQuarter(timestamp[,start_month])

Return data type: integer

Argument Description

timestamp The date or timestamp to evaluate.

start_month By specifying a start_month between 2 and 12 (1, if omitted), the beginning of the year
may be moved forward to the first day of any month. For example, if you want to work
with a fiscal year starting March 1, specify start_month = 3.

Arguments

These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat
statement at the top of your data load script. Change the format in the examples to suit your requirements.

Script syntax and chart functions - Qlik Sense, May 2023 615

5 Script and chart functions

Example Result

DayNumberOfQuarter('12/09/2014') Returns 74, the day number of the current quarter.

DayNumberOfQuarter

('12/09/2014',3)
Returns 12, the day number of the current quarter.
In this case, the first quarter starts with March (because start_
month is specified as 3). This means that the current quarter is
the third quarter, which started on September 1.

Function examples

Example 1 – January start of year (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A simple dataset containing a list of dates, which is loaded into a table named Calendar. The default
DateFormat system variable MM/DD/YYYY is used.

l A preceding load that creates an additional field, named DayNrQtr, using the DayNumberOfQuarter()

function.

Aside from the date, no additional parameters are provided to the function.

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

Load

date,

DayNumberOfQuarter(date) as DayNrQtr

;

Load

date

Inline

[

date

01/01/2022

01/10/2022

01/31/2022

02/01/2022

02/10/2022

02/28/2022

03/01/2022

03/31/2022

04/01/2022

];

Script syntax and chart functions - Qlik Sense, May 2023 616

5 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l daynrqtr

date daynrqtr

01/01/2022 1

01/10/2022 10

01/31/2022 31

02/01/2022 32

02/10/2022 41

02/28/2022 59

03/01/2022 61

03/31/2022 91

04/01/2022 1

Results table

The first day of the year is January 1 because no second argument was passed into the DayNumberOfQuarter

() function.

January 1st is the 1st day of the quarter whilst February 1st is the 32nd day of the quarter. The 31st of March
is the 91st and final day of the quarter, whilst the 1st of April is the 1st day of the 2nd Quarter.

Example 2 – February start of year (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the first example.
l The default DateFormat system variable MM/DD/YYYY is used.
l A start_month argument beginning on February 1. This sets the financial year to February 1.

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

Script syntax and chart functions - Qlik Sense, May 2023 617

5 Script and chart functions

Load

date,

DayNumberOfQuarter(date,2) as DayNrQtr

;

Load

date

Inline

[

date

01/01/2022

01/10/2022

01/31/2022

02/01/2022

02/10/2022

02/28/2022

03/01/2022

03/31/2022

04/01/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l daynrqtr

date daynrqtr

01/01/2022 62

01/10/2022 71

01/31/2022 92

02/01/2022 1

02/10/2022 10

02/28/2022 28

03/01/2022 30

03/31/2022 60

04/01/2022 61

Results table

The first day of the year is the 1st of February because the second argument passed into the
DayNumberOfQuarter() function was 2.

The first quarter of the year operates between February and April whilst the fourth quarter operates between
November and January. This is shown in the results table where February 1st is the 1st day of the quarter
whilst January 31st is the 92nd and last day of the quarter.

Script syntax and chart functions - Qlik Sense, May 2023 618

5 Script and chart functions

Example 3 – January start of year (chart)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the first example.
l The default DateFormat system variable MM/DD/YYYY is used.

However, in this example, the unchanged dataset is loaded into the application. The value of the day of the
quarter is calculated via a measure in a chart object.

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

Load

date

Inline

[

date

01/01/2022

01/10/2022

01/31/2022

02/01/2022

02/10/2022

02/28/2022

03/01/2022

03/31/2022

04/01/2022

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measure:

=daynumberofquarter(date)

date =daynumberofquarter(date)

01/01/2022 1

01/10/2022 10

Results table

Script syntax and chart functions - Qlik Sense, May 2023 619

5 Script and chart functions

date =daynumberofquarter(date)

01/31/2022 31

02/01/2022 32

02/10/2022 41

02/28/2022 59

03/01/2022 61

03/31/2022 91

04/01/2022 1

The first day of the year is the 1st of January because no second argument passed into the
DayNumberOfQuarter() function.

January 1st is the 1st day of the quarter whilst February 1st is the 32nd day of the quarter. The 31st of March
is the 91st and final day of the quarter, whilst the 1st of April is the 1st day of the 2nd Quarter.

Example 4 – February start of year (chart)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the first example.
l The default DateFormat system variable MM/DD/YYYY is used.
l The financial year runs from the 1st of February to the 31st of January.

However, in this example, the unchanged dataset is loaded into the application. The value of the day of the
quarter is calculated via a measure in a chart object.

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

Load

date

Inline

[

date

01/01/2022

01/10/2022

01/31/2022

02/01/2022

Script syntax and chart functions - Qlik Sense, May 2023 620

5 Script and chart functions

02/10/2022

02/28/2022

03/01/2022

03/31/2022

04/01/2022

];

Chart object

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measure:

=daynumberofquarter(date,2)

Results

date =daynumberofquarter(date,2)

01/01/2022 62

01/10/2022 71

01/31/2022 92

02/01/2022 1

02/10/2022 10

02/28/2022 28

03/01/2022 30

03/31/2022 60

04/01/2022 61

Results table

The first day of the year is the 1st of January because the second argument passed into the
DayNumberOfQuarter() function was 2.

The first quarter of the year operates between February and April whilst the fourth quarter operates between
November and January. This is evidenced in the results table where February 1st is the 1st day of the quarter
whilst January 31st is the 92nd and last day of the quarter.

daynumberofyear
This function calculates the day number of the year in which a timestamp falls. The calculation
is made from the first millisecond of the first day of the year, but the first month can be offset.

Syntax:
DayNumberOfYear(timestamp[,start_month])

Script syntax and chart functions - Qlik Sense, May 2023 621

5 Script and chart functions

Return data type: integer

Argument Description

timestamp The date or timestamp to evaluate.

start_month By specifying a start_month between 2 and 12 (1, if omitted), the beginning of the year
may be moved forward to the first day of any month. For example, if you want to work
with a fiscal year starting March 1, specify start_month = 3.

Arguments

These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat
statement at the top of your data load script. Change the format in the examples to suit your requirements.

Example Result

DayNumberOfYear('12/09/2014') Returns 256, the day number counted from the first of the year.

DayNumberOfYear('12/09/2014',3) Returns 196, the number of the day, as counted from 1 March.

Function examples

Example 1 – January start of year (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A simple dataset containing a list of dates, which is loaded into a table named Calendar. The default
DateFormat system variable MM/DD/YYYY is used.

l A preceding load that creates an additional field, named daynryear, using the DayNumberOfYear()

function.

Aside from the date, no additional parameters are provided to the function.

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

Load

date,

DayNumberOfYear(date) as daynryear

;

Load

date

Inline

Script syntax and chart functions - Qlik Sense, May 2023 622

5 Script and chart functions

[

date

01/01/2022

01/10/2022

01/31/2022

02/01/2022

02/10/2022

06/30/2022

07/26/2022

10/31/2022

11/01/2022

12/31/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l daynryear

date daynryear

01/01/2022 1

01/10/2022 10

01/31/2022 31

02/01/2022 32

02/10/2022 41

06/30/2022 182

07/26/2022 208

10/31/2022 305

11/01/2022 306

12/31/2022 366

Results table

The first day of the year is the 1st of January because no second argument was passed into the
DayNumberOfYear() function.

January 1st is the 1st day of the quarter whilst February 1st is the 32nd day of the year. The 30th of June is the
182nd whilst the 31st of December is the 366th and final day of the year.

Script syntax and chart functions - Qlik Sense, May 2023 623

5 Script and chart functions

Example 2 – November start of year (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the first example.
l The default DateFormat system variable MM/DD/YYYY is used
l A start_month argument beginning on November 1. This sets the financial year to November 1.

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

Load

date,

DayNumberOfYear(date,11) as daynryear

;

Load

date

Inline

[

date

01/01/2022

01/10/2022

01/31/2022

02/01/2022

02/10/2022

06/30/2022

07/26/2022

10/31/2022

11/01/2022

12/31/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l daynryear

Script syntax and chart functions - Qlik Sense, May 2023 624

5 Script and chart functions

date daynryear

01/01/2022 62

01/10/2022 71

01/31/2022 92

02/01/2022 93

02/10/2022 102

06/30/2022 243

07/26/2022 269

10/31/2022 366

11/01/2022 1

12/31/2022 61

Results table

The first day of the year is the 1st of November because the second argument passed into the
DayNumberOfYear() function was 11.

January 1st is the 1st day of the quarter whilst February 1st is the 32nd day of the year. The 30th of June is the
182nd whilst the 31st of December is the 366th and final day of the year.

Example 3 – January start of year (chart)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the first example.
l The default DateFormat system variable MM/DD/YYYY is used.

However, in this example, the unchanged dataset is loaded into the application. The value of the day of the
quarter is calculated via a measure in a chart object.

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

Load

date

Inline

[

date

Script syntax and chart functions - Qlik Sense, May 2023 625

5 Script and chart functions

01/01/2022

01/10/2022

01/31/2022

02/01/2022

02/10/2022

06/30/2022

07/26/2022

10/31/2022

11/01/2022

12/31/2022

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measure:

=daynumberofyear(date)

date =daynumberofyear(date)

01/01/2022 1

01/10/2022 10

01/31/2022 31

02/01/2022 32

02/10/2022 41

06/30/2022 182

07/26/2022 208

10/31/2022 305

11/01/2022 306

12/31/2022 366

Results table

The first day of the year is the 1st of January because no second argument was passed into the
DayNumberOfYear() function.

January 1st is the 1st day of the year whilst February 1st is the 32nd day of the year. The 30th of June is the
182nd whilst the 31st of December is the 366th and final day of the year.

Example 4 – November start of year (chart)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2023 626

5 Script and chart functions

The load script contains:

l The same dataset from the first example.
l The default DateFormat system variable MM/DD/YYYY is used.
l The financial year runs from the 1st of November to the 31st of October.

However, in this example, the unchanged dataset is loaded into the application. The value of the day of the
year is calculated via a measure in a chart object.

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

Load

date

Inline

[

date

01/01/2022

01/10/2022

01/31/2022

02/01/2022

02/10/2022

06/30/2022

07/26/2022

10/31/2022

11/01/2022

12/31/2022

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measure:

=daynumberofyear(date)

date =daynumberofyear(date,11)

01/01/2022 62

01/10/2022 71

01/31/2022 92

02/01/2022 93

02/10/2022 102

06/30/2022 243

07/26/2022 269

Results table

Script syntax and chart functions - Qlik Sense, May 2023 627

5 Script and chart functions

date =daynumberofyear(date,11)

10/31/2022 366

11/01/2022 1

12/31/2022 61

The first day of the year is the 1st of November because the second argument passed into the
DayNumberOfYear() function was 11.

The financial year operates between November and October. This is shown in the results table where
November 1st is the 1st day of the year whilst October 31st is the 366th and last day of the year.

daystart
This function returns a value corresponding to a timestamp with the first millisecond of the day
contained in the time argument. The default output format will be the TimestampFormat set in
the script.

Syntax:
DayStart(time[, [period_no[, day_start]])

Return data type: dual

Argument Description

time The timestamp to evaluate.

period_no period_no is an integer, or expression that resolves to an integer, where the value 0
indicates the day that contains time. Negative values in period_no indicate preceding days
and positive values indicate succeeding days.

day_start To specify that days do not starting at midnight, indicate an offset as a fraction of a day in
day_start. For example, 0.125 to denote 3:00 AM.
In other words, to create the offset, divide the start time by 24 hours. For example, for a day
to begin at 7:00 AM, use the fraction 7/24.

Arguments

When to use it
The daystart() function is commonly used as part of an expression when the user would like the calculation
to use the fraction of the day that has elapsed thus far. For example, it could be used to calculate the total
wages earned by employees in the day so far.

These examples use the timestamp format 'M/D/YYYY h:mm:ss[.fff] TT'. The timestamp format is specified
in the SET TimeStamp statement at the top of your data load script. Change the format in the examples to suit
your requirements.

Script syntax and chart functions - Qlik Sense, May 2023 628

5 Script and chart functions

Example Result

daystart('01/25/2013 4:45:00 PM') Returns 1/25/2013 12:00:00 AM.

daystart('1/25/2013 4:45:00 PM', -1) Returns 1/24/2013 12:00:00 AM.

daystart('1/25/2013 16:45:00',0,0.5) Returns 1/25/2013 12:00:00 PM.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - Simpleexample
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A simple dataset containing a list of dates, which is loaded into a table named Calendar.
l The default TimeStampFormat system variable (M/D/YYYY h:mm:ss[.fff] TT) is used.
l A preceding load which creates an additional field, named SOD_timestamp, using the daystart()

function.

Aside from the date, no additional parameters are provided to the function.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Calendar:

Load

date,

daystart(date) as SOD_timestamp

;

Load

date

Script syntax and chart functions - Qlik Sense, May 2023 629

5 Script and chart functions

Inline

[

date

03/11/2022 1:47:15 AM

03/12/2022 4:34:58 AM

03/13/2022 5:15:55 AM

03/14/2022 9:25:14 AM

03/15/2022 10:06:54 AM

03/16/2022 10:44:42 AM

03/17/2022 11:33:30 AM

03/18/2022 12:58:14 PM

03/19/2022 4:23:12 PM

03/20/2022 6:42:15 PM

03/21/2022 7:41:16 PM

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l SOD_timestamp

date SOD_timestamp

03/11/2022 1:47:15 AM 3/11/2022 12:00:00 AM

03/12/2022 4:34:58 AM 3/12/2022 12:00:00 AM

03/13/2022 5:15:55 AM 3/13/2022 12:00:00 AM

03/14/2022 9:25:14 AM 3/14/2022 12:00:00 AM

03/15/2022 10:06:54 AM 3/15/2022 12:00:00 AM

03/16/2022 10:44:42 AM 3/16/2022 12:00:00 AM

03/17/2022 11:33:30 AM 3/17/2022 12:00:00 AM

03/18/2022 12:58:14 PM 3/18/2022 12:00:00 AM

03/19/2022 4:23:12 PM 3/19/2022 12:00:00 AM

03/20/2022 6:42:15 PM 3/20/2022 12:00:00 AM

03/21/2022 7:41:16 PM 3/21/2022 12:00:00 AM

Results table

As can be seen in the table above, the end of day timestamp is generated for each date in our dataset. The
timestamp is in the format of the system variable TimestampFormat M/D/YYYY h:mm:ss[.fff] TT.

Script syntax and chart functions - Qlik Sense, May 2023 630

5 Script and chart functions

Example 2 - period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing parking fines, which is loaded into a table named Fines. The dataset includes the
following fields:

l id

l due_date

l number_plate

l amount

l A preceding load using the daystart() function and supplying all three parameters: time, period_no,
and day_start. This preceding load creates the following two new date fields:

l An early_repayment_period date field, beginning seven days before the payment is due.
l A late_penalty_period date field, beginning 14 days after the payment is due.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Fines:

Load

*,

daystart(due_date,-7) as early_repayment_period,

daystart(due_date,14) as late_penalty_period

;

Load

*

Inline

[

id, due_date, number_plate,amount

1,02/11/2022, 573RJG,50.00

2,03/25/2022, SC41854,50.00

3,04/14/2022, 8EHZ378,50.00

4,06/28/2022, 8HSS198,50.00

5,08/15/2022, 1221665,50.00

6,11/16/2022, EAK473,50.00

7,01/17/2023, KD6822,50.00

8,03/22/2023, 1GGLB,50.00

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2023 631

5 Script and chart functions

l due_date

l early_repayment_period

l late_penalty_period

due_date early_repayment_period late_penalty_period

02/11/2022 9:25:14 AM 2/4/2022 12:00:00 AM 2/25/2022 12:00:00 AM

03/25/2022 10:06:54 AM 3/18/2022 12:00:00 AM 4/8/2022 12:00:00 AM

04/14/2022 10:44:42 AM 4/7/2022 12:00:00 AM 4/28/2022 12:00:00 AM

06/28/2022 11:33:30 AM 6/21/2022 12:00:00 AM 7/12/2022 12:00:00 AM

08/15/2022 12:58:14 PM 8/8/2022 12:00:00 AM 8/29/2022 12:00:00 AM

11/16/2022 4:23:12 PM 11/9/2022 12:00:00 AM 11/30/2022 12:00:00 AM

01/17/2023 6:42:15 PM 1/10/2023 12:00:00 AM 1/31/2023 12:00:00 AM

03/22/2023 7:41:16 PM 3/15/2023 12:00:00 AM 4/5/2023 12:00:00 AM

Results table

The values of the new fields are in the TimestampFormat M/DD/YYYY tt. Because the function daystart() was
used, the timestamp values are all the first millisecond of the day.

The early repayment period values are seven days before the due date, as a result of the second argument
being passed in the daystart() function being negative.

The late repayment period values are 14 days after the due date, as a result of the second argument being
passed in the daystart() function being positive.

Example 3 - day_start
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the previous example.
l The same preceding load as the previous example.

In this example, we set the working day to begin and end at 7:00 AM each day.

Load script

SET DateFormat='MM/DD/YYYY';

Fines:

Load

Script syntax and chart functions - Qlik Sense, May 2023 632

5 Script and chart functions

*,

daystart(due_date,-7,7/24) as early_repayment_period,

daystart(due_date,14, 7/24) as late_penalty_period

;

Load

*

Inline

[

id, due_date, number_plate,amount

1,02/11/2022, 573RJG,50.00

2,03/25/2022, SC41854,50.00

3,04/14/2022, 8EHZ378,50.00

4,06/28/2022, 8HSS198,50.00

5,08/15/2022, 1221665,50.00

6,11/16/2022, EAK473,50.00

7,01/17/2023, KD6822,50.00

8,03/22/2023, 1GGLB,50.00

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l due_date

l early_repayment_period

l late_penalty_period

due_date early_repayment_period late_penalty_period

02/11/2022 2/3/2022 7:00:00 AM 2/24/2022 7:00:00 AM

03/25/2022 3/17/2022 7:00:00 AM 4/7/2022 7:00:00 AM

04/14/2022 4/6/2022 7:00:00 AM 4/27/2022 7:00:00 AM

06/28/2022 6/20/2022 7:00:00 AM 7/11/2022 7:00:00 AM

08/15/2022 8/7/2022 7:00:00 AM 8/28/2022 7:00:00 AM

11/16/2022 11/8/2022 7:00:00 AM 11/29/2022 7:00:00 AM

01/17/2023 1/9/2023 7:00:00 AM 1/30/2023 7:00:00 AM

03/22/2023 3/14/2023 7:00:00 AM 4/4/2023 7:00:00 AM

Results table

The dates now have a timestamp of 7:00 AM because the value of the day_start argument which was passed
into the daystart() function was 7/24. This sets the beginning of the day to 7:00 AM.

Because the due_date field does not have a timestamp, it is treated as 12:00 AM, which is thus still part of the
previous day, since the days start and end at 7:00 AM. Therefore, the early repayment period for a fine due on
February 11 begins on February 3 at 7:00 AM.

Script syntax and chart functions - Qlik Sense, May 2023 633

5 Script and chart functions

Example 4 - Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

This example uses the same dataset and scenario as the previous example.

However, only the original Fines table is loaded into the application, with the two additional due dates values
being calculated in a chart object.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Fines:

Load

*

Inline

[

id, due_date, numer_plate,amount

1,02/11/2022 9:25:14 AM, 573RJG,50.00

2,03/25/2022 10:06:54 AM, SC41854,50.00

3,04/14/2022 10:44:42 AM, 8EHZ378,50.00

4,06/28/2022 11:33:30 AM, 8HSS198,50.00

5,08/15/2022 12:58:14 PM, 1221665,50.00

6,11/16/2022 4:23:12 PM, EAK473,50.00

7,01/17/2023 6:42:15 PM, KD6822,50.00

8,03/22/2023 7:41:16 PM, 1GGLB,50.00

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add this field as a dimension: due_date.

2. To create the early_repayment_period field, create the following measure:
=daystart(due_date,-7,7/24)

3. To create the late_penalty_period field, create the following measure:
=daystart(due_date,14,7/24)

due_date =daystart(due_date,-7,7/24) =daystart(due_date,14,7/24)

02/11/2022 9:25:14 AM 2/4/2022 7:00:00 AM 2/25/2022 7:00:00 AM

03/25/2022 10:06:54 AM 3/18/2022 7:00:00 AM 4/8/2022 7:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 634

5 Script and chart functions

due_date =daystart(due_date,-7,7/24) =daystart(due_date,14,7/24)

04/14/2022 10:44:42 AM 4/7/2022 7:00:00 AM 4/28/2022 7:00:00 AM

06/28/2022 11:33:30 AM 6/21/2022 7:00:00 AM 7/12/2022 7:00:00 AM

08/15/2022 12:58:14 PM 8/8/2022 7:00:00 AM 8/29/2022 7:00:00 AM

11/16/2022 4:23:12 PM 11/9/2022 7:00:00 AM 11/30/2022 7:00:00 AM

01/17/2023 6:42:15 PM 1/10/2023 7:00:00 AM 1/31/2023 7:00:00 AM

03/22/2023 7:41:16 PM 3/15/2023 7:00:00 AM 4/5/2023 7:00:00 AM

The values of the new fields are in the TimestampFormat M/D/YYYY h:mm:ss[.fff] TT. Because the daystart

() function was used, the timestamp values correspond to the first millisecond of the day.

The early repayment period values are seven days before the due date, since the second argument passed in
the daystart() function was negative.

The late repayment period values are 14 days after the due date, since the second argument passed in the
daystart() function was positive.

The dates have a timestamp of 7:00 AM because the value of the third argument passed into the daystart()

function, day_start, was 7/24.

firstworkdate
The firstworkdate function returns the latest starting date to achieve no_of_workdays
(Monday-Friday) ending no later than end_date taking into account any optionally listed
holidays. end_date and holiday should be valid dates or timestamps.

Syntax:
firstworkdate(end_date, no_of_workdays {, holiday})

Return data type: integer

Arguments:

Argument Description

end_date The timestamp of end date to evaluate.

no_of_
workdays

The number of working days to achieve.

holiday Holiday periods to exclude from working days. A holiday is stated as a string constant date.
You can specify multiple holiday dates, separated by commas.

Example: '12/25/2013', '12/26/2013', '12/31/2013', '01/01/2014'

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 635

5 Script and chart functions

Examples and results:
These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat
statement at the top of your data load script. Change the format in the examples to suit your requirements.

Example Result

firstworkdate ('29/12/2014', 9) Returns '17/12/2014.

firstworkdate ('29/12/2014', 9,

'25/12/2014', '26/12/2014')
Returns 15/12/2014 because a holiday period of two
days is taken into account.

Scripting examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

ProjectTable:

LOAD *, recno() as InvID, INLINE [

EndDate

28/03/2015

10/12/2015

5/2/2016

31/3/2016

19/5/2016

15/9/2016

] ;

NrDays:

Load *,

FirstWorkDate(EndDate,120) As StartDate

Resident ProjectTable;

Drop table ProjectTable;

The resulting table shows the returned values of FirstWorkDate for each of the records in the table.

InvID EndDate StartDate

1 28/03/2015 13/10/2014

2 10/12/2015 26/06/2015

3 5/2/2016 24/08/2015

4 31/3/2016 16/10/2015

5 19/5/2016 04/12/2015

6 15/9/2016 01/04/2016

Results table

Script syntax and chart functions - Qlik Sense, May 2023 636

5 Script and chart functions

GMT
This function returns the current Greenwich Mean Time, as derived from the regional settings.
The function returns values in the TimestampFormat system variable format.

Whenever the app is reloaded, any load script table, variable, or chart object that uses the GMT function will be
adjusted to the latest current Greenwich Mean Time as derived from the system clock.

Syntax:
GMT()

Return data type: dual

These examples use the timestamp format M/D/YYYY h:mm:ss[.fff] TT. The date format is specified in the
SET TimestampFormat statement at the top of your data load script. Change the format in the examples to suit
your requirements.

Example Result

GMT() 3/28/2022 2:47:36 PM

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - Variable (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab. This example will set the current
Greenwich Mean Time as a variable in the load script using the GMT function.

Load script

LET vGMT = GMT();

Script syntax and chart functions - Qlik Sense, May 2023 637

5 Script and chart functions

Results

Load the data and create a sheet. Create a text box using the Text & image chart object.

Add this measure to the text box:

=vGMT

The text box should contain a line of text with a date and time, similar to the one shown below:

3/28/2022 2:47:36 PM

Example 2 - November start of year (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing overdue library books, which is loaded into a table named Overdue. The default
DateFormat system variable MM/DD/YYYY is used.

l The creation of a new field called days_overdue, which calculates how many day overdue each book is.

Load script

SET DateFormat='MM/DD/YYYY';

Overdue:

Load

*,

Floor(GMT()-due_date) as days_overdue

;

Load

*

Inline

[

cust_id,book_id,due_date

1,4,01/01/2021,

2,24,01/10/2021,

6,173,01/31/2021,

31,281,02/01/2021,

86,265,02/10/2021,

52,465,06/30/2021,

26,537,07/26/2021,

92,275,10/31/2021,

27,455,11/01/2021,

27,46,12/31/2021

];

Script syntax and chart functions - Qlik Sense, May 2023 638

5 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l due_date

l book_id

l days_overdue

due_date book_id days_overdue

01/01/2021 4 455

01/10/2021 24 446

01/31/2021 173 425

02/01/2021 281 424

02/10/2021 265 415

06/30/2021 465 275

07/26/2021 537 249

10/31/2021 275 152

11/01/2021 455 151

12/31/2021 46 91

Results table

The values in the days_overdue field are calculated by finding the difference between the current Greenwich
Mean Time, using the GMT() function, and the original due date. In order to calculate only the days, the results
are rounded off to the nearest whole number using the Floor() function.

Example 3 - chart object (chart)
Load script and chart expression

Overview

Open the Data load editor, and add the load script below to a new tab. The load script contains the same
dataset as the previous example. The default DateFormat system variable MM/DD/YYYY is used.

However, in this example, the unchanged dataset is loaded into the application. The value of the number of
days overdue is calculated via a measure in a chart object.

Load script

SET DateFormat='MM/DD/YYYY';

Overdue:

Load

Script syntax and chart functions - Qlik Sense, May 2023 639

5 Script and chart functions

*

Inline

[

cust_id,book_id,due_date

1,4,01/01/2021,

2,24,01/10/2021,

6,173,01/31/2021,

31,281,02/01/2021,

86,265,02/10/2021,

52,465,06/30/2021,

26,537,07/26/2021,

92,275,10/31/2021,

27,455,11/01/2021,

27,46,12/31/2021

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l due_date

l book_id

Create the following measure:

=Floor(GMT() – due_date)

due_date book_id =Floor(GMT()-due_date)

01/01/2021 4 455

01/10/2021 24 446

01/31/2021 173 425

02/01/2021 281 424

02/10/2021 265 415

06/30/2021 465 275

07/26/2021 537 249

10/31/2021 275 152

11/01/2021 455 151

12/31/2021 46 91

Results table

The values in the days_overdue field are calculated by finding the difference between the current Greenwich
Mean Time, using the GMT() function, and the original due date. In order to calculate only the days, the results
are rounded off to the nearest whole number using the Floor() function.

Script syntax and chart functions - Qlik Sense, May 2023 640

5 Script and chart functions

hour
This function returns an integer representing the hour when the fraction of the expression is
interpreted as a time according to the standard number interpretation.

Syntax:
hour(expression)

Return data type: integer

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

hour(

'09:14:36')
The text string supplied is implicitly converted to a timestamp as it matches the
timestamp format defined in the TimestampFormat variable. The expression returns 9.

hour(

'0.5555')
The expression returns 13 (Because 0.5555 = 13:19:55).

Function examples

Example 1 – Variable (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing transactions by timestamp
l The default TimeStamp system variable (M/D/YYYY h:mm:ss[.fff] TT)

Create a field, 'hour', calculating when purchases took place.

Script syntax and chart functions - Qlik Sense, May 2023 641

5 Script and chart functions

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

hour(date) as hour

;

Load

*

Inline

[

id,date,amount

9497,'2022-01-05 19:04:57',47.25,

9498,'2022-01-03 14:21:53',51.75,

9499,'2022-01-03 05:40:49',73.53,

9500,'2022-01-04 18:49:38',15.35,

9501,'2022-01-01 22:10:22',31.43,

9502,'2022-01-05 19:34:46',13.24,

9503,'2022-01-04 22:58:34',74.34,

9504,'2022-01-06 11:29:38',50.00,

9505,'2022-01-02 08:35:54',36.34,

9506,'2022-01-06 08:49:09',74.23

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l hour

date hour

2022-01-01 22:10:22 22

2022-01-02 08:35:54 8

2022-01-03 05:40:49 5

2022-01-03 14:21:53 14

2022-01-04 18:49:38 18

2022-01-04 22:58:34 22

2022-01-05 19:04:57 19

2022-01-05 19:34:46 19

2022-01-06 08:49:09 8

2022-01-06 11:29:38 11

Results table

Script syntax and chart functions - Qlik Sense, May 2023 642

5 Script and chart functions

The values in the hour field are created by using the hour() function and passing the date as the expression in
the preceding load statement.

Example 2 – Chart object (chart)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the first example.
l The default TimeStamp system variable (M/D/YYYY h:mm:ss[.fff] TT).

However, in this example, the dataset, unchanged, is loaded into the application. The ‘hour’ values are
calculated via a measure in a chart object.

Load Script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*

Inline

[

id,date,amount

9497,'2022-01-05 19:04:57',47.25,

9498,'2022-01-03 14:21:53',51.75,

9499,'2022-01-03 05:40:49',73.53,

9500,'2022-01-04 18:49:38',15.35,

9501,'2022-01-01 22:10:22',31.43,

9502,'2022-01-05 19:34:46',13.24,

9503,'2022-01-04 22:58:34',74.34,

9504,'2022-01-06 11:29:38',50.00,

9505,'2022-01-02 08:35:54',36.34,

9506,'2022-01-06 08:49:09',74.23

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

To calculate the ‘hour’, create the following measure:

=hour(date)

Script syntax and chart functions - Qlik Sense, May 2023 643

5 Script and chart functions

due_date =hour(date)

2022-01-01 22:10:22 22

2022-01-02 08:35:54 8

2022-01-03 05:40:49 5

2022-01-03 14:21:53 14

2022-01-04 18:49:38 18

2022-01-04 22:58:34 22

2022-01-05 19:04:57 19

2022-01-05 19:34:46 19

2022-01-06 08:49:09 8

2022-01-06 11:29:38 11

Results table

The values for ‘hour’ are created by using the hour() function and passing the date as the expression in a
measure for the chart object.

inday
This function returns True if timestamp lies inside the day containing base_timestamp.

Syntax:
InDay (timestamp, base_timestamp, period_no[, day_start])
Diagram of inday function

The inday() function uses the base_timestamp argument to identify which day the timestamp falls into. The
start time of the day is, by default, midnight; but you can change the start time of the day by using the day_

start argument of the inday() function. Once this day is defined, the function will return Boolean results
when comparing the prescribed timestamp values to that day.

When to use it

The inday() function returns a Boolean result. Typically, this type of function will be used as a condition in an
if expression. This returns an aggregation or calculation dependent on whether a date evaluated occurred
in the day of the timestamp in question.

Script syntax and chart functions - Qlik Sense, May 2023 644

5 Script and chart functions

For example, the inday() function can be used to identify all equipment manufactured in a given day.

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Argument Description

timestamp The date and time that you want to compare with base_timestamp.

base_

timestamp
Date and time that is used to evaluate the timestamp.

period_no The day can be offset by period_no. period_no is an integer, where the value 0 indicates
the day which contains base_timestamp. Negative values in period_no indicate preceding
days and positive values indicate succeeding days.

day_start If you want to work with days not starting midnight, indicate an offset as a fraction of a day
in day_start, For example, 0.125 to denote 3 AM.

Arguments

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

inday ('01/12/2006 12:23:00 PM', '01/12/2006 12:00:00 AM', 0) Returns True

inday ('01/12/2006 12:23:00 PM', '01/13/2006 12:00:00 AM', 0) Returns False

inday ('01/12/2006 12:23:00 PM', '01/12/2006 12:00:00 AM', -1) Returns False

inday ('01/11/2006 12:23:00 PM', '01/12/2006 12:00:00 AM', -1) Returns True

inday ('01/12/2006 12:23:00 PM', '01/12/2006 12:00:00 AM', 0, 0.5) Returns False

inday ('01/12/2006 11:23:00 AM', '01/12/2006 12:00:00 AM', 0, 0.5) Returns True

Function examples

Example 1 – Load statement (script)
Load script and results

Script syntax and chart functions - Qlik Sense, May 2023 645

5 Script and chart functions

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing transactions by timestamp which is loaded into a table called Transactions.
l A date field which is provided in the TimeStamp system variable (M/D/YYYY h:mm:ss[.fff] TT)

format.
l A preceding load which contains the inday() function which is set as the in_day field.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

inday(date,'01/05/2022 12:00:00 AM', 0) as in_day

;

Load

*

Inline

[

id,date,amount

9497,'01/01/2022 7:34:46 PM',13.24

9498,'01/01/2022 10:10:22 PM',31.43

9499,'01/02/2022 8:35:54 AM',36.34

9500,'01/03/2022 2:21:53 PM',51.75

9501,'01/04/2022 6:49:38 PM',15.35

9502,'01/04/2022 10:58:34 PM',74.34

9503,'01/05/2022 5:40:49 AM',73.53

9504,'01/05/2022 11:29:38 AM',50.00

9505,'01/05/2022 7:04:57 PM',47.25

9506,'01/06/2022 8:49:09 AM',74.23

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_day

date in_day

01/01/2022 7:34:46 PM 0

01/01/2022 10:10:22 PM 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 646

5 Script and chart functions

date in_day

01/02/2022 8:35:54 AM 0

01/03/2022 2:21:53 PM 0

01/04/2022 6:49:38 PM 0

01/04/2022 10:58:34 PM 0

01/05/2022 5:40:49 AM -1

01/05/2022 11:29:38 AM -1

01/05/2022 7:04:57 PM -1

01/06/2022 8:49:09 AM 0

The in_day field is created in the preceding load statement by using the inday() function and passing the
date field, a hard-coded timestamp for January 5 and a period_no of 0 as the function’s arguments.

Example 2 – period_no
Load script and results

Overview

The load script uses the same dataset and scenario that were used in the first example.

However, in this example, the task is to calculate whether the transaction date occurred two days before
January 5.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

inday(date,'01/05/2022 12:00:00 AM', -2) as in_day

;

Load

*

Inline

[

id,date,amount

9497,'01/01/2022 7:34:46 PM',13.24

9498,'01/01/2022 10:10:22 PM',31.43

9499,'01/02/2022 8:35:54 AM',36.34

9500,'01/03/2022 2:21:53 PM',51.75

9501,'01/04/2022 6:49:38 PM',15.35

9502,'01/04/2022 10:58:34 PM',74.34

9503,'01/05/2022 5:40:49 AM',73.53

9504,'01/05/2022 11:29:38 AM',50.00

9505,'01/05/2022 7:04:57 PM',47.25

Script syntax and chart functions - Qlik Sense, May 2023 647

5 Script and chart functions

9506,'01/06/2022 8:49:09 AM',74.23

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_day

date in_day

01/01/2022 7:34:46 PM 0

01/01/2022 10:10:22 PM 0

01/02/2022 8:35:54 AM 0

01/03/2022 2:21:53 PM -1

01/04/2022 6:49:38 PM 0

01/04/2022 10:58:34 PM 0

01/05/2022 5:40:49 AM 0

01/05/2022 11:29:38 AM 0

01/05/2022 7:04:57 PM 0

01/06/2022 8:49:09 AM 0

Results table

In this instance, because a period_no of -2 is used as the offset argument in the inday() function, the
function determines whether each transaction date took place on January 3. This can be verified in the output
table where one transaction returns a Boolean result of TRUE.

Example 3 – day_start
Load script and results

Overview

The load script uses the same dataset and scenario that were used in the previous examples.

However, in this example, the company policy is that the workday begins and ends at 7 AM.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

inday(date,'01/05/2022 12:00:00 AM', 0, 7/24) as in_day

Script syntax and chart functions - Qlik Sense, May 2023 648

5 Script and chart functions

;

Load

*

Inline

[

id,date,amount

9497,'01/01/2022 7:34:46 PM',13.24

9498,'01/01/2022 10:10:22 PM',31.43

9499,'01/02/2022 8:35:54 AM',36.34

9500,'01/03/2022 2:21:53 PM',51.75

9501,'01/04/2022 6:49:38 PM',15.35

9502,'01/04/2022 10:58:34 PM',74.34

9503,'01/05/2022 5:40:49 AM',73.53

9504,'01/05/2022 11:29:38 AM',50.00

9505,'01/05/2022 7:04:57 PM',47.25

9506,'01/06/2022 8:49:09 AM',74.23

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_day

date in_day

01/01/2022 7:34:46 PM 0

01/01/2022 10:10:22 PM 0

01/02/2022 8:35:54 AM 0

01/03/2022 2:21:53 PM 0

01/04/2022 6:49:38 PM -1

01/04/2022 10:58:34 PM -1

01/05/2022 5:40:49 AM -1

01/05/2022 11:29:38 AM 0

01/05/2022 7:04:57 PM 0

01/06/2022 8:49:09 AM 0

Results table

Because the start_day argument of 7/24, which is 7 AM, is used in the inday() function, the function
determines whether each transaction date took place on January 4 from 7 AM and January 5 before 7 AM.

This can be verified in the output table where transactions that take place after 7 AM on January 4 return a
Boolean result of TRUE whilst transactions that take place after 7 AM on January 5 return a Boolean result of
FALSE.

Script syntax and chart functions - Qlik Sense, May 2023 649

5 Script and chart functions

Example 4 – Chart object
Load script and chart expression

Overview

The load script uses the same dataset and scenario that were used in the previous examples.

However, in this example, the dataset is unchanged and loaded into the application. You will calculate to
determine if a transaction takes place on January 5 by creating a measure in a chart object.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

9497,'01/01/2022 7:34:46 PM',13.24

9498,'01/01/2022 10:10:22 PM',31.43

9499,'01/02/2022 8:35:54 AM',36.34

9500,'01/03/2022 2:21:53 PM',51.75

9501,'01/04/2022 6:49:38 PM',15.35

9502,'01/04/2022 10:58:34 PM',74.34

9503,'01/05/2022 5:40:49 AM',73.53

9504,'01/05/2022 11:29:38 AM',50.00

9505,'01/05/2022 7:04:57 PM',47.25

9506,'01/06/2022 8:49:09 AM',74.23

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

l date

To calculate whether a transaction takes place on January 5, create the following measure:

=inday(date,'01/05/2022 12:00:00 AM',0)

date inday(date,'01/05/2022 12:00:00 AM',0)

01/01/2022 7:34:46 PM 0

01/01/2022 10:10:22 PM 0

01/02/2022 8:35:54 AM 0

01/03/2022 2:21:53 PM 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 650

5 Script and chart functions

date inday(date,'01/05/2022 12:00:00 AM',0)

01/04/2022 6:49:38 PM 0

01/04/2022 10:58:34 PM 0

01/05/2022 5:40:49 AM -1

01/05/2022 11:29:38 AM -1

01/05/2022 7:04:57 PM -1

01/06/2022 8:49:09 AM 0

Example 5 – Scenario
Load script and results

Overview

In this example, it has been identified that due to equipment error, products that were manufactured on
January 5 were defective. The end user would like a chart object that displays, by date, the status of which
products that were manufactured were ‘defective’ or ‘faultless’ and the cost of the products manufactured on
January 5.

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called ‘Products’.
l The table contains the following fields:

l product ID
l manufacture time
l cost price

Load script

Products:

Load

*

Inline

[

product_id,manufacture_date,cost_price

9497,'01/01/2022 7:34:46 PM',13.24

9498,'01/01/2022 10:10:22 PM',31.43

9499,'01/02/2022 8:35:54 AM',36.34

9500,'01/03/2022 2:21:53 PM',51.75

9501,'01/04/2022 6:49:38 PM',15.35

9502,'01/04/2022 10:58:34 PM',74.34

9503,'01/05/2022 5:40:49 AM',73.53

9504,'01/05/2022 11:29:38 AM',50.00

9505,'01/05/2022 7:04:57 PM',47.25

Script syntax and chart functions - Qlik Sense, May 2023 651

5 Script and chart functions

9506,'01/06/2022 8:49:09 AM',74.23

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

=dayname(manufacture_date)

Create the following measures:

l =if(only(InDay(manufacture_date,makedate(2022,01,05),0)),'Defective','Faultless')

l =sum(cost_price)

Set the measure’s Number Formatting to Money.

Under Appearance, turn off Totals.

dayname
(manufacture_date)

=if(only(InDay(manufacture_date,makedate
(2022,01,05),0)),'Defective','Faultless')

=sum(cost_
price)

01/01/2022 Faultless 44.67

01/02/2022 Faultless 36.34

01/03/2022 Faultless 51.75

01/04/2022 Faultless 89.69

01/05/2022 Defective 170.78

01/06/2022 Faultless 74.23

Results table

The inday() function returns a Boolean value when evaluating the manufacturing dates of each of the
products. For any product manufactured on January 5, the inday() function returns a Boolean value of TRUE
and marks the products as ‘Defective’. For any product returning a value of FALSE, and therefore not
manufactured on that day, it marks the products as ‘Faultless’.

indaytotime
This function returns True if timestamp lies inside the part of day containing base_timestamp
up until and including the exact millisecond of base_timestamp.

Syntax:
InDayToTime (timestamp, base_timestamp, period_no[, day_start])
The indaytotime() function returns a Boolean result depending on when a timestamp value occurs during
the segment of the day. The start boundary of this segment is the start of the day, which is set as midnight by
default; the start of the day can be modified by the day_start argument of the indaytotime() function. The
end boundary of the day segment is determined by a base_timestamp argument of the function.

Script syntax and chart functions - Qlik Sense, May 2023 652

5 Script and chart functions

Diagram of indaytotime function.

When to use it

The indaytotime() function returns a Boolean result. Typically, this type of function will be used as a
condition in an if expression. The indaytotime() function returns an aggregation or calculation depending
on if a timestamp occurred in the segment of the day up to and including the time of the base timestamp.

For example, the indaytotime() function can be used to show the sum of ticket sales for shows that have
taken place so far today.

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Argument Description

timestamp The date and time that you want to compare with base_timestamp.

base_

timestamp

Date and time that is used to evaluate the timestamp.

period_no The day can be offset by period_no. period_no is an integer, where the value 0 indicates
the day which contains base_timestamp. Negative values in period_no indicate preceding
days and positive values indicate succeeding days.

day_start (optional) If you want to work with days not starting midnight, indicate an offset as a
fraction of a day in day_start. For example, use 0.125 to denote 3 AM

Arguments

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Script syntax and chart functions - Qlik Sense, May 2023 653

5 Script and chart functions

Example Result

indaytotime ('01/12/2006 12:23:00 PM', '01/12/2006 11:59:00 PM', 0) Returns True

indaytotime ('01/12/2006 12:23:00 PM', '01/12/2006 12:00:00 AM', 0) Returns False

indaytotime '01/11/2006 12:23:00 PM', '01/12/2006 11:59:00 PM', -1) Returns True

Function examples

Example 1 – no additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the period between January 4 and 5 is loaded into a table
called 'Transactions'.

l A date field which is provided in the TimeStamp system variable (M/D/YYYY h:mm:ss[.fff] TT)

format.
l A preceding load which contains the indaytotime() function which is set as the 'in_day_to_time',

field that determines whether each of the transactions take place before 9:00 AM.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

indaytotime(date,'01/05/2022 9:00:00 AM',0) as in_day_to_time

;

Load

*

Inline

[

id,date,amount

8188,'01/04/2022 3:41:54 AM',25.66

8189,'01/04/2022 4:19:43 AM',87.21

8190,'01/04/2022 4:53:47 AM',53.80

8191,'01/04/2022 8:38:53 AM',69.98

8192,'01/04/2022 10:37:52 AM',57.42

8193,'01/04/2022 1:54:10 PM',45.89

8194,'01/04/2022 5:53:23 PM',82.77

8195,'01/04/2022 8:13:26 PM',36.23

8196,'01/04/2022 10:00:49 PM',76.11

8197,'01/05/2022 7:45:37 AM',82.06

8198,'01/05/2022 8:44:36 AM',17.17

8199,'01/05/2022 11:26:08 AM',40.39

8200,'01/05/2022 6:43:08 PM',37.23

Script syntax and chart functions - Qlik Sense, May 2023 654

5 Script and chart functions

8201,'01/05/2022 10:54:10 PM',88.27

8202,'01/05/2022 11:09:09 PM',95.93

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_day_to_time

date in_day_to_time

01/04/2022 3:41:54 AM 0

01/04/2022 4:19:43 AM 0

01/04/2022 04:53:47 AM 0

01/04/2022 8:38:53 AM 0

01/04/2022 10:37:52 AM 0

01/04/2022 1:54:10 PM 0

01/04/2022 5:53:23 PM 0

01/04/2022 8:13:26 PM 0

01/04/2022 10:00:49 PM 0

01/05/2022 7:45:37 AM -1

01/05/2022 8:44:36 AM -1

01/05/2022 11:26:08 AM 0

01/05/2022 6:43:08 PM 0

01/05/2022 10:54:10 PM 0

01/05/2022 11:09:09 PM 0

Results table

Example 1 diagram of indaytotime function with 9:00 AM limit..

Script syntax and chart functions - Qlik Sense, May 2023 655

5 Script and chart functions

The in_day_to_time field is created in the preceding load statement by using the indaytotime() function
and passing the date field, a hard-coded timestamp for 9:00 AM January 5 and an offset of 0 as the function’s
arguments. Any transactions that occur between midnight and 9:00 AM on January 5 return TRUE.

Example 2 – period_no
Load script and results

Overview

The load script uses the same dataset and scenario that were used in the first example.

However, in this example, you will calculate whether the transaction date occurred one day before 9:00 AM on
January 5.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

indaytotime(date,'01/05/2022 9:00:00 AM', -1) as in_day_to_time

;

Load

*

Inline

[

id,date,amount

8188,'01/04/2022 3:41:54 AM',25.66

8189,'01/04/2022 4:19:43 AM',87.21

8190,'01/04/2022 4:53:47 AM',53.80

8191,'01/04/2022 8:38:53 AM',69.98

8192,'01/04/2022 10:37:52 AM',57.42

8193,'01/04/2022 1:54:10 PM',45.89

8194,'01/04/2022 5:53:23 PM',82.77

8195,'01/04/2022 8:13:26 PM',36.23

8196,'01/04/2022 10:00:49 PM',76.11

8197,'01/05/2022 7:45:37 AM',82.06

8198,'01/05/2022 8:44:36 AM',17.17

8199,'01/05/2022 11:26:08 AM',40.39

8200,'01/05/2022 6:43:08 PM',37.23

8201,'01/05/2022 10:54:10 PM',88.27

8202,'01/05/2022 11:09:09 PM',95.93

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_day_to_time

Script syntax and chart functions - Qlik Sense, May 2023 656

5 Script and chart functions

date in_day_to_time

01/04/2022 3:41:54 AM -1

01/04/2022 4:19:43 AM -1

01/04/2022 04:53:47 AM -1

01/04/2022 8:38:53 AM -1

01/04/2022 10:37:52 AM 0

01/04/2022 1:54:10 PM 0

01/04/2022 5:53:23 PM 0

01/04/2022 8:13:26 PM 0

01/04/2022 10:00:49 PM 0

01/05/2022 7:45:37 AM 0

01/05/2022 8:44:36 AM 0

01/05/2022 11:26:08 AM 0

01/05/2022 6:43:08 PM 0

01/05/2022 10:54:10 PM 0

01/05/2022 11:09:09 PM 0

Results table

Example 2 diagram of indaytotime function with transactions from January 4.

In this example, because an offset of -1 was used as the offset argument in the indaytotime() function, the
function determines whether each transaction date took place before 9:00 AM on January 4. This can be
verified in the output table where a transaction returns a Boolean result of TRUE.

Example 3 – day_start
Load script and results

Overview

The same dataset and scenario as the first example are used.

Script syntax and chart functions - Qlik Sense, May 2023 657

5 Script and chart functions

However, in this example, the company policy is that the workday begins and ends at 8AM.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

indaytotime(date,'01/05/2022 9:00:00 AM', 0,8/24) as in_day_to_time

;

Load

*

Inline

[

id,date,amount

8188,'01/04/2022 3:41:54 AM',25.66

8189,'01/04/2022 4:19:43 AM',87.21

8190,'01/04/2022 4:53:47 AM',53.80

8191,'01/04/2022 8:38:53 AM',69.98

8192,'01/04/2022 10:37:52 AM',57.42

8193,'01/04/2022 1:54:10 PM',45.89

8194,'01/04/2022 5:53:23 PM',82.77

8195,'01/04/2022 8:13:26 PM',36.23

8196,'01/04/2022 10:00:49 PM',76.11

8197,'01/05/2022 7:45:37 AM',82.06

8198,'01/05/2022 8:44:36 AM',17.17

8199,'01/05/2022 11:26:08 AM',40.39

8200,'01/05/2022 6:43:08 PM',37.23

8201,'01/05/2022 10:54:10 PM',88.27

8202,'01/05/2022 11:09:09 PM',95.93

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_day_to_time

date in_day_to_time

01/04/2022 3:41:54 AM 0

01/04/2022 4:19:43 AM 0

01/04/2022 04:53:47 AM 0

01/04/2022 8:38:53 AM 0

01/04/2022 10:37:52 AM 0

01/04/2022 1:54:10 PM 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 658

5 Script and chart functions

date in_day_to_time

01/04/2022 5:53:23 PM 0

01/04/2022 8:13:26 PM 0

01/04/2022 10:00:49 PM 0

01/05/2022 7:45:37 AM 0

01/05/2022 8:44:36 AM -1

01/05/2022 11:26:08 AM 0

01/05/2022 6:43:08 PM 0

01/05/2022 10:54:10 PM 0

01/05/2022 11:09:09 PM 0

Example 3 diagram of indaytotime function with transactions from 8:00 AM to 9:00 AM.,

Because the start_day argument of 8/24, which equates to 8:00 AM, is used in the indaytotime() function,
each day begins and ends at 8:00 AM. Therefore, the indaytotime() function will return a Boolean result of
TRUE for any transaction that took place between 8:00 AM and 9:00 AM on January 5.

Example 4 – Chart object
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

However, in this example, the dataset is unchanged and loaded into the application. You will calculate to
determine if a transaction takes place on January 5 before 9:00 AM by creating a measure in a chart object.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,'01/04/2022 3:41:54 AM',25.66

Script syntax and chart functions - Qlik Sense, May 2023 659

5 Script and chart functions

8189,'01/04/2022 4:19:43 AM',87.21

8190,'01/04/2022 4:53:47 AM',53.80

8191,'01/04/2022 8:38:53 AM',69.98

8192,'01/04/2022 10:37:52 AM',57.42

8193,'01/04/2022 1:54:10 PM',45.89

8194,'01/04/2022 5:53:23 PM',82.77

8195,'01/04/2022 8:13:26 PM',36.23

8196,'01/04/2022 10:00:49 PM',76.11

8197,'01/05/2022 7:45:37 AM',82.06

8198,'01/05/2022 8:44:36 AM',17.17

8199,'01/05/2022 11:26:08 AM',40.39

8200,'01/05/2022 6:43:08 PM',37.23

8201,'01/05/2022 10:54:10 PM',88.27

8202,'01/05/2022 11:09:09 PM',95.93

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

date.

To determine if a transaction takes place on January 5 before 9:00 AM, create the following measure:

=indaytotime(date,'01/05/2022 9:00:00 AM',0)

date =indaytotime(date,'01/05/2022 9:00:00 AM',0)

01/04/2022 3:41:54 AM 0

01/04/2022 4:19:43 AM 0

01/04/2022 04:53:47 AM 0

01/04/2022 8:38:53 AM 0

01/04/2022 10:37:52 AM 0

01/04/2022 1:54:10 PM 0

01/04/2022 5:53:23 PM 0

01/04/2022 8:13:26 PM 0

01/04/2022 10:00:49 PM 0

01/05/2022 7:45:37 AM -1

01/05/2022 8:44:36 AM -1

01/05/2022 11:26:08 AM 0

01/05/2022 6:43:08 PM 0

01/05/2022 10:54:10 PM 0

01/05/2022 11:09:09 PM 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 660

5 Script and chart functions

The in_day_to_time measure is created in the chart object by using the indaytotime() function and passing
the date field, a hard-coded timestamp for 9:00 AM on January 5 and an offset of 0 as the function’s
arguments. Any transactions that occur between midnight and 9:00 AM on January 5 return TRUE. This is
validated in the results table.

Example 5 – Scenario
Load script and results

Overview

In this example, a dataset containing ticket sales for a local cinema is loaded into a table called Ticket_Sales.
Today is May 3, 2022 and it is 11:00 AM.

The user would like a KPI chart object to show the revenue earned from all shows that have taken place so far
today.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Ticket_Sales:

Load

*

Inline

[

sale ID, show time, ticket price

1,05/01/2022 09:30:00 AM,10.50

2,05/03/2022 05:30:00 PM,21.00

3,05/03/2022 09:30:00 AM,10.50

4,05/03/2022 09:30:00 AM,31.50

5,05/03/2022 09:30:00 AM,10.50

6,05/03/2022 12:00:00 PM,42.00

7,05/03/2022 12:00:00 PM,10.50

8,05/03/2022 05:30:00 PM,42.00

9,05/03/2022 08:00:00 PM,31.50

10,05/04/2022 10:30:00 AM,31.50

11,05/04/2022 12:00:00 PM,10.50

12,05/04/2022 05:30:00 PM,10.50

13,05/05/2022 05:30:00 PM,21.00

14,05/06/2022 12:00:00 PM,21.00

15,05/07/2022 09:30:00 AM,42.00

16,05/07/2022 10:30:00 AM,42.00

17,05/07/2022 10:30:00 AM,10.50

18,05/07/2022 05:30:00 PM,10.50

19,05/08/2022 05:30:00 PM,21.00

20,05/11/2022 09:30:00 AM,10.50

];

Results

Do the following:

Script syntax and chart functions - Qlik Sense, May 2023 661

5 Script and chart functions

1. Create a KPI object.

2. Create a measure that will show the sum of all ticket sales for shows that have taken place today so far
using the indaytotime() function:

=sum(if(indaytotime([show time],'05/03/2022 11:00:00 AM',0),[ticket price],0))

3. Create a label for the KPI object, ‘Current Revenue’.

4. Set the measure’s Number Formatting to Money.

The sum total of ticket sales up to 11:00 AM on May 3, 2022 is $52.50.

The indaytotime () function returns a Boolean value when comparing the show times of each of the ticket
sales to the current time ('05/03/2022 11:00:00 AM’). For any show on May 3 before 11:00 AM, the indaytotime

() function returns a Boolean value of TRUE and its ticket price will be included in the sum total.

inlunarweek
This function determines if timestamp lies inside the lunar week containing base_date. Lunar
weeks in Qlik Sense are defined by counting January 1 as the first day of the week., Apart from
the final week of the year, each week will contain exactly seven days.

Syntax:
InLunarWeek (timestamp, base_date, period_no[, first_week_day])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

The inlunarweek() function determines which lunar week the base_date falls into. It then returns a Boolean
result once it has determined whether each timestamp value occurs during the same lunar week as the base_

date.

Diagram of inlunarweek() function

When to use it
The inlunarweek() function returns a Boolean result. Typically, this type of function will be used as a
condition in an IF expression. This would return an aggregation or calculation dependent on whether the date
evaluated occurred during the lunar week in question.

Script syntax and chart functions - Qlik Sense, May 2023 662

5 Script and chart functions

For example, the inlunarweek() function can be used to identify all equipment manufactured in a particular
lunar week.

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the lunar week.

period_no The lunar week can be offset by period_no. period_no is an integer, where the value 0
indicates the lunar week which contains base_date. Negative values in period_no indicate
preceding lunar weeks and positive values indicate succeeding lunar weeks.

first_week_
day

An offset that may be greater than or less than zero. This changes the beginning of the
year by the specified number of days and/or fractions of a day.

Arguments

Example Result

inlunarweek

('01/12/2013',

'01/14/2013', 0)

Returns TRUE, since the value of timestamp, 01/12/2013, falls in the week 01/08/2013
to 01/14/2013.

inlunarweek

('01/12/2013',

'01/07/2013', 0)

Returns FALSE, since the base_date 01/07/2013 is in the lunar week defined as
01/01/2013 to 01/07/2013.

inlunarweek

('01/12/2013',

'01/14/2013', -

1)

Returns FALSE. Specifying a value of period_no as -1 shifts the week to the previous
week, 01/01/2013 to 01/07/2013.

inlunarweek

('01/07/2013',

01/14/2013', -1)

Returns TRUE. In comparison with the previous example, the timestamp is in the
following week, after into account the shift backwards.

inlunarweek

('01/11/2006',

'01/08/2006', 0,

3)

Returns FALSE. Specifying a value of 3 for first_week_day means that the start of the
year is calculated from 01/04/2013. Therefore, the value of base_date falls in the first
week, and the value of timestamp falls in the week 01/11/2013 to 01/17/2013.

Function examples

The inlunarweek() function is often used in combination with the following functions:

Function Interaction

lunarweekname
(page 831)

This function is used to determine the lunar week number of the year in which an
input date occurs.

Related functions

Script syntax and chart functions - Qlik Sense, May 2023 663

5 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of transactions for the month of January, which is loaded into a table called Transactions.
l The date field has been provided in the DateFormat system variable (MM/DD/YYYY) format.

Create a field, in_lunar_week, that determines whether the transactions took place in the same lunar week as
January 10.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inlunarweek(date,'01/10/2022', 0) as in_lunar_week

;

Load

*

Inline

[

id,date,amount

8183,'1/5/2022',42.32

8184,'1/6/2022',68.22

8185,'1/7/2022',15.25

8186,'1/8/2022',25.26

8187,'1/9/2022',37.23

8188,'1/10/2022',37.23

8189,'1/11/2022',17.17

Script syntax and chart functions - Qlik Sense, May 2023 664

5 Script and chart functions

8190,'1/12/2022',88.27

8191,'1/13/2022',57.42

8192,'1/14/2022',53.80

8193,'1/15/2022',82.06

8194,'1/16/2022',87.21

8195,'1/17/2022',95.93

8196,'1/18/2022',45.89

8197,'1/19/2022',36.23

8198,'1/20/2022',25.66

8199,'1/21/2022',82.77

8200,'1/22/2022',69.98

8201,'1/23/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_lunar_week

date in_lunar_week

1/5/2022 0

1/6/2022 0

1/7/2022 0

1/8/2022 -1

1/9/2022 -1

1/10/2022 -1

1/11/2022 -1

1/12/2022 -1

1/13/2022 -1

1/14/2022 -1

1/15/2022 0

1/16/2022 0

1/17/2022 0

1/18/2022 0

1/19/2022 0

1/20/2022 0

1/21/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 665

5 Script and chart functions

date in_lunar_week

1/22/2022 0

1/23/2022 0

inlunarweek() function, basic example

The in_lunar_week field is created in the preceding load statement by using the inlunarweek() function,
then passing the following as the function's arguments:

l The date field
l A hard-coded date for January 10 as the base_date

l Aperiod_no of 0

Because lunar weeks begin on January 1, January 10 would fall in the lunar week that begins on January 8
and ends on January 14. Therefore, any transactions that occur between those two dates in January would
return a Boolean value of TRUE. This is validated in the results table.

Example 2 - period_no
Examples and results:

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The date field has been provided in the DateFormat system variable (MM/DD/YYYY) format.

However, in this example, the task is to create a field, 2_lunar_weeks_later, that determines whether or not
the transactions took place two lunar weeks after January 10.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inlunarweek(date,'01/10/2022', 2) as [2_lunar_weeks_later]

Script syntax and chart functions - Qlik Sense, May 2023 666

5 Script and chart functions

;

Load

*

Inline

[

id,date,amount

8183,'1/5/2022',42.32

8184,'1/6/2022',68.22

8185,'1/7/2022',15.25

8186,'1/8/2022',25.26

8187,'1/9/2022',37.23

8188,'1/10/2022',37.23

8189,'1/11/2022',17.17

8190,'1/12/2022',88.27

8191,'1/13/2022',57.42

8192,'1/14/2022',53.80

8193,'1/15/2022',82.06

8194,'1/16/2022',87.21

8195,'1/17/2022',95.93

8196,'1/18/2022',45.89

8197,'1/19/2022',36.23

8198,'1/20/2022',25.66

8199,'1/21/2022',82.77

8200,'1/22/2022',69.98

8201,'1/23/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l 2_lunar_weeks_later

date 2_lunar_weeks_later

1/5/2022 0

1/6/2022 0

1/7/2022 0

1/8/2022 0

1/9/2022 0

1/10/2022 0

1/11/2022 0

1/12/2022 0

1/13/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 667

5 Script and chart functions

date 2_lunar_weeks_later

1/14/2022 0

1/15/2022 0

1/16/2022 0

1/17/2022 0

1/18/2022 0

1/19/2022 0

1/20/2022 0

1/21/2022 0

1/22/2022 -1

1/23/2022 -1

inlunarweek() function, period_no example

In this instance, because a period_no of 2 was used as the offset argument in the inlunarweek() function, the
function defines the week beginning on January 22 as the lunar week to validate transactions against.
Therefore, any transaction that takes place between the January 22 and January 28 will return a Boolean
result of TRUE.

Example 3 - first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script uses the same dataset and scenario as the first example. However, in the example, we set
lunar weeks to begin on January 6.

l The same dataset and scenario as the first example.
l The default DateFormat system variable MM/DD/YYYY is used.
l A first_week_day argument of 5. This sets lunar weeks to begin on January 5.

Script syntax and chart functions - Qlik Sense, May 2023 668

5 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inlunarweek(date,'01/10/2022', 0,5) as in_lunar_week

;

Load

*

Inline

[

id,date,amount

8183,'1/5/2022',42.32

8184,'1/6/2022',68.22

8185,'1/7/2022',15.25

8186,'1/8/2022',25.26

8187,'1/9/2022',37.23

8188,'1/10/2022',37.23

8189,'1/11/2022',17.17

8190,'1/12/2022',88.27

8191,'1/13/2022',57.42

8192,'1/14/2022',53.80

8193,'1/15/2022',82.06

8194,'1/16/2022',87.21

8195,'1/17/2022',95.93

8196,'1/18/2022',45.89

8197,'1/19/2022',36.23

8198,'1/20/2022',25.66

8199,'1/21/2022',82.77

8200,'1/22/2022',69.98

8201,'1/23/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_lunar_week

date in_lunar_week

1/5/2022 0

1/6/2022 -1

1/7/2022 -1

1/8/2022 -1

Results table

Script syntax and chart functions - Qlik Sense, May 2023 669

5 Script and chart functions

date in_lunar_week

1/9/2022 -1

1/10/2022 -1

1/11/2022 -1

1/12/2022 -1

1/13/2022 0

1/14/2022 0

1/15/2022 0

1/16/2022 0

1/17/2022 0

1/18/2022 0

1/19/2022 0

1/20/2022 0

1/21/2022 0

1/22/2022 0

1/23/2022 0

inlunarweek() function, first_week_day example

In this instance, because the first_week_date argument of 5 is used in the inlunarweek() function, it offsets
the start of the lunar week calendar to January 6. Therefore, January 10 falls in the lunar week beginning on
January 6 and ending on January 12. Any transaction that falls between these two dates will return a Boolean
value of TRUE.

Example 4 - Chart object
Load script and chart expression:

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2023 670

5 Script and chart functions

The load script contains:

l The same dataset and scenario as the first example.
l The date field has been provided in the DateFormat system variable (MM/DD/YYYY) format.

However, in this example, the unchanged dataset is loaded into the application. The calculation that
determines whether the transactions took place in the same lunar week as January 10 is created as a measure
in a chart object of the application.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8183,'1/5/2022',42.32

8184,'1/6/2022',68.22

8185,'1/7/2022',15.25

8186,'1/8/2022',25.26

8187,'1/9/2022',37.23

8188,'1/10/2022',37.23

8189,'1/11/2022',17.17

8190,'1/12/2022',88.27

8191,'1/13/2022',57.42

8192,'1/14/2022',53.80

8193,'1/15/2022',82.06

8194,'1/16/2022',87.21

8195,'1/17/2022',95.93

8196,'1/18/2022',45.89

8197,'1/19/2022',36.23

8198,'1/20/2022',25.66

8199,'1/21/2022',82.77

8200,'1/22/2022',69.98

8201,'1/23/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

To calculate whether a transaction takes place in the lunar week that contains January 10, create the
following measure:

= inlunarweek(date,'01/10/2022', 0)

Script syntax and chart functions - Qlik Sense, May 2023 671

5 Script and chart functions

date =inlunarweek(date,'01/10/2022', 0)

1/5/2022 0

1/6/2022 0

1/7/2022 0

1/8/2022 -1

1/9/2022 -1

1/10/2022 -1

1/11/2022 -1

1/12/2022 -1

1/13/2022 -1

1/14/2022 -1

1/15/2022 0

1/16/2022 0

1/17/2022 0

1/18/2022 0

1/19/2022 0

1/20/2022 0

1/21/2022 0

1/22/2022 0

1/23/2022 0

Results table

Example 5 - Scenario
Load script and chart expression:

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called Products.
l Information consisting of product ID, manufacture date, and cost price.

Script syntax and chart functions - Qlik Sense, May 2023 672

5 Script and chart functions

It has been identified that due to equipment error, products that were manufactured in the lunar week that
included January 12 were defective. The end user would like a chart object that displays, by lunar week name,
the status of whether the products manufactured were ‘defective’ or ‘faultless’ and the cost of the products
manufactured in that month.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

product_id,manufacture_date,cost_price

8183,'1/5/2022',42.32

8184,'1/6/2022',68.22

8185,'1/7/2022',15.25

8186,'1/8/2022',25.26

8187,'1/9/2022',37.23

8188,'1/10/2022',37.23

8189,'1/11/2022',17.17

8190,'1/12/2022',88.27

8191,'1/13/2022',57.42

8192,'1/14/2022',53.80

8193,'1/15/2022',82.06

8194,'1/16/2022',87.21

8195,'1/17/2022',95.93

8196,'1/18/2022',45.89

8197,'1/19/2022',36.23

8198,'1/20/2022',25.66

8199,'1/21/2022',82.77

8200,'1/22/2022',69.98

8201,'1/23/2022',76.11

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table.

2. Create a dimension to show the month names:
=lunarweekname(manufacture_date)

3. Create a measure to identify which of the products are defective and which are faultless using the
inlunarweek() function:
=if(only(inlunarweek(manufacture_date,makedate(2022,01,12),0)), 'Defective','Faultless')

4. Create a measure to sum the cost_price of the products:
=sum(cost_price)

5. Set the measure's Number formatting to Money.

6. Under Appearance, turn off Totals.

Script syntax and chart functions - Qlik Sense, May 2023 673

5 Script and chart functions

lunarweekname
(manufacture_date)

=if(only(inlunarweek(manufacture_date,makedate
(2022,01,12),0)), 'Defective','Faultless')

sum(cost_
price)

2022/01 Faultless $125.79

2022/02 Defective $316.38

2022/03 Faultless $455.75

2022/04 Faultless $146.09

Results table

The inlunarweek() function returns a Boolean value when evaluating the manufacturing dates of each of the
products. For any product manufactured in the lunar week that contains January 10, the inlunarweek()

function returns a Boolean value of TRUE and marks the products as ‘Defective’. For any product returning a
value of FALSE, and therefore not manufactured in that week, it marks the products as ‘Faultless’.

inlunarweektodate
This function finds if timestamp lies inside the part of the lunar week up to and including the
last millisecond of base_date. Lunar weeks in Qlik Sense are defined by counting January 1 as
the first day of the week and, apart from the final week of the year, will contain exactly seven
days.

Syntax:
InLunarWeekToDate (timestamp, base_date, period_no [, first_week_day])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Example diagram of inlunarweektodate() function

IThe inlunarweektodate() function acts as the end point of the lunar week. In contrast, the inlunarweek()

function, determines which lunar week the base_date falls into. For example, if the base_date were January 5,
any timestamp between January 1 and January 5 would return a Boolean result of TRUE, while dates on
January 6 and 7, and later, would return a Boolean result of FALSE.

Script syntax and chart functions - Qlik Sense, May 2023 674

5 Script and chart functions

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the lunar week.

period_no The lunar week can be offset by period_no. period_no is an integer, where the value 0
indicates the lunar week which contains base_date. Negative values in period_no indicate
preceding lunar weeks and positive values indicate succeeding lunar weeks.

first_week_
day

An offset that may be greater than or less than zero. This changes the beginning of the
year by the specified number of days and/or fractions of a day.

Arguments

When to use it
The inlunarweektodate() function returns a Boolean result. Typically, this type of function will be used as a
condition in an IF expression. The inlunarweektodate() function would be used when the user would like the
calculation to return an aggregation or calculation, dependent on whether the evaluated date occurred during
a particular segment of the week in question.

For example, the inlunarweektodate() function can be used to identify all equipment manufactured in a
particular week up to and including a particular date.

Example Result

inlunarweektodate

('01/12/2013',

'01/13/2013', 0)

Returns TRUE, since the value of the timestamp, 01/12/2013, falls in the part of
the week 01/08/2013 to 01/13/2013.

inlunarweektodate

('01/12/2013',

'01/11/2013', 0)

Returns FALSE, since the value of the timestamp is later than the value of
base_date, even though the two dates are in the same lunar week before
01/12/2012.

inlunarweektodate

('01/12/2006',

'01/05/2006', 1)

Returns TRUE. Specifying a value of 1 for period_no shifts the base_date

forward one week, so the value of timestamp falls in the part of the lunar
week.

Function examples

The inlunarweektodate() function is often used in combination with the following functions:

Function Interaction

lunarweekname
(page 831)

This function is used to determine the lunar week number of the year in which an
input date occurs.

Related functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the

Script syntax and chart functions - Qlik Sense, May 2023 675

5 Script and chart functions

examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 - No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the month of January, which is loaded into a table called
Transactions. The default DateFormat system variable MM/DD/YYYY is used.

l Create a field, in_lunar_week_to_date, that determines which transactions took place in lunar week
to date of January 10.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inlunarweektodate(date,'01/10/2022', 0) as in_lunar_week_to_date

;

Load

*

Inline

[

id,date,amount

8188,'1/10/2022',37.23

8189,'1/17/2022',17.17

8190,'1/26/2022',88.27

8191,'1/12/2022',57.42

8192,'1/19/2022',53.80

8193,'1/21/2022',82.06

8194,'1/1/2022',40.39

8195,'1/27/2022',87.21

8196,'1/11/2022',95.93

8197,'1/29/2022',45.89

8198,'1/31/2022',36.23

8199,'1/18/2022',25.66

8200,'1/23/2022',82.77

8201,'1/15/2022',69.98

Script syntax and chart functions - Qlik Sense, May 2023 676

5 Script and chart functions

8202,'1/4/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_lunar_week_to_date

date in_lunar_week_to_date

1/1/2022 0

1/4/2022 0

1/10/2022 -1

1/11/2022 0

1/12/2022 0

1/15/2022 0

1/17/2022 0

1/18/2022 0

1/19/2022 0

1/21/2022 0

1/23/2022 0

1/26/2022 0

1/27/2022 0

1/29/2022 0

1/31/2022 0

Results table

inlunarweektodate() function, no additional arguments

The in_lunar_week_to_date field is created in the preceding load statement by using the inlunarweektodate

() function and passing the date field, a hard-coded date for January 10 as our base_date, and an offset of 0
as the function’s arguments.

Script syntax and chart functions - Qlik Sense, May 2023 677

5 Script and chart functions

Because lunar weeks begin on January 1, January 10 would fall in the lunar week that begins on January 8;
and because we are using the inlunarweektodate() function, that lunar week would then end on the 10th.
Therefore, any transactions that occur between those two dates in January would return a Boolean value of
TRUE. This is validated in the results table.

Example 2 - period_no
Load script and results

Overview

Open the Data load editor, and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this example, the
task is to create a field, 2_lunar_weeks_later, that determines whether or not the transactions took place
two weeks after the lunar week to date of January 1.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inlunarweektodate(date,'01/10/2022', 2) as [2_lunar_weeks_later]

;

Load

*

Inline

[

id,date,amount

8188,'1/10/2022',37.23

8189,'1/17/2022',17.17

8190,'1/26/2022',88.27

8191,'1/12/2022',57.42

8192,'1/19/2022',53.80

8193,'1/21/2022',82.06

8194,'1/1/2022',40.39

8195,'1/27/2022',87.21

8196,'1/11/2022',95.93

8197,'1/29/2022',45.89

8198,'1/31/2022',36.23

8199,'1/18/2022',25.66

8200,'1/23/2022',82.77

8201,'1/15/2022',69.98

8202,'1/4/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2023 678

5 Script and chart functions

l date

l 2_lunar_weeks_later

date 2_lunar_weeks_later

1/1/2022 0

1/4/2022 0

1/10/2022 0

1/11/2022 0

1/12/2022 0

1/15/2022 0

1/17/2022 0

1/18/2022 0

1/19/2022 0

1/21/2022 0

1/23/2022 -1

1/26/2022 0

1/27/2022 0

1/29/2022 0

1/31/2022 0

Results table

inlunarweektodate() function, period_no example

In this instance, the inlunarweektodate() function determines that the lunar week up to January 10 equates
to three days (January 8, 9, 10). Since a period_no of 2 was used as the offset argument, this lunar week is
shifted by 14 days. Therefore, this defines that three-day lunar week to include January 22, 23, and 24. Any
transaction that takes place between January 22 and January 24 will return a Boolean result of TRUE.

Script syntax and chart functions - Qlik Sense, May 2023 679

5 Script and chart functions

Example 3 - first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The default DateFormat system variable MM/DD/YYYY is used.
l A first_week_date argument of 3. This sets lunar weeks to begin on January 3.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inlunarweek(date,'01/10/2022', 0,3) as in_lunar_week_to_date

;

Load

*

Inline

[

id,date,amount

8188,'1/10/2022',37.23

8189,'1/17/2022',17.17

8190,'1/26/2022',88.27

8191,'1/12/2022',57.42

8192,'1/19/2022',53.80

8193,'1/21/2022',82.06

8194,'1/1/2022',40.39

8195,'1/27/2022',87.21

8196,'1/11/2022',95.93

8197,'1/29/2022',45.89

8198,'1/31/2022',36.23

8199,'1/18/2022',25.66

8200,'1/23/2022',82.77

8201,'1/15/2022',69.98

8202,'1/4/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_lunar_week_to_date

Script syntax and chart functions - Qlik Sense, May 2023 680

5 Script and chart functions

date in_lunar_week_to_date

1/1/2022 0

1/4/2022 -1

1/10/2022 -1

1/11/2022 0

1/12/2022 0

1/15/2022 0

1/17/2022 0

1/18/2022 0

1/19/2022 0

1/21/2022 0

1/23/2022 0

1/26/2022 0

1/27/2022 0

1/29/2022 0

1/31/2022 0

Results table

inlunarweektodate() function, first_week_day example

In this instance, because the first_week_date argument of 3 is used in the inlunarweek() function, the first
lunar week will be from January 3 to January 10. Because January 10 is also the base_date, any transaction
that falls between these two dates will return a Boolean value of TRUE.

Example 4 - Chart object example
Load script and chart expression

Overview

Open the Data load editor, and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2023 681

5 Script and chart functions

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that
determines whether the transactions took place in the lunar week up to January 10 is created as a measure in
a chart object of the application.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'1/10/2022',37.23

8189,'1/17/2022',17.17

8190,'1/26/2022',88.27

8191,'1/12/2022',57.42

8192,'1/19/2022',53.80

8193,'1/21/2022',82.06

8194,'1/1/2022',40.39

8195,'1/27/2022',87.21

8196,'1/11/2022',95.93

8197,'1/29/2022',45.89

8198,'1/31/2022',36.23

8199,'1/18/2022',25.66

8200,'1/23/2022',82.77

8201,'1/15/2022',69.98

8202,'1/4/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measure:

=inlunarweektodate(date,'01/10/2022', 0)

date =inlunarweektodate(date,'01/10/2022', 0)

1/1/2022 0

1/4/2022 0

1/10/2022 -1

1/11/2022 0

1/12/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 682

5 Script and chart functions

date =inlunarweektodate(date,'01/10/2022', 0)

1/15/2022 0

1/17/2022 0

1/18/2022 0

1/19/2022 0

1/21/2022 0

1/23/2022 0

1/26/2022 0

1/27/2022 0

1/29/2022 0

1/31/2022 0

inlunarweektodate() function, chart object example

The in_lunar_week_to_date measure is created in the chart object by using the inlunarweektodate()

function and passing the date field, a hard-coded date for January 10 as our base_date, and an offset of 0 as
the function’s arguments.

Because lunar weeks begin on January 1, January 10 would fall in the lunar week that begins on January 8.
Additionally, since we are using the inlunarweektodate() function, that lunar week would then terminate on
the 10th. Therefore, any transactions that occur between those two dates in January would return a Boolean
value of TRUE. This is validated in the results table.

Example 5 - Scenario
Load script and chart expressions

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called Products.
l Information consisting of product ID, manufacture date, and cost price.

Script syntax and chart functions - Qlik Sense, May 2023 683

5 Script and chart functions

It has been identified that due to equipment error, products that were manufactured in the lunar week of
January 12 were defective. The issue was resolved on January 13. The end user would like a chart object that
displays, by week, the status of whether the products manufactured ‘defective’ or ‘faultless’ and the cost of
the products manufactured in that week.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff]';

Products:

Load

*

Inline

[

product_id,manufacture_date,cost_price

8188,'01/02/2022 12:22:06',37.23

8189,'01/05/2022 01:02:30',17.17

8190,'01/06/2022 15:36:20',88.27

8191,'01/08/2022 10:58:35',57.42

8192,'01/09/2022 08:53:32',53.80

8193,'01/10/2022 21:13:01',82.06

8194,'01/11/2022 00:57:13',40.39

8195,'01/12/2022 09:26:02',87.21

8196,'01/13/2022 15:05:09',95.93

8197,'01/14/2022 18:44:57',45.89

8198,'01/15/2022 06:10:46',36.23

8199,'01/16/2022 06:39:27',25.66

8200,'01/17/2022 10:44:16',82.77

8201,'01/18/2022 18:48:17',69.98

8202,'01/26/2022 04:36:03',76.11

8203,'01/27/2022 08:07:49',25.12

8204,'01/28/2022 12:24:29',46.23

8205,'01/30/2022 11:56:56',84.21

8206,'01/30/2022 14:40:19',96.24

8207,'01/31/2022 05:28:21',67.67

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table.

2. Create a dimension to show the week names:
=weekname(manufacture_date)

3. Next, create a dimension which uses the inlunarweektodate() function to identify which of the
products are defective and which are faultless:
=if(inlunarweektodate(manufacture_date,makedate(2022,01,12),0),'Defective','Faultless')

4. Create a measure to sum the cost_price of the products:
=sum(cost_price)

5. Set the measure's Number formatting to Money.

Script syntax and chart functions - Qlik Sense, May 2023 684

5 Script and chart functions

=lunarweekname
(manufacture_date)

=if(InLunarWeekToDate(manufacture_date,makedate
(2022,01,12),0),'Defective','Faultless')

=Sum(cost_
price)

2022/01 Faultless $142.67

2022/02 Defective $320.88

2022/02 Faultless $141.82

2022/03 Faultless $214.64

2022/04 Faultless $147.46

2022/05 Faultless $248.12

Results table

The inlunarweektodate() function returns a Boolean value when evaluating the manufacturing dates of each
of the products. For those that return a Boolean value of TRUE, it marks the products as ‘Defective’. For any
product returning a value of FALSE, and therefore not made in the lunar week up to January 12, it marks the
products as ‘Faultless’.

inmonth
This function returns True if timestamp lies inside the month containing base_date.

Syntax:
InMonth (timestamp, base_date, period_no)
Diagram of indaytotime function.

In other words, the inmonth() function determines if a set of dates fall into this month and returns a Boolean
value based on a base_date that identifies the month.

When to use it

The inmonth() function returns a Boolean result. Typically, this type of function will be used as a condition in
an if expression. This returns an aggregation or calculation depending on whether a date occurred in the
month, including the date in question.

For example, the inmonth() function can be used to identify all equipment manufactured in a specific month.

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Script syntax and chart functions - Qlik Sense, May 2023 685

5 Script and chart functions

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the month. It is important to note that the base_date can be
any day within a month.

period_no The month can be offset by period_no. period_no is an integer, where the value 0
indicates the month which contains base_date. Negative values in period_no indicate
preceding months and positive values indicate succeeding months.

Arguments

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

inmonth ('25/01/2013', '01/01/2013', 0) Returns True

inmonth('25/01/2013', '23/04/2013', 0) Returns False

inmonth ('25/01/2013', '01/01/2013', -1) Returns False

inmonth ('25/12/2012', '17/01/2013', -1) Returns True

Function examples

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the first half of 2022.
l A preceding load with an additional variable, ‘in_month’, that determines whether transactions took

place in April.

Script syntax and chart functions - Qlik Sense, May 2023 686

5 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonth(date,'04/01/2022', 0) as in_month

;

Load

*

Inline

[

id,date,amount

8188,'1/10/2022',37.23

8189,'1/14/2022',17.17

8190,'1/20/2022',88.27

8191,'1/22/2022',57.42

8192,'2/1/2022',53.80

8193,'2/2/2022',82.06

8194,'2/20/2022',40.39

8195,'4/11/2022',87.21

8196,'4/13/2022',95.93

8197,'4/15/2022',45.89

8198,'4/25/2022',36.23

8199,'5/20/2022',25.66

8200,'5/22/2022',82.77

8201,'6/19/2022',69.98

8202,'6/22/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_month

date in_month

1/10/2022 0

1/14/2022 0

1/20/2022 0

1/22/2022 0

2/1/2022 0

2/2/2022 0

2/20/2022 0

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 687

5 Script and chart functions

date in_month

4/11/2022 -1

4/13/2022 -1

4/15/2022 -1

4/25/2022 -1

5/20/2022 0

5/22/2022 0

6/19/2022 0

6/22/2022 0

The ‘in_month’ field is created in the preceding load statement by using the inmonth() function and passing
the date field, a hard-coded date of April 1, as our base_date and a period_no of 0 as the function’s
arguments.

The base_date identifies the month that will return a Boolean result of TRUE. Therefore, all transactions that
occurred in April return TRUE which is validated in the results table.

Example 2 – period_no
Load script and results

Overview

The same dataset and scenario from the first example are used.

However, in this example, you will create a field, ‘2_months_prior’, that determines whether the transactions
took place two months before April.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonth(date,'04/01/2022', -2) as [2_months_prior]

Inline

[

id,date,amount

8188,'1/10/2022',37.23

8189,'1/14/2022',17.17

8190,'1/20/2022',88.27

8191,'1/22/2022',57.42

8192,'2/1/2022',53.80

8193,'2/2/2022',82.06

8194,'2/20/2022',40.39

8195,'4/11/2022',87.21

8196,'4/13/2022',95.93

Script syntax and chart functions - Qlik Sense, May 2023 688

5 Script and chart functions

8197,'4/15/2022',45.89

8198,'4/25/2022',36.23

8199,'5/20/2022',25.66

8200,'5/22/2022',82.77

8201,'6/19/2022',69.98

8202,'6/22/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l 2_months_prior

date 2_months_prior

1/10/2022 0

1/14/2022 0

1/20/2022 0

1/22/2022 0

2/1/2022 -1

2/2/2022 -1

2/20/2022 -1

4/11/2022 0

4/13/2022 0

4/15/2022 0

4/25/2022 0

5/20/2022 0

5/22/2022 0

6/19/2022 0

6/22/2022 0

Function examples

Using -2 as the period_no argument in the inmonth() function shifts the month defined by the base_date

argument two months prior. In this example it changes the defined month from April to February.

Therefore, any transaction that takes place in February will return a Boolean result of TRUE.

Example 3 – Chart object
Load script and chart expression

Script syntax and chart functions - Qlik Sense, May 2023 689

5 Script and chart functions

Overview

The same dataset and scenario from the previous examples are used.

However, in this example, the dataset is unchanged and loaded into the application. The calculation that
determines whether transactions took place in April is created as a measure in a chart object of the
application.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'1/10/2022',37.23

8189,'1/14/2022',17.17

8190,'1/20/2022',88.27

8191,'1/22/2022',57.42

8192,'2/1/2022',53.80

8193,'2/2/2022',82.06

8194,'2/20/2022',40.39

8195,'4/11/2022',87.21

8196,'4/13/2022',95.93

8197,'4/15/2022',45.89

8198,'4/25/2022',36.23

8199,'5/20/2022',25.66

8200,'5/22/2022',82.77

8201,'6/19/2022',69.98

8202,'6/22/2022',76.11

];

Chart object

Load the data and open a sheet. Create a new table and add this field as a dimension:

date

To calculate whether a transaction takes place in April, create the following measure:

=inmonth(date,'04/01/2022', 0)

Results

date =inmonth(date,'04/01/2022', 0)

1/10/2022 0

1/14/2022 0

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 690

5 Script and chart functions

date =inmonth(date,'04/01/2022', 0)

1/20/2022 0

1/22/2022 0

2/1/2022 0

2/2/2022 0

2/20/2022 0

4/11/2022 -1

4/13/2022 -1

4/15/2022 -1

4/25/2022 -1

5/20/2022 0

5/22/2022 0

6/19/2022 0

6/22/2022 0

Example 4 – Scenario
Load script and results

Overview

In this example, a dataset is loaded into a table called ‘Products’. The table contains the following fields:

l Product ID
l Manufacture date
l Cost price

Due to equipment error, products that were manufactured in the month of July 2022 were defective. The issue
was resolved on July 27, 2022.

The end user would like a chart that displays, by month, the status of products that were manufactured as
‘defective’ (Boolean TRUE) or ‘faultless’ (Boolean FALSE) and the cost of the products manufactured in that
month.

Load script

Products:

Load

*

Inline

[

product_id,manufacture_date,cost_price

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

Script syntax and chart functions - Qlik Sense, May 2023 691

5 Script and chart functions

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

=monthname(manufacture_date)

Create the following measures:

l =sum(cost_price)

l =if(only(inmonth(manufacture_date,makedate(2022,07,01),0)),'Defective','Faultless')

1. Set the measure’s Number Formatting to Money.

2. Under Appearance, turn off Totals.

monthname
(manufacture_date)

=if(only(inmonth(manufacture_date,makedate
(2022,07,01),0)),'Defective','Faultless')

sum(cost_
price)

Jan 2022 Faultless $54.40

Feb 2022 Faultless $145.69

Mar 2022 Faultless $53.80

Apr 2022 Faultless $82.06

May 2022 Faultless $127.60

Jun 2022 Faultless $141.82

Jul 2022 Defective $214.64

Aug 2022 Faultless $147.46

Sep 2022 Faultless $84.21

Oct 2022 Faultless $163.91

Results table

Script syntax and chart functions - Qlik Sense, May 2023 692

5 Script and chart functions

The inmonth() function returns a Boolean value when evaluating the manufacturing dates of each of the
products. For any product manufactured in July 2022, the inmonth() function returns a Boolean value of True
and marks the products as ‘Defective’. For any product returning a value of False, and therefore not
manufactured in July, it marks the products as ‘Faultless’.

inmonths
This function finds if a timestamp falls within the same month, bi-month, quarter, four-month
period, or half-year as a base date. It is also possible to find if the timestamp falls within a
previous or following time period.

Syntax:
InMonths(n_months, timestamp, base_date, period_no [, first_month_of_year])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Diagram of inmonths() function

The inmonths() function divides the year into segments based on the n_months argument provided. It then
determines whether each timestamp evaluated falls into the same segment as the base_date argument. If,
however, a period_no argument is provided, the function determines whether the timestamps fall into a
previous or following period from the base_date.

The following segments of the year are available in the function as n_month arguments.

Period Number of months

month 1

bi-month 2

quarter 3

four months 4

half-year 6

n_month arguments

Script syntax and chart functions - Qlik Sense, May 2023 693

5 Script and chart functions

When to use it

The inmonths() function returns a Boolean result. Typically, this type of function will be used as a condition in
an if expression. By using the inmonths() function, you can select the period that you want to be
evaluated. For example, letting the user identify products manufactured in the month, quarter, or half-year of
a certain period.

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Argument Description

n_months The number of months that defines the period. An integer or expression that resolves to an
integer that must be one of: 1 (equivalent to the inmonth() function), 2 (bi-month), 3
(equivalent to the inquarter()function), 4 (four-month period), or 6 (half year).

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the period.

period_no The period can be offset by period_no, an integer, or expression resolving to an integer,
where the value 0 indicates the period that contains base_date. Negative values in
period_no indicate preceding periods and positive values indicate succeeding periods.

first_month_
of_year

If you want to work with (fiscal) years not starting in January, indicate a value between 2
and 12 in first_month_of_year.

Arguments

You can use the following values to set the first month of year in the first_month_of_year argument:

Month Value

February 2

March 3

April 4

May 5

June 6

July 7

August 8

September 9

October 10

November 11

December 12

first_month_of_year values

Script syntax and chart functions - Qlik Sense, May 2023 694

5 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

inmonths(4,

'01/25/2013',

'04/25/2013', 0)

Returns TRUE. Because the value of timestamp, 01/25/2013, lies within the four-
month period 01/01/2013 to 04/30/2013, in which the value of base_date,
04/25/2013 lies.

inmonths(4,

'05/25/2013',

'04/25/2013', 0)

Returns FALSE. Because 05/25/2013 is outside the same period as the previous
example.

inmonths(4,

'11/25/2012',

'02/01/2013', -1)

Returns TRUE. Because the value of period_no, -1, shifts the search period back
one period of four months (the value of n-months), which makes the search period
09/01/2012 to 12/31/2012.

inmonths(4,

'05/25/2006',

'03/01/2006', 0,

3)

Returns TRUE. Because the value of first_month_of_year is set to 3, which makes
the search period 03/01/2006 to 07/30/2006 instead of 01/01/2006 to 04/30/2006.

Function examples

Example 1 - No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 is loaded into a table called ‘Transactions’.
l A preceding load with an additional variable, ‘in_months’, that determines which transactions took

place in the same quarter as May 15, 2022.

Script syntax and chart functions - Qlik Sense, May 2023 695

5 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonths(3,date,'05/15/2022', 0) as in_months

;

Load

*

Inline

[

id,date,amount

8188,'2/19/2022',37.23

8189,'3/7/2022',17.17

8190,'3/30/2022',88.27

8191,'4/5/2022',57.42

8192,'4/16/2022',53.80

8193,'5/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/22/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_months

date in_months

2/19/2022 0

3/7/2022 0

3/30/2022 0

4/5/2022 -1

Results table

Script syntax and chart functions - Qlik Sense, May 2023 696

5 Script and chart functions

date in_months

4/16/2022 -1

5/1/2022 -1

5/7/2022 -1

5/22/2022 -1

6/15/2022 -1

6/26/2022 -1

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

The ‘in_months’ field is created in the preceding load statement by using the inmonths() function. The first
argument provided is 3 which divides the year into quarter segments. The second argument identifies which
field is being evaluated, the date field in this example. The third argument is a hard-coded date for the for May
15 which is the base_date and a period_no of 0 is the final argument.

Diagram of inmonths() function with quarter segments

May falls into the second quarter of the year. Therefore, any transaction that occurs between April 1 and June
30 will return a Boolean result of TRUE. This is validated in the results table.

Script syntax and chart functions - Qlik Sense, May 2023 697

5 Script and chart functions

Example 2 - period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 is loaded into a table called ‘Transactions’.
l A preceding load with an additional variable, ‘previous_quarter’, that determines whether

transactions took place in the quarter before May 15, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonths(3,date,'05/15/2022', -1) as previous_quarter

;

Load

*

Inline

[

id,date,amount

8188,'2/19/2022',37.23

8189,'3/7/2022',17.17

8190,'3/30/2022',88.27

8191,'4/5/2022',57.42

8192,'4/16/2022',53.80

8193,'5/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/22/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Script syntax and chart functions - Qlik Sense, May 2023 698

5 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_quarter

date previous quarter

2/19/2022 -1

3/7/2022 -1

3/30/2022 -1

4/5/2022 0

4/16/2022 0

5/1/2022 0

5/7/2022 0

5/22/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Results table

The function evaluates whether transactions occurred in the first quarter of the year by using -1 as the
period_no argument in the inmonths() function. May 15 is the base_date and falls into the second quarter of
the year (April-June).

Script syntax and chart functions - Qlik Sense, May 2023 699

5 Script and chart functions

Diagram of inmonths() function with quarter segments and the period_no set to -1

Therefore, any transaction that occurs between January and March will return a Boolean result of TRUE.

Example 3 - first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 is loaded into a table called ‘Transactions’.
l A preceding load with an additional variable, ‘in_months’, that determines which transactions took

place in the same quarter as May 15, 2022.

In this example, the organizational policy is for March to be the first month of the financial year.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonths(3,date,'05/15/2022', 0, 3) as in_months

;

Load

*

Inline

[

id,date,amount

8188,'2/19/2022',37.23

8189,'3/7/2022',17.17

8190,'3/30/2022',88.27

8191,'4/5/2022',57.42

8192,'4/16/2022',53.80

8193,'5/1/2022',82.06

8194,'5/7/2022',40.39

Script syntax and chart functions - Qlik Sense, May 2023 700

5 Script and chart functions

8195,'5/22/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_months

date in_months

2/19/2022 0

3/7/2022 -1

3/30/2022 -1

4/5/2022 -1

4/16/2022 -1

5/1/2022 -1

5/7/2022 -1

5/22/2022 -1

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 701

5 Script and chart functions

date in_months

9/26/2022 0

10/14/2022 0

10/29/2022 0

By using 3 as the first_month_of_year argument in the inmonths() function, the function begins the year on
March 1. The inmonths() function then divides the year into quarters: Mar-May, Jun-Aug, Sep-Nov, Dec-Feb.
Therefore, May 15 falls into the first quarter of the year (March-May).

Diagram of inmonths() function with March set as first month of the year

Any transaction that occurs in these months will return a Boolean result of TRUE.

Example 4 - Chart object example
Load script and chart expression

Overview

The same dataset and scenario from the first example are used.

However, in this example, the dataset is unchanged and loaded into the application. The calculation that
determines whether transactions took place in the same quarter as May 15, 2022 is created as a measure in a
chart in the app.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'2/19/2022',37.23

8189,'3/7/2022',17.17

8190,'3/30/2022',88.27

8191,'4/5/2022',57.42

8192,'4/16/2022',53.80

Script syntax and chart functions - Qlik Sense, May 2023 702

5 Script and chart functions

8193,'5/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/22/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

l date

To calculate whether transactions took place in the same quarter as May 15, create the following measure:

=inmonths(3,date,'05/15/2022', 0)

date =inmonths(3,date,'05/15/2022', 0)

2/19/2022 0

3/7/2022 0

3/30/2022 0

4/5/2022 -1

4/16/2022 -1

5/1/2022 -1

5/7/2022 -1

5/22/2022 -1

6/15/2022 -1

6/26/2022 -1

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 703

5 Script and chart functions

date =inmonths(3,date,'05/15/2022', 0)

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

The ‘in_months’ field is created in the chart by using the inmonths() function. The first argument provided is 3
which divides the year into quarter segments. The second argument identifies which field is being evaluated,
the date field in this example. The third argument is a hard-coded date for the for May 15 which is the base_

date and a period_no of 0 is the final argument.

Diagram of inmonths() function with quarter segments

May falls into the second quarter of the year. Therefore, any transaction that occurs between April 1 and June
30 will return a Boolean result of TRUE. This is validated in the results table.

Example 5 - Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called ‘Products’.
l The table contains the following fields:

l product ID
l product type
l manufacture date
l cost price

Script syntax and chart functions - Qlik Sense, May 2023 704

5 Script and chart functions

The end user would like a chart that displays, by product type, the cost of products manufactured in the first
segment of 2021. The user would like to be able to define the length of this segment.

Load script

SET vPeriod = 1;

Products:

Load

*

Inline

[

product_id,product_type,manufacture_date,cost_price

8188,product A,'2/19/2022',37.23

8189,product D,'3/7/2022',17.17

8190,product C,'3/30/2022',88.27

8191,product B,'4/5/2022',57.42

8192,product D,'4/16/2022',53.80

8193,product D,'5/1/2022',82.06

8194,product A,'5/7/2022',40.39

8195,product B,'5/22/2022',87.21

8196,product C,'6/15/2022',95.93

8197,product B,'6/26/2022',45.89

8198,product C,'7/9/2022',36.23

8199,product D,'7/22/2022',25.66

8200,product D,'7/23/2022',82.77

8201,product A,'7/27/2022',69.98

8202,product A,'8/2/2022',76.11

8203,product B,'8/8/2022',25.12

8204,product B,'8/19/2022',46.23

8205,product B,'9/26/2022',84.21

8206,product C,'10/14/2022',96.24

8207,product D,'10/29/2022',67.67

];

Results

Load the data and open a sheet.

At the start of the load script, a variable, vPeriod, is created that is tied to the variable input control.

Do the following:

1. In the assets panel, click Custom objects.

2. Select Qlik Dashboard bundle, create a Variable input object.

3. Enter a title for the chart object.

4. Under Variable, select vPeriod as the name and set the object to show as a Drop down.

5. Under Values, click Dynamic values. Enter the following:
='1~month|2~bi-month|3~quarter|4~tertial|6~half-year'.

6. Add a new table to the sheet.

7. Under Data in the properties panel, add product_type as a dimension.

Script syntax and chart functions - Qlik Sense, May 2023 705

5 Script and chart functions

8. Add the following expression as a measure:
=sum(if(inmonths($(vPeriod),manufacture_date,makedate(2022,01,01),0),cost_price,0))

9. Set the measure’s Number formatting to Money.

product_type
=sum(if(inmonths($(vPeriod),manufacture_date,makedate(2022,01,01),0),cost_
price,0))

product A $88.27

product B $37.23

product C $17.17

product D $0.00

Results table

The inmonths() function uses the user input as its argument to define the size of the starting segment of the
year. The function passes in the manufacture date of each of the products as the inmonths() function’s
second argument. By using January 1 as the third argument in the inmonths() function, products with
manufacture dates that fall in the opening segment of the year will return a Boolean value of TRUE and
therefore the sum function will add the costs of those products.

inmonthstodate
This function finds if a timestamp falls within the part a period of the month, bi-month, quarter,
four-month period, or half-year up to and including the last millisecond of base_date. It is also
possible to find if the timestamp falls within a previous or following time period.

Syntax:
InMonths (n_months, timestamp, base_date, period_no[, first_month_of_year])

Return data type: Boolean

Diagram of inmonthstodate function.

Script syntax and chart functions - Qlik Sense, May 2023 706

5 Script and chart functions

Argument Description

n_months The number of months that defines the period. An integer or expression that resolves to an
integer that must be one of: 1 (equivalent to the inmonth() function), 2 (bi-month), 3
(equivalent to the inquarter()function), 4 (four-month period), or 6 (half year).

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the period.

period_no The period can be offset by period_no, an integer, or expression resolving to an integer,
where the value 0 indicates the period that contains base_date. Negative values in
period_no indicate preceding periods and positive values indicate succeeding periods.

first_month_
of_year

If you want to work with (fiscal) years not starting in January, indicate a value between 2
and 12 in first_month_of_year.

Arguments

In the inmonthstodate() function, the base_date acts as the end point of the particular year segment that it
is part of.

For example, if the year was broken into tertial segments, and the base_date was May 15, any timestamp
between the start of January and end of April would return a Boolean result of FALSE. Dates between May 1
and May 15 would return TRUE. The rest of the year would return FALSE.

Diagram of Boolean results range of inmonthstodate function.

The following segments of the year are available in the function as n_month arguments.

Period Number of months

month 1

bi-month 2

quarter 3

tertial 4

half-year 6

n_month arguments

Script syntax and chart functions - Qlik Sense, May 2023 707

5 Script and chart functions

When to use it

The inmonthstodate() function returns a Boolean result. Typically, this type of function is used as a condition
in an if expression. By using the inmonthstodate() function, you can select the period you want to be
evaluated. For example, providing an input variable that lets the user identify the products manufactured in
the month, quarter, or half-year of a period, up to a certain date.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

inmonthstodate(4,

'01/25/2013',

'04/25/2013', 0)

Returns True, because the value of timestamp, 01/25/2013, lies within the four-
month period 01/01/2013 up to the end of 04/25/2013, in which the value of
base_date, 04/25/2013 lies.

inmonthstodate(4,

'04/26/2013',

'04/25/2006', 0)

Returns False, because 04/26/2013 is outside the same period as the previous
example.

inmonthstodate(4,

'09/25/2005',

'02/01/2006', -1)

Returns True, because the value of period_no, -1, shifts the search period back
one period of four months (the value of n-months), which makes the search
period 01/09/2005 to 02/01/2006.

inmonthstodate(4,

'04/25/2006',

'06/01/2006', 0, 3)

Returns True, because the value of first_month_of_year is set to 3, which makes
the search period 03/01/2006 to 06/01/2006 instead of 05/01/2006 to
06/01/2006.

Function examples

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2023 708

5 Script and chart functions

l A dataset containing a set of transactions for 2022 that is loaded into a table called ‘Transactions’.
l A date field in the DateFormat system variable (MM/DD/YYYY) format.
l A preceding load statement containing:

l The inmonthstodate() function that is set as the field, ‘in_months_to_date’. This determines
which transactions took place in the quarter up until May 15, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonthstodate(3,date,'05/15/2022', 0) as in_months_to_date

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_months_to_date

Script syntax and chart functions - Qlik Sense, May 2023 709

5 Script and chart functions

date in_months_to_date

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 -1

5/7/2022 -1

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Results table

The ‘in_months_to_date’ field is created in the preceding load statement by using the inmonthstodate()

function.

The first argument provided is 3, dividing the year into quarter segments. The second argument identifies
which field is being evaluated. The third argument is a hard-coded date for May 15, which is the base_date

that defines the end boundary of the segment. A period_no of 0 is the final argument.

Diagram of inmonthstodate function with no additional arguments.

Script syntax and chart functions - Qlik Sense, May 2023 710

5 Script and chart functions

Any transaction that occurs between April 1 and May 15 returns a Boolean result of TRUE. Transaction dates
outside of that period return FALSE.

Example 2 – period_no
Load script and results

Overview

The same dataset and scenario as the first example are used.

However, in this example, the task is to create a field, ‘previous_qtr_to_date’, that determines if the
transactions took place a quarter before May 15.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonthstodate(3,date,'05/15/2022', -1) as previous_qtr_to_date

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2023 711

5 Script and chart functions

l date

l previous_qtr_to_date

date previous_qtr_to_date

1/7/2022 -1

1/19/2022 -1

2/5/2022 -1

2/28/2022 0

3/16/2022 0

4/1/2022 0

5/7/2022 0

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Results table

By using -1 as the period_no argument in the inmonthstodate() function, the function shifts the boundaries
of the comparator year segment by a quarter.

May 15 falls into the second quarter of the year and therefore the segment initially equates to between April 1
and May 15. The period_no argument offsets this segment by a negative three months. The date boundaries
become January 1 to February 15.

Script syntax and chart functions - Qlik Sense, May 2023 712

5 Script and chart functions

Diagram of inmonthstodate function with period_no set to -1.

Therefore, any transaction that occurs between January 1 and February 15 will return a Boolean result of
TRUE.

Example 3 – first_month_of_year
Load script and results

Overview

The same dataset and scenario as the first example are used.

In this example, the organizational policy is for March to be the first month of the financial year.

Create a field, ‘in_months_to_date’, that determines which transactions took place in the same quarter up to
May 15, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonthstodate(3,date,'05/15/2022', 0,3) as in_months_to_date

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

Script syntax and chart functions - Qlik Sense, May 2023 713

5 Script and chart functions

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_months_to_date

date previous_qtr_to_date

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 -1

4/1/2022 -1

5/7/2022 -1

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 714

5 Script and chart functions

By using 3 as the first_month_of_year argument in the inmonthstodate() function, the function begins the
year on March 1 and then divides the year into quarters based on the first argument provided. Therefore, the
quarter segments are:

l Mar-May
l Jun-Aug
l Sep-Nov
l Dec-Feb

The base_date of May 15 then segments the Mar-May quarter by setting its end boundary as May 15.

Diagram of inmonthstodate function with March set as first month of the year.

Therefore, any transaction that occurs between March 1 and May 15 will return a Boolean result of TRUE, and
transactions with dates outside these boundaries will return a value of FALSE.

Example 4 – Chart example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

In this example, the dataset is unchanged and loaded into the app. The task is to create a calculation that
determines whether transactions took place in the same quarter as May 15 as a measure in a chart of the app.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

Script syntax and chart functions - Qlik Sense, May 2023 715

5 Script and chart functions

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

date

To calculate whether transactions took place in the same quarter as May 15, create the following measure:

=inmonthstodate(3,date,'05/15/2022', 0)

date =inmonthstodate(3,date,'05/15/2022', 0)

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 -1

5/7/2022 -1

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 716

5 Script and chart functions

date =inmonthstodate(3,date,'05/15/2022', 0)

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

The ‘in_months_to_date’ measure is created in the chart by using the inmonthstodate() function.

The first argument provided is 3, dividing the year into quarter segments. The second argument identifies
which field is being evaluated. The third argument is a hard-coded date May 15 which is the base_date that
defines the end boundary of the segment. A period_no of 0 is the final argument.

Diagram of inmonthstodate function with quarter segments.

Any transaction that occurs between April 1 and May 15 will return a Boolean result of TRUE. Transaction
dates outside of that segment will return FALSE.

Example 5 – Scenario
Load script and results

Overview

In this example, a dataset is loaded into a table called ‘Sales’. The table contains the following fields:

l Product ID
l Product type
l Sales date
l Sales price

The end user would like a chart that displays, by product type, the sales of products sold in the period leading
up to December 24, 2022. The user would like to be able to define the length of this period.

Load script

SET vPeriod = 1;

Products:

Load

Script syntax and chart functions - Qlik Sense, May 2023 717

5 Script and chart functions

*

Inline

[

product_id,product_type,sales_date,sales_price

8188,product A,'9/19/2022',37.23

8189,product D,'10/27/2022',17.17

8190,product C,'10/30/2022',88.27

8191,product B,'10/31/2022',57.42

8192,product D,'11/16/2022',53.80

8193,product D,'11/28/2022',82.06

8194,product A,'12/2/2022',40.39

8195,product B,'12/5/2022',87.21

8196,product C,'12/15/2022',95.93

8197,product B,'12/16/2022',45.89

8198,product C,'12/19/2022',36.23

8199,product D,'12/22/2022',25.66

8200,product D,'12/23/2022',82.77

8201,product A,'12/24/2022',69.98

8202,product A,'12/24/2022',76.11

8203,product B,'12/26/2022',25.12

8204,product B,'12/27/2022',46.23

8205,product B,'12/27/2022',84.21

8206,product C,'12/28/2022',96.24

8207,product D,'12/29/2022',67.67

];

Results

Load the data and open a sheet.

At the start of the load script, a variable, vPeriod, is created that is tied to the variable input control.

Do the following:

1. In the assets panel, click Custom objects.

2. Select Qlik Dashboard bundle and add a Variable input to your sheet.

3. Enter a title for the chart.

4. Under Variable, select vPeriod as the name and set the object to show as a Drop down.

5. Under Values, click Dynamic values. Enter the following:
='1~month|2~bi-month|3~quarter|4~tertial|6~half-year'.

6. Add a new table to the sheet.

7. Under Data in the properties panel, add product_type as a dimension.

8. Add the following expression as a measure:
=sum(if(inmonthstodate($(vPeriod),sales_date,makedate(2022,12,24),0),sales_price,0))

9. Set the measure’s Number formatting to Money.

Script syntax and chart functions - Qlik Sense, May 2023 718

5 Script and chart functions

product_type
=sum(if(inmonthstodate($(vPeriod),sales_date,makedate(2022,12,24),0),sales_
price,0))

product A $186.48

product B $190.52

product C $220.43

product D $261.46

Results table

The inmonthstodate() function uses the user input as its argument to define the size of the starting segment
of the year.

The function passes in the sales date of each of the products as the inmonthstodate() function’s second
argument. By using December 24 as the third argument in the inmonthstodate() function, products with sales
dates that occur in the defined period up to and including December 24 return a Boolean value of TRUE. The
sum function adds the sales of these products.

inmonthtodate
Returns True if date lies inside the part of month containing basedate up until and including the
last millisecond of basedate.

Syntax:
InMonthToDate (timestamp, base_date, period_no)

Return data type: Boolean

Diagram of inmonthtodate function.

The inmonthtodate() function identifies a selected month as a segment. The start boundary is the beginning
of the month. The end boundary can be set as a later date in the month. It then determines whether a set of
dates fall into this segment or not, returning a TRUE or FALSE Boolean value.

Argument Description

timestamp The date that you want to compare with base_date.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 719

5 Script and chart functions

Argument Description

base_date Date that is used to evaluate the month.

period_no The month can be offset by period_no. period_no is an integer, where the value 0
indicates the month which contains base_date. Negative values in period_no indicate
preceding months and positive values indicate succeeding months.

When to use it

The inmonthtodate() function returns a Boolean result. Typically, this type of function is used as a condition
in an if expression. The inmonthtodate() function returns an aggregation or calculation that depends on
whether a date occurred in the month up to and including the date in question.

For example, the inmonthtodate() function can be used to identify all equipment manufactured in a month
up to a specific date.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

inmonthtodate ('01/25/2013', '25/01/2013', 0) Returns True

inmonthtodate ('01/25/2013', '24/01/2013', 0) Returns False

inmonthtodate ('01/25/2013', '28/02/2013', -1) Returns True

Function examples

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2023 720

5 Script and chart functions

l A dataset containing a set of transactions for 2022 is loaded into a table called ‘Transactions’.
l A date field is provided in the DateFormat system variable (MM/DD/YYYY) format.
l A preceding load statement containing:

l The inmonthtodate() function which is set as the field, ‘in_month_to_date’. This determines
which transactions took place between July 1 and July 26, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonthtodate(date,'07/26/2022', 0) as in_month_to_date

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_month_to_date

Script syntax and chart functions - Qlik Sense, May 2023 721

5 Script and chart functions

date in_month_to_date

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 0

5/7/2022 0

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 -1

7/22/2022 -1

7/23/2022 -1

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Results table

The ‘in_month_to_date’ field is created in the preceding load statement by using the inmonthtodate()

function.

The first argument identifies which field is being evaluated. The second argument is a hard-coded date, July
26, which is the base_date. This base_date argument identifies which month is segmented and the end
boundary of that segment.

A period_no of 0 is the final argument meaning that the function is not comparing months preceding or
following the segmented month.

Script syntax and chart functions - Qlik Sense, May 2023 722

5 Script and chart functions

Diagram of inmonthtodate function with no additional arguments.

As a result, any transaction that occurs between July 1 and July 26 returns a Boolean result of TRUE. Any
transaction that occurs in July after July 26 returns a Boolean result of FALSE as will any transaction in any
other month of the year.

Example 2 – period_no
Load script and results

Overview

The same dataset and scenario as the first example are used.

In this example, the task is to create a field, ‘six_months_prior’, that determines which transactions took
place a full six months before July 1 and July 26.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonthtodate(date,'07/26/2022', -6) as six_months_prior

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

Script syntax and chart functions - Qlik Sense, May 2023 723

5 Script and chart functions

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l six_months_prior

date six_months_prior

1/7/2022 -1

1/19/2022 -1

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 0

5/7/2022 0

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 724

5 Script and chart functions

By using -6 as the period_no argument in the inmonthtodate() function, the boundaries of the comparator
month segment shift by six months. Initially the month segment equates to between July 1 and July 26. The
period_no then offsets this segment by a negative six months and the date boundaries are shifted and fall
between January 1 and January 26.

Diagram of inmonthtodate function with period_no set to -6.

As a result, any transaction that occurs between January 1 and January 26 will return a Boolean result of
TRUE.

Example 3 – Chart example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

In this example, the dataset is unchanged and loaded into the app. The task is to create a calculation that
determines whether transactions took place between July 1 and July 26 as a measure in a chart of the app.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

Script syntax and chart functions - Qlik Sense, May 2023 725

5 Script and chart functions

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

date

To calculate whether transactions took place between July 1 and July 26, create the following measure:

=inmonthtodate(date,'07/26/2022', 0)

date =inmonthtodate(date,'07/26/2022', 0)

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 0

5/7/2022 0

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 -1

7/22/2022 -1

7/23/2022 -1

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 726

5 Script and chart functions

date =inmonthtodate(date,'07/26/2022', 0)

9/26/2022 0

10/14/2022 0

10/29/2022 0

The ‘in_month_to_date’ field measure is created in the chart by using the inmonthtodate() function.

The first argument identifies which field is being evaluated. The second argument is a hard-coded date, July
26, which is the base_date. This base_date argument identifies which month is segmented and the end
boundary of that segment. A period_no of 0 is the final argument. This means that the function is not
comparing months preceding or following the segmented month.

Diagram of inmonthtodate function with no additional arguments.

As a result, any transaction that occurs between July 1 and July 26 returns a Boolean result of TRUE. Any
transaction that occurs in July after July 26 returns a Boolean result of FALSE as will any transaction in any
other month of the year.

Example 4 – Scenario
Load script and results

Overview

In this example, a dataset is loaded into a table called ‘Products’. The table contains the following fields:

l Product ID
l Manufacture date
l Cost price

Due to equipment error, products that were manufactured in the month of July 2022 were defective. The issue
was resolved on July 27, 2022.

The end user would like a chart that displays, by month, the status of products that were manufactured as
‘defective’ (Boolean TRUE) or ‘faultless’ (Boolean FALSE) and the cost of the products manufactured in that
month.

Script syntax and chart functions - Qlik Sense, May 2023 727

5 Script and chart functions

Load script

Products:

Load

*

Inline

[

product_id,manufacture_date,cost_price

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l =monthname(manufacture_date)

l =if(Inmonthtodate(manufacture_date,makedate(2022,07,26),0),'Defective','Faultless')

To calculate the sum cost of the products, create this measure:

=sum(cost_price)

Set the measure’s Number Formatting to Money.

monthname
(manufacture_date)

if(Inmonthtodate(manufacture_date,makedate
(2022,07,26),0),'Defective','Faultless')

Sum(cost_
price)

Jan 2022 Faultless $54.40

Feb 2022 Faultless $145.69

Mar 2022 Faultless $53.80

Results table

Script syntax and chart functions - Qlik Sense, May 2023 728

5 Script and chart functions

monthname
(manufacture_date)

if(Inmonthtodate(manufacture_date,makedate
(2022,07,26),0),'Defective','Faultless')

Sum(cost_
price)

Apr 2022 Faultless $82.06

May 2022 Faultless $127.60

Jun 2022 Faultless $141.82

Jul 2022 Defective $144.66

Jul 2022 Faultless $69.98

Aug 2022 Faultless $147.46

Sep 2022 Faultless $84.21

Oct 2022 Faultless $163.91

The inmonthtodate() function returns a Boolean value when evaluating the manufacturing dates of each of
the products.

For the dates that return a Boolean value of TRUE, the product is marked as ‘Defective’. For any product
returning a value of FALSE, and therefore not made in the month up to and including July 26, it marks the
products as ‘Faultless’.

inquarter
This function returns True if timestamp lies inside the quarter containing base_date.

Syntax:
InQuarter (timestamp, base_date, period_no[, first_month_of_year])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Diagram of inquarter() function's range

Script syntax and chart functions - Qlik Sense, May 2023 729

5 Script and chart functions

In other words, the inquarter() function divides the year into four equal quarters between January 1 and
December 31. You can use the first_month_of_year argument to change what month is considered the first
in your app, and the quarters will change based on that argument. The base_date, the function identifies
which quarter should be used as the comparator for the function. Finally, the function returns a Boolean result
when comparing date values to that quarter segment.

When to use it

The inquarter() function returns a Boolean result. Typically, this type of function will be used as a condition
in an if expression. This returns an aggregation or calculation that depends on whether a date occurred in
the selected quarter.

For example, the inquarter() function can be used to identify all equipment manufactured in a quarter
segment based on the dates when the equipment was manufactured.

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the quarter.

period_no The quarter can be offset by period_no. period_no is an integer, where the value 0
indicates the quarter which contains base_date. Negative values in period_no indicate
preceding quarters and positive values indicate succeeding quarters.

first_month_
of_year

If you want to work with (fiscal) years not starting in January, indicate a value between 2
and 12 in first_month_of_year.

Arguments

You can use the following values to set the first month of year in the first_month_of_year argument:

Month Value

February 2

March 3

April 4

May 5

June 6

July 7

August 8

September 9

October 10

November 11

December 12

first_month_of_year values

Script syntax and chart functions - Qlik Sense, May 2023 730

5 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

inquarter ('01/25/2013', '01/01/2013', 0) Returns TRUE

inquarter ('01/25/2013', '04/01/2013', 0) Returns FALSE

inquarter ('01/25/2013', '01/01/2013', -1) Returns FALSE

inquarter ('12/25/2012', '01/01/2013', -1) Returns TRUE

inquarter ('01/25/2013', '03/01/2013', 0, 3) Returns FALSE

inquarter ('03/25/2013', '03/01/2013', 0, 3) Returns TRUE

Function examples

Example 1 - No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions in 2022 which is loaded into a table called ‘Transactions’.
l A preceding load which contains the inquarter() function that is set as the ‘in_quarter’ field, and

determines which transactions took place in the same quarter as May 15, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inquarter (date,'05/15/2022', 0) as in_quarter

;

Script syntax and chart functions - Qlik Sense, May 2023 731

5 Script and chart functions

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_quarter

date in_quarter

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 -1

5/7/2022 -1

5/16/2022 -1

6/15/2022 -1

Results table

Script syntax and chart functions - Qlik Sense, May 2023 732

5 Script and chart functions

date in_quarter

6/26/2022 -1

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

The ‘in_quarter’ field is created in the preceding load statement by using the inquarter() function. The first
argument identifies which field is being evaluated. The second argument is a hard-coded date for May 15 that
identifies which quarter to define as the comparator. A period_no of 0 is the final argument and ensures the
inquarter() function does not compare quarters preceding or following the segmented quarter.

Diagram of inquarter() function with May 15 as the base date

Any transaction that occurs between April 1 and the end of June 30 returns a Boolean result of TRUE.

Example 2 - period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2023 733

5 Script and chart functions

l A dataset containing a set of transactions in 2022 which is loaded into a table called ‘Transactions’.
l A preceding load which contains the inquarter() function that is set as the ‘previous_quarter’ field,

and determines which transactions took place in the quarter preceding the quarter of May 15, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inquarter (date,'05/15/2022', -1) as previous_qtr

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_qtr

date previous_qtr

1/7/2022 -1

Results table

Script syntax and chart functions - Qlik Sense, May 2023 734

5 Script and chart functions

date previous_qtr

1/19/2022 -1

2/5/2022 -1

2/28/2022 -1

3/16/2022 -1

4/1/2022 0

5/7/2022 0

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Using -1 as the period_no argument in the inquarter() function shifts the boundaries of the comparator
quarter back by a full quarter. May 15 falls into the second quarter of the year and therefore the segment
initially equates to the quarter of April 1 to June 30. The period_no offsets this segment by a negative three
months and causes the date boundaries to become January 1 to March 30.

Script syntax and chart functions - Qlik Sense, May 2023 735

5 Script and chart functions

Diagram of inquarter() function with May 15 as the base date

Therefore, any transaction that occurs between January 1 and March 30 will return a Boolean result of TRUE.

Example 3 - first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions in 2022 which is loaded into a table called ‘Transactions’.
l A preceding load which contains the inquarter() function that is set as the ‘in_quarter’ field, and

determines which transactions took place in the same quarter as May 15, 2022.

However, in this example, the organizational policy is for March to be the first month of the financial year.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inquarter (date,'05/15/2022', 0, 3) as in_quarter

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

Script syntax and chart functions - Qlik Sense, May 2023 736

5 Script and chart functions

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_qtr

date previous_qtr

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 -1

4/1/2022 -1

5/7/2022 -1

5/16/2022 -1

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 737

5 Script and chart functions

date previous_qtr

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Using 3 as the first_month_of_year argument in the inquarter() function sets March 1 as the start of the
year and then divides the year into quarters. Therefore, the quarter segments are Mar-May, Jun-Aug, Sep-Nov,
Dec-Feb. The base_date of May 15 sets the Mar-May quarter as the comparator quarter for the function.

Diagram of inquarter() function with March set as the first month of the year

Therefore, any transaction that occurs between March 1 and May 31 will return a Boolean result of TRUE.

Example 4 - Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions in 2022 which is loaded into a table called ‘Transactions’.
l A preceding load which contains the inquarter() function that is set as the ‘in_quarter’ field, and

determines which transactions took place in the same quarter as May 15, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

Script syntax and chart functions - Qlik Sense, May 2023 738

5 Script and chart functions

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

l date

Create the following measure to calculate whether transactions took place in the same quarter as May 15:

=inquarter(date,'05/15/2022', 0)

date in_quarter

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 -1

5/7/2022 -1

5/16/2022 -1

6/15/2022 -1

6/26/2022 -1

7/9/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 739

5 Script and chart functions

date in_quarter

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

The ‘in_quarter’ measure is created in the chart by using the inquarter() function. The first argument
identifies which field is being evaluated. The second argument is a hard-coded date for May 15 that identifies
which quarter to define as the comparator. A period_no of 0 is the final argument and ensures the inquarter

() function does not compare quarters preceding or following the segmented quarter.

Diagram of inquarter() function with May 15 as the base date

Any transaction that occurs between April 1 and the end of June 30 returns a Boolean result of TRUE.

Example 5 - Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called ‘Products’.
l The table contains the following fields:

l product ID
l product type

Script syntax and chart functions - Qlik Sense, May 2023 740

5 Script and chart functions

l manufacture date
l cost price

It has been identified that due to equipment error, products that were manufactured in the quarter of May 15,
2022 were defective. The end user would like a chart that displays, by quarter name, the status of which
products manufactured were ‘defective’ or ‘faultless’ and the cost of the products manufactured in that
quarter.

Load script

Products:

Load

*

Inline

[

product_id,manufacture_date,cost_price

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

=quartername(manufacture_date)

Create the following measures:

l =if(only(InQuarter(manufacture_date,makedate(2022,05,15),0)),'Defective','Faultless'), to
identify which of the products are defective and which are faultless using the inquarter() function.

l =sum(cost_price), to show the sum of the cost of each product.

Script syntax and chart functions - Qlik Sense, May 2023 741

5 Script and chart functions

Do the following:

1. Set the measure’s Number Formatting to Money.

2. Under Appearance, turn off Totals.

quartername
(manufacture_date)

=if(only(InQuarter(manufacture_date,makedate
(2022,05,15),0)),'Defective','Faultless')

Sum(cost_
price)

Jan-Mar 2022 Faultless 253.89

Apr-Jun 2022 Defective 351.48

Jul-Sep 2022 Faultless 446.31

Oct-Dec 2022 Faultless 163.91

Results table

The inquarter() function returns a Boolean value when evaluating the manufacturing dates of each of the
products. For any product manufactured in the quarter that contains May 15, the inquarter() function
returns a Boolean value of TRUE and marks the products as ‘Defective’. For any product returning a value of
FALSE, and therefore not manufactured in that quarter, it marks the products as ‘Faultless’.

inquartertodate
This function returns True if timestamp lies inside the part of the quarter containing base_date
up until and including the last millisecond of base_date.

Syntax:
InQuarterToDate (timestamp, base_date, period_no [, first_month_of_year])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Diagram of inquartertodate function

Script syntax and chart functions - Qlik Sense, May 2023 742

5 Script and chart functions

The inquartertodate() function divides the year into four equal quarters between January 1 and December
31 (or the user-defined start of year and its corresponding end date). Using the base_date, the function will
then segment a particular quarter, with the base_date identifying both which quarter and the maximum
allowed date for that quarter segment. Finally, the function returns a Boolean result when comparing the
prescribed date values to that segment.

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the quarter.

period_no The quarter can be offset by period_no. period_no is an integer, where the value 0
indicates the quarter which contains base_date. Negative values in period_no indicate
preceding quarters and positive values indicate succeeding quarters.

first_month_
of_year

If you want to work with (fiscal) years not starting in January, indicate a value between 2
and 12 in first_month_of_year.

Arguments

When to use it
The inquartertodate() function returns a Boolean result. Typically, this type of function will be used as a
condition in an if expression. The inquartertodate() function would be used to return an aggregation or
calculation dependent on whether a date evaluated occurred in the quarter up to and including the date in
question.

For example, the inquartertodate() function can be used to identify all equipment manufactured in a
quarter up to a specific date.

Example Result

inquartertodate

('01/25/2013',

'03/25/2013', 0)

Returns TRUE, since the value of timestamp, 01/25/2013, lies within the three-
month period from 01/01/2013 to 03/25/2013, in which the value of base_date,
03/25/2013, lies.

inquartertodate

('04/26/2013',

'03/25/2013', 0)

Returns FALSE, since 04/26/2013 is outside the same period as the previous
example.

inquartertodate

('02/25/2013',

'06/09/2013', -1)

Returns TRUE, since the value of period_no, -1, shifts the search period back one
period of three months (one quarter of the year). This makes the search period
01/01/2013 to 03/09/2013.

inquartertodate

('03/25/2006',

'04/15/2006', 0, 2)

Returns TRUE, since the value of first_month_of_year is set to 2, which makes
the search period 02/01/2006 to 04/15/2006 instead of 04/01/2006 to 04/15/2006.

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 743

5 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called Transactions.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, in_quarter_to_date, that determines which transactions took place in the

quarter up until May 15, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inquartertodate(date,'05/15/2022', 0) as in_quarter_to_date

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

Script syntax and chart functions - Qlik Sense, May 2023 744

5 Script and chart functions

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_quarter_to_date

date in_quarter_to_date

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 -1

5/7/2022 -1

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 745

5 Script and chart functions

date in_quarter_to_date

9/26/2022 0

10/14/2022 0

10/29/2022 0

The in_quarter_to_date field is created in the preceding load statement by using the inquartertodate()

function. The first argument provided identifies which field is being evaluated. The second argument is a hard-
coded date for the for May 15, which is the base_date that identifies which quarter to segment and defines the
end boundary of that segment. A period_no of 0 is the final argument, meaning that the function is not
comparing quarters preceding or following the segmented quarter.

Diagram of inquartertodate function, no additional arguments

Any transaction that occurs in between April 1 and May 15 returns a Boolean result of TRUE. Transactions dates
of May 16 and later will return FALSE, as do any transactions before April 1.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, previous_qtr_to_date, that determines which transactions took place a full

quarter before the quarter segment ending on May 15, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inquartertodate(date,'05/15/2022', -1) as previous_qtr_to_date

Script syntax and chart functions - Qlik Sense, May 2023 746

5 Script and chart functions

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_qtr_to_date

date previous_qtr_to_date

1/7/2022 -1

1/19/2022 -1

2/5/2022 -1

2/28/2022 0

3/16/2022 0

4/1/2022 0

5/7/2022 0

5/16/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 747

5 Script and chart functions

date previous_qtr_to_date

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

A period_no value of -1 indicates that the inquartertodate () function compares the input quarter segment
to the preceding quarter. May 15 falls into the second quarter of the year, so the segment initially equates to
between April 1 and May 15. The period_no then offsets this segment by three months earlier, causing the
date boundaries to become January 1 to February 15.

Diagram of inquartertodate function, period_no example

Therefore, any transaction that occurs between January 1 and February 15 will return a Boolean result ofTRUE.

Example 3 – first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2023 748

5 Script and chart functions

l The same dataset and scenario as the first example.
l The creation of a field, in_quarter_to_date, that determines which transactions took place in the

same quarter up to May 15, 2022.

In this example, we set March as the first month of the fiscal year.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inquartertodate(date,'05/15/2022', 0,3) as in_quarter_to_date

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_quarter_to_date

Script syntax and chart functions - Qlik Sense, May 2023 749

5 Script and chart functions

date in_quarter_to_date

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 -1

4/1/2022 -1

5/7/2022 -1

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Results table

By using 3 as the first_month_of_year argument in the inquartertodate() function, the function begins the
year on March 1, and then divides the year into quarters. Therefore, the quarter segments are:

l March to May
l June to August
l September to November
l December to February

The base_date of May 15 then segments the March to May quarter by setting its end boundary as May 15.

Script syntax and chart functions - Qlik Sense, May 2023 750

5 Script and chart functions

Diagram of inquartertodate function, first_month_of_year example

Therefore, any transaction that occurs in between the March 1 and May 15 will return a Boolean result of TRUE,
while transactions with dates outside these boundaries will return a value of FALSE.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this example, the
unchanged dataset is loaded into the application. The calculation that determines which transactions took
place in the same quarter as May 15 is created as a measure in the chart object.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

Script syntax and chart functions - Qlik Sense, May 2023 751

5 Script and chart functions

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:date.

Create the following measure:

=inquartertodate(date,'05/15/2022', 0)

date =inquartertodate(date,'05/15/2022', 0)

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 -1

5/7/2022 -1

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 752

5 Script and chart functions

The in_quarter_to_date measure is created in a chart object by using the inquartertodate() function. The
first argument is the date field being evaluated. The second argument is a hard-coded date for May 15, which
is the base_date that identifies which quarter to segment and defines the end boundary of that segment. A
period_no of 0 is the final argument, meaning that the function is not comparing quarters preceding or
following the segmented quarter.

Diagram of inquartertodate function, chart object example

Any transaction that occurs between April 1 and May 15 returns a Boolean result of TRUE. Transactions on May
16 and later will return FALSE, as do any transactions before April 1.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called Products.
l Information concerning product ID, manufacture date, and cost price.

On May 15, 2022, a piece of equipment error was identified in the manufacturing process and resolved.
Products that were manufactured in that quarter up to this date will be defective. The end user would like a
chart object that displays, by quarter name, the status of whether the product is ‘defective’ or ‘faultless’ and
the cost of the products manufactured in that quarter to date.

Load script

Products:

Load

*

Inline

[

product_id,manufacture_date,cost_price

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

Script syntax and chart functions - Qlik Sense, May 2023 753

5 Script and chart functions

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table. Create a dimension to show the quarter names:
=quartername(manufacture_date)

2. Next, create a dimension to identify which of the products are defective and which are faultless:
=if(inquartertodate(manufacture_date,makedate(2022,05,15),0),'Defective','Faultless')

3. Create a measure to sum the cost_price of the products:
=sum(cost_price)

4. Set the measure's Number formatting to Money.

quartername
(manufacture_date)

if(inquartertodate(manufacture_date,makedate
(2022,05,15),0),'Defective','Faultless')

Sum(cost_
price)

Jan-Mar 2022 Faultless $253.89

Apr-Jun 2022 Faultless $229.03

Apr-Jun 2022 Defective $122.45

Jul-Sep 2022 Faultless $446.31

Oct-Dec 2022 Faultless $163.91

Results table

The inquartertodate() function returns a Boolean value when evaluating the manufacturing dates of each of
the products. For those that return a Boolean value of TRUE, it marks the products as ‘Defective’. For any
product returning a value of FALSE, and therefore not made in the quarter up to and including May 15, it
marks the products as ‘Faultless’.

inweek
This function returns True if timestamp lies inside the week containing base_date.

Script syntax and chart functions - Qlik Sense, May 2023 754

5 Script and chart functions

Syntax:
InWeek (timestamp, base_date, period_no[, first_week_day])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Diagram of inweek() function's range

The inweek() function uses the base_date argument to identify which seven-day period the date falls into.
The start day of the week is based on the FirstWeekDay system variable. However, you can also change the
first day of the week by using the first_week_day argument of the inweek() function.

After the selected week has been defined, the function will return Boolean results when comparing the
prescribed date values to that week segment.

When to use it

The inweek() function returns a Boolean result. Typically, this type of function will be used as a condition in
an if expression. The inweek() function returns an aggregation or calculation which depends on whether a
date evaluated occurred in the week with the selected date of the base_date argument.

For example, the inweek() function can be used to identify all equipment manufactured in a specific week.

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the week.

period_no The week can be offset by period_no. period_no is an integer, where the value 0 indicates
the week which contains base_date. Negative values in period_no indicate preceding
weeks and positive values indicate succeeding weeks.

first_week_
day By default, the first day of the week is Sunday (as determined by the FirstWeekDay system

variable), starting at midnight between Saturday and Sunday. The first_week_day
parameter supersedes the FirstWeekDay variable. To indicate the week starting on
another day, specify a flag between 0 and 6.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 755

5 Script and chart functions

Day Value

Monday 0

Tuesday 1

Wednesday 2

Thursday 3

Friday 4

Saturday 5

Sunday 6

first_week_day values

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

inweek

('01/12/2006',

'01/14/2006', 0)

Returns TRUE

inweek

('01/12/2006',

'01/20/2006', 0)

Returns FALSE

inweek

('01/12/2006',

'01/14/2006', -1)

Returns FALSE

inweek

('01/07/2006',

'01/14/2006', -1)

Returns TRUE

inweek

('01/12/2006',

'01/09/2006', 0, 3)

Returns FALSE because first_week_day is specified as 3 (Thursday), which
makes 01/12/2006 the first day of the week following the week containing
01/09/2006.

Function examples

These topics may help you work with this function:

Script syntax and chart functions - Qlik Sense, May 2023 756

5 Script and chart functions

Topic Default Flag / Value Description

FirstWeekDay (page 215) 6 / Sunday Defines the start day of each week.

Related topics

Example 1 - No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the month of January 2022 which is loaded into a table
called ‘Transactions’.

l The FirstWeekDay system variable which is set to 6 (Sunday).
l A preceding load which contains the following:

l The inweek() function, set as the field ‘in_week’ that determines which transactions took place
in the week of January 14, 2022.

l The weekday() function, set as the field ‘week_day’ that shows which day of the week
corresponds to each date.

Load script

SET FirstWeekDay=6;

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

weekday(date) as week_day,

inweek(date,'01/14/2022', 0) as in_week

;

Load

*

Inline

[

id,date,amount

8188,'01/02/2022',37.23

8189,'01/05/2022',17.17

8190,'01/06/2022',88.27

8191,'01/08/2022',57.42

8192,'01/09/2022',53.80

8193,'01/10/2022',82.06

8194,'01/11/2022',40.39

8195,'01/12/2022',87.21

8196,'01/13/2022',95.93

8197,'01/14/2022',45.89

8198,'01/15/2022',36.23

Script syntax and chart functions - Qlik Sense, May 2023 757

5 Script and chart functions

8199,'01/16/2022',25.66

8200,'01/17/2022',82.77

8201,'01/18/2022',69.98

8202,'01/26/2022',76.11

8203,'01/27/2022',25.12

8204,'01/28/2022',46.23

8205,'01/29/2022',84.21

8206,'01/30/2022',96.24

8207,'01/31/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week_day

l in_week

date week_day in_week

01/02/2022 Sun 0

01/05/2022 Wed 0

01/06/2022 Thu 0

01/08/2022 Sat 0

01/09/2022 Sun -1

01/10/2022 Mon -1

01/11/2022 Tue -1

01/12/2022 Wed -1

01/13/2022 Thu -1

01/14/2022 Fri -1

01/15/2022 Sat -1

01/16/2022 Sun 0

01/17/2022 Mon 0

01/18/2022 Tue 0

01/26/2022 Wed 0

01/27/2022 Thu 0

01/28/2022 Fri 0

01/29/2022 Sat 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 758

5 Script and chart functions

date week_day in_week

01/30/2022 Sun 0

01/31/2022 Mon 0

The ‘in_week’ field is created in the preceding load statement by using the inweek() function. The first
argument identifies which field is being evaluated. The second argument is a hard-coded date for January 14
which is the base_date. The base_date argument works in with the FirstWeekDay system variable to identify
the comparator week. A period_no of 0 — meaning that the function is not comparing weeks preceding or
following the segmented week — is the final argument.

The FirstWeekDay system variable determines that weeks begin on a Sunday and end on a Saturday.
Therefore, January would be broken into weeks according to the diagram below, with the dates between
January 9 and 15 providing the valid period for the inweek() calculation:

Diagram of calendar with the inweek() function's range highlighted

Any transaction that occurs between January 9 and the 15 of January returns a Boolean result of TRUE.

Script syntax and chart functions - Qlik Sense, May 2023 759

5 Script and chart functions

Example 2 - period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset containing a set of transactions for 2022 is loaded into a table called ‘Transactions’.
l The FirstWeekDay system variable which is set to 6 (Sunday).
l A preceding load which contains the following:

l The inweek () function, set as the field ‘prev_week’ that determines which transactions took
place a full week before the week of January 14, 2022.

l The weekday() function, set as the field ‘week_day’ that shows which day of the week
corresponds to each date.

Load script

SET FirstWeekDay=6;

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

weekday(date) as week_day,

inweek(date,'01/14/2022', -1) as prev_week

;

Load

*

Inline

[

id,date,amount

8188,'01/02/2022',37.23

8189,'01/05/2022',17.17

8190,'01/06/2022',88.27

8191,'01/08/2022',57.42

8192,'01/09/2022',53.80

8193,'01/10/2022',82.06

8194,'01/11/2022',40.39

8195,'01/12/2022',87.21

8196,'01/13/2022',95.93

8197,'01/14/2022',45.89

8198,'01/15/2022',36.23

8199,'01/16/2022',25.66

8200,'01/17/2022',82.77

8201,'01/18/2022',69.98

8202,'01/26/2022',76.11

8203,'01/27/2022',25.12

8204,'01/28/2022',46.23

8205,'01/29/2022',84.21

Script syntax and chart functions - Qlik Sense, May 2023 760

5 Script and chart functions

8206,'01/30/2022',96.24

8207,'01/31/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week_day

l prev_week

date week_day prev_week

01/02/2022 Sun -1

01/05/2022 Wed -1

01/06/2022 Thu -1

01/08/2022 Sat -1

01/09/2022 Sun 0

01/10/2022 Mon 0

01/11/2022 Tue 0

01/12/2022 Wed 0

01/13/2022 Thu 0

01/14/2022 Fri 0

01/15/2022 Sat 0

01/16/2022 Sun 0

01/17/2022 Mon 0

01/18/2022 Tue 0

01/26/2022 Wed 0

01/27/2022 Thu 0

01/28/2022 Fri 0

01/29/2022 Sat 0

01/30/2022 Sun 0

01/31/2022 Mon 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 761

5 Script and chart functions

Using -1 as the period_no argument in the inweek() function shifts the boundaries of the comparator week
back by a full seven days. With a period_no of 0 the week would be between January 9 and 15. But in this
example, the period_no of -1 shifts the start and end boundary of this segment backwards by one week. The
date boundaries become January 2 to January 8.

Diagram of calendar with the inweek() function's range highlighted

Therefore, any transaction that occurs between January 2 and January 8 will return a Boolean result of TRUE.

Example 3 - first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset containing a set of transactions for 2022 is loaded into a table called ‘Transactions’.
l The FirstWeekDay system variable which is set to 6 (Sunday).

Script syntax and chart functions - Qlik Sense, May 2023 762

5 Script and chart functions

l A preceding load which contains the following:
l The inweek() function, set as the field ‘in_week’ that determines which transactions took place

in the week of January 14, 2022.
l The weekday() function, set as the field ‘week_day’ that shows which day of the week

corresponds to each date.

Load script

SET FirstWeekDay=6;

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

weekday(date) as week_day,

inweek(date,'01/14/2022', 0, 0) as in_week

;

Load

*

Inline

[

id,date,amount

8188,'01/02/2022',37.23

8189,'01/05/2022',17.17

8190,'01/06/2022',88.27

8191,'01/08/2022',57.42

8192,'01/09/2022',53.80

8193,'01/10/2022',82.06

8194,'01/11/2022',40.39

8195,'01/12/2022',87.21

8196,'01/13/2022',95.93

8197,'01/14/2022',45.89

8198,'01/15/2022',36.23

8199,'01/16/2022',25.66

8200,'01/17/2022',82.77

8201,'01/18/2022',69.98

8202,'01/26/2022',76.11

8203,'01/27/2022',25.12

8204,'01/28/2022',46.23

8205,'01/29/2022',84.21

8206,'01/30/2022',96.24

8207,'01/31/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week_day

l in_week

Script syntax and chart functions - Qlik Sense, May 2023 763

5 Script and chart functions

date week_day in_week

01/02/2022 Sun 0

01/05/2022 Wed 0

01/06/2022 Thu 0

01/08/2022 Sat 0

01/09/2022 Sun 0

01/10/2022 Mon -1

01/11/2022 Tue -1

01/12/2022 Wed -1

01/13/2022 Thu -1

01/14/2022 Fri -1

01/15/2022 Sat -1

01/16/2022 Sun -1

01/17/2022 Mon 0

01/18/2022 Tue 0

01/26/2022 Wed 0

01/27/2022 Thu 0

01/28/2022 Fri 0

01/29/2022 Sat 0

01/30/2022 Sun 0

01/31/2022 Mon 0

Results table

Using 0 as the first_week_day argument in the inweek() function supersedes the FirstWeekDay system
variable and sets Monday as the first day of the week.

Script syntax and chart functions - Qlik Sense, May 2023 764

5 Script and chart functions

Diagram of calendar with the inweek() function's range highlighted

Therefore, any transaction that occurs between January 10 and 16 will return a Boolean result of TRUE.

Example 4 - Chart object example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

However, in this example, the dataset is unchanged and loaded into the application. Create a measure in the
results table to determine which transactions took place in the week of January 14, 2022.

Load script

SET FirstWeekDay=6;

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Script syntax and chart functions - Qlik Sense, May 2023 765

5 Script and chart functions

Inline

[

id,date,amount

8188,'01/02/2022',37.23

8189,'01/05/2022',17.17

8190,'01/06/2022',88.27

8191,'01/08/2022',57.42

8192,'01/09/2022',53.80

8193,'01/10/2022',82.06

8194,'01/11/2022',40.39

8195,'01/12/2022',87.21

8196,'01/13/2022',95.93

8197,'01/14/2022',45.89

8198,'01/15/2022',36.23

8199,'01/16/2022',25.66

8200,'01/17/2022',82.77

8201,'01/18/2022',69.98

8202,'01/26/2022',76.11

8203,'01/27/2022',25.12

8204,'01/28/2022',46.23

8205,'01/29/2022',84.21

8206,'01/30/2022',96.24

8207,'01/31/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

l date

Create the following measures:

l =inweek (date,'01/14/2022',0), to calculate whether transactions took place in the same week as
January 14.

l =weekday(date), to show which day of the week corresponds to each date.

date week_day =inweek (date,'01/14/2022',0)

01/02/2022 Sun 0

01/05/2022 Wed 0

01/06/2022 Thu 0

01/08/2022 Sat 0

01/09/2022 Sun -1

01/10/2022 Mon -1

01/11/2022 Tue -1

Results table

Script syntax and chart functions - Qlik Sense, May 2023 766

5 Script and chart functions

date week_day =inweek (date,'01/14/2022',0)

01/12/2022 Wed -1

01/13/2022 Thu -1

01/14/2022 Fri -1

01/15/2022 Sat -1

01/16/2022 Sun 0

01/17/2022 Mon 0

01/18/2022 Tue 0

01/26/2022 Wed 0

01/27/2022 Thu 0

01/28/2022 Fri 0

01/29/2022 Sat 0

01/30/2022 Sun 0

01/31/2022 Mon 0

The ‘in_week’ measure is created in chart by using the inweek() function. The first argument identifies which
field is being evaluated. The second argument is a hard-coded date for January 14 which is the base_date.
The base_date argument works in with the FirstWeekDay system variable to identify the comparator week. A
period_no of 0 is the final argument.

The FirstWeekDay system variable determines that weeks begin on a Sunday and end on a Saturday.
Therefore, January would be broken into weeks according to the diagram below, with the dates between
January 9 and 15 providing the valid period for the inweek() calculation:

Script syntax and chart functions - Qlik Sense, May 2023 767

5 Script and chart functions

Diagram of calendar with the inweek() function's range highlighted

Any transaction that occurs between January 9 and the 15 of January returns a Boolean result of TRUE.

Example 5 - Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called ‘Products’.
l The table contains the following fields:

l product ID
l product type
l manufacture date
l cost price

Script syntax and chart functions - Qlik Sense, May 2023 768

5 Script and chart functions

It has been identified that due to equipment error, products that were manufactured in the week of January
12 were defective. The end user would like a chart that displays, by week, the status of which products
manufactured were ‘defective’ or ‘faultless’ and the cost of the products manufactured in that week.

Load script

Products:

Load

*

Inline

[

product_id,manufacture_date,cost_price

8188,'01/02/2022',37.23

8189,'01/05/2022',17.17

8190,'01/06/2022',88.27

8191,'01/08/2022',57.42

8192,'01/09/2022',53.80

8193,'01/10/2022',82.06

8194,'01/11/2022',40.39

8195,'01/12/2022',87.21

8196,'01/13/2022',95.93

8197,'01/14/2022',45.89

8198,'01/15/2022',36.23

8199,'01/16/2022',25.66

8200,'01/17/2022',82.77

8201,'01/18/2022',69.98

8202,'01/26/2022',76.11

8203,'01/27/2022',25.12

8204,'01/28/2022',46.23

8205,'01/29/2022',84.21

8206,'01/30/2022',96.24

8207,'01/31/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

l =weekname(manufacture_date)

Create the following measures:

l =if(only(inweek(manufacture_date,makedate(2022,01,12),0)),'Defective','Faultless'), to
identify which of the products are defective and which are faultless using the inweek() function.

l =sum(cost_price), to show the sum of the cost of each product.

Do the following:

1. Set the measure’s Number Formatting to Money.

2. Under Appearance, turn off Totals.

Script syntax and chart functions - Qlik Sense, May 2023 769

5 Script and chart functions

weekname
(manufacture_date)

=if(only(inweek(manufacture_date,makedate(2022,01,12),0)),
'Defective','Faultless')

Sum(cost_
price)

2022/02 Faultless 200.09

2022/03 Defective 441.51

2022/04 Faultless 178.41

2022/05 Faultless 231.67

2022/06 Faultless 163.91

Results table

The inweek() function returns a Boolean value when evaluating the manufacturing dates of each of the
products. For any product manufactured in the week of January 12, the inweek() function returns a Boolean
value of TRUE and marks the products as ‘Defective’. For any product returning a value of FALSE, and
therefore not manufactured in that week, it marks the products as ‘Faultless’.

inweektodate
This function returns True if timestamp lies inside the part of week containing base_date up
until and including the last millisecond of base_date.

Syntax:
InWeekToDate (timestamp, base_date, period_no [, first_week_day])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Diagram of inweektodate function

The inweektodate() function uses the base_date parameter to identify a maximum boundary date of a week
segment, as well as its corresponding date for the start of the week, which is based on the FirstWeekDay

system variable (or user-defined first_week_day parameter). Once this week segment has been defined, the
function will then return Boolean results when comparing the prescribed date values to that segment.

Script syntax and chart functions - Qlik Sense, May 2023 770

5 Script and chart functions

When to use it
The inweektodate() function returns a Boolean result. Typically, this type of function will be used as a
condition in an if expression. This will return an aggregation or calculation dependent on whether a date
evaluated occurred during the week in question up to and including a particular date.

For example, the inweektodate() function can be used to calculate all sales made during a specified week up
to a particular date.

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the week.

period_no The week can be offset by period_no. period_no is an integer, where the value 0
indicates the week which contains base_date. Negative values in period_no indicate
preceding weeks and positive values indicate succeeding weeks.

first_week_day By default, the first day of the week is Sunday (as determined by the FirstWeekDay
system variable), starting at midnight between Saturday and Sunday. The first_week_
day parameter supersedes the FirstWeekDay variable. To indicate the week starting
on another day, specify a flag between 0 and 6.

For a week starting on Monday and ending on Sunday, use a flag of 0 for Monday, 1 for
Tuesday, 2 for Wednesday, 3 for Thursday, 4 for Friday, 5 for Saturday, and 6 for
Sunday.

Arguments

Example Interaction

inweektodate

('01/12/2006',

'01/12/2006', 0)

Returns TRUE.

inweektodate

('01/12/2006',

'01/11/2006', 0)

Returns FALSE.

inweektodate

('01/12/2006',

'01/18/2006', -1)

Returns FALSE.
Because period_no is specified as -1, the effective data that timestamp is
measured against is 01/11/2006.

inweektodate

('01/11/2006',

'01/12/2006', 0, 3)

Returns FALSE, since first_week_day is specified as 3 (Thursday), which
makes 01/12/2006 the first day of the week following the week containing
01/12/2006.

Function examples

These topics may help you work with this function:

Script syntax and chart functions - Qlik Sense, May 2023 771

5 Script and chart functions

Topic Default Flag / Value Description

FirstWeekDay (page 215) 6 / Sunday Defines the start day of each week.

Related topics

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the month of January 2022, which is loaded into a table
called Transactions.

l The data field provided in the TimestampFormat='M/D/YYYY h:mm:ss[.fff]' format.
l The creation of a field, in_week_to_date, which determines which transactions took place in the week

up until January 14, 2022.
l The creation of an additional field, named weekday, using the weekday() function. This new field is

created to show which day of the week corresponds to each date.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff]';

SET FirstWeekDay=6;

Transactions:

Load

*,

weekday(date) as week_day,

inweektodate(date,'01/14/2022', 0) as in_week_to_date

;

Load

*

Inline

Script syntax and chart functions - Qlik Sense, May 2023 772

5 Script and chart functions

[

id,date,amount

8188,'2022-01-02 12:22:06',37.23

8189,'2022-01-05 01:02:30',17.17

8190,'2022-01-06 15:36:20',88.27

8191,'2022-01-08 10:58:35',57.42

8192,'2022-01-09 08:53:32',53.80

8193,'2022-01-10 21:13:01',82.06

8194,'2022-01-11 00:57:13',40.39

8195,'2022-01-12 09:26:02',87.21

8196,'2022-01-13 15:05:09',95.93

8197,'2022-01-14 18:44:57',45.89

8198,'2022-01-15 06:10:46',36.23

8199,'2022-01-16 06:39:27',25.66

8200,'2022-01-17 10:44:16',82.77

8201,'2022-01-18 18:48:17',69.98

8202,'2022-01-26 04:36:03',76.11

8203,'2022-01-27 08:07:49',25.12

8204,'2022-01-28 12:24:29',46.23

8205,'2022-01-30 11:56:56',84.21

8206,'2022-01-30 14:40:19',96.24

8207,'2022-01-31 05:28:21',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week_day

l in_week_to_date

date week_day in_week_to_date

2022-01-02 12:22:06 Sun 0

2022-01-05 01:02:30 Wed 0

2022-01-06 15:36:20 Thu 0

2022-01-08 10:58:35 Sat 0

2022-01-09 08:53:32 Sun -1

2022-01-10 21:13:01 Mon -1

2022-01-11 00:57:13 Tue -1

2022-01-12 09:26:02 Wed -1

2022-01-13 15:05:09 Thu -1

2022-01-14 18:44:57 Fri -1

Results table

Script syntax and chart functions - Qlik Sense, May 2023 773

5 Script and chart functions

date week_day in_week_to_date

2022-01-15 06:10:46 Sat 0

2022-01-16 06:39:27 Sun 0

2022-01-17 10:44:16 Mon 0

2022-01-18 18:48:17 Tue 0

2022-01-26 04:36:03 Wed 0

2022-01-27 08:07:49 Thu 0

2022-01-28 12:24:29 Fri 0

2022-01-30 11:56:56 Sun 0

2022-01-30 14:40:19 Sun 0

2022-01-31 05:28:21 Mon 0

The in_week_to_date field is created in the preceding load statement by using the inweektodate() function.
The first argument provided identifies which field is being evaluated. The second argument is a hard-coded
date for January 14, which is the base_date that identifies which week to segment and defines the end
boundary of that segment. A period_no of 0 is the final argument, meaning that the function is not comparing
weeks preceding or following the segmented week.

The FirstWeekDay system variable determines that weeks begin on a Sunday and end on a Saturday.
Therefore, January would be broken into weeks according to the diagram below, with the dates between
January 9 and 14 providing the valid period for the inweekdodate() calculation:

Calendar diagram showing transaction dates which would return a Boolean result of TRUE

Any transaction that occurs in between January 9 and 14 returns a Boolean result of TRUE. Transactions before
and after the dates return a Boolean result of FALSE.

Script syntax and chart functions - Qlik Sense, May 2023 774

5 Script and chart functions

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, prev_week_to_date, that determines which transactions took place a full week

before the week segment ending on January 14, 2022.
l The creation of an additional field, named weekday, using the weekday() function. This is to show

which day of the week corresponds to each date.

Load script

SET FirstWeekDay=6;

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff]';

Transactions:

Load

*,

weekday(date) as week_day,

inweektodate(date,'01/14/2022', -1) as prev_week_to_date

;

Load

*

Inline

[

id,date,amount

8188,'2022-01-02 12:22:06',37.23

8189,'2022-01-05 01:02:30',17.17

8190,'2022-01-06 15:36:20',88.27

8191,'2022-01-08 10:58:35',57.42

8192,'2022-01-09 08:53:32',53.80

8193,'2022-01-10 21:13:01',82.06

8194,'2022-01-11 00:57:13',40.39

8195,'2022-01-12 09:26:02',87.21

8196,'2022-01-13 15:05:09',95.93

8197,'2022-01-14 18:44:57',45.89

8198,'2022-01-15 06:10:46',36.23

8199,'2022-01-16 06:39:27',25.66

8200,'2022-01-17 10:44:16',82.77

8201,'2022-01-18 18:48:17',69.98

8202,'2022-01-26 04:36:03',76.11

8203,'2022-01-27 08:07:49',25.12

8204,'2022-01-28 12:24:29',46.23

8205,'2022-01-30 11:56:56',84.21

8206,'2022-01-30 14:40:19',96.24

8207,'2022-01-31 05:28:21',67.67

];

Script syntax and chart functions - Qlik Sense, May 2023 775

5 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week_day

l prev_week_to_date

date week_day prev_week_to_date

2022-01-02 12:22:06 Sun -1

2022-01-05 01:02:30 Wed -1

2022-01-06 15:36:20 Thu -1

2022-01-08 10:58:35 Sat 0

2022-01-09 08:53:32 Sun 0

2022-01-10 21:13:01 Mon 0

2022-01-11 00:57:13 Tue 0

2022-01-12 09:26:02 Wed 0

2022-01-13 15:05:09 Thu 0

2022-01-14 18:44:57 Fri 0

2022-01-15 06:10:46 Sat 0

2022-01-16 06:39:27 Sun 0

2022-01-17 10:44:16 Mon 0

2022-01-18 18:48:17 Tue 0

2022-01-26 04:36:03 Wed 0

2022-01-27 08:07:49 Thu 0

2022-01-28 12:24:29 Fri 0

2022-01-30 11:56:56 Sun 0

2022-01-30 14:40:19 Sun 0

2022-01-31 05:28:21 Mon 0

Results table

A period_no value of -1 indicates that the inweektodate () function compares the input quarter segment to
the preceding week. The week segment initially equates to between January 9 and January 14. The period_no

then offsets both the start and end boundary of this segment to one week earlier, causing the date boundaries
to become January 2 to January 7.

Script syntax and chart functions - Qlik Sense, May 2023 776

5 Script and chart functions

Calendar diagram showing transaction dates which would return a Boolean result of TRUE

Therefore, any transaction that occurs between January 2 and 8 (not including January 8 itself) will return a
Boolean result of TRUE.

Example 3 – first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, in_week_to_date, that determines which transactions took place in the week

up until January 14, 2022.
l The creation of an additional field, named weekday, using the weekday() function. This is to show

which day of the week corresponds to each date.

In this example, we consider Monday as the first day of the week.

Load script

SET FirstWeekDay=6;

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff]';

Transactions:

Load

*,

weekday(date) as week_day,

inweektodate(date,'01/14/2022', 0, 0) as in_week_to_date

;

Load

*

Script syntax and chart functions - Qlik Sense, May 2023 777

5 Script and chart functions

Inline

[

id,date,amount

8188,'2022-01-02 12:22:06',37.23

8189,'2022-01-05 01:02:30',17.17

8190,'2022-01-06 15:36:20',88.27

8191,'2022-01-08 10:58:35',57.42

8192,'2022-01-09 08:53:32',53.80

8193,'2022-01-10 21:13:01',82.06

8194,'2022-01-11 00:57:13',40.39

8195,'2022-01-12 09:26:02',87.21

8196,'2022-01-13 15:05:09',95.93

8197,'2022-01-14 18:44:57',45.89

8198,'2022-01-15 06:10:46',36.23

8199,'2022-01-16 06:39:27',25.66

8200,'2022-01-17 10:44:16',82.77

8201,'2022-01-18 18:48:17',69.98

8202,'2022-01-26 04:36:03',76.11

8203,'2022-01-27 08:07:49',25.12

8204,'2022-01-28 12:24:29',46.23

8205,'2022-01-30 11:56:56',84.21

8206,'2022-01-30 14:40:19',96.24

8207,'2022-01-31 05:28:21',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week_day

l in_week_to_date

date week_day in_week_to_date

2022-01-02 12:22:06 Sun 0

2022-01-05 01:02:30 Wed 0

2022-01-06 15:36:20 Thu 0

2022-01-08 10:58:35 Sat 0

2022-01-09 08:53:32 Sun 0

2022-01-10 21:13:01 Mon -1

2022-01-11 00:57:13 Tue -1

2022-01-12 09:26:02 Wed -1

2022-01-13 15:05:09 Thu -1

Results table

Script syntax and chart functions - Qlik Sense, May 2023 778

5 Script and chart functions

date week_day in_week_to_date

2022-01-14 18:44:57 Fri -1

2022-01-15 06:10:46 Sat 0

2022-01-16 06:39:27 Sun 0

2022-01-17 10:44:16 Mon 0

2022-01-18 18:48:17 Tue 0

2022-01-26 04:36:03 Wed 0

2022-01-27 08:07:49 Thu 0

2022-01-28 12:24:29 Fri 0

2022-01-30 11:56:56 Sun 0

2022-01-30 14:40:19 Sun 0

2022-01-31 05:28:21 Mon 0

By using 0 as the first_week_day argument in the inweektodate() function, the function argument
supersedes the FirstWeekDay system variable and sets Monday as the first day of the week.

Calendar diagram showing transaction dates which would return a Boolean result of TRUE

Therefore, any transaction that occurs in between January 10 and 14 will return a Boolean result of TRUE,
while transactions with dates outside these boundaries will return a value of FALSE.

Script syntax and chart functions - Qlik Sense, May 2023 779

5 Script and chart functions

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this example, the
unchanged dataset is loaded into the application. The calculation that determines which transactions took
place in the week up until January 14, 2022 is created as a measure in the chart object.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'2022-01-02 12:22:06',37.23

8189,'2022-01-05 01:02:30',17.17

8190,'2022-01-06 15:36:20',88.27

8191,'2022-01-08 10:58:35',57.42

8192,'2022-01-09 08:53:32',53.80

8193,'2022-01-10 21:13:01',82.06

8194,'2022-01-11 00:57:13',40.39

8195,'2022-01-12 09:26:02',87.21

8196,'2022-01-13 15:05:09',95.93

8197,'2022-01-14 18:44:57',45.89

8198,'2022-01-15 06:10:46',36.23

8199,'2022-01-16 06:39:27',25.66

8200,'2022-01-17 10:44:16',82.77

8201,'2022-01-18 18:48:17',69.98

8202,'2022-01-26 04:36:03',76.11

8203,'2022-01-27 08:07:49',25.12

8204,'2022-01-28 12:24:29',46.23

8205,'2022-01-30 11:56:56',84.21

8206,'2022-01-30 14:40:19',96.24

8207,'2022-01-31 05:28:21',67.67

];

Script syntax and chart functions - Qlik Sense, May 2023 780

5 Script and chart functions

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add this field as a dimension: date.

2. To calculate whether transactions took place in the same week up until the 14th of January, create the
following measure:
=inweektodate(date,'01/14/2022',0)

3. To show which day of the week corresponds to each date, create an additional measure:
=weekday(date)

date week_day in_week_to_date

2022-01-02 12:22:06 Sun 0

2022-01-05 01:02:30 Wed 0

2022-01-06 15:36:20 Thu 0

2022-01-08 10:58:35 Sat 0

2022-01-09 08:53:32 Sun -1

2022-01-10 21:13:01 Mon -1

2022-01-11 00:57:13 Tue -1

2022-01-12 09:26:02 Wed -1

2022-01-13 15:05:09 Thu -1

2022-01-14 18:44:57 Fri -1

2022-01-15 06:10:46 Sat 0

2022-01-16 06:39:27 Sun 0

2022-01-17 10:44:16 Mon 0

2022-01-18 18:48:17 Tue 0

2022-01-26 04:36:03 Wed 0

2022-01-27 08:07:49 Thu 0

2022-01-28 12:24:29 Fri 0

2022-01-30 11:56:56 Sun 0

2022-01-30 14:40:19 Sun 0

2022-01-31 05:28:21 Mon 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 781

5 Script and chart functions

The in_week_to_date field is created as a measure in the chart object using the inweektodate() function. The
first argument provided identifies which field is being evaluated. The second argument is a hard-coded date
for January 14, which is the base_date that identifies which week to segment and defines the end boundary of
that segment. A period_no of 0 is the final argument, meaning that the function is not comparing weeks
preceding or following the segmented week.

The FirstWeekDay system variable determines that weeks begin on a Sunday and end on a Saturday.
Therefore, January would be broken into weeks according to the diagram below, with the dates between
January 9 and 14 providing the valid period for the inweekdodate() calculation:

Calendar diagram showing transaction dates which would return a Boolean result of TRUE

Any transaction that occurs in between January 9 and 14 returns a Boolean result of TRUE. Transactions before
and after the dates return a Boolean result of FALSE.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called Products.
l Information concerning product ID, manufacture date, and cost price.

It has been identified that due to equipment error, products that were manufactured in the week of January
12 were defective. The issue was resolved on January 13. The end user would like a chart object that displays,
by week, the status of whether the products manufactured are ‘defective’ or ‘faultless’, and the cost of the
products manufactured in that week.

Script syntax and chart functions - Qlik Sense, May 2023 782

5 Script and chart functions

Load script

Products:

Load

*

Inline

[

product_id,manufacture_date,cost_price

8188,'2022-01-02 12:22:06',37.23

8189,'2022-01-05 01:02:30',17.17

8190,'2022-01-06 15:36:20',88.27

8191,'2022-01-08 10:58:35',57.42

8192,'2022-01-09 08:53:32',53.80

8193,'2022-01-10 21:13:01',82.06

8194,'2022-01-11 00:57:13',40.39

8195,'2022-01-12 09:26:02',87.21

8196,'2022-01-13 15:05:09',95.93

8197,'2022-01-14 18:44:57',45.89

8198,'2022-01-15 06:10:46',36.23

8199,'2022-01-16 06:39:27',25.66

8200,'2022-01-17 10:44:16',82.77

8201,'2022-01-18 18:48:17',69.98

8202,'2022-01-26 04:36:03',76.11

8203,'2022-01-27 08:07:49',25.12

8204,'2022-01-28 12:24:29',46.23

8205,'2022-01-30 11:56:56',84.21

8206,'2022-01-30 14:40:19',96.24

8207,'2022-01-31 05:28:21',67.67

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table. Create a dimension to show the week names:
=weekname(manufacture_date)

2. Next, create a dimension to identify which of the products are defective and which are faultless:
=if(inWeektodate(manufacture_date,makedate(2022,01,12),0),'Defective','Faultless')

3. Create a measure to sum the cost_price of the products:
=sum(cost_price)

4. Set the measure's Number formatting to Money.

weekname(manufacture_
date)

if(inweektodate(manufacture_date,makedate
(2022,01,12),0),'Defective','Faultless')

Sum(cost_
price)

2022/02 Faultless $200.09

2022/03 Defective $263.46

2022/03 Faultless $178.05

Results table

Script syntax and chart functions - Qlik Sense, May 2023 783

5 Script and chart functions

weekname(manufacture_
date)

if(inweektodate(manufacture_date,makedate
(2022,01,12),0),'Defective','Faultless')

Sum(cost_
price)

2022/04 Faultless $178.41

2022/05 Faultless $147.46

2022/06 Faultless $248.12

The inweektodate() function returns a Boolean value when evaluating the manufacturing dates of each of the
products. For those that return a Boolean value of TRUE, it marks the products as 'Defective'. For any
product returning a value of FALSE, and therefore not made in the week up to January 12, it marks the
products as ‘Faultless’.

inyear
This function returns True if timestamp lies inside the year containing base_date.

Syntax:
InYear (timestamp, base_date, period_no [, first_month_of_year])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Diagram of inyear() function's range

The inyear() function returns a Boolean result when comparing the selected date values to a year defined by
the base_date.

When to use it

The inyear() function returns a Boolean result. Typically, this type of function will be used as a condition in
an if expression. This returns an aggregation or calculation dependent on whether a date evaluated
occurred in the year in question. For example, the inyear() function can be used to identify all sales that
occurred in a defined year.

Script syntax and chart functions - Qlik Sense, May 2023 784

5 Script and chart functions

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the year.

period_no The year can be offset by period_no. period_no is an integer, where the value 0 indicates
the year that contains base_date. Negative values in period_no indicate preceding years,
and positive values indicate succeeding years.

first_month_
of_year

If you want to work with (fiscal) years not starting in January, indicate a value between 2
and 12 in first_month_of_year.

Arguments

You can use the following values to set the first month of year in the first_month_of_year argument:

Month Value

February 2

March 3

April 4

May 5

June 6

July 7

August 8

September 9

October 10

November 11

December 12

first_month_of_year values

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Script syntax and chart functions - Qlik Sense, May 2023 785

5 Script and chart functions

Example Result

inyear ('01/25/2013',

'01/01/2013', 0)

Returns TRUE

inyear ('01/25/2012',

'01/01/2013', 0)

Returns FALSE

inyear ('01/25/2013',

'01/01/2013', -1)

Returns FALSE

inyear ('01/25/2012',

'01/01/2013', -1)

Returns TRUE

inyear ('01/25/2013',

'01/01/2013', 0, 3)

Returns TRUE

The value of base_date and first_month_of_year specify that timestamp
must fall within 01/03/2012 and 02/28/2013

inyear ('03/25/2013',

'07/01/2013', 0, 3)

Returns TRUE

Function examples

Example 1 - Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022 which is loaded into a table called
‘Transactions’.

l A preceding load which contains the inyear() function that is set as the ‘in_year’ field, and
determines which transactions took place in the same year as July 26, 2021.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inyear(date,'07/26/2021', 0) as in_year

;

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

Script syntax and chart functions - Qlik Sense, May 2023 786

5 Script and chart functions

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_year

date in_year

01/13/2020 0

02/26/2020 0

03/27/2020 0

04/16/2020 0

05/21/2020 0

08/14/2020 0

10/07/2020 0

12/05/2020 0

01/22/2021 -1

02/03/2021 -1

03/17/2021 -1

04/23/2021 -1

05/04/2021 -1

06/30/2021 -1

Results table

Script syntax and chart functions - Qlik Sense, May 2023 787

5 Script and chart functions

date in_year

07/26/2021 -1

12/27/2021 -1

06/06/2022 0

07/18/2022 0

11/14/2022 0

12/12/2022 0

The ‘in_year’ field is created in the preceding load statement by using the inyear() function. The first
argument identifies which field is being evaluated. The second argument is a hard-coded date for July 26,
2021 which is the base_date that determines the comparator year. A period_no of 0 is the final argument
meaning that the inyear() function does not compare years preceding or following the year.

Diagram of inyear() function's range with July 26 as the base date

Any transaction that occurs in 2021 returns a Boolean result of TRUE.

Example 2 - period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022 which is loaded into a table called
‘Transactions’.

l A preceding load which contains the inyear() function that is set as the ‘previous_year’ field, and
determines which transactions took place in the year before the year containing July 26, 2021.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Script syntax and chart functions - Qlik Sense, May 2023 788

5 Script and chart functions

Load

*,

inyear(date,'07/26/2021', -1) as previous_year

;

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_year

date previous_year

01/13/2020 -1

02/26/2020 -1

03/27/2020 -1

04/16/2020 -1

05/21/2020 -1

08/14/2020 -1

10/07/2020 -1

Results table

Script syntax and chart functions - Qlik Sense, May 2023 789

5 Script and chart functions

date previous_year

12/05/2020 -1

01/22/2021 0

02/03/2021 0

03/17/2021 0

04/23/2021 0

05/04/2021 0

06/30/2021 0

07/26/2021 0

12/27/2021 0

06/06/2022 0

07/18/2022 0

11/14/2022 0

12/12/2022 0

Using -1 as the period_no argument in the inyear() function shifts the boundaries of the comparator year
back by a full year. 2021 is initially identified as the comparator year. The period_no offsets the comparator
year by one, making 2020 the comparator year.

Diagram of inyear() function's range with the period_no argument set to -1

Therefore, any transaction that occurs in 2020 returns a Boolean result of TRUE.

Script syntax and chart functions - Qlik Sense, May 2023 790

5 Script and chart functions

Example 3 - first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022 which is loaded into a table called
‘Transactions’.

l A preceding load which contains the inyear() function that is set as the ‘in_year’ field, and
determines which transactions took place in the same year as July 26, 2021.

However, in this example, the organizational policy is for March to be the first month of the financial year.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inyear(date,'07/26/2021', 0, 3) as in_year

;

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Script syntax and chart functions - Qlik Sense, May 2023 791

5 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_year

date in_year

01/13/2020 0

02/26/2020 0

03/27/2020 0

04/16/2020 0

05/21/2020 0

08/14/2020 0

10/07/2020 0

12/05/2020 0

01/22/2021 0

02/03/2021 0

03/17/2021 -1

04/23/2021 -1

05/04/2021 -1

06/30/2021 -1

07/26/2021 -1

12/27/2021 -1

06/06/2022 0

07/18/2022 0

11/14/2022 0

12/12/2022 0

Results table

Using 3 as the first_month_of_year argument in the inyear() function begins the year on March 1 and ends
the year at the end of February.

Script syntax and chart functions - Qlik Sense, May 2023 792

5 Script and chart functions

Diagram of inyear() function's range with March set as the first month of the year

Therefore, any transaction that occurs between March 1, 2021 and March 1, 2022 will return a Boolean result
of TRUE.

Example 4 - Chart object example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

However, in this example, the dataset is unchanged and loaded into the application. The calculation that
determines whether transactions took place in the same year as July 26, 2021 is created as a measure in a
chart object of the application.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

Script syntax and chart functions - Qlik Sense, May 2023 793

5 Script and chart functions

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

l date

To calculate whether transactions took place in the same year as July 26, 2021, create the following measure:

l =inyear(date,'07/26/2021', 0)

date =inyear(date,'07/26/2021',0)

01/13/2020 0

02/26/2020 0

03/27/2020 0

04/16/2020 0

05/21/2020 0

08/14/2020 0

10/07/2020 0

12/05/2020 0

01/22/2021 -1

02/03/2021 -1

03/17/2021 -1

04/23/2021 -1

05/04/2021 -1

06/30/2021 -1

07/26/2021 -1

12/27/2021 -1

06/06/2022 0

07/18/2022 0

11/14/2022 0

12/12/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 794

5 Script and chart functions

The ‘in_year’ field is created in the chart by using the inyear() function. The first argument identifies which
field is being evaluated. The second argument is a hard-coded date for July 26, 2021 which is the base_date

that determines the comparator year. A period_no of 0 is the final argument meaning that the inyear()

function does not compare years preceding or following the year.

Diagram of inyear() function's range with July 27 as the base date

Any transaction that occurs in 2021 returns a Boolean result of TRUE.

Example 5 - Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called ‘Products’.
l The table contains the following fields:

l product ID
l product type
l manufacture date
l cost price

The end user would like a chart object that displays, by product type, the cost of the products manufactured
in 2021.

Load script

Products:

Load

*

Inline

[

product_id,product_type,manufacture_date,cost_price

8188,product A,'01/13/2020',37.23

8189,product B,'02/26/2020',17.17

8190,product B,'03/27/2020',88.27

Script syntax and chart functions - Qlik Sense, May 2023 795

5 Script and chart functions

8191,product C,'04/16/2020',57.42

8192,product D,'05/21/2020',53.80

8193,product D,'08/14/2020',82.06

8194,product C,'10/07/2020',40.39

8195,product B,'12/05/2020',87.21

8196,product A,'01/22/2021',95.93

8197,product B,'02/03/2021',45.89

8198,product C,'03/17/2021',36.23

8199,product C,'04/23/2021',25.66

8200,product B,'05/04/2021',82.77

8201,product D,'06/30/2021',69.98

8202,product D,'07/26/2021',76.11

8203,product D,'12/27/2021',25.12

8204,product C,'06/06/2022',46.23

8205,product C,'07/18/2022',84.21

8206,product A,'11/14/2022',96.24

8207,product B,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

l product_type

To calculate the sum of each product that was manufactured in 2021, create the following measure:

l =sum(if(InYear(manufacture_date,makedate(2021,01,01),0),cost_price,0))

Do the following:

1. Set the measure’s Number Formatting to Money.

2. Under Appearance, turn off Totals.

product_type =sum(if(InYear(manufacture_date,makedate(2021,01,01),0),cost_price,0))

product A $95.93

product B $128.66

product C $61.89

product D $171.21

Results table

The inyear() function returns a Boolean value when evaluating the manufacturing dates of each of the
products. For any product manufactured in 2021, the inyear() function returns a Boolean value of TRUE and
shows the sum of the cost_price.

inyeartodate
This function returns True if timestamp lies inside the part of year containing base_date up
until and including the last millisecond of base_date.

Script syntax and chart functions - Qlik Sense, May 2023 796

5 Script and chart functions

Syntax:
InYearToDate (timestamp, base_date, period_no[, first_month_of_year])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Diagram of inyeartodate function

The inyeartodate() function will segment a particular portion of the year with the base_date, identifying the
maximum allowed date for that year segment. The function then evaluates whether a date field or value falls
into this segment and returns a Boolean result.

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the year.

period_no The year can be offset by period_no. period_no is an integer, where the value 0 indicates
the year that contains base_date. Negative values in period_no indicate preceding years,
and positive values indicate succeeding years.

first_month_
of_year

If you want to work with (fiscal) years not starting in January, indicate a value between 2
and 12 in first_month_of_year.

Arguments

When to use it
The inyeartodate() function returns a Boolean result. Typically, this type of function will be used as a
condition in an if expression. This would return an aggregation or calculation dependent on whether a date
evaluated occurred in the year up to and including the date in question.

For example, the inyeartodate() function can be used to identify all equipment manufactured in a year up to
a specific date.

These examples use the date format MM/DD/YYYY. The date format is specified in the SET DateFormat

statement at the top of your data load script. Change the format in the examples to suit your requirements.

Script syntax and chart functions - Qlik Sense, May 2023 797

5 Script and chart functions

Example Result

inyeartodate

('01/25/2013',

'02/01/2013', 0)

Returns TRUE.

inyeartodate

('01/25/2012',

'01/01/2013', 0)

Returns FALSE.

inyeartodate

('01/25/2012',

'02/01/2013', -1)

Returns TRUE.

inyeartodate

('11/25/2012',

'01/31/2013', 0, 4)

Returns TRUE.
The value of timestamp falls inside the fiscal year beginning in the fourth
month and before the value of base_date.

inyeartodate

('3/31/2013',

'01/31/2013', 0, 4)

Returns FALSE.
Compared with the previous example, the value of timestamp is still inside the
fiscal year, but it is after the value of base_date, so it falls outside the part of
the year.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.

Script syntax and chart functions - Qlik Sense, May 2023 798

5 Script and chart functions

l The creation of a field, in_year_to_date, that determines which transactions took place in the year up
until July 26, 2021.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inyeartodate(date,'07/26/2021', 0) as in_year_to_date

;

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'06/14/2020',82.06

8194,'08/07/2020',40.39

8195,'09/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'07/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_year_to_date

date in_year_to_date

01/13/2020 0

02/26/2020 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 799

5 Script and chart functions

date in_year_to_date

03/27/2020 0

04/16/2020 0

05/21/2020 0

06/14/2020 0

08/07/2020 0

09/05/2020 0

01/22/2021 -1

02/03/2021 -1

03/17/2021 -1

04/23/2021 -1

05/04/2021 -1

06/30/2021 -1

07/26/2021 -1

07/27/2021 0

06/06/2022 0

07/18/2022 0

11/14/2022 0

12/12/2022 0

The in_year_to_date field is created in the preceding load statement by using the inyeartodate() function.
The first argument provided identifies which field is being evaluated.

The second argument is a hard-coded date for the for the July 26, 2021, which is the base_date that identifies
the end boundary of the year segment. A period_no of 0 is the final argument, meaning that the function is
not comparing years preceding or following the segmented year.

Diagram of inyeartodate function, no additional arguments

Any transaction that occurs in between January 1 and July 26 returns a Boolean result of TRUE. Transactions
dates before 2021 and beyond July 26, 2021 return FALSE.

Script syntax and chart functions - Qlik Sense, May 2023 800

5 Script and chart functions

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, previous_year_to_date, that determines which transactions took place a full

year before the year segment ending on July 26, 2021.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inyeartodate(date,'07/26/2021', -1) as previous_year_to_date

;

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'06/14/2020',82.06

8194,'08/07/2020',40.39

8195,'09/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'07/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Script syntax and chart functions - Qlik Sense, May 2023 801

5 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_year_to_date

date previous_year_to_date

01/13/2020 -1

02/26/2020 -1

03/27/2020 -1

04/16/2020 -1

05/21/2020 -1

06/14/2020 -1

08/07/2020 0

09/05/2020 0

01/22/2021 0

02/03/2021 0

03/17/2021 0

04/23/2021 0

05/04/2021 0

06/30/2021 0

07/26/2021 0

07/27/2021 0

06/06/2022 0

07/18/2022 0

11/14/2022 0

12/12/2022 0

Results table

A period_no value of -1 indicates that the inyeartodate () function compares the input quarter segment to
the preceding year. With an input date of July 26, 2021, the segment from January 1, 2021 to July 26, 2021 was
initially identified as the year-to-date. The period_no then offsets this segment by a full year earlier, causing
the date boundaries to become January 1 to July 26, 2020.

Script syntax and chart functions - Qlik Sense, May 2023 802

5 Script and chart functions

Diagram of inyeartodate function, period_no example

Therefore, any transaction that occurs between January 1 and July 26, 2020 will return a Boolean result of
TRUE.

Example 3 – first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, in_year_to_date, that determines which transactions took place in the same

year up to July 26, 2021.

In this example, we set March as the first month of the fiscal year.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inyeartodate(date,'07/26/2021', 0,3) as in_year_to_date

;

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'06/14/2020',82.06

8194,'08/07/2020',40.39

8195,'09/05/2020',87.21

8196,'01/22/2021',95.93

Script syntax and chart functions - Qlik Sense, May 2023 803

5 Script and chart functions

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'07/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_year_to_date

date in_year_to_date

01/13/2020 0

02/26/2020 0

03/27/2020 0

04/16/2020 0

05/21/2020 0

06/14/2020 0

08/07/2020 0

09/05/2020 0

01/22/2021 0

02/03/2021 0

03/17/2021 -1

04/23/2021 -1

05/04/2021 -1

06/30/2021 -1

07/26/2021 -1

07/27/2021 0

06/06/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 804

5 Script and chart functions

date in_year_to_date

07/18/2022 0

11/14/2022 0

12/12/2022 0

By using 3 as the first_month_of_year argument in the inyeartodate() function, the function begins the
year on March 1. The base_date of July 26, 2021 then sets the end date for that year segment.

Diagram of inyeartodate function, first_month_of_year example

Therefore, any transaction that occurs between March 1 and July 26, 2021 will return a Boolean result of TRUE,
while transactions with dates outside these boundaries will return a value of FALSE.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this example, the
unchanged dataset is loaded into the application. The calculation that determines which transactions took
place in the same year up to July 26, 2021 is created as a measure in a chart object in the application.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'06/14/2020',82.06

Script syntax and chart functions - Qlik Sense, May 2023 805

5 Script and chart functions

8194,'08/07/2020',40.39

8195,'09/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'07/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:date.

Create the following measure:

=inyeartodate(date,'07/26/2021', 0)

date =inyeartodate(date,'07/26/2021', 0)

01/13/2020 0

02/26/2020 0

03/27/2020 0

04/16/2020 0

05/21/2020 0

06/14/2020 0

08/07/2020 0

09/05/2020 0

01/22/2021 -1

02/03/2021 -1

03/17/2021 -1

04/23/2021 -1

05/04/2021 -1

06/30/2021 -1

07/26/2021 -1

Results table

Script syntax and chart functions - Qlik Sense, May 2023 806

5 Script and chart functions

date =inyeartodate(date,'07/26/2021', 0)

07/27/2021 0

06/06/2022 0

07/18/2022 0

11/14/2022 0

12/12/2022 0

The in_year_to_date measure is created in the chart object by using the inyeartodate() function. The first
argument provided identifies which field is being evaluated. The second argument is a hard-coded date for
July 26, 2021, which is the base_date that identifies the end boundary of the comparator year segment. A
period_no of 0 is the final argument, meaning that the function is not comparing years preceding or following
the segmented year.

Diagram of inyeartodate function, chart object example

Any transaction that occurs between January 1 and July 26, 2021 returns a Boolean result of TRUE. Transaction
dates before 2021 and after July 26, 2021 return FALSE.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called Products.
l Information concerning product ID, product type, manufacture date, and cost price.

The end user would like a chart object that displays, by product type, the cost of the products manufactured
in 2021 up to July 26.

Load script

Products:

Load

*

Script syntax and chart functions - Qlik Sense, May 2023 807

5 Script and chart functions

Inline

[

product_id,product_type,manufacture_date,cost_price

8188,product A,'01/13/2020',37.23

8189,product B,'02/26/2020',17.17

8190,product B,'03/27/2020',88.27

8191,product C,'04/16/2020',57.42

8192,product D,'05/21/2020',53.80

8193,product D,'08/14/2020',82.06

8194,product C,'10/07/2020',40.39

8195,product B,'12/05/2020',87.21

8196,product A,'01/22/2021',95.93

8197,product B,'02/03/2021',45.89

8198,product C,'03/17/2021',36.23

8199,product C,'04/23/2021',25.66

8200,product B,'05/04/2021',82.77

8201,product D,'06/30/2021',69.98

8202,product D,'07/26/2021',76.11

8203,product D,'12/27/2021',25.12

8204,product C,'06/06/2022',46.23

8205,product C,'07/18/2022',84.21

8206,product A,'11/14/2022',96.24

8207,product B,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:product_type.

Create a measure that calculates the sum of each product that was manufactured in 2021 before July 27:

=sum(if(inyeartodate(manufacture_date,makedate(2021,07,26),0),cost_price,0))

Set the measure's Number formatting to Money.

product_type
=sum(if(inyeartodate(manufacture_date,makedate
(2021,07,26),0),cost_price,0))

product A $95.93

product B $128.66

product C $61.89

product D $146.09

Results table

The inyeartodate() function returns a Boolean value when evaluating the manufacturing dates of each of the
products. For any product manufactured in 2021 before July 27, the inyeartodate() function returns a
Boolean value of TRUE and sums the cost_price.

Product D is the only product that was also manufactured after July 26th in 2021. The entry with product_ID

8203 was manufactured on December 27 and cost $25.12. Therefore, this cost was not included in the total for
Product D in the chart object.

Script syntax and chart functions - Qlik Sense, May 2023 808

5 Script and chart functions

lastworkdate
The lastworkdate function returns the earliest ending date to achieve no_of_workdays
(Monday-Friday) if starting at start_date taking into account any optionally listed holiday.
start_date and holiday should be valid dates or timestamps.

Syntax:
lastworkdate(start_date, no_of_workdays {, holiday})

Return data type: integer

A calendar that shows how the lastworkdate() function is used

Limitations

There is no method to modify the lastworkdate() function for regions or scenarios that involve anything
other than a work week that begins on Monday and ends on Friday.

The holiday parameter must be a string constant. It does not accept an expression.

When to use it

The lastworkdate() function is commonly used as part of an expression when the user would like to
calculate the proposed end date of a project or assignment, based on when the project begins and the
holidays that will occur in that period.

Script syntax and chart functions - Qlik Sense, May 2023 809

5 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Argument Description

start_date The start date to evaluate.

no_of_
workdays

The number of working days to achieve.

holiday Holiday periods to exclude from working days. A holiday is stated as a string constant date.
You can specify multiple holiday dates, separated by commas.

Example: '12/25/2013', '12/26/2013', '12/31/2013', '01/01/2014'

Arguments

Example 1 - Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing project IDs, project start dates, and the estimated effort, in days, required for the
projects. The dataset is loaded into a table called ‘Projects’.

l A preceding load which contains the lastworkdate() function which is set as the field ‘end_date’ and
identifies when each project is scheduled to end.

Load script

SET DateFormat='MM/DD/YYYY';

Projects:

Load

*,

LastWorkDate(start_date,effort) as end_date

Script syntax and chart functions - Qlik Sense, May 2023 810

5 Script and chart functions

;

Load

id,

start_date,

effort

Inline

[

id,start_date,effort

1,01/01/2022,14

2,02/10/2022,17

3,05/17/2022,5

4,06/01/2022,12

5,08/10/2022,26

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l start_date

l effort

l end_date

id start_date effort end_date

1 01/01/2022 14 01/20/2022

2 02/10/2022 17 03/04/2022

3 05/17/2022 5 05/23/2022

4 06/01/2022 12 06/16/2022

5 08/10/2022 26 09/14/2022

Results table

Because there are no scheduled holidays, the function adds the defined number of working days, Monday to
Friday, to the start date to find the earliest possible end date.

The following calendar shows the start and end date for project 3, with the working days highlighted in green.

Script syntax and chart functions - Qlik Sense, May 2023 811

5 Script and chart functions

A calendar that shows the start and end date of project 3

Example 2 - Single holiday
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing project IDs, project start dates, and the estimated effort, in days, required for the
projects. The dataset is loaded into a table called ‘Projects’.

l A preceding load which contains the lastworkdate() function which is set as the field ‘end_date’ and
identifies when each project is scheduled to end.

However, there is one holiday scheduled on May 18, 2022. The lastworkdate() function in the preceding load
includes the holiday in its third argument to identify when each project is scheduled to end.

Script syntax and chart functions - Qlik Sense, May 2023 812

5 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Projects:

Load

*,

LastWorkDate(start_date,effort, '05/18/2022') as end_date

;

Load

id,

start_date,

effort

Inline

[

id,start_date,effort

1,01/01/2022,14

2,02/10/2022,17

3,05/17/2022,5

4,06/01/2022,12

5,08/10/2022,26

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l start_date

l effort

l end_date

id start_date effort end_date

1 01/01/2022 14 01/20/2022

2 02/10/2022 17 03/04/2022

3 05/17/2022 5 05/24/2022

4 06/01/2022 12 06/16/2022

5 08/10/2022 26 09/14/2022

Results table

The single scheduled holiday is entered as the third argument in the lastworkdate() function. As a result, the
end date for project 3 is shifted one day later because the holiday takes place on one of the working days
before the end date.

The following calendar shows the start and end date for project 3 and shows that the holiday changes the end
date of the project by one day.

Script syntax and chart functions - Qlik Sense, May 2023 813

5 Script and chart functions

A calendar that shows the start and end date of project 3 with a holiday on May 18

Example 3 - Multiple holidays
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing project IDs, project start dates, and the estimated effort, in days, required for the
projects. The dataset is loaded into a table called ‘Projects’.

l A preceding load which contains the lastworkdate() function which is set as the field ‘end_date’ and
identifies when each project is scheduled to end.

However, there are three holidays scheduled for May 19, 20, 21, and 22. The lastworkdate() function in the
preceding load includes each of the holidays in its third argument to identify when each project is scheduled
to end.

Script syntax and chart functions - Qlik Sense, May 2023 814

5 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Projects:

Load

*,

LastWorkDate(start_date,effort, '05/19/2022','05/20/2022','05/21/2022','05/22/2022') as

end_date

;

Load

id,

start_date,

effort

Inline

[

id,start_date,effort

1,01/01/2022,14

2,02/10/2022,17

3,05/17/2022,5

4,06/01/2022,12

5,08/10/2022,26

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l start_date

l effort

l end_date

id start_date effort end_date

1 01/01/2022 14 01/20/2022

2 02/10/2022 17 03/04/2022

3 05/17/2022 5 05/25/2022

4 06/01/2022 12 06/16/2022

5 08/10/2022 26 09/14/2022

Results table

The four holidays are entered as a list of arguments in the lastworkdate() function after the start date and
number of working days.

The following calendar shows the start and end date for project 3 and shows that the holidays change the end
date of the project by three days.

Script syntax and chart functions - Qlik Sense, May 2023 815

5 Script and chart functions

A calendar that shows the start and end date of project 3 with holidays from May 19 to 22

Example 4 - Single holiday (chart)
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

However, in this example, the dataset is unchanged and loaded into the app. The end_date field is calculated
as a measure in a chart.

Load script

SET DateFormat='MM/DD/YYYY';

Projects:

Load

id,

start_date,

effort

Inline

[

Script syntax and chart functions - Qlik Sense, May 2023 816

5 Script and chart functions

id,start_date,effort

1,01/01/2022,14

2,02/10/2022,17

3,05/17/2022,5

4,06/01/2022,12

5,08/10/2022,26

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l start_date

l effort

To calculate the end_date, create the following measure:

l =LastWorkDate(start_date,effort,'05/18/2022')

id start_date effort =LastWorkDate(start_date,effort,'05/18/2022')

1 01/01/2022 14 01/20/2022

2 02/10/2022 17 03/04/2022

3 05/17/2022 5 05/23/2022

4 06/01/2022 12 06/16/2022

5 08/10/2022 26 09/14/2022

Results table

The single scheduled holiday is entered as a measure in the chart. As a result, the end date for project 3 is
shifted one day later because the holiday takes place on one of the working days before the end date.

The following calendar shows the start and end date for project 3 and shows that the holiday changes the end
date of the project by one day.

Script syntax and chart functions - Qlik Sense, May 2023 817

5 Script and chart functions

A calendar that shows the start and end date of project 3 with a holiday on May 18

localtime
This function returns a timestamp of the current time for a specified time zone.

Syntax:
LocalTime([timezone [, ignoreDST]])

Return data type: dual

Arguments:

Argument Description

timezone The timezone is specified as a string containing any of the geographical places listed under
Time Zone in the Windows Control Panel for Date and Time or as a string in the form
'GMT+hh:mm'.

If no time zone is specified the local time will be returned.

ignoreDST If ignoreDST is -1 (True) daylight savings time will be ignored.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 818

5 Script and chart functions

Examples and results:

The examples below are based on the function being called on 2014-10-22 12:54:47 local time, with the local
time zone being GMT+01:00.

Example Result

localtime () Returns the local time 2014-10-22 12:54:47.

localtime ('London') Returns the local time in London, 2014-10-22 11:54:47.

localtime

('GMT+02:00')
Returns the local time in the timezone of GMT+02:00, 2014-10-22 13:54:47.

localtime ('Paris','-

1')
Returns the local time in Paris with daylight savings time ignored, 2014-10-22
11:54:47.

Scripting examples

lunarweekend
This function returns a value corresponding to a timestamp of the last millisecond of the last
day of the lunar week containing date. Lunar weeks in Qlik Sense are defined by counting
January 1 as the first day of the week and, apart from the final week of the year, will contain
exactly seven days.

Syntax:
LunarweekEnd(date[, period_no[, first_week_day]])

Return data type: dual

Example diagram of lunarweekend() function

The lunarweekend() function determines which lunar week the date falls into. It then returns a timestamp, in
date format, for the last millisecond of that week.

Argument Description

date The date or timestamp to evaluate.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 819

5 Script and chart functions

Argument Description

period_no period_no is an integer or expression resolving to an integer, where the value 0 indicates
the lunar week which contains date. Negative values in period_no indicate preceding lunar
weeks and positive values indicate succeeding lunar weeks.

first_week_
day

An offset that may be greater than or less than zero. This changes the beginning of the year
by the specified number of days and/or fractions of a day.

When to use it
The lunarweekend() function is commonly used as part of an expression when the user would like the
calculation to use the fraction of the week that has not yet occurred. Unlike the weekend() function, the final
lunar week of each calendar year will end on December 31. For example, the lunarweekend() function can be
used to calculate interest not yet incurred during the week.

Example Result

lunarweekend('01/12/2013') Returns 01/14/2013 23:59:59.

lunarweekend('01/12/2013', -1) Returns 01/07/2013 23:59:59.

lunarweekend('01/12/2013', 0, 1) Returns 01/15/2013 23:59:59.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2023 820

5 Script and chart functions

l A dataset containing a set of transactions for 2022, which is loaded into a table called Transactions.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, end_of_week, that returns a timestamp for the end of the lunar week in which

the transactions took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

lunarweekend(date) as end_of_week,

timestamp(lunarweekend(date)) as end_of_week_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l end_of_week

l end_of_week_timestamp

Script syntax and chart functions - Qlik Sense, May 2023 821

5 Script and chart functions

date end_of_week end_of_week_timestamp

1/7/2022 01/07/2022 1/7/2022 11:59:59 PM

1/19/2022 01/21/2022 1/21/2022 11:59:59 PM

2/5/2022 02/11/2022 2/11/2022 11:59:59 PM

2/28/2022 03/04/2022 3/4/2022 11:59:59 PM

3/16/2022 03/18/2022 3/18/2022 11:59:59 PM

4/1/2022 04/01/2022 4/1/2022 11:59:59 PM

5/7/2022 05/13/2022 5/13/2022 11:59:59 PM

5/16/2022 05/20/2022 5/20/2022 11:59:59 PM

6/15/2022 06/17/2022 6/17/2022 11:59:59 PM

6/26/2022 07/01/2022 7/1/2022 11:59:59 PM

7/9/2022 07/15/2022 7/15/2022 11:59:59 PM

7/22/2022 07/22/2022 7/22/2022 11:59:59 PM

7/23/2022 07/29/2022 7/29/2022 11:59:59 PM

7/27/2022 07/29/2022 7/29/2022 11:59:59 PM

8/2/2022 08/05/2022 8/5/2022 11:59:59 PM

8/8/2022 08/12/2022 8/12/2022 11:59:59 PM

8/19/2022 08/19/2022 8/19/2022 11:59:59 PM

9/26/2022 09/30/2022 9/30/2022 11:59:59 PM

10/14/2022 10/14/2022 10/14/2022 11:59:59 PM

10/29/2022 11/04/2022 11/4/2022 11:59:59 PM

Results table

The end_of_week field is created in the preceding load statement by using the lunarweekend() function, and
passing the date field as the function’s argument.

The lunarweekend() function identifies which lunar week the date value falls into, returning a timestamp for
the last millisecond of that week.

Script syntax and chart functions - Qlik Sense, May 2023 822

5 Script and chart functions

Diagram of lunarweekend() function, example with no additional arguments

Transaction 8189 took place on January 19. The lunarweekend() function identifies that the lunar week
begins on January 15. Therefore, the end_of_week value for that transaction returns the last millisecond of the
lunar week, which is January 21 at 11:59:59 PM.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, previous_lunar_week_end, that returns the timestamp for the end of the lunar

week before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

lunarweekend(date,-1) as previous_lunar_week_end,

timestamp(lunarweekend(date,-1)) as previous_lunar_week_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

Script syntax and chart functions - Qlik Sense, May 2023 823

5 Script and chart functions

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_lunar_week_end

l previous_lunar_week_end_timestamp

date previous_lunar_week_end previous_lunar_week_end_timestamp

1/7/2022 12/31/2021 12/31/2021 11:59:59 PM

1/19/2022 01/14/2022 1/14/2022 11:59:59 PM

2/5/2022 02/04/2022 2/4/2022 11:59:59 PM

2/28/2022 02/25/2022 2/25/2022 11:59:59 PM

3/16/2022 03/11/2022 3/18/2022 11:59:59 PM

4/1/2022 03/25/2022 3/25/2022 11:59:59 PM

5/7/2022 05/06/2022 5/6/2022 11:59:59 PM

5/16/2022 05/13/2022 5/13/2022 11:59:59 PM

6/15/2022 06/10/2022 6/10/2022 11:59:59 PM

6/26/2022 06/24/2022 6/24/2022 11:59:59 PM

7/9/2022 07/08/2022 7/8/2022 11:59:59 PM

7/22/2022 07/15/2022 7/15/2022 11:59:59 PM

7/23/2022 07/22/2022 7/22/2022 11:59:59 PM

7/27/2022 07/22/2022 7/22/2022 11:59:59 PM

8/2/2022 07/29/2022 7/29/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 824

5 Script and chart functions

date previous_lunar_week_end previous_lunar_week_end_timestamp

8/8/2022 08/05/2022 8/5/2022 11:59:59 PM

8/19/2022 08/12/2022 8/12/2022 11:59:59 PM

9/26/2022 09/23/2022 9/23/2022 11:59:59 PM

10/14/2022 10/07/2022 10/7/2022 11:59:59 PM

10/29/2022 10/28/2022 10/28/2022 11:59:59 PM

In this instance, because a period_no of -1 was used as the offset argument in the lunarweekend() function,
the function first identifies the lunar week in which the transactions took place. It then shifts one week prior
and identifies the final millisecond of that lunar week.

Diagram of lunarweekend() function, period_no example

Transaction 8189 took place on January 19. The lunarweekend() function identifies that the lunar week
begins on January 15. Therefore, the previous lunar week began on the January 8 and ended on January 14 at
11:59:59 PM; this is the value that is returned for the previous_lunar_week_end field.

Example 3 – first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. In this example, we set lunar
weeks to begin on January 5.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

lunarweekend(date,0,4) as end_of_week,

timestamp(lunarweekend(date,0,4)) as end_of_week_timestamp

Script syntax and chart functions - Qlik Sense, May 2023 825

5 Script and chart functions

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l end_of_week

l end_of_week_timestamp

date end_of_week end_of_week_timestamp

1/7/2022 01/11/2022 1/11/2022 11:59:59 PM

1/19/2022 01/25/2022 1/25/2022 11:59:59 PM

2/5/2022 02/08/2022 2/8/2022 11:59:59 PM

2/28/2022 03/01/2022 3/1/2022 11:59:59 PM

3/16/2022 03/22/2022 3/22/2022 11:59:59 PM

4/1/2022 04/05/2022 4/5/2022 11:59:59 PM

5/7/2022 05/10/2022 5/10/2022 11:59:59 PM

5/16/2022 05/17/2022 5/17/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 826

5 Script and chart functions

date end_of_week end_of_week_timestamp

6/15/2022 06/21/2022 6/21/2022 11:59:59 PM

6/26/2022 06/28/2022 6/28/2022 11:59:59 PM

7/9/2022 07/12/2022 7/12/2022 11:59:59 PM

7/22/2022 07/26/2022 7/26/2022 11:59:59 PM

7/23/2022 07/26/2022 7/26/2022 11:59:59 PM

7/27/2022 08/02/2022 8/2/2022 11:59:59 PM

8/2/2022 08/02/2022 8/2/2022 11:59:59 PM

8/8/2022 08/09/2022 8/9/2022 11:59:59 PM

8/19/2022 08/23/2022 8/23/2022 11:59:59 PM

9/26/2022 09/27/2022 9/27/2022 11:59:59 PM

10/14/2022 10/18/2022 10/18/2022 11:59:59 PM

10/29/2022 11/01/2022 11/1/2022 11:59:59 PM

In this instance, because the first_week_date argument of 4 is used in the lunarweekend() function, it
offsets the start of the year from January 1 to January 5.

Diagram of lunarweekend() function, first_week_day example

Transaction 8189 took place on January 19. Due to lunar weeks beginning on January 5, the lunarweekend()

function identifies that the lunar week containing January 19 also begins on January 19. Therefore, the end of
that lunar week occurs on January 25 at 11:59:59 PM; this is the value returned for the end_of_week field.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

Script syntax and chart functions - Qlik Sense, May 2023 827

5 Script and chart functions

However, in this example, the unchanged dataset is loaded into the application. The calculation that returns a
timestamp for the end of the lunar week in which the transactions took place is created as a measure in a
chart object of the application.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Add the following measures:

=lunarweekend(date)

=timestamp(lunarweekend(date))

date =lunarweekend(date) =timestamp(lunarweekend(date))

1/7/2022 01/07/2022 1/7/2022 11:59:59 PM

1/19/2022 01/21/2022 1/21/2022 11:59:59 PM

2/5/2022 02/11/2022 2/11/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 828

5 Script and chart functions

date =lunarweekend(date) =timestamp(lunarweekend(date))

2/28/2022 03/04/2022 3/4/2022 11:59:59 PM

3/16/2022 03/18/2022 3/18/2022 11:59:59 PM

4/1/2022 04/01/2022 4/1/2022 11:59:59 PM

5/7/2022 05/13/2022 5/13/2022 11:59:59 PM

5/16/2022 05/20/2022 5/20/2022 11:59:59 PM

6/15/2022 06/17/2022 6/17/2022 11:59:59 PM

6/26/2022 07/01/2022 7/1/2022 11:59:59 PM

7/9/2022 07/15/2022 7/15/2022 11:59:59 PM

7/22/2022 07/22/2022 7/22/2022 11:59:59 PM

7/23/2022 07/29/2022 7/29/2022 11:59:59 PM

7/27/2022 07/29/2022 7/29/2022 11:59:59 PM

8/2/2022 08/05/2022 8/5/2022 11:59:59 PM

8/8/2022 08/12/2022 8/12/2022 11:59:59 PM

8/19/2022 08/19/2022 8/19/2022 11:59:59 PM

9/26/2022 09/30/2022 9/30/2022 11:59:59 PM

10/14/2022 10/14/2022 10/14/2022 11:59:59 PM

10/29/2022 11/04/2022 11/4/2022 11:59:59 PM

The end_of_week measure is created in the chart object by using the lunarweekend() function, and passing
the date field as the function’s argument.

The lunarweekend() function identifies which lunar week the date value falls into, returning a timestamp for
the last millisecond of that week.

Diagram of lunarweekend() function, chart object example

Transaction 8189 took place on January 19. The lunarweekend() function identifies that the lunar week
begins on January 15. Therefore, the end_of_week value for that transaction returns the last millisecond of the
lunar week, which is January 21 at 11:59:59 PM.

Script syntax and chart functions - Qlik Sense, May 2023 829

5 Script and chart functions

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called Employee_Expenses.
l The employee IDs, employee name and the average daily expense claims of each employee.

The end user would like a chart object that displays, by employee ID and employee name, the estimated
expense claims still to be incurred for the remainder of the lunar week.

Load script

Employee_Expenses:

Load

*

Inline

[

employee_id,employee_name,avg_daily_claim

182,Mark, $15

183,Deryck, $12.5

184,Dexter, $12.5

185,Sydney,$27

186,Agatha,$18

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table.

2. Add the following fields as dimensions:
l employee_id

l employee_name

3. Next, create the following measure to calculate the accumulated interest:
=(lunarweekend(today(1))-today(1))*avg_daily_claim

4. Set the measure's Number formatting to Money.

employee_id employee_name
=(lunarweekend(today(1))-today(1))*avg_daily_
claim

182 Mark $75.00

Results table

Script syntax and chart functions - Qlik Sense, May 2023 830

5 Script and chart functions

employee_id employee_name
=(lunarweekend(today(1))-today(1))*avg_daily_
claim

183 Deryck $62.50

184 Dexter $62.50

185 Sydney $135.00

186 Agatha $90.00

The lunarkweekend() function, by using today’s date as its only argument, returns the end date of the current
lunar week. Then, by subtracting today’s date from the lunar week end date, the expression returns the
number of days that remain this week.

This value is then multiplied by the average daily expense claim by each employee to calculate the estimated
value of claims each employee is expected to make in the remaining lunar week.

lunarweekname
This function returns a display value showing the year and lunar week number corresponding to
a timestamp of the first millisecond of the first day of the lunar week containing date. Lunar
weeks in Qlik Sense are defined by counting January 1as the first day of the week and, apart
from the final week of the year, will contain exactly seven days.

Syntax:
LunarWeekName(date [, period_no[, first_week_day]])

Return data type: dual

Example diagram of lunarweekname() function

The lunarweekname() function determines which lunar week the date falls into, beginning a week count from
January 1. It then returns a value comprised of year/weekcount.

Argument Description

date The date or timestamp to evaluate.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 831

5 Script and chart functions

Argument Description

period_no period_no is an integer or expression resolving to an integer, where the value 0 indicates
the lunar week which contains date. Negative values in period_no indicate preceding lunar
weeks and positive values indicate succeeding lunar weeks.

first_week_
day

An offset that may be greater than or less than zero. This changes the beginning of the year
by the specified number of days and/or fractions of a day.

When to use it
The lunarweekname() function is useful when you would like to compare aggregations by lunar weeks. For
example, the function could be used to determine the total sales of products by lunar week. Lunar weeks are
useful when you would like to ensure that all values contained in the first week of the year contain only values
from January 1 at the earliest.

These dimensions can be created in the load script by using the function to create a field in a Master Calendar
table. The function can also be used directly in a chart as a calculated dimension.

Example Result

lunarweekname('01/12/2013') Returns 2006/02.

lunarweekname('01/12/2013', -1) Returns 2006/01.

lunarweekname('01/12/2013', 0, 1) Returns 2006/02.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – date with no additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2023 832

5 Script and chart functions

l A dataset containing a set of transactions for 2022, which is loaded into a table called Transactions.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, lunar_week_name, that returns the year and week number for the lunar week in

which the transactions took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

lunarweekname(date) as lunar_week_name

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l lunar_week_name

Script syntax and chart functions - Qlik Sense, May 2023 833

5 Script and chart functions

date lunar_week_name

1/7/2022 2022/01

1/19/2022 2022/03

2/5/2022 2022/06

2/28/2022 2022/09

3/16/2022 2022/11

4/1/2022 2022/13

5/7/2022 2022/19

5/16/2022 2022/20

6/15/2022 2022/24

6/26/2022 2022/26

7/9/2022 2022/28

7/22/2022 2022/29

7/23/2022 2022/30

7/27/2022 2022/30

8/2/2022 2022/31

8/8/2022 2022/32

8/19/2022 2022/33

9/26/2022 2022/39

10/14/2022 2022/41

10/29/2022 2022/44

Results table

The lunar_week_name field is created in the preceding load statement by using the lunarweekname() function,
and passing the date field as the function’s argument.

The lunarweekname() function identifies which lunar week the date value falls into, returning the year and
week number of that date.

Script syntax and chart functions - Qlik Sense, May 2023 834

5 Script and chart functions

Diagram of lunarweekname() function, example with no additional arguments

Transaction 8189 took place on January 19. The lunarweekname() function identifies that this date falls into
the lunar week beginning on January 15; this is the third lunar week of the year. Therefore, the lunar_week_

name value returned for that transaction is 2022/03.

Example 2 – date with period_no argument
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, previous_lunar_week_name, that returns the year and week number for the

lunar week prior to when the transactions took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

lunarweekname(date,-1) as previous_lunar_week_name

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

Script syntax and chart functions - Qlik Sense, May 2023 835

5 Script and chart functions

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_lunar_week_name

date previous_lunar_week_name

1/7/2022 2021/52

1/19/2022 2022/02

2/5/2022 2022/05

2/28/2022 2022/08

3/16/2022 2022/10

4/1/2022 2022/12

5/7/2022 2022/18

5/16/2022 2022/19

6/15/2022 2022/23

6/26/2022 2022/25

7/9/2022 2022/27

7/22/2022 2022/28

7/23/2022 2022/29

7/27/2022 2022/29

8/2/2022 2022/30

8/8/2022 2022/31

8/19/2022 2022/32

Results table

Script syntax and chart functions - Qlik Sense, May 2023 836

5 Script and chart functions

date previous_lunar_week_name

9/26/2022 2022/38

10/14/2022 2022/40

10/29/2022 2022/43

In this instance, because a period_no of -1 was used as the offset argument in the lunarweekname() function,
the function first identifies the lunar week in which the transactions took place. It then returns the year and
the number of one week prior.

Diagram of lunarweekname() function, period_no example

Transaction 8189 took place on January 19. The lunarweekname() function identifies that this transaction
took place in the third lunar week of the year, so it then returns the year and value for one week prior,
2022/02, for the previous_lunar_week_name field.

Example 3 – date with first_week_day argument
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. In this example, we set lunar
weeks to begin on January 5.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

lunarweekname(date,0,4) as lunar_week_name

;

Load

*

Inline

[

Script syntax and chart functions - Qlik Sense, May 2023 837

5 Script and chart functions

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l lunar_week_name

date lunar_week_name

1/7/2022 2022/01

1/19/2022 2022/03

2/5/2022 2022/05

2/28/2022 2022/08

3/16/2022 2022/11

4/1/2022 2022/13

5/7/2022 2022/18

5/16/2022 2022/19

6/15/2022 2022/24

6/26/2022 2022/25

7/9/2022 2022/27

Results table

Script syntax and chart functions - Qlik Sense, May 2023 838

5 Script and chart functions

date lunar_week_name

7/22/2022 2022/29

7/23/2022 2022/29

7/27/2022 2022/30

8/2/2022 2022/30

8/8/2022 2022/31

8/19/2022 2022/33

9/26/2022 2022/38

10/14/2022 2022/41

10/29/2022 2022/43

Diagram of lunarweekname() function, first_week_day example

In this instance, because the first_week_date argument of 4 is used in the lunarweekname() function, it
offsets the start of lunar weeks from January 1 to January 5.

Transaction 8188 took place on January 7. Due to lunar weeks beginning on January 5, the lunarweekname()

function identifies that the lunar week containing January 7 is the first lunar week of the year. Therefore, the
returned lunar_week_name value for that transaction is 2022/01.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that returns
the lunar week number and year in which the transactions took place is created as a measure in a chart object
of the application.

Script syntax and chart functions - Qlik Sense, May 2023 839

5 Script and chart functions

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

To calculate the start date of the lunar week in which a transaction takes place, create the following measure:

=lunarweekname(date)

date =lunarweekname(date)

1/7/2022 2022/01

1/19/2022 2022/03

2/5/2022 2022/06

2/28/2022 2022/09

3/16/2022 2022/11

4/1/2022 2022/13

5/7/2022 2022/19

Results table

Script syntax and chart functions - Qlik Sense, May 2023 840

5 Script and chart functions

date =lunarweekname(date)

5/16/2022 2022/20

6/15/2022 2022/24

6/26/2022 2022/26

7/9/2022 2022/28

7/22/2022 2022/29

7/23/2022 2022/30

7/27/2022 2022/30

8/2/2022 2022/31

8/8/2022 2022/32

8/19/2022 2022/33

9/26/2022 2022/39

10/14/2022 2022/41

10/29/2022 2022/44

The lunar_week_name measure is created in the chart object by using the lunarweekname() function and
passing the date field as the function’s argument.

The lunarweekname() function identifies which lunar week the date value falls into, returning the year and
week number of that date.

Diagram of lunarweekname() function, chart object example

Transaction 8189 took place on January 19. The lunarweekname() function identifies that this date falls into
the lunar week beginning on January 15; this is the third lunar week of the year. Therefore, the lunar_week_

name value for that transaction is 2022/03.

Script syntax and chart functions - Qlik Sense, May 2023 841

5 Script and chart functions

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called Transactions.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.

The end user would like a chart object that presents the total sales by week for the current year. Week 1, with
a length of seven days, should begin on January 1. This could be achieved even when this dimension is not
available in the data model by using the lunarweekname() function as a calculated dimension in the chart.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Script syntax and chart functions - Qlik Sense, May 2023 842

5 Script and chart functions

Results

Do the following:

1. Load the data and open a sheet. Create a new table.

2. Create a calculated dimension using the following expression:
=lunarweekname(date)

3. Calculate total sales using the following aggregation measure:
=sum(amount)

4. Set the measure's Number formatting to Money.

=lunarweekname(date) =sum(amount)

2022/01 $17.17

2022/03 $37.23

2022/06 $57.42

2022/09 $88.27

2022/11 $53.80

2022/13 $82.06

2022/19 $40.39

2022/20 $87.21

2022/24 $95.93

2022/26 $45.89

2022/28 $36.23

2022/29 $25.66

2022/30 $152.75

2022/31 $76.11

2022/32 $25.12

2022/33 $46.23

2022/39 $84.21

2022/41 $96.24

2022/44 $67.67

Results table

Script syntax and chart functions - Qlik Sense, May 2023 843

5 Script and chart functions

lunarweekstart
This function returns a value corresponding to a timestamp of the first millisecond of the first
day of the lunar week containing date. Lunar weeks in Qlik Sense are defined by counting
January 1 as the first day of the week and, apart from the final week of the year, will contain
exactly seven days.

Syntax:
LunarweekStart(date[, period_no[, first_week_day]])

Return data type: dual

The lunarweekstart() function determines which lunar week the date falls into. It then returns a timestamp,
in date format, for the first millisecond of that week.

Example diagram of lunarweekstart() function

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer or expression resolving to an integer, where the value 0 indicates
the lunar week which contains date. Negative values in period_no indicate preceding lunar
weeks and positive values indicate succeeding lunar weeks.

first_week_
day

An offset that may be greater than or less than zero. This changes the beginning of the year
by the specified number of days and/or fractions of a day.

Arguments

When to use it
The lunarweekstart() function is commonly used as part of an expression when the user would like the
calculation to use the fraction of the week that has elapsed thus far. Unlike the weekstart() function, at the
start of each new calendar year, week’s begin on January 1 and each subsequent week begins seven days
later. The lunarweekstart() function is not affected by the FirstWeekDay system variable.

For example, the lunarweekstart() can be used to calculate the interest that has been accumulated in a
week to date.

Script syntax and chart functions - Qlik Sense, May 2023 844

5 Script and chart functions

Example Result

lunarweekstart

('01/12/2013')
Returns 01/08/2013.

lunarweekstart

('01/12/2013', -1)
Returns 01/01/2013.

lunarweekstart

('01/12/2013', 0, 1)
Returns 01/09/2013, because setting first_week_day to 1 means the beginning
of the year is changed to 01/02/2013.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called Transactions.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, start_of_week, that returns a timestamp for the start of the lunar week in

which the transactions took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

lunarweekstart(date) as start_of_week,

timestamp(lunarweekstart(date)) as start_of_week_timestamp

;

Script syntax and chart functions - Qlik Sense, May 2023 845

5 Script and chart functions

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l start_of_week

l start_of_week_timestamp

date start_of_week start_of_week_timestamp

1/7/2022 01/01/2022 1/1/2022 12:00:00 AM

1/19/2022 01/15/2022 1/15/2022 12:00:00 AM

2/5/2022 02/05/2022 2/5/2022 12:00:00 AM

2/28/2022 02/26/2022 2/26/2022 12:00:00 AM

3/16/2022 03/12/2022 3/12/2022 12:00:00 AM

4/1/2022 03/26/2022 3/26/2022 12:00:00 AM

5/7/2022 05/07/2022 5/7/2022 12:00:00 AM

5/16/2022 05/14/2022 5/14/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 846

5 Script and chart functions

date start_of_week start_of_week_timestamp

6/15/2022 06/11/2022 6/11/2022 12:00:00 AM

6/26/2022 06/25/2022 6/25/2022 12:00:00 AM

7/9/2022 07/09/2022 7/9/2022 12:00:00 AM

7/22/2022 07/16/2022 7/16/2022 12:00:00 AM

7/23/2022 07/23/2022 7/23/2022 12:00:00 AM

7/27/2022 07/23/2022 7/23/2022 12:00:00 AM

8/2/2022 07/30/2022 7/30/2022 12:00:00 AM

8/8/2022 08/06/2022 8/6/2022 12:00:00 AM

8/19/2022 08/13/2022 8/13/2022 12:00:00 AM

9/26/2022 09/24/2022 9/24/2022 12:00:00 AM

10/14/2022 10/08/2022 10/8/2022 12:00:00 AM

10/29/2022 10/29/2022 10/29/2022 12:00:00 AM

The start_of_week field is created in the preceding load statement by using the lunarweekstart() function
and passing the date field as the function’s argument.

The lunarweekstart() function identifies the lunar week into which the date falls, returning a timestamp for
the first millisecond of that week.

Diagram of lunarweekstart() function, example with no additional arguments

Transaction 8189 took place on January 19. The lunarweekstart() function identifies that the lunar week
begins on January 15. Therefore, the start_of_week value for that transaction returns the first millisecond of
that day, which is January 15 at 12:00:00 AM.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2023 847

5 Script and chart functions

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, previous_lunar_week_start, that returns the timestamp for the start of the

lunar week before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

lunarweekstart(date,-1) as previous_lunar_week_start,

timestamp(lunarweekstart(date,-1)) as previous_lunar_week_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

date previous_lunar_week_start previous_lunar_week_start_timestamp

1/7/2022 12/24/2021 12/24/2021 12:00:00 AM

1/19/2022 01/08/2022 1/8/2022 12:00:00 AM

2/5/2022 01/29/2022 1/29/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 848

5 Script and chart functions

date previous_lunar_week_start previous_lunar_week_start_timestamp

2/28/2022 02/19/2022 2/19/2022 12:00:00 AM

3/16/2022 03/05/2022 3/5/2022 12:00:00 AM

4/1/2022 03/19/2022 3/19/2022 12:00:00 AM

5/7/2022 04/30/2022 4/30/2022 12:00:00 AM

5/16/2022 05/07/2022 5/7/2022 12:00:00 AM

6/15/2022 06/04/2022 6/4/2022 12:00:00 AM

6/26/2022 06/18/2022 6/18/2022 12:00:00 AM

7/9/2022 07/02/2022 7/2/2022 12:00:00 AM

7/22/2022 07/09/2022 7/9/2022 12:00:00 AM

7/23/2022 07/16/2022 7/16/2022 12:00:00 AM

7/27/2022 07/16/2022 7/16/2022 12:00:00 AM

8/2/2022 07/23/2022 7/23/2022 12:00:00 AM

8/8/2022 07/30/2022 7/30/2022 12:00:00 AM

8/19/2022 08/06/2022 8/6/2022 12:00:00 AM

9/26/2022 09/17/2022 9/17/2022 12:00:00 AM

10/14/2022 10/01/2022 10/1/2022 12:00:00 AM

10/29/2022 10/22/2022 10/22/2022 12:00:00 AM

In this instance, because a period_no of -1 was used as the offset argument in the lunarweekstart()

function, the function first identifies the lunar week that the transactions take place in. It then shifts one week
prior and identifies the first millisecond of that lunar week.

Diagram of lunarweekstart() function, period_no example

Transaction 8189 took place on January 19. The lunarweekstart() function identifies that the lunar week
begins on January 15. Therefore, the previous lunar week began on January 8 at 12:00:00 AM; this is the value
returned for the previous_lunar_week_start field.

Script syntax and chart functions - Qlik Sense, May 2023 849

5 Script and chart functions

Example 3 – first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. In this example, we set lunar
weeks to begin on January 5.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

lunarweekstart(date,0,4) as start_of_week,

timestamp(lunarweekstart(date,0,4)) as start_of_week_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2023 850

5 Script and chart functions

l date

l start_of_week

l start_of_week_timestamp

date start_of_week start_of_week_timestamp

1/7/2022 01/05/2022 1/5/2022 12:00:00 AM

1/19/2022 01/19/2022 1/19/2022 12:00:00 AM

2/5/2022 02/02/2022 2/2/2022 12:00:00 AM

2/28/2022 02/23/2022 2/23/2022 12:00:00 AM

3/16/2022 03/16/2022 3/16/2022 12:00:00 AM

4/1/2022 03/30/2022 3/30/2022 12:00:00 AM

5/7/2022 05/04/2022 5/4/2022 12:00:00 AM

5/16/2022 05/11/2022 5/11/2022 12:00:00 AM

6/15/2022 06/15/2022 6/15/2022 12:00:00 AM

6/26/2022 06/22/2022 6/22/2022 12:00:00 AM

7/9/2022 07/06/2022 7/6/2022 12:00:00 AM

7/22/2022 07/20/2022 7/20/2022 12:00:00 AM

7/23/2022 07/20/2022 7/20/2022 12:00:00 AM

7/27/2022 07/27/2022 7/27/2022 12:00:00 AM

8/2/2022 07/27/2022 7/27/2022 12:00:00 AM

8/8/2022 08/03/2022 8/3/2022 12:00:00 AM

8/19/2022 08/17/2022 8/17/2022 12:00:00 AM

9/26/2022 09/21/2022 9/21/2022 12:00:00 AM

10/14/2022 10/12/2022 10/12/2022 12:00:00 AM

10/29/2022 10/26/2022 10/26/2022 12:00:00 AM

Results table

In this instance, because the first_week_date argument of 4 is used in the lunarweekstart() function, it
offsets the start of the year from January 1 to January 5.

Script syntax and chart functions - Qlik Sense, May 2023 851

5 Script and chart functions

Diagram of lunarweekstart() function, first_week_day example

Transaction 8189 took place on January 19. Due to lunar weeks beginning on January 5, the lunarweekstart

() function identifies that the lunar week containing January 19 begins on January 19 at 12:00:00 AM as well.
Therefore, that is the value returned for the start_of_week field.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that returns a
timestamp for the start of the lunar week in which the transactions took place is created as a measure in a
chart object of the application.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

Script syntax and chart functions - Qlik Sense, May 2023 852

5 Script and chart functions

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Add the following measures:

=lunarweekstart(date)

=timestamp(lunarweekstart(date))

date =lunarweekstart(date) =timestamp(lunarweekstart(date))

1/7/2022 01/01/2022 1/1/2022 12:00:00 AM

1/19/2022 01/15/2022 1/15/2022 12:00:00 AM

2/5/2022 02/05/2022 2/5/2022 12:00:00 AM

2/28/2022 02/26/2022 2/26/2022 12:00:00 AM

3/16/2022 03/12/2022 3/12/2022 12:00:00 AM

4/1/2022 03/26/2022 3/26/2022 12:00:00 AM

5/7/2022 05/07/2022 5/7/2022 12:00:00 AM

5/16/2022 05/14/2022 5/14/2022 12:00:00 AM

6/15/2022 06/11/2022 6/11/2022 12:00:00 AM

6/26/2022 06/25/2022 6/25/2022 12:00:00 AM

7/9/2022 07/09/2022 7/9/2022 12:00:00 AM

7/22/2022 07/16/2022 7/16/2022 12:00:00 AM

7/23/2022 07/23/2022 7/23/2022 12:00:00 AM

7/27/2022 07/23/2022 7/23/2022 12:00:00 AM

8/2/2022 07/30/2022 7/30/2022 12:00:00 AM

8/8/2022 08/06/2022 8/6/2022 12:00:00 AM

8/19/2022 08/13/2022 8/13/2022 12:00:00 AM

9/26/2022 09/24/2022 9/24/2022 12:00:00 AM

10/14/2022 10/08/2022 10/8/2022 12:00:00 AM

10/29/2022 10/29/2022 10/29/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 853

5 Script and chart functions

The start_of_week measure is created in the chart object by using the lunarweekstart() function, and
passing the date field as the function’s argument.

The lunarweekstart() function identifies which lunar week the date value falls into, returning a timestamp
for the last millisecond of that week.

Diagram of lunarweekstart() function, chart object example

Transaction 8189 took place on January 19. The lunarweekstart() function identifies that the lunar week
begins on January 15. Therefore, the start_of_week value for that transaction is first millisecond of that day,
which is the January 15 at 12:00:00 AM.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of loan balances, which is loaded into a table called Loans.
l Data consisting of loan IDs, the balance at the beginning of the week, and the simple interest rate

charged on each loan per annum.

The end user would like a chart object that displays, by loan ID, the current interest that has been accrued on
each loan in the week to date.

Load script

Loans:

Load

*

Inline

[

loan_id,start_balance,rate

8188,$10000.00,0.024

8189,$15000.00,0.057

8190,$17500.00,0.024

8191,$21000.00,0.034

Script syntax and chart functions - Qlik Sense, May 2023 854

5 Script and chart functions

8192,$90000.00,0.084

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table.

2. Add the following fields as dimensions:
l loan_id

l start_balance

3. Next, create the following measure to calculate the accumulated interest:
=start_balance*(rate*(today(1)-lunarweekstart(today(1)))/365)

4. Set the measure's Number formatting to Money.

loan_id start_balance
=start_balance*(rate*(today(1)- lunarweekstart
(today(1)))/365)

8188 $10000.00 $15.07

8189 $15000.00 $128.84

8190 $17500.00 $63.29

8191 $21000.00 $107.59

8192 $90000.00 $1139.18

Results table

The lunarweekstart() function, using today’s date as its only argument, returns the start date of the current
year. By subtracting that result from the current date, the expression returns the number of days that have
elapsed so far this week.

This value is then multiplied by the interest rate and divided by 365 to return the effective interest rate
incurred for this period. The result is then multiplied by the starting balance of the loan to return the interest
that has been accrued so far this week.

makedate
This function returns a date calculated from the year YYYY, the month MM and the day DD.

Syntax:
MakeDate(YYYY [, MM [, DD]])

Return data type: dual

Argument Description

YYYY The year as an integer.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 855

5 Script and chart functions

Argument Description

MM The month as an integer. If no month is stated, 1 (January) is assumed.

DD The day as an integer. If no day is stated, 1 (the 1st) is assumed.

When to use it
The makedate() function would commonly be used in the script for data generation to generate a calendar.
This could also be used when the date field is not directly available as date, but needs some transformations
to extract year, month and day components.

These examples use the date format MM/DD/YYYY. The date format is specified in the SET DateFormat

statement at the top of your data load script. Change the format in the examples to suit your requirements.

Example Result

makedate(2012) Returns 01/01/2012.

makedate(12) Returns 01/01/2012.

makedate(2012,12) Returns 12/01/2012.

makedate(2012,2,14) Returns 02/14/2012.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2023 856

5 Script and chart functions

l A dataset containing a set of transactions for 2018, which is loaded into a table called Transactions.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, transaction_date, that returns a date in the format MM/DD/YYYY.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

makedate(transaction_year, transaction_month, transaction_day) as transaction_date

;

Load * Inline [

transaction_id, transaction_year, transaction_month, transaction_day, transaction_amount,

transaction_quantity, customer_id

3750, 2018, 08, 30, 12423.56, 23, 2038593

3751, 2018, 09, 07, 5356.31, 6, 203521

3752, 2018, 09, 16, 15.75, 1, 5646471

3753, 2018, 09, 22, 1251, 7, 3036491

3754, 2018, 09, 22, 21484.21, 1356, 049681

3756, 2018, 09, 22, -59.18, 2, 2038593

3757, 2018, 09, 23, 3177.4, 21, 203521

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l transaction_year

l transaction_month

l transaction_day

l transaction_date

transaction_year transaction_month transaction_day transaction_date

2018 08 30 08/30/2018

2018 09 07 09/07/2018

2018 09 16 09/16/2018

2018 09 22 09/22/2018

2018 09 23 09/23/2018

Results table

The transaction_date field is created in the preceding load statement by using the makedate() function and
passing the year, month, day fields as function arguments.

The function then combines and converts these values into a date field, returning the results in the format of
the DateFormat system variable.

Script syntax and chart functions - Qlik Sense, May 2023 857

5 Script and chart functions

Example 2 – Modified DateFormat
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, transaction_date, in the format DD/MM/YYYY without modifying the

DateFormat system variable.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

date(makedate(transaction_year, transaction_month, transaction_day), ‘DD/MM/YYYY’) as

transaction_date

;

Load * Inline [

transaction_id, transaction_year, transaction_month, transaction_day, transaction_amount,

transaction_quantity, customer_id

3750, 2018, 08, 30, 12423.56, 23, 2038593

3751, 2018, 09, 07, 5356.31, 6, 203521

3752, 2018, 09, 16, 15.75, 1, 5646471

3753, 2018, 09, 22, 1251, 7, 3036491

3754, 2018, 09, 22, 21484.21, 1356, 049681

3756, 2018, 09, 22, -59.18, 2, 2038593

3757, 2018, 09, 23, 3177.4, 21, 203521

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l transaction_year

l transaction_month

l transaction_day

l transaction_date

transaction_year transaction_month transaction_day transaction_date

2018 08 30 30/08/2018

Results table

Script syntax and chart functions - Qlik Sense, May 2023 858

5 Script and chart functions

transaction_year transaction_month transaction_day transaction_date

2018 09 07 07/09/2018

2018 09 16 16/09/2018

2018 09 22 22/09/2018

2018 09 23 23/09/2018

In this instance, the makedate() function is nested inside the date() function. The second argument of the
date() function sets the format of the makedate() function results as the required DD/MM/YYYY.

Example 3 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2018, which is loaded into a table called Transactions.
l The transaction dates provided across two fields: year and month.

Create a chart object measure, transaction_date, that returns a date in the format MM/DD/YYYY.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load * Inline [

transaction_id, transaction_year, transaction_month, transaction_amount, transaction_quantity,

customer_id

3750, 2018, 08, 12423.56, 23, 2038593

3751, 2018, 09, 5356.31, 6, 203521

3752, 2018, 09, 15.75, 1, 5646471

3753, 2018, 09, 1251, 7, 3036491

3754, 2018, 09, 21484.21, 1356, 049681

3756, 2018, 09, -59.18, 2, 2038593

3757, 2018, 09, 3177.4, 21, 203521

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l year

l month

To determine the transaction_date, create this measure:

Script syntax and chart functions - Qlik Sense, May 2023 859

5 Script and chart functions

=makedate(transaction_year,transaction_month)

transaction_year transaction_month transaction_date

2018 08 08/01/2018

2018 09 09/01/2018

Results table

The transaction_date measure is created in the chart object by using the makedate() function, and passing
the year and month fields as function arguments.

The function then combines these values, as well as the assumed day value of 01. These values are then
converted into a date field, returning the results in the format of the DateFormat system variable.

Example 4 – Scenario
Load script and chart expression

Overview

Create a calendar dataset for the calendar year of 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

load

*

where year(date)=2022;

load

date(recno()+makedate(2021,12,31)) as date

AutoGenerate 400;

Results

date

01/01/2022

01/02/2022

01/03/2022

01/04/2022

01/05/2022

01/06/2022

Results table

Script syntax and chart functions - Qlik Sense, May 2023 860

5 Script and chart functions

date

01/07/2022

01/08/2022

01/09/2022

01/10/2022

01/11/2022

01/12/2022

01/13/2022

01/14/2022

01/15/2022

01/16/2022

01/17/2022

01/18/2022

01/19/2022

01/20/2022

01/21/2022

01/22/2022

01/23/2022

01/24/2022

01/25/2022

+ 340 more rows

The makedate() function creates a date value for December 31, 2021. The recno() function provides the
record number of the current record being loaded into the table, starting from 1. Therefore, the first record
has the date January 1, 2022. Each successive recno() will then increment this date by 1. This expression is
wrapped in a date() function to convert the value into a date. This process is repeated 400 times by the
autogenerate function. Finally, by using a preceding load, a where condition can be used to only load dates
from year 2022. This script generates a calendar containing every date in 2022.

maketime
This function returns a time calculated from the hour hh, the minute mm, and the second ss.

Syntax:
MakeTime(hh [, mm [, ss]])

Script syntax and chart functions - Qlik Sense, May 2023 861

5 Script and chart functions

Return data type: dual

Argument Description

hh The hour as an integer.

mm The minute as an integer.

If no minute is stated, 00 is assumed.

ss The second as an integer.

If no second is stated, 00 is assumed.

Arguments

When to use it
The maketime() function would commonly be used in the script for data generation to generate a time field.
Sometimes, when the time field is derived from input text, this function could be used to construct the time
using its components.

These examples use the time format h:mm:ss. The time format is specified in the SET TimeFormatstatement at
the top of your data load script. Change the format in the examples to suit your requirements.

Example Result

maketime(22) Returns 22:00:00.

maketime(22, 17) Returns 22:17:00.

maketime(22,17,52) Returns 22:17:52.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Script syntax and chart functions - Qlik Sense, May 2023 862

5 Script and chart functions

Example 1 – maketime()
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions , which is loaded into a table called Transactions.
l Transaction times provided across three fields: hours, minutes, and seconds.
l The creation of a field, transaction_time, that returns the time in the format of the TimeFormat

system variable.

Load script

SET TimeFormat='h:mm:ss TT';

Transactions:

Load

*,

maketime(transaction_hour, transaction_minute, transaction_second) as transaction_time

;

Load * Inline [

transaction_id, transaction_hour, transaction_minute, transaction_second, transaction_amount,

transaction_quantity, customer_id

3750, 18, 43, 30, 12423.56, 23, 2038593

3751, 6, 32, 07, 5356.31, 6, 203521

3752, 12, 09, 16, 15.75, 1, 5646471

3753, 21, 43, 41, 7, 3036491

3754, 17, 55, 22, 21484.21, 1356, 049681

3756, 2, 52, 22, -59.18, 2, 2038593

3757, 9, 25, 23, 3177.4, 21, 203521

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l transaction_hour

l transaction_minute

l transaction_second

l transaction_time

transaction_hour transaction_minute transaction_second transaction_time

2 52 22 2:52:22 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 863

5 Script and chart functions

transaction_hour transaction_minute transaction_second transaction_time

6 32 07 6:32:07 AM

9 25 23 9:25:23 AM

12 09 16 12:09:16 PM

17 55 22 5:55:22 PM

18 43 30 6:43:30 PM

21 43 41 9:43:41 PM

The transaction_time field is created in the preceding load statement by using the maketime() function, and
passing the hour, minute, and second fields as function arguments.

The function then combines and converts these values into a time field, returning the results in the time
format of the TimeFormat system variable.

Example 2 – time() function
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, transaction_time, which will allow us to show the results in 24-hour time

format without modifying the TimeFormat system variable.

Load script

SET TimeFormat='h:mm:ss TT';

Transactions:

Load

*,

time(maketime(transaction_hour, transaction_minute, transaction_second),'h:mm:ss') as

transaction_time

;

Load * Inline [

transaction_id, transaction_hour, transaction_minute, transaction_second, transaction_amount,

transaction_quantity, customer_id

3750, 18, 43, 30, 12423.56, 23, 2038593

3751, 6, 32, 07, 5356.31, 6, 203521

3752, 12, 09, 16, 15.75, 1, 5646471

3753, 21, 43, 41, 7, 3036491

3754, 17, 55, 22, 21484.21, 1356, 049681

3756, 2, 52, 22, -59.18, 2, 2038593

Script syntax and chart functions - Qlik Sense, May 2023 864

5 Script and chart functions

3757, 9, 25, 23, 3177.4, 21, 203521

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l transaction_hour

l transaction_minute

l transaction_second

l transaction_time

transaction_hour transaction_minute transaction_second transaction_time

2 52 22 2:52:22

6 32 07 6:32:07

9 25 23 9:25:23

12 09 16 12:09:16

17 55 22 17:55:22

18 43 30 18:43:30

21 43 41 21:43:41

Results table

In this instance, the maketime() function is nested inside the time() function. The second argument of the
time() function sets the format of the maketime() function results as the required h:mm:ss.

Example 3 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions , which is loaded into a table called Transactions.
l Transaction times provided across two fields: hours and minutes.
l The creation of a field, transaction_time, that returns the time in the format of the TimeFormat

system variable.

Create a chart object measure, transaction_time, that returns a time in the format h:mm:ss TT.

Script syntax and chart functions - Qlik Sense, May 2023 865

5 Script and chart functions

Load script

SET TimeFormat='h:mm:ss TT';

Transactions:

Load * Inline [

transaction_id, transaction_hour, transaction_minute, transaction_amount, transaction_

quantity, customer_id

3750, 18, 43, 12423.56, 23, 2038593

3751, 6, 32, 5356.31, 6, 203521

3752, 12, 09, 15.75, 1, 5646471

3753, 21, 43, 7, 3036491

3754, 17, 55, 21484.21, 1356, 049681

3756, 2, 52, -59.18, 2, 2038593

3757, 9, 25, 3177.4, 21, 203521

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l transaction_hour

l transaction_minute

To calculate the transaction_time, create this measure:

=maketime(transaction_hour,transaction_minute)

transaction_hour transaction_minute =maketime(transaction_hour, transaction_minute)

2 52 2:52:00 AM

6 32 6:32:00 AM

9 25 9:25:00 AM

12 09 12:09:00 PM

17 55 5:55:00 PM

18 43 6:43:00 PM

21 43 9:43:00 PM

Results table

The transaction_time measure is created in the chart object by using the maketime() function, and passing
the hour and minute fields as function arguments.

The function then combines these values, and seconds are assumed to be 00. These values are then converted
into a time field, returning the results in the format of the TimeFormat system variable.

Script syntax and chart functions - Qlik Sense, May 2023 866

5 Script and chart functions

Example 4 – Scenario
Load script and chart expression

Overview

Create a calendar dataset for the month of January 2022, broken out into eight-hour increments.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

tmpCalendar:

load

*

where year(date)=2022;

load

date(recno()+makedate(2021,12,31)) as date

AutoGenerate 31;

Left join(tmpCalendar)

load

maketime((recno()-1)*8,00,00) as time

autogenerate 3;

Calendar:

load

timestamp(date + time) as timestamp

resident tmpCalendar;

drop table tmpCalendar;

Results

timestamp

1/1/2022 12:00:00 AM

1/1/2022 8:00:00 AM

1/1/2022 4:00:00 PM

1/2/2022 12:00:00 AM

1/2/2022 8:00:00 AM

1/2/2022 4:00:00 PM

1/3/2022 12:00:00 AM

1/3/2022 8:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 867

5 Script and chart functions

timestamp

1/3/2022 4:00:00 PM

1/4/2022 12:00:00 AM

1/4/2022 8:00:00 AM

1/4/2022 4:00:00 PM

1/5/2022 12:00:00 AM

1/5/2022 8:00:00 AM

1/5/2022 4:00:00 PM

1/6/2022 12:00:00 AM

1/6/2022 8:00:00 AM

1/6/2022 4:00:00 PM

1/7/2022 12:00:00 AM

1/7/2022 8:00:00 AM

1/7/2022 4:00:00 PM

1/8/2022 12:00:00 AM

1/8/2022 8:00:00 AM

1/8/2022 4:00:00 PM

1/9/2022 12:00:00 AM

+ 68 more rows

The initial autogenerate function creates a calendar containing all the dates in January in a table called
tmpCalendar.

A second table, containing three records, is created. For each record, recno() – 1 is taken (values 0, 1, 2) and
the result is multiplied by 8. As a result, this generates the values 0, 8 16. These values are used as the hour
parameter in a maketime() function, with minute and second values of 0. As a result, the table contains three
time fields: 12:00:00 AM, 8:00:00 AM, and 4:00:00 PM.

This table is joined to the tmpCalendar table. Because there are no matching fields between the two tables for
the join, the time rows are added to each date row. As a result, each date row is now repeated three times
with each time value.

Finally, the Calendar table is created from a resident load of the tmpCalendar table. The date and time fields
are concatenated and wrapped in the timestamp() function to create the timestamp field.

The tmpCalendar table is then dropped.

makeweekdate
This function returns a date calculated from the year, the week number, and the day of week .

Script syntax and chart functions - Qlik Sense, May 2023 868

5 Script and chart functions

Syntax:
MakeWeekDate(weekyear [, week [, weekday [, first_week_day [, broken_weeks [,

reference_day]]]]])

Return data type: dual

The makeweekdate() function is available both as script and chart function. The function will calculate the
date based on the parameters passed into the function.

Argument Description

weekyear The year as defined by the WeekYear() function for the specific date, that is the year to
which the week number belongs.

The week year can in some cases be different from the calendar year, for
example if week 1 starts already in December of the previous year.

week The week number as defined by the Week() function for the specific date.

If no week number is stated, 1 is assumed.

weekday The day-of-week as defined by the WeekDay() function for the date in question. 0 is the
first day of the week, and 6 is the last day of the week.

If no day-of-week is stated, 0 is assumed.

Even though 0 always means first day of the week and 6 is always the last, which
weekdays that corresponds to is determined by the first_week_day parameter.
If omitted, the value of variable FirstWeekDay is used.

If broken weeks are used, together with an impossible combination of parameters, this
may lead to a result that does not belong to the chosen year.

Example:

MakeWeekDate(2021,1,0,6,1)

Returns ‘Dec 27 2020’ since this day is the first day (the Sunday) of the specified week. Jan
1 2021 was a Friday.

first_week_
day

Specifies the day on which the week starts. If omitted, the value of variable FirstWeekDay
is used.

The possible values first_week_day are 0 for Monday, 1 for Tuesday, 2 for Wednesday, 3
for Thursday, 4 for Friday, 5 for Saturday, and 6 for Sunday.

For more information about the system variable, see FirstWeekDay (page 215).

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 869

5 Script and chart functions

Argument Description

broken_
weeks

If you don't specify broken_weeks, the value of variable BrokenWeeks is used to define
whether weeks are broken or not.

reference_
day

If you don't specify reference_day, the value of variable ReferenceDay is used to define
which day in January to set as reference day to define week 1.

When to use it
The makeweekdate() function would commonly be used in the script for data generation to generate a list of
dates, or to construct dates when the year, week and day-of-week are provided in the input data.

The following examples assume:

SET FirstWeekDay=0;

SET BrokenWeeks=0;

SET ReferenceDay=4;

Example Result

makeweekdate(2014,6,6) returns 02/09/2014

makeweekdate(2014,6,1) returns 02/04/2014

makeweekdate(2014,6) returns 02/03/2014 (weekday 0 is assumed)

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – day included
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2023 870

5 Script and chart functions

l A dataset containing weekly sales total for 2022 in a table called Sales.
l Transaction dates provided across three fields: year, week, and sales.
l A preceding load, which is used to create a measure, end_of_week, using the makeweekdate() function

to return the date for the Friday of that week in the format MM/DD/YYYY.

To prove that the date returned is a Friday, the end_of_week expression is also wrapped in the weekday()

function to show the day of the week.

Load script

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=0;

SET BrokenWeeks=0;

SET ReferenceDay=4;

Transactions:

Load

*,

makeweekdate(transaction_year, transaction_week,4) as end_of_week,

weekday(makeweekdate(transaction_year, transaction_week,4)) as week_day

;

Load * Inline [

transaction_year, transaction_week, sales

2022, 01, 10000

2022, 02, 11250

2022, 03, 9830

2022, 04, 14010

2022, 05, 28402

2022, 06, 9992

2022, 07, 7292

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l transaction_year

l transaction_week

l end_of_week

l week_day

transaction_year transaction_week end_of_week week_day

2022 01 01/07/2022 Fri

2022 02 01/14/2022 Fri

2022 03 01/21/2022 Fri

2022 04 01/28/2022 Fri

Results table

Script syntax and chart functions - Qlik Sense, May 2023 871

5 Script and chart functions

transaction_year transaction_week end_of_week week_day

2022 05 02/04/2022 Fri

2022 06 02/11/2022 Fri

2022 07 02/18/2022 Fri

The end_of_week field is created in the preceding load statement by using the makeweekdate() function. The
transaction_year, transaction_week fields are passed through the function as the year and week
arguments. A value of 4 is used for the day argument.

The function then combines and converts these values into a date field, returning the results in the format of
the DateFormat system variable.

The makeweekdate() function, and its arguments are also wrapped in a weekday() function to return the
week_day field; and as can be seen in the table above, the week_day field shows that these dates do occur on a
Friday.

Example 2 – day excluded
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing weekly sales totals for 2022 in a table called Sales.
l Transaction dates provided across three fields: year, week, and sales.
l A preceding load, which is used to create a measure, first_day_of_week, using the makeweekdate()

function. This will return the date for the Monday of that week in the format MM/DD/YYYY.

To prove that the date returned is a Monday, the first_day_of_week expression is also wrapped in the
weekday() function to show the day of the week.

Load script

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=0;

SET BrokenWeeks=0;

SET ReferenceDay=4;

Transactions:

Load

*,

makeweekdate(transaction_year, transaction_week) as first_day_of_week,

weekday(makeweekdate(transaction_year, transaction_week)) as week_day

;

Load * Inline [

transaction_year, transaction_week, sales

Script syntax and chart functions - Qlik Sense, May 2023 872

5 Script and chart functions

2022, 01, 10000

2022, 02, 11250

2022, 03, 9830

2022, 04, 14010

2022, 05, 28402

2022, 06, 9992

2022, 07, 7292

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l transaction_year

l transaction_week

l first_day_of_week

l week_day

transaction_year transaction_week first_day_of_week week_day

2022 01 01/03/2022 Mon

2022 02 01/10/2022 Mon

2022 03 01/17/2022 Mon

2022 04 01/24/2022 Mon

2022 05 01/31/2022 Mon

2022 06 02/07/2022 Mon

2022 07 02/14/2022 Mon

Results table

The first_day_of_week field is created in the preceding load statement by using the makeweekdate()

function. The transaction_year and transaction_week parameters are passed as function arguments, and
the day parameter is left blank.

The function then combines and converts these values into a date field, returning the results in the format of
the DateFormat system variable.

The makeweekdate() function and its arguments are also wrapped in a weekday() function to return the week_

day field. As can be seen in the table above, the week_day field returns Monday in all cases since that
parameter was left blank in the makeweekdate() function, which defaults to 0 (first day of the week), and first
day of the week is set to Monday by the FirstWeekDay system variable.

Script syntax and chart functions - Qlik Sense, May 2023 873

5 Script and chart functions

Example 3 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing weekly sales totals for 2022 in a table called Sales.
l Transaction dates provided across three fields: year, week, and sales.

In this example, a chart object will be used to create a measure equivalent to the end_of_week calculation
from the first example. This measure will use the makeweekdate() function to return the date for the Friday of
that week in the format MM/DD/YYYY.

To prove that the date returned is a Friday, a second measure is created to return the day of the week.

Load script

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=0;

SET BrokenWeeks=0;

SET ReferenceDay=4;

Master_Calendar:

Load * Inline [

transaction_year, transaction_week, sales

2022, 01, 10000

2022, 02, 11250

2022, 03, 9830

2022, 04, 14010

2022, 05, 28402

2022, 06, 9992

2022, 07, 7292

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add these fields as dimensions:
l transaction_year

l transaction_week

2. To perform the calculation equivalent to that of the end_of_weekfield from the first example, create
the following measure:
=makeweekdate(transaction_year,transaction_week,4)

Script syntax and chart functions - Qlik Sense, May 2023 874

5 Script and chart functions

3. To calculate the day of the week for each transaction, create the following measure:
=weekday(makeweekdate(transaction_year,transaction_week,4))

transaction_
year

transaction_
week

=makeweekdate
(transaction_
year,transaction_week,4)

=weekday(makeweekdate
(transaction_year,transaction_
week,4))

2022 01 01/07/2022 Fri

2022 02 01/14/2022 Fri

2022 03 01/21/2022 Fri

2022 04 01/28/2022 Fri

2022 05 02/04/2022 Fri

2022 06 02/11/2022 Fri

2022 07 02/18/2022 Fri

Results table

An equivalent field to end_of_week is created in the chart object as a measure by using the makeweekdate()

function. The transaction_year and transaction_week fields are passed as year and week arguments. A
value of 4 is used for the day argument.

The function then combines and converts these values into a date field, returning the results in the format of
the DateFormat system variable.

The makeweekdate() function and its arguments are also wrapped in a weekday() function to return a
calculation equivalent to that of the week_day field from the first example. As can be seen in the table above,
the last column on the right shows that these dates do occur on a Friday.

Example 4 – Scenario
Load script and chart expression

Overview

In this example, create a list of dates containing all the Fridays for the year 2022.

Open the Data load editor and add the load script below to a new tab.

Load script

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=0;

SET BrokenWeeks=0;

SET ReferenceDay=4;

Calendar:

load

*,

Script syntax and chart functions - Qlik Sense, May 2023 875

5 Script and chart functions

weekday(date) as weekday

where year(date)=2022;

load

makeweekdate(2022,recno()-2,4) as date

AutoGenerate 60;

Results

date weekday

01/07/2022 Fri

01/14/2022 Fri

01/21/2022 Fri

01/28/2022 Fri

02/04/2022 Fri

02/11/2022 Fri

02/18/2022 Fri

02/25/2022 Fri

03/04/2022 Fri

03/11/2022 Fri

03/18/2022 Fri

03/25/2022 Fri

04/01/2022 Fri

04/08/2022 Fri

04/15/2022 Fri

04/22/2022 Fri

04/29/2022 Fri

05/06/2022 Fri

05/13/2022 Fri

05/20/2022 Fri

05/27/2022 Fri

06/03/2022 Fri

06/10/2022 Fri

06/17/2022 Fri

+ 27 more rows

Results table

Script syntax and chart functions - Qlik Sense, May 2023 876

5 Script and chart functions

The makeweekdate() function finds each Friday in 2022. Using a week parameter of -2 ensures that no dates
are missed. Finally, a preceding load creates an additional weekday field for clarity, to show that each date

value is a Friday.

minute
This function returns an integer representing the minute when the fraction of the expression is
interpreted as a time according to the standard number interpretation.

Syntax:
minute(expression)

Return data type: integer

When to use it
The minute() function is useful when you would like to compare aggregations by minute. For example, you
could use the function if you would like to see activity count distribution by minute.

These dimensions can be created either in the load script by using the function to create a field in a Master
Calendar table. Alternatively, they can be used directly in a chart as a calculated dimension.

Example Result

minute ('09:14:36') Returns 14.

minute ('0.5555') Returns 19 (Because 0.5555 = 13:19:55).

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – Variable (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2023 877

5 Script and chart functions

The load script contains:

l A dataset containing transactions by timestamp, which is loaded into a table called Transactions.
l The default TimeStamp system variable (M/D/YYYY h:mm:ss[.fff] TT) is used.
l The creation of a field, minute, to calculate when transactions took place.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

minute(timestamp) as minute

;

Load

*

Inline

[

id,timestamp,amount

9497,'2022-01-05 19:04:57',47.25,

9498,'2022-01-03 14:21:53',51.75,

9499,'2022-01-03 05:40:49',73.53,

9500,'2022-01-04 18:49:38',15.35,

9501,'2022-01-01 22:10:22',31.43,

9502,'2022-01-05 19:34:46',13.24,

9503,'2022-01-04 22:58:34',74.34,

9504,'2022-01-06 11:29:38',50.00,

9505,'2022-01-02 08:35:54',36.34,

9506,'2022-01-06 08:49:09',74.23

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l timestamp

l minute

timestamp minute

2022-01-01 22:10:22 10

2022-01-02 08:35:54 35

2022-01-03 05:40:49 40

2022-01-03 14:21:53 21

2022-01-04 18:49:38 49

Results table

Script syntax and chart functions - Qlik Sense, May 2023 878

5 Script and chart functions

timestamp minute

2022-01-04 22:58:34 58

2022-01-05 19:04:57 4

2022-01-05 19:34:46 34

2022-01-06 08:49:09 49

2022-01-06 11:29:38 29

The values in the minute field are created by using the minute() function and passing the timestamp as the
expression in the preceding load statement.

Example 2 – Chart object (chart)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The default TimeStamp system variable (M/D/YYYY h:mm:ss[.fff] TT) is used.

However, in this example, the unchanged dataset is loaded into the application. The minute values are
calculated via a measure in a chart object.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*

Inline

[

id,timestamp,amount

9497,'2022-01-05 19:04:57',47.25,

9498,'2022-01-03 14:21:53',51.75,

9499,'2022-01-03 05:40:49',73.53,

9500,'2022-01-04 18:49:38',15.35,

9501,'2022-01-01 22:10:22',31.43,

9502,'2022-01-05 19:34:46',13.24,

9503,'2022-01-04 22:58:34',74.34,

9504,'2022-01-06 11:29:38',50.00,

9505,'2022-01-02 08:35:54',36.34,

9506,'2022-01-06 08:49:09',74.23

];

Script syntax and chart functions - Qlik Sense, May 2023 879

5 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: timestamp.

Create the following measure:

=minute(timestamp)

timestamp minute

2022-01-01 22:10:22 10

2022-01-02 08:35:54 35

2022-01-03 05:40:49 40

2022-01-03 14:21:53 21

2022-01-04 18:49:38 49

2022-01-04 22:58:34 58

2022-01-05 19:04:57 4

2022-01-05 19:34:46 34

2022-01-06 08:49:09 49

2022-01-06 11:29:38 29

Results table

The values for minute are created by using the minute() function and passing the timestamp as the
expression in a measure for the chart object.

Example 3 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of timestamps, which is generated to represent entries at a ticket barrier.
l Information with each timestamp and its corresponding id, which is loaded into a table called Ticket_

Barrier_Tracker.
l The default TimeStamp system variable (M/D/YYYY h:mm:ss[.fff] TT) is used.

The user would like a chart object that shows, by minute, the count of barrier entries.

Script syntax and chart functions - Qlik Sense, May 2023 880

5 Script and chart functions

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

tmpTimeStampCreator:

load

*

where year(date)=2022;

load

date(recno()+makedate(2021,12,31)) as date

AutoGenerate 1;

join load

maketime(floor(rand()*24),floor(rand()*59),floor(rand()*59)) as time

autogenerate 10000;

Ticket_Barrier_Tracker:

load

recno() as id,

timestamp(date + time) as timestamp

resident tmpTimeStampCreator;

drop table tmpTimeStampCreator;

Results

Do the following:

1. Load the data and open a sheet. Create a new table.

2. Create a calculated dimension using the following expression:
=minute(timestamp)

3. Add the following aggregation measure to calculate total count of entries:
=count(id)

4. Set the measure's Number formatting to Money.

minute(timestamp) =count(id)

0 174

1 171

2 175

3 165

4 188

5 176

6 158

7 187

Results table

Script syntax and chart functions - Qlik Sense, May 2023 881

5 Script and chart functions

minute(timestamp) =count(id)

8 178

9 178

10 197

11 161

12 166

13 184

14 159

15 161

16 152

17 160

18 176

19 164

20 170

21 170

22 142

23 145

24 155

+ 35 more rows

month
This function returns a dual value: a month name as defined in the environment variable
MonthNames and an integer between 1-12. The month is calculated from the date
interpretation of the expression, according to the standard number interpretation.

The function returns the name of the month in the format of the MonthName system variable for a particular
date. It is commonly used to create a day field as a dimension in a Master Calendar.

Syntax:
month(expression)

Return data type: integer

Example Result

month(2012-10-12) returns Oct

month(35648) returns Aug, because 35648 = 1997-08-06

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 882

5 Script and chart functions

Example 1 – DateFormat dataset (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates named Master_Calendar. The DateFormat system variable is set to DD/MM/YYYY.
l A preceding load that creates an additional field, namedmonth_name, using the month() function.
l An additional field, namedlong_date, using the date() function to express the full date.

Load script

SET DateFormat='DD/MM/YYYY';

Master_Calendar:

Load

date,

date(date,'dd-MMMM-YYYY') as long_date,

month(date) as month_name

Inline

[

date

03/01/2022

03/02/2022

03/03/2022

03/04/2022

03/05/2022

03/06/2022

03/07/2022

03/08/2022

03/09/2022

03/10/2022

03/11/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l long_date

l month_name

Script syntax and chart functions - Qlik Sense, May 2023 883

5 Script and chart functions

date long_date month_name

03/01/2022 03-January- 2022 Jan

03/02/2022 03-February- 2022 Feb

03/03/2022 03-March- 2022 Mar

03/04/2022 03-April- 2022 Apr

03/05/2022 03-May- 2022 May

03/06/2022 03-June- 2022 Jun

03/07/2022 03-July- 2022 Jul

03/08/2022 03-August- 2022 Aug

03/09/2022 03-September- 2022 Sep

03/10/2022 03-October- 2022 Oct

03/11/2022 03-November- 2022 Nov

Results table

The month name is correctly evaluated by the month() function in the script.

Example 2 – ANSI dates (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates named Master_Calendar. The DateFormat system variable DD/MM/YYYY is used.
However, the dates that are included in the dataset are in ANSI standard date format.

l A preceding load that creates an additional field, namedmonth_name, using the month() function.
l An additional field, namedlong_date, using the date() function to express the full date.

Load script

SET DateFormat='DD/MM/YYYY';

Master_Calendar:

Load

date,

date(date,'dd-MMMM-YYYY') as long_date,

month(date) as month_name

Inline

[

date

2022-01-11

Script syntax and chart functions - Qlik Sense, May 2023 884

5 Script and chart functions

2022-02-12

2022-03-13

2022-04-14

2022-05-15

2022-06-16

2022-07-17

2022-08-18

2022-09-19

2022-10-20

2022-11-21

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l long_date

l month_name

date long_date month_name

03/11/2022 11-March- 2022 11

03/12/2022 12-March- 2022 12

03/13/2022 13-March- 2022 13

03/14/2022 14-March- 2022 14

03/15/2022 15-March- 2022 15

03/16/2022 16-March- 2022 16

03/17/2022 17-March- 2022 17

03/18/2022 18-March- 2022 18

03/19/2022 19-March- 2022 19

03/20/2022 20-March- 2022 20

03/21/2022 21-March- 2022 21

Results table

The month name is correctly evaluated by the month() function in the script.

Example 3 – Unformatted dates (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2023 885

5 Script and chart functions

l A dataset of dates named Master_Calendar. The DateFormat system variable DD/MM/YYYY is used.
l A preceding load that creates an additional field, named month_name, using the month() function.
l The original unformatted date, named unformatted_date.
l An additional field, named long_date, using the date() function to express the full date.

Load script

SET DateFormat='DD/MM/YYYY';

Master_Calendar:

Load

unformatted_date,

date(unformatted_date,'dd-MMMM-YYYY') as long_date,

month(unformatted_date) as month_name

Inline

[

unformatted_date

44868

44898

44928

44958

44988

45018

45048

45078

45008

45038

45068

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l unformatted_date

l long_date

l month_name

unformatted_date long_date month_name

44868 03-January- 2022 Jan

44898 03-February- 2022 Feb

44928 03-March- 2022 Mar

44958 03-April- 2022 Apr

Results table

Script syntax and chart functions - Qlik Sense, May 2023 886

5 Script and chart functions

unformatted_date long_date month_name

44988 03-May- 2022 May

45018 03-June- 2022 Jun

45048 03-July- 2022 Jul

45078 03-August- 2022 Aug

45008 03-September- 2022 Sep

45038 03-October- 2022 Oct

45068 03-November- 2022 Nov

The month name is correctly evaluated by the month() function in the script.

Example 4 – Calculating expiry month
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of orders placed in March named Subscriptions. The table contains three fields:
o id
o order_date
o amount

Load script

Subscriptions:

Load

id,

order_date,

amount

Inline

[

id,order_date,amount

1,03/01/2022,231.24

2,03/02/2022,567.28

3,03/03/2022,364.28

4,03/04/2022,575.76

5,03/05/2022,638.68

6,03/06/2022,785.38

7,03/07/2022,967.46

8,03/08/2022,287.67

9,03/09/2022,764.45

Script syntax and chart functions - Qlik Sense, May 2023 887

5 Script and chart functions

10,03/10/2022,875.43

11,03/11/2022,957.35

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: order_date.

To calculate the month an order will expire, create this measure: =month(order_date+180).

order_date =month(order_date+180)

03/01/2022 Jul

03/02/2022 Aug

03/03/2022 Aug

03/04/2022 Sep

03/05/2022 Oct

03/06/2022 Nov

03/07/2022 Dec

03/08/2022 Jan

03/09/2022 Mar

03/10/2022 Apr

03/11/2022 May

Results table

The month() function correctly determines that an order placed on the 11th of March would expire in July.

monthend
This function returns a value corresponding to a timestamp of the last millisecond of the last
day of the month containing date. The default output format will be the DateFormat set in the
script.

Syntax:
MonthEnd(date[, period_no])
In other words, the monthend() function determines which month the date falls into. It then returns a
timestamp, in date format, for the last millisecond of that month.

Script syntax and chart functions - Qlik Sense, May 2023 888

5 Script and chart functions

Diagram of monthend function.

When to use it

The monthend() function is used as part of an expression when you would like the calculation to use the
fraction of the month that has not yet occurred. For example, if you want to calculate the total interest not yet
incurred during the month.

Return data type: dual

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer, which, if 0 or omitted, indicates the month that contains date.
Negative values in period_no indicate preceding months and positive values indicate
succeeding months.

Arguments

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

monthend('02/19/2012') Returns 02/29/2012 23:59:59.

monthend('02/19/2001', -1) Returns 01/31/2001 23:59:59.

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 889

5 Script and chart functions

Example 1 – Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 that is loaded into a table called ‘Transactions’.
l A date field in theDateFormat system variable (MM/DD/YYYY) format.
l A preceding load statement that contains:

l The monthend() function which is set as the ‘end_of_month’ field.
l The timestamp function which is set as the ‘end_of_month_timestamp’ field.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthend(date) as end_of_month,

timestamp(monthend(date)) as end_of_month_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Script syntax and chart functions - Qlik Sense, May 2023 890

5 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l end_of_month

l end_of_month_timestamp

id date end_of_month end_of_month_timestamp

8188 1/7/2022 01/31/2022 1/31/2022 11:59:59 PM

8189 1/19/2022 01/31/2022 1/31/2022 11:59:59 PM

8190 2/5/2022 02/28/2022 2/28/2022 11:59:59 PM

8191 2/28/2022 02/28/2022 2/28/2022 11:59:59 PM

8192 3/16/2022 03/31/2022 3/31/2022 11:59:59 PM

8193 4/1/2022 04/30/2022 4/30/2022 11:59:59 PM

8194 5/7/2022 05/31/2022 5/31/2022 11:59:59 PM

8195 5/16/2022 05/31/2022 5/31/2022 11:59:59 PM

8196 6/15/2022 06/30/2022 6/30/2022 11:59:59 PM

8197 6/26/2022 06/30/2022 6/30/2022 11:59:59 PM

8198 7/9/2022 07/31/2022 7/31/2022 11:59:59 PM

8199 7/22/2022 07/31/2022 7/31/2022 11:59:59 PM

8200 7/23/2022 07/31/2022 7/31/2022 11:59:59 PM

8201 7/27/2022 07/31/2022 7/31/2022 11:59:59 PM

8202 8/2/2022 08/31/2022 8/31/2022 11:59:59 PM

8203 8/8/2022 08/31/2022 8/31/2022 11:59:59 PM

8204 8/19/2022 08/31/2022 8/31/2022 11:59:59 PM

8205 9/26/2022 09/30/2022 9/30/2022 11:59:59 PM

8206 10/14/2022 10/31/2022 10/31/2022 11:59:59 PM

8207 10/29/2022 10/31/2022 10/31/2022 11:59:59 PM

Results table

The ‘end_of_month’ field is created in the preceding load statement by using the monthend() function and
passing the date field as the function’s argument.

The monthend() function identifies which month the date value falls into returning a timestamp for the last
millisecond of that month.

Script syntax and chart functions - Qlik Sense, May 2023 891

5 Script and chart functions

Diagram of monthend function with March as the selected month.

Transaction 8192 took place on March 16. The monthend() function returns the last millisecond of that month,
which is March 31 at 11:59:59 PM.

Example 2 – period_no
Load script and results

Overview

The same dataset and scenario as the first example are used.

In this example, the task is to create a field, ‘previous_month_end’, that returns the timestamp for the end of
the month before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthend(date,-1) as previous_month_end,

timestamp(monthend(date,-1)) as previous_month_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

Script syntax and chart functions - Qlik Sense, May 2023 892

5 Script and chart functions

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l previous_month_end

l previous_month_end_timestamp

id date previous_month_end previous_month_end_timestamp

8188 1/7/2022 12/31/2021 12/31/2021 11:59:59 PM

8189 1/19/2022 12/31/2021 12/31/2021 11:59:59 PM

8190 2/5/2022 01/31/2022 1/31/2022 11:59:59 PM

8191 2/28/2022 01/31/2022 1/31/2022 11:59:59 PM

8192 3/16/2022 02/28/2022 2/28/2022 11:59:59 PM

8193 4/1/2022 03/31/2022 3/31/2022 11:59:59 PM

8194 5/7/2022 04/30/2022 4/30/2022 11:59:59 PM

8195 5/16/2022 04/30/2022 4/30/2022 11:59:59 PM

8196 6/15/2022 05/31/2022 5/31/2022 11:59:59 PM

8197 6/26/2022 05/31/2022 5/31/2022 11:59:59 PM

8198 7/9/2022 06/30/2022 6/30/2022 11:59:59 PM

8199 7/22/2022 06/30/2022 6/30/2022 11:59:59 PM

8200 7/23/2022 06/30/2022 6/30/2022 11:59:59 PM

8201 7/27/2022 06/30/2022 6/30/2022 11:59:59 PM

8202 8/2/2022 07/31/2022 7/31/2022 11:59:59 PM

8203 8/8/2022 07/31/2022 7/31/2022 11:59:59 PM

8204 8/19/2022 07/31/2022 7/31/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 893

5 Script and chart functions

id date previous_month_end previous_month_end_timestamp

8205 9/26/2022 08/31/2022 8/31/2022 11:59:59 PM

8206 10/14/2022 09/30/2022 9/30/2022 11:59:59 PM

8207 10/29/2022 09/30/2022 9/30/2022 11:59:59 PM

The monthend()function first identifies the month that the transactions take place in as aperiod_no of -1 is
used as the offset argument. It then shifts one month prior and identifies the final millisecond of that month.

Diagram of monthend function with the period_no variable.

Transaction 8192 took place on March 16. The monthend() function identifies that the month before the
transaction took place in was February. It then returns the final millisecond of that month, February 28 at
11:59:59 PM.

Example 3 – Chart example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

In this example, the dataset is unchanged and loaded into the app. The task is to create a calculation that
returns a timestamp for the end of the month when the transactions took place as a measure in a chart of the
app.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

Script syntax and chart functions - Qlik Sense, May 2023 894

5 Script and chart functions

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l id

To calculate the end date of the month that a transaction takes place in, create the following measures:

l =monthend(date)

l =timestamp(monthend(date))

id date =monthend(date) =timestamp(monthend(date))

8188 10/14/2022 10/31/2022 10/31/2022 11:59:59 PM

8189 10/29/2022 10/31/2022 10/31/2022 11:59:59 PM

8190 9/26/2022 09/30/2022 9/30/2022 11:59:59 PM

8191 8/2/2022 08/31/2022 8/31/2022 11:59:59 PM

8192 8/8/2022 08/31/2022 8/31/2022 11:59:59 PM

8193 8/19/2022 08/31/2022 8/31/2022 11:59:59 PM

8194 7/9/2022 07/31/2022 7/31/2022 11:59:59 PM

8195 7/22/2022 07/31/2022 7/31/2022 11:59:59 PM

8196 7/23/2022 07/31/2022 7/31/2022 11:59:59 PM

8197 7/27/2022 07/31/2022 7/31/2022 11:59:59 PM

8198 6/15/2022 06/30/2022 6/30/2022 11:59:59 PM

8199 6/26/2022 06/30/2022 6/30/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 895

5 Script and chart functions

id date =monthend(date) =timestamp(monthend(date))

8200 5/7/2022 05/31/2022 5/31/2022 11:59:59 PM

8201 5/16/2022 05/31/2022 5/31/2022 11:59:59 PM

8202 4/1/2022 04/30/2022 4/30/2022 11:59:59 PM

8203 3/16/2022 03/31/2022 3/31/2022 11:59:59 PM

8204 2/5/2022 02/28/2022 2/28/2022 11:59:59 PM

8205 2/28/2022 02/28/2022 2/28/2022 11:59:59 PM

8206 1/7/2022 01/31/2022 1/31/2022 11:59:59 PM

8207 1/19/2022 01/31/2022 1/31/2022 11:59:59 PM

The ‘end_of_month’ measure is created in the chart by using themonthend() function and passing the date
field as the function’s argument.

The monthend() function identifies which month the date value falls into and returns a timestamp for the last
millisecond of that month.

Diagram of monthend function with the period_no variable.

Transaction 8192 took place on March 16. The monthend() function returns the last millisecond of that month,
which is March 31 at 11:59:59 PM.

Example 4 – Scenario
Load script and results

Overview

In this example, a dataset is loaded into a table called ‘Employee_Expenses’. The table contains the following
fields:

l Employee IDs
l Employee names
l The average daily expense claims of each employee.

Script syntax and chart functions - Qlik Sense, May 2023 896

5 Script and chart functions

The end user would like a chart that displays, by employee id and employee name, the estimated expense
claim for the remainder of the month.

Load script

Employee_Expenses:

Load

*

Inline

[

employee_id,employee_name,avg_daily_claim

182,Mark, $15

183,Deryck, $12.5

184,Dexter, $12.5

185,Sydney,$27

186,Agatha,$18

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l employee_id

l employee_name

To calculate the accumulated interest, create this measure:

=floor(monthend(today(1),0)-today(1))*avg_daily_claim

This measure is dynamic and will produce different table results depending on the date when you
load the data.

Set the measure’s Number formatting to Money.

employee_id employee_name =floor(monthend(today(1),0)-today(1))*avg_daily_claim

182 Mark $30.00

183 Deryck $25.00

184 Dexter $25.00

185 Sydney $54.00

186 Agatha $36.00

Results table

The monthend()function returns the end date of the current month by using today’s date as its only argument.
The expression returns the number of days that remain this month by subtracting today’s date from the
month end date.

This value is then multiplied by the average daily expense claim by each employee to calculate the estimated
value of claims each employee is expected to make in the remaining month.

Script syntax and chart functions - Qlik Sense, May 2023 897

5 Script and chart functions

monthname
This function returns a display value showing the month (formatted according to the
MonthNames script variable) and year with an underlying numeric value corresponding to a
timestamp of the first millisecond of the first day of the month.

Syntax:
MonthName(date[, period_no])

Return data type: dual

Diagram of monthname function

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer, which, if 0 or omitted, indicates the month that contains date.
Negative values in period_no indicate preceding months and positive values indicate
succeeding months.

Arguments

Example Result

monthname('10/19/2013') Returns Oct 2013

monthname('10/19/2013', -1) Returns Sep 2013

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Script syntax and chart functions - Qlik Sense, May 2023 898

5 Script and chart functions

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called Transactions.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, transaction_month, that returns the month in which the transactions took

place.

Load script

SET DateFormat='MM/DD/YYYY';

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

Transactions:

Load

*,

monthname(date) as transaction_month

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

Script syntax and chart functions - Qlik Sense, May 2023 899

5 Script and chart functions

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l transaction_month

date transaction_month

1/7/2022 Jan 2022

1/19/2022 Jan 2022

2/5/2022 Feb 2022

2/28/2022 Feb 2022

3/16/2022 Mar 2022

4/1/2022 Apr 2022

5/7/2022 May 2022

5/16/2022 May 2022

6/15/2022 Jun 2022

6/26/2022 Jun 2022

7/9/2022 Jul 2022

7/22/2022 Jul 2022

7/23/2022 Jul 2022

7/27/2022 Jul 2022

8/2/2022 Aug 2022

8/8/2022 Aug 2022

8/19/2022 Aug 2022

9/26/2022 Sep 2022

10/14/2022 Oct 2022

10/29/2022 Oct 2022

Results table

The transaction_month field is created in the preceding load statement by using the monthname() function
and passing the date field as the function’s argument.

Script syntax and chart functions - Qlik Sense, May 2023 900

5 Script and chart functions

Diagram of monthname function, basic example

The monthname() function identifies that transaction 8192 took place in March 2022, and returns this value
using the MonthNames system variable.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same inline dataset and scenario as the first example.
l The creation of a field, transaction_previous_month, that returns the timestamp for the end of the

month before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

Transactions:

Load

*,

monthname(date,-1) as transaction_previous_month

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

Script syntax and chart functions - Qlik Sense, May 2023 901

5 Script and chart functions

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l transaction_previous_month

date transaction_previous_month

1/7/2022 Dec 2021

1/19/2022 Dec 2021

2/5/2022 Jan 2022

2/28/2022 Jan 2022

3/16/2022 Feb 2022

4/1/2022 Mar 2022

5/7/2022 Apr 2022

5/16/2022 Apr 2022

6/15/2022 May 2022

6/26/2022 May 2022

7/9/2022 Jun 2022

7/22/2022 Jun 2022

7/23/2022 Jun 2022

7/27/2022 Jun 2022

8/2/2022 Jul 2022

8/8/2022 Jul 2022

8/19/2022 Jul 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2023 902

5 Script and chart functions

date transaction_previous_month

9/26/2022 Aug 2022

10/14/2022 Sep 2022

10/29/2022 Sep 2022

In this instance, because a period_no of -1 was used as the offset argument in the monthname() function, the
function first identifies the month that the transactions take place in. It then shifts to one month prior and
returns the month name and year.

Diagram of monthname function, period_no example

Transaction 8192 took place on March 16. The monthname() function identifies that the month before the
transaction took place was February and returns the month, in the MonthNames system variable format, along
with the year 2022.

Example 3 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same inline dataset and scenario as the first example. However, in this example,
the unchanged dataset is loaded into the application. The calculation that returns a timestamp for the end of
the month when the transactions took place is created as a measure in a chart object of the application.

Load script

SET DateFormat='MM/DD/YYYY';

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

Transactions:

Load

*

Script syntax and chart functions - Qlik Sense, May 2023 903

5 Script and chart functions

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:date.

Create the following measure:

=monthname(date)

date =monthname(date)

1/7/2022 Jan 2022

1/19/2022 Jan 2022

2/5/2022 Feb 2022

2/28/2022 Feb 2022

3/16/2022 Mar 2022

4/1/2022 Apr 2022

5/7/2022 May 2022

5/16/2022 May 2022

6/15/2022 Jun 2022

6/26/2022 Jun 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2023 904

5 Script and chart functions

date =monthname(date)

7/9/2022 Jul 2022

7/22/2022 Jul 2022

7/23/2022 Jul 2022

7/27/2022 Jul 2022

8/2/2022 Aug 2022

8/8/2022 Aug 2022

8/19/2022 Aug 2022

9/26/2022 Sep 2022

10/14/2022 Oct 2022

10/29/2022 Oct 2022

The month_name measure is created in the chart object by using the monthname() function and passing the
date field as the function’s argument.

Diagram of monthname function, chart object example

The monthname() function identifies that transaction 8192 took place in March 2022, and returns this value
using the MonthNames system variable.

monthsend
This function returns a value corresponding to the timestamp of the last millisecond of the
month, bi-month, quarter, four-month period, or half-year containing a base date. It is also
possible to find the timestamp for the end of a previous or following time period. The default
output format is the DateFormat set in the script.

Syntax:
MonthsEnd(n_months, date[, period_no [, first_month_of_year]])

Script syntax and chart functions - Qlik Sense, May 2023 905

5 Script and chart functions

Return data type: dual

Diagram of monthsend function.

Argument Description

n_months The number of months that defines the period. An integer or expression that resolves to an
integer that must be one of: 1 (equivalent to the inmonth() function), 2 (bi-month), 3
(equivalent to the inquarter()function), 4 (four-month period), or 6 (half year).

date The date or timestamp to evaluate.

period_no The period can be offset by period_no, an integer, or expression resolving to an integer,
where the value 0 indicates the period that contains base_date. Negative values in period_
no indicate preceding periods and positive values indicate succeeding periods.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value between 2
and 12 in first_month_of_year.

Arguments

The monthsend() function divides the year into segments based on the n_months argument provided. It then
evaluates what segment each date provided falls into and returns the last millisecond, in date format, of that
segment. The function can return the end timestamp from preceding or following segments as well as
redefine the first month of the year.

The following segments of the year are available in the function as n_month arguments.

Period Number of months

month 1

bi-month 2

quarter 3

four months 4

half-year 6

n_month arguments

Script syntax and chart functions - Qlik Sense, May 2023 906

5 Script and chart functions

When to use it

The monthsend() function is used as part of an expression when the user would like the calculation to use the
fraction of the month that has elapsed so far. The user has the opportunity, using a variable, to select the
period of their choosing. For example, the monthsend() can provide an input variable to let the user calculate
the total interest not yet incurred during the month, quarter, or half-year.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

monthsend(4, '07/19/2013') Returns 08/31/2013.

monthsend(4, '10/19/2013', -1) Returns 08/31/2013.

monthsend(4, '10/19/2013', 0, 2) Returns 01/31/2014.
Because the start of the year becomes month 2.

Function examples

Example 1 - Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 is loaded into a table called ‘Transactions’.
l A date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l A preceding load statement containing:

l The monthsend function which is set as the field, ‘bi_monthly_end’. This groups transactions
into bi-monthly segments.

l The timestamp function which returns the starting timestamp of the segment for each
transaction.

Script syntax and chart functions - Qlik Sense, May 2023 907

5 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthsend(2,date) as bi_monthly_end,

timestamp(monthsend(2,date)) as bi_monthly_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l bi_monthly_end

l bi_monthly_end_timestamp

id date bi_monthly_end bi_monthly_end_timestamp

8188 1/7/2022 02/28/2022 2/28/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 908

5 Script and chart functions

id date bi_monthly_end bi_monthly_end_timestamp

8189 1/19/2022 02/28/2022 2/28/2022 11:59:59 PM

8190 2/5/2022 02/28/2022 2/28/2022 11:59:59 PM

8191 2/28/2022 02/28/2022 2/28/2022 11:59:59 PM

8192 3/16/2022 04/30/2022 4/30/2022 11:59:59 PM

8193 4/1/2022 04/30/2022 4/30/2022 11:59:59 PM

8194 5/7/2022 06/30/2022 6/30/2022 11:59:59 PM

8195 5/22/2022 06/30/2022 6/30/2022 11:59:59 PM

8196 6/15/2022 06/30/2022 6/30/2022 11:59:59 PM

8197 6/26/2022 06/30/2022 6/30/2022 11:59:59 PM

8198 7/9/2022 08/31/2022 8/31/2022 11:59:59 PM

8199 7/22/2022 08/31/2022 8/31/2022 11:59:59 PM

8200 7/23/2022 08/31/2022 8/31/2022 11:59:59 PM

8201 7/27/2022 08/31/2022 8/31/2022 11:59:59 PM

8202 8/2/2022 08/31/2022 8/31/2022 11:59:59 PM

8203 8/8/2022 08/31/2022 8/31/2022 11:59:59 PM

8204 8/19/2022 08/31/2022 8/31/2022 11:59:59 PM

8205 9/26/2022 10/31/2022 10/31/2022 11:59:59 PM

8206 10/14/2022 10/31/2022 10/31/2022 11:59:59 PM

8207 10/29/2022 10/31/2022 10/31/2022 11:59:59 PM

The ‘bi_monthly_end’ field is created in the preceding load statement by using the monthsend() function. The
first argument provided is 2, dividing the year into bi-monthly segments. The second argument identifies
which field is being evaluated.

Diagram of monthsend function with bi-monthly segments.

Transaction 8195 takes place on May 22. The monthsend() function initially divides the year into bi-monthly
segments. Transaction 8195 falls into the segment between May 1 and June 30. As a result, the function
returns the last millisecond of this segment, 06/30/2022 11:59:59 PM.

Script syntax and chart functions - Qlik Sense, May 2023 909

5 Script and chart functions

Example 2 - period_no
Load script and results

Overview

The same dataset and scenario as the first example are used.

In this example, the task is to create a field, ‘prev_bi_monthly_end’, that returns the first millisecond of the bi-
monthly segment before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthsend(2,date,-1) as prev_bi_monthly_end,

timestamp(monthsend(2,date,-1)) as prev_bi_monthly_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2023 910

5 Script and chart functions

l id

l date

l prev_bi_monthly_end

l prev_bi_monthly_end_timestamp

id date prev_bi_monthly_end prev_bi_monthly_end_timestamp

8188 1/7/2022 12/31/2021 12/31/2021 11:59:59 PM

8189 1/19/2022 12/31/2021 12/31/2021 11:59:59 PM

8190 2/5/2022 12/31/2021 12/31/2021 11:59:59 PM

8191 2/28/2022 12/31/2021 12/31/2021 11:59:59 PM

8192 3/16/2022 02/28/2022 2/28/2022 11:59:59 PM

8193 4/1/2022 02/28/2022 2/28/2022 11:59:59 PM

8194 5/7/2022 04/30/2022 4/30/2022 11:59:59 PM

8195 5/22/2022 04/30/2022 4/30/2022 11:59:59 PM

8196 6/15/2022 04/30/2022 4/30/2022 11:59:59 PM

8197 6/26/2022 04/30/2022 4/30/2022 11:59:59 PM

8198 7/9/2022 06/30/2022 6/30/2022 11:59:59 PM

8199 7/22/2022 06/30/2022 6/30/2022 11:59:59 PM

8200 7/23/2022 06/30/2022 6/30/2022 11:59:59 PM

8201 7/27/2022 06/30/2022 6/30/2022 11:59:59 PM

8202 8/2/2022 06/30/2022 6/30/2022 11:59:59 PM

8203 8/8/2022 06/30/2022 6/30/2022 11:59:59 PM

8204 8/19/2022 06/30/2022 6/30/2022 11:59:59 PM

8205 9/26/2022 08/31/2022 8/31/2022 11:59:59 PM

8206 10/14/2022 08/31/2022 8/31/2022 11:59:59 PM

8207 10/29/2022 08/31/2022 8/31/2022 11:59:59 PM

Results table

By using -1 as the period_no argument in the monthsend() function, after initially dividing a year into bi-
monthly segments, the function returns the last millisecond of the previous bi-monthly segment to when a
transaction takes place.

Script syntax and chart functions - Qlik Sense, May 2023 911

5 Script and chart functions

Diagram of monthsend function that returns the previous bi-monthly segment.

Transaction 8195 occurs in the segment between May and June. As a result, the previous bi-monthly segment
was between March 1 and April 30 and so the function returns the last millisecond of this segment, 04/30/2022
11:59:59 PM.

Example 3 – first_month_of_year
Load script and results

Overview

The same dataset and scenario as the first example are used.

In this example, the organizational policy is for April to be the first month of the financial year.

Create a field, ‘bi_monthly_end’, that groups transactions into bi-monthly segments and returns the last
millisecond timestamp of the segment for each transaction.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthsend(2,date,0,4) as bi_monthly_end,

timestamp(monthsend(2,date,0,4)) as bi_monthly_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

Script syntax and chart functions - Qlik Sense, May 2023 912

5 Script and chart functions

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l bi_monthly_end

l bi_monthly_end_timestamp

id date bi_monthly_end bi_monthly_end_timestamp

8188 1/7/2022 01/31/2022 1/31/2022 11:59:59 PM

8189 1/19/2022 01/31/2022 1/31/2022 11:59:59 PM

8190 2/5/2022 03/31/2022 3/31/2022 11:59:59 PM

8191 2/28/2022 03/31/2022 3/31/2022 11:59:59 PM

8192 3/16/2022 03/31/2022 3/31/2022 11:59:59 PM

8193 4/1/2022 05/31/2022 5/31/2022 11:59:59 PM

8194 5/7/2022 05/31/2022 5/31/2022 11:59:59 PM

8195 5/22/2022 05/31/2022 5/31/2022 11:59:59 PM

8196 6/15/2022 07/31/2022 7/31/2022 11:59:59 PM

8197 6/26/2022 07/31/2022 7/31/2022 11:59:59 PM

8198 7/9/2022 07/31/2022 7/31/2022 11:59:59 PM

8199 7/22/2022 07/31/2022 7/31/2022 11:59:59 PM

8200 7/23/2022 07/31/2022 7/31/2022 11:59:59 PM

8201 7/27/2022 07/31/2022 7/31/2022 11:59:59 PM

8202 8/2/2022 09/30/2022 9/30/2022 11:59:59 PM

8203 8/8/2022 09/30/2022 9/30/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 913

5 Script and chart functions

id date bi_monthly_end bi_monthly_end_timestamp

8204 8/19/2022 09/30/2022 9/30/2022 11:59:59 PM

8205 9/26/2022 09/30/2022 9/30/2022 11:59:59 PM

8206 10/14/2022 11/30/2022 11/30/2022 11:59:59 PM

8207 10/29/2022 11/30/2022 11/30/2022 11:59:59 PM

By using 4 as the first_month_of_year argument in the monthsend() function, the function begins the year
on April 1. It then divides the year into bi-monthly segments: Apr-May, Jun-Jul, Aug-Sep, Oct-Nov, Dec-Jan,
Feb-Mar.

Diagram of monthsend function with the first month of the year set as April

Transaction 8195 took place on May 22 and falls into the segment between April 1 and May 31. As a result, the
function returns the last millisecond of this segment, 05/31/2022 11:59:59 PM.

Example 4 - Chart object example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used. However in this example, the dataset is
unchanged, and loaded into the app.

In this example, the task is to create a calculation that groups transactions into bi-monthly segments and
returns the last millisecond timestamp of the segment for each transaction as a measure in a chart object of
an app.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,2/19/2022,37.23

Script syntax and chart functions - Qlik Sense, May 2023 914

5 Script and chart functions

8189,3/7/2022,17.17

8190,3/30/2022,88.27

8191,4/5/2022,57.42

8192,4/16/2022,53.80

8193,5/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

date

To fetch the last millisecond timestamp of the bi-monthly segment when the transaction took place, create
the following measures:

l =monthsEnd(2,date)

l =timestamp(monthsend(2,date))

id date =monthsend(2,date) =timestamp(monthsend(2,date))

8188 1/7/2022 02/28/2022 2/28/2022 11:59:59 PM

8189 1/19/2022 02/28/2022 2/28/2022 11:59:59 PM

8190 2/5/2022 02/28/2022 2/28/2022 11:59:59 PM

8191 2/28/2022 02/28/2022 2/28/2022 11:59:59 PM

8192 3/16/2022 04/30/2022 4/30/2022 11:59:59 PM

8193 4/1/2022 04/30/2022 4/30/2022 11:59:59 PM

8194 5/7/2022 06/30/2022 6/30/2022 11:59:59 PM

8195 5/22/2022 06/30/2022 6/30/2022 11:59:59 PM

8196 6/15/2022 06/30/2022 6/30/2022 11:59:59 PM

8197 6/26/2022 06/30/2022 6/30/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 915

5 Script and chart functions

id date =monthsend(2,date) =timestamp(monthsend(2,date))

8198 7/9/2022 08/31/2022 8/31/2022 11:59:59 PM

8199 7/22/2022 08/31/2022 8/31/2022 11:59:59 PM

8200 7/23/2022 08/31/2022 8/31/2022 11:59:59 PM

8201 7/27/2022 08/31/2022 8/31/2022 11:59:59 PM

8202 8/2/2022 08/31/2022 8/31/2022 11:59:59 PM

8203 8/8/2022 08/31/2022 8/31/2022 11:59:59 PM

8204 8/19/2022 08/31/2022 8/31/2022 11:59:59 PM

8205 9/26/2022 10/31/2022 10/31/2022 11:59:59 PM

8206 10/14/2022 10/31/2022 10/31/2022 11:59:59 PM

8207 10/29/2022 10/31/2022 10/31/2022 11:59:59 PM

The ‘bi_monthly_end’ field is created as a measure in the chart object by using the monthsend() function. The
first argument provided is 2, which divides the year into bi-monthly segments. The second argument identifies
which field is being evaluated.

Diagram of monthsend function with bi-monthly segments.

Transaction 8195 takes place on May 22. The monthsend() function initially divides the year into bi-monthly
segments. Transaction 8195 falls into the segment between May 1 and June 30. As a result, the function
returns the first millisecond of this segment, 06/30/2022 11:59:59 PM.

Example 5 – Scenario
Load script and results

Overview

Open the data load editor and add the load script below to a new tab.

In this example, a dataset is loaded into a table called ‘Employee_Expenses’. The table contains the following
fields:

l Employee IDs
l Employee names

Script syntax and chart functions - Qlik Sense, May 2023 916

5 Script and chart functions

l The average daily expense claims of each employee.

The end user would like a chart that displays, by employee id and employee name, the estimated expense
claim for the remainder of a period of their own choosing. The financial year begins in January.

Load script

SET vPeriod = 1;

Employee_Expenses:

Load

*

Inline

[

employee_id,employee_name,avg_daily_claim

182,Mark, $15

183,Deryck, $12.5

184,Dexter, $12.5

185,Sydney,$27

186,Agatha,$18

];

Results

Load the data and open a new sheet.

At the start of the load script, a variable, vPeriod, is created that is tied to the variable input control.

Do the following:

1. In the assets panel, click Custom objects.

2. Select Qlik Dashboard bundle, create a Variable input object.

3. Enter a title for the chart object.

4. Under Variable, select vPeriod as the name and set the object to show as a Drop down.

5. Under Values, click Dynamic values. Enter the following:
='1~month|2~bi-month|3~quarter|4~tertial|6~half-year'.

Create a new table and these fields as dimensions:

l employee_id

l employee_name

To calculate the accumulated interest, create this measure:

=floor(monthsend($(vPeriod),today(1))-today(1))*avg_daily_claim

This measure is dynamic and will produce different table results depending on the date when you
load the data.

Set the measure’s Number formatting to Money.

Script syntax and chart functions - Qlik Sense, May 2023 917

5 Script and chart functions

employee_id employee_name =floor(monthsend($(vPeriod),today(1))-today(1))*avg_daily_claim

182 Mark $1410.00

183 Deryck $1175.00

184 Dexter $1175.00

185 Sydney $2538.00

186 Agatha $1692.00

Results table

The monthsend() function uses the user input as its first argument and today’s date as its second argument.
This returns the end date for the user selected period of time. Then, the expression returns the number of
days that remain the selected period of time by subtracting today’s date from this end date.

This value is then multiplied by the average daily expense claim by each employee to calculate the estimated
value of claims each employee is expected to make in the remaining days of this period.

monthsname
This function returns a display value representing the range of the months of the period
(formatted according to the MonthNames script variable) as well as the year. The underlying
numeric value corresponds to a timestamp of the first millisecond of the month, bi-month,
quarter, four-month period, or half-year containing a base date.

Syntax:
MonthsName(n_months, date[, period_no[, first_month_of_year]])

Return data type: dual

Diagram of monthsname function

The monthsname() function divides the year into segments based on the n_months agrument provided. It then
evaluates the segment to which each provided date belongs, and returns the start and end month names of
that segment, as well as the year. The function also provides the ability to return these boundaries from
preceding or following segments, as well as redefining which is the first month of the year.

The following segments of the year are available in the function as n_month arguments:

Script syntax and chart functions - Qlik Sense, May 2023 918

5 Script and chart functions

Periods Number of months

month 1

bi-month 2

quarter 3

four months 4

half-year 6

Possible n_month arguments

Argument Description

n_months The number of months that defines the period. An integer or expression that resolves to an
integer that must be one of: 1 (equivalent to the inmonth() function), 2 (bi-month), 3
(equivalent to the inquarter()function), 4 (four-month period), or 6 (half year).

date The date or timestamp to evaluate.

period_no The period can be offset by period_no, an integer, or expression resolving to an integer,
where the value 0 indicates the period that contains base_date. Negative values in period_
no indicate preceding periods and positive values indicate succeeding periods.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value between 2
and 12 in first_month_of_year.

Arguments

When to use it
The monthsname() function is useful when you would like to provide the user with the functionality to
compare aggregations by a period of their choosing. For example, you could provide an input variable to let
the user see the total sales of products by month, quarter, or half-year.

These dimensions can be created either in the load script by adding the function as a field in a Master
Calendar table, or alternatively, by creating the dimension directly in a chart as a calculated dimension.

Example Result

monthsname(4,

'10/19/2013')
Returns 'Sep-Dec 2013.' In this and the other examples, the SET Monthnames
statement is set to Jan;Feb;Mar, and so on.

monthsname(4,

'10/19/2013', -1)
Returns 'May-Aug 2013'.

monthsname(4,

'10/19/2013', 0,

2)

Returns 'Oct-Jan 2014', since the year is specified to begin in month 2. Therefore,
the four-month period ends on the first month of the following year.

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 919

5 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called Transactions.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, bi_monthly_range, that groups transactions into bi-monthly segments and

returns the boundary names of that segment for each transaction.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthsname(2,date) as bi_monthly_range

;

Load

*

Inline

[

id,date,amount

8188,2/19/2022,37.23

8189,3/7/2022,17.17

8190,3/30/2022,88.27

8191,4/5/2022,57.42

8192,4/16/2022,53.80

8193,5/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

Script syntax and chart functions - Qlik Sense, May 2023 920

5 Script and chart functions

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l bi_monthly_range

date bi_monthly_range

2/19/2022 Jan-Feb 2022

3/7/2022 Mar-Apr 2022

3/30/2022 Mar-Apr 2022

4/5/2022 Mar-Apr 2022

4/16/2022 Mar-Apr 2022

5/1/2022 May-Jun 2022

5/7/2022 May-Jun 2022

5/22/2022 May-Jun 2022

6/15/2022 May-Jun 2022

6/26/2022 May-Jun 2022

7/9/2022 Jul-Aug 2022

7/22/2022 Jul-Aug 2022

7/23/2022 Jul-Aug 2022

7/27/2022 Jul-Aug 2022

8/2/2022 Jul-Aug 2022

8/8/2022 Jul-Aug 2022

8/19/2022 Jul-Aug 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2023 921

5 Script and chart functions

date bi_monthly_range

9/26/2022 Sep-Oct 2022

10/14/2022 Sep-Oct 2022

10/29/2022 Sep-Oct 2022

The bi_monthly_range field is created in the preceding load statement by using the monthsname() function.
The first argument provided is 2, dividing the year into bi-monthly segments. The second argument identifies
which field is being evaluated.

Diagram of monthsname function, basic example

Transaction 8195 takes place on May 22. The monthsname() function initially divides the year into bi-monthly
segments. Transaction 8195 falls into the segment between May 1 and June 30. Therefore, the function returns
these months in the MonthNames system variable format, as well as the year, May-Jun 2022.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same inline dataset and scenario as the first example.
l The creation of a field, prev_bi_monthly_range, that groups transactions into bi-monthly segments

and returns the previous segment boundary names for each transaction.

Add your other text here, as needed, with lists etc.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

Script syntax and chart functions - Qlik Sense, May 2023 922

5 Script and chart functions

MonthsName(2,date,-1) as prev_bi_monthly_range

;

Load

*

Inline

[

id,date,amount

8188,2/19/2022,37.23

8189,3/7/2022,17.17

8190,3/30/2022,88.27

8191,4/5/2022,57.42

8192,4/16/2022,53.80

8193,5/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l prev_bi_monthly_range

date prev_bi_monthly_range

2/19/2022 Nov-Dec 2021

3/7/2022 Jan-Feb 2022

3/30/2022 Jan-Feb 2022

4/5/2022 Jan-Feb 2022

4/16/2022 Jan-Feb 2022

5/1/2022 Mar-Apr 2022

5/7/2022 Mar-Apr 2022

5/22/2022 Mar-Apr 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2023 923

5 Script and chart functions

date prev_bi_monthly_range

6/15/2022 Mar-Apr 2022

6/26/2022 Mar-Apr 2022

7/9/2022 May-Jun 2022

7/22/2022 May-Jun 2022

7/23/2022 May-Jun 2022

7/27/2022 May-Jun 2022

8/2/2022 May-Jun 2022

8/8/2022 May-Jun 2022

8/19/2022 May-Jun 2022

9/26/2022 Jul-Aug 2022

10/14/2022 Jul-Aug 2022

10/29/2022 Jul-Aug 2022

In this example, -1 is used as the period_no argument in the monthsname() function. After initially dividing a
year into bi-monthly segments, the function then returns the previous segment boundaries for when a
transaction takes place.

Diagram of monthsname function, period_no example

Transaction 8195 occurs in the segment between May and June. Therefore, the previous bi-monthly segment
was between March 1 and April 30, and so the function returns Mar-Apr 2022.

Example 3 – first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2023 924

5 Script and chart functions

The load script contains:

l The same inline dataset and scenario as the first example.
l The creation of a different field, bi_monthly_range, that groups transactions into bi-monthly segments

and returns the segment boundaries for each transaction.

However, in this example, we also need to set April as the first month of the financial year.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

MonthsName(2,date,0,4) as bi_monthly_range

;

Load

*

Inline

[

id,date,amount

8188,2/19/2022,37.23

8189,3/7/2022,17.17

8190,3/30/2022,88.27

8191,4/5/2022,57.42

8192,4/16/2022,53.80

8193,5/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l bi_monthly_range

Script syntax and chart functions - Qlik Sense, May 2023 925

5 Script and chart functions

date bi_monthly_range

2/19/2022 Feb-Mar 2021

3/7/2022 Feb-Mar 2021

3/30/2022 Feb-Mar 2021

4/5/2022 Apr-May 2022

4/16/2022 Apr-May 2022

5/1/2022 Apr-May 2022

5/7/2022 Apr-May 2022

5/22/2022 Apr-May 2022

6/15/2022 Jun-Jul 2022

6/26/2022 Jun-Jul 2022

7/9/2022 Jun-Jul 2022

7/22/2022 Jun-Jul 2022

7/23/2022 Jun-Jul 2022

7/27/2022 Jun-Jul 2022

8/2/2022 Aug-Sep 2022

8/8/2022 Aug-Sep 2022

8/19/2022 Aug-Sep 2022

9/26/2022 Aug-Sep 2022

10/14/2022 Oct-Nov 2022

10/29/2022 Oct-Nov 2022

Results table

By using 4 as the first_month_of_year argument in the monthsname() function, the function begins the year
on April 1. It then divides the year into bi-monthly segments: Apr-May,Jun-Jul,Aug-Sep,Oct-Nov,Dec-Jan,Feb-
Mar.

Paragraph text for Results.

Transaction 8195 took place on May 22 and falls into the segment between April 1 and May 31. Therefore, the
function returns Apr-May 2022.

Script syntax and chart functions - Qlik Sense, May 2023 926

5 Script and chart functions

Diagram of monthsname function, first_month_of_year example

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same inline dataset and scenario as the first example. However, in this example,
the unchanged dataset is loaded into the application. The calculation that groups transactions into bi-
monthly segments and returns the segment boundaries for each transaction is created as a measure in a chart
object of the application.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,2/19/2022,37.23

8189,3/7/2022,17.17

8190,3/30/2022,88.27

8191,4/5/2022,57.42

8192,4/16/2022,53.80

8193,5/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

Script syntax and chart functions - Qlik Sense, May 2023 927

5 Script and chart functions

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:date.

Create the following measure:

=monthsname(2,date)

date =monthsname(2,date)

2/19/2022 Jan-Feb 2022

3/7/2022 Mar-Apr 2022

3/30/2022 Mar-Apr 2022

4/5/2022 Mar-Apr 2022

4/16/2022 Mar-Apr 2022

5/1/2022 May-Jun 2022

5/7/2022 May-Jun 2022

5/22/2022 May-Jun 2022

6/15/2022 May-Jun 2022

6/26/2022 May-Jun 2022

7/9/2022 Jul-Aug 2022

7/22/2022 Jul-Aug 2022

7/23/2022 Jul-Aug 2022

7/27/2022 Jul-Aug 2022

8/2/2022 Jul-Aug 2022

8/8/2022 Jul-Aug 2022

8/19/2022 Jul-Aug 2022

9/26/2022 Sep-Oct 2022

10/14/2022 Sep-Oct 2022

10/29/2022 Sep-Oct 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2023 928

5 Script and chart functions

The bi_monthly_range field is created as a measure in the chart object by using the monthsname() function.
The first argument provided is 2, dividing the year into bi-monthly segments. The second argument identifies
which field is being evaluated.

Diagram of monthsname function, chart object example

Transaction 8195 takes place on May 22. The monthsname() function initially divides the year into bi-monthly
segments. Transaction 8195 falls into the segment between May 1 and June 30. Therefore, the function returns
these months in the MonthNames system variable format, as well as the year, May-Jun 2022.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing transactions for 2022, which is loaded into a table called Transactions.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.

The end user would like a chart object that displays total sales by a period of their own choosing. This could
be achieved even when this dimension is not available in the data model, using the monthsname() function as
a calculated dimension that is dynamically modified by a variable input control.

Load script

SET vPeriod = 1;

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'1/7/2022',17.17

8189,'1/19/2022',37.23

Script syntax and chart functions - Qlik Sense, May 2023 929

5 Script and chart functions

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet.

At the start of the load script, a variable (vPeriod) has been created that will be tied to the variable input
control. Next, configure the variable as a custom object in the sheet.

Do the following:

1. In the assets panel, click Custom objects.

2. Select Qlik Dashboard bundle, and create a Variable input object.

3. Enter a title for the chart object.

4. Under Variable, select vPeriod as the Name and set the object to show as a Drop down.

5. Under Values, configure the object to use dynamic values. Enter the following:
='1~month|2~bi-month|3~quarter|4~tertial|6~half-year'

Next, create the results table.

Do the following:

1. Create a new table and add the following calculated dimension:
=monthsname($(vPeriod),date)

2. Add this measure to calculate the total sales:
=sum(amount)

3. Set the measure's Number formatting to Money. Click Done editing. You can now modify the data
shown in the table by adjusting the time segment in the variable object.

This is what the results table will look like when the tertial option is selected:

Script syntax and chart functions - Qlik Sense, May 2023 930

5 Script and chart functions

monthsname($(vPeriod),date) =sum(amount)

Jan-Apr 2022 253.89

May-Aug 2022 713.58

Sep-Dec 2022 248.12

Results table

monthsstart
This function returns a value corresponding to the timestamp of the first millisecond of the
month, bi-month, quarter, four-month period, or half-year containing a base date. It is also
possible to find the timestamp for a previous or following time period.The default output format
is the DateFormat set in the script.

Syntax:
MonthsStart(n_months, date[, period_no [, first_month_of_year]])

Return data type: dual

Diagram of monthsstart() function

The monthsstart() function divides the year into segments based on the n_months argument provided. It
then evaluates what segment each date provided falls into and returns the first millisecond of that segment,
in date format. The function also provides the ability to return the start timestamp from preceding or
following segments, as well as redefining which is the first month of the year.

The following segments of the year are available in the function as n_month arguments:

Periods Number of months

month 1

bi-month 2

quarter 3

four months 4

half-year 6

Possible n_month arguments

Script syntax and chart functions - Qlik Sense, May 2023 931

5 Script and chart functions

Argument Description

n_months The number of months that defines the period. An integer or expression that resolves to an
integer that must be one of: 1 (equivalent to the inmonth() function), 2 (bi-month), 3
(equivalent to the inquarter()function), 4 (four-month period), or 6 (half year).

date The date or timestamp to evaluate.

period_no The period can be offset by period_no, an integer, or expression resolving to an integer,
where the value 0 indicates the period that contains base_date. Negative values in period_
no indicate preceding periods and positive values indicate succeeding periods.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value between 2
and 12 in first_month_of_year.

Arguments

When to use it
The monthsstart() function is commonly used as part of an expression when the user would like the
calculation to use the fraction of a period that has not yet occurred. This could be used, for example, to
provide an input variable to let the user calculate the total interest that has been accumulated so far in the
month, quarter, or half-year.

Example Result

monthsstart(4, '10/19/2013') Returns 09/01/2013.

monthsstart(4, '10/19/2013, -1) Returns 05/01/2013.

monthsstart(4, '10/19/2013', 0, 2

)
Returns 10/01/2013, because the start of the year becomes
month 2.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Script syntax and chart functions - Qlik Sense, May 2023 932

5 Script and chart functions

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called Transactions.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, bi_monthly_start, that groups transactions into bi-monthly segments and

returns the starting timestamp of the segment for each transaction.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthsstart(2,date) as bi_monthly_start,

timestamp(monthsstart(2,date)) as bi_monthly_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,2/19/2022,37.23

8189,3/7/2022,17.17

8190,3/30/2022,88.27

8191,4/5/2022,57.42

8192,4/16/2022,53.80

8193,5/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Script syntax and chart functions - Qlik Sense, May 2023 933

5 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l bi_monthly_start

l bi_monthly_start_timestamp

date bi_monthly_start bi_monthly_start_timestamp

2/19/2022 01/01/2022 1/1/2022 12:00:00 AM

3/7/2022 03/01/2022 3/1/2022 12:00:00 AM

3/30/2022 03/01/2022 3/1/2022 12:00:00 AM

4/5/2022 03/01/2022 3/1/2022 12:00:00 AM

4/16/2022 03/01/2022 3/1/2022 12:00:00 AM

5/1/2022 05/01/2022 5/1/2022 12:00:00 AM

5/7/2022 05/01/2022 5/1/2022 12:00:00 AM

5/22/2022 05/01/2022 5/1/2022 12:00:00 AM

6/15/2022 05/01/2022 5/1/2022 12:00:00 AM

6/26/2022 05/01/2022 5/1/2022 12:00:00 AM

7/9/2022 07/01/2022 7/1/2022 12:00:00 AM

7/22/2022 07/01/2022 7/1/2022 12:00:00 AM

7/23/2022 07/01/2022 7/1/2022 12:00:00 AM

7/27/2022 07/01/2022 7/1/2022 12:00:00 AM

8/2/2022 07/01/2022 7/1/2022 12:00:00 AM

8/8/2022 07/01/2022 7/1/2022 12:00:00 AM

8/19/2022 07/01/2022 7/1/2022 12:00:00 AM

9/26/2022 09/01/2022 9/1/2022 12:00:00 AM

10/14/2022 09/01/2022 9/1/2022 12:00:00 AM

10/29/2022 09/01/2022 9/1/2022 12:00:00 AM

Results table

The bi_monthly_start field is created in the preceding load statement by using the monthsstart() function.
The first argument provided is 2, dividing the year into bi-monthly segments. The second argument identifies
which field is being evaluated.

Script syntax and chart functions - Qlik Sense, May 2023 934

5 Script and chart functions

Diagram of monthsstart() function, example with no additional arguments

Transaction 8195 takes place on May 22. The monthsstart() function initially divides the year into bi-monthly
segments. Transaction 8195 falls into the segment between May 1 and June 30. Therefore, the function returns
the first millisecond of this segment, May 1, 2022 at 12:00:00 AM.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, prev_bi_monthly_start, that returns the first millisecond of the bi-monthly

segment before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthsstart(2,date,-1) as prev_bi_monthly_start,

timestamp(monthsstart(2,date,-1)) as prev_bi_monthly_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,2/19/2022,37.23

8189,3/7/2022,17.17

8190,3/30/2022,88.27

8191,4/5/2022,57.42

8192,4/16/2022,53.80

8193,5/1/2022,82.06

Script syntax and chart functions - Qlik Sense, May 2023 935

5 Script and chart functions

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l prev_bi_monthly_start

l prev_bi_monthly_start_timestamp

date prev_bi_monthly_start prev_bi_monthly_start_timestamp

2/19/2022 11/01/2021 11/1/2021 12:00:00 AM

3/7/2022 01/01/2022 1/1/2022 12:00:00 AM

3/30/2022 01/01/2022 1/1/2022 12:00:00 AM

4/5/2022 01/01/2022 1/1/2022 12:00:00 AM

4/16/2022 01/01/2022 1/1/2022 12:00:00 AM

5/1/2022 03/01/2022 3/1/2022 12:00:00 AM

5/7/2022 03/01/2022 3/1/2022 12:00:00 AM

5/22/2022 03/01/2022 3/1/2022 12:00:00 AM

6/15/2022 03/01/2022 3/1/2022 12:00:00 AM

6/26/2022 03/01/2022 3/1/2022 12:00:00 AM

7/9/2022 05/01/2022 5/1/2022 12:00:00 AM

7/22/2022 05/01/2022 5/1/2022 12:00:00 AM

7/23/2022 05/01/2022 5/1/2022 12:00:00 AM

7/27/2022 05/01/2022 5/1/2022 12:00:00 AM

8/2/2022 05/01/2022 5/1/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 936

5 Script and chart functions

date prev_bi_monthly_start prev_bi_monthly_start_timestamp

8/8/2022 05/01/2022 5/1/2022 12:00:00 AM

8/19/2022 05/01/2022 5/1/2022 12:00:00 AM

9/26/2022 07/01/2022 7/1/2022 12:00:00 AM

10/14/2022 07/01/2022 7/1/2022 12:00:00 AM

10/29/2022 07/01/2022 7/1/2022 12:00:00 AM

By using -1 as the period_no argument in the monthsstart() function, after initially dividing a year into bi-
monthly segments, the function then returns the first millisecond of the previous bi-monthly segment to when
a transaction takes place.

Diagram of monthsstart() function, period_no example

Transaction 8195 occurs in the segment between May and June. Therefore, the previous bi-monthly segment
was between March 1 and April 30, so the function returns the first millisecond of this segment, March 1, 2022
at 12:00:00 AM.

Example 3 – first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, bi_monthly_start, that groups transactions into bi-monthly segments and

returns the starting timestamp of the set for each transaction.

However, in this example, we also need to set April as the first month of the financial year.

Script syntax and chart functions - Qlik Sense, May 2023 937

5 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthsstart(2,date,0,4) as bi_monthly_start,

timestamp(monthsstart(2,date,0,4)) as bi_monthly_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l bi_monthly_start

l bi_monthly_start_timestamp

date bi_monthly_start bi_monthly_start_timestamp

2/19/2022 02/01/2022 2/1/2022 12:00:00 AM

3/7/2022 02/01/2022 2/1/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 938

5 Script and chart functions

date bi_monthly_start bi_monthly_start_timestamp

3/30/2022 02/01/2022 2/1/2022 12:00:00 AM

4/5/2022 04/01/2022 4/1/2022 12:00:00 AM

4/16/2022 04/01/2022 4/1/2022 12:00:00 AM

5/1/2022 04/01/2022 4/1/2022 12:00:00 AM

5/7/2022 04/01/2022 4/1/2022 12:00:00 AM

5/22/2022 04/01/2022 4/1/2022 12:00:00 AM

6/15/2022 06/01/2022 6/1/2022 12:00:00 AM

6/26/2022 06/01/2022 6/1/2022 12:00:00 AM

7/9/2022 06/01/2022 6/1/2022 12:00:00 AM

7/22/2022 06/01/2022 6/1/2022 12:00:00 AM

7/23/2022 06/01/2022 6/1/2022 12:00:00 AM

7/27/2022 06/01/2022 6/1/2022 12:00:00 AM

8/2/2022 08/01/2022 8/1/2022 12:00:00 AM

8/8/2022 08/01/2022 8/1/2022 12:00:00 AM

8/19/2022 08/01/2022 8/1/2022 12:00:00 AM

9/26/2022 08/01/2022 8/1/2022 12:00:00 AM

10/14/2022 10/01/2022 10/1/2022 12:00:00 AM

10/29/2022 10/01/2022 10/1/2022 12:00:00 AM

By using 4 as the first_month_of_year argument in the monthsstart() function, the function begins the year
on April 1. It then divides the year into bi-monthly segments: Apr-May,Jun-Jul,Aug-Sep,Oct-Nov,Dec-Jan,Feb-
Mar.

Diagram of monthsstart() function, first_month_of_year example

Transaction 8195 took place on May 22 and falls into the segment between April 1 and May 31. Therefore, the
function returns the first millisecond of this segment, April 1, 2022 at 12:00:00 AM.

Script syntax and chart functions - Qlik Sense, May 2023 939

5 Script and chart functions

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation which groups
transactions into bi-monthly segments and returns the starting timestamp of the set for each transaction is
created as a measure in a chart object of the application.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,2/19/2022,37.23

8189,3/7/2022,17.17

8190,3/30/2022,88.27

8191,4/5/2022,57.42

8192,4/16/2022,53.80

8193,5/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measures:

=monthsstart(2,date)

Script syntax and chart functions - Qlik Sense, May 2023 940

5 Script and chart functions

=timestamp(monthsstart(2,date))

These calculations will retrieve the starting timestamp of the bi-monthly segment in which each transaction
took place.

date =monthsstart(2,date) =timestamp(monthsstart(2,date))

9/26/2022 09/01/2022 9/1/2022 12:00:00 AM

10/14/2022 09/01/2022 9/1/2022 12:00:00 AM

10/29/2022 09/01/2022 9/1/2022 12:00:00 AM

7/9/2022 07/01/2022 7/1/2022 12:00:00 AM

7/22/2022 07/01/2022 7/1/2022 12:00:00 AM

7/23/2022 07/01/2022 7/1/2022 12:00:00 AM

7/27/2022 07/01/2022 7/1/2022 12:00:00 AM

8/2/2022 07/01/2022 7/1/2022 12:00:00 AM

8/8/2022 07/01/2022 7/1/2022 12:00:00 AM

8/19/2022 07/01/2022 7/1/2022 12:00:00 AM

5/1/2022 05/01/2022 5/1/2022 12:00:00 AM

5/7/2022 05/01/2022 5/1/2022 12:00:00 AM

5/22/2022 05/01/2022 5/1/2022 12:00:00 AM

6/15/2022 05/01/2022 5/1/2022 12:00:00 AM

6/26/2022 05/01/2022 5/1/2022 12:00:00 AM

3/7/2022 03/01/2022 3/1/2022 12:00:00 AM

3/30/2022 03/01/2022 3/1/2022 12:00:00 AM

4/5/2022 03/01/2022 3/1/2022 12:00:00 AM

4/16/2022 03/01/2022 3/1/2022 12:00:00 AM

2/19/2022 01/01/2022 1/1/2021 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 941

5 Script and chart functions

Diagram of monthsstart() function, chart object example

Transaction 8195 took place on May 22. The monthsstart() function initially divides the year into bi-monthly
segments. Transaction 8195 falls into the segment between May 1 and June 30. Therefore, the function returns
the first millisecond of this segment, 05/01/2022 12:00:00 AM.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of loan balances, which is loaded into a table called Loans.
l Data consisting of loan IDs, the balance at the start of the month, and the simple interest rate charged

on each loan per annum.

The end user would like a chart object that displays, by loan ID, the current interest that has been accrued on
each loan for the period of their choosing. The financial year begins in January.

Load script

SET DateFormat='MM/DD/YYYY';

Loans:

Load

*

Inline

[

loan_id,start_balance,rate

8188,$10000.00,0.024

8189,$15000.00,0.057

8190,$17500.00,0.024

8191,$21000.00,0.034

8192,$90000.00,0.084

];

Script syntax and chart functions - Qlik Sense, May 2023 942

5 Script and chart functions

Results

Load the data and open a sheet.

At the start of the load script, a variable (vPeriod) has been created that will be tied to the variable input
control. Next, configure the variable as a custom object in the sheet.

Do the following:

1. In the assets panel, click Custom objects.

2. Select Qlik Dashboard bundle, and create a Variable input object.

3. Enter a title for the chart object.

4. Under Variable, select vPeriod as the Name and set the object to show as a Drop down.

5. Under Values, configure the object to use dynamic values. Enter the following:
='1~month|2~bi-month|3~quarter|4~tertial|6~half-year'

Next, create the results table.

Do the following:

1. Create a new table. Add the following fields as dimensions:
l employee_id

l employee_name

2. Create a measure to calculate the accumulated interest:
=start_balance*(rate*(today(1)-monthsstart($(vPeriod),today(1)))/365)

3. Set the measure's Number formatting to Money. Click Done editing. You can now modify the data
shown in the table by adjusting the time segment in the variable object.

This is what the results table will look like when the month period option is selected:

loan_id start_balance =start_balance*(rate*(today(1)-monthsstart($(vPeriod),today(1)))/365)

8188 $10000.00 $7.95

8189 $15000.00 $67.93

8190 $17500.00 $33.37

8191 $21000.00 $56.73

8192 $90000.00 $600.66

Results table

The monthsstart() function, using the user’s input as its first argument and today’s date as its second
argument, returns the start date of the period of the user’s choosing. By subtracting that result from the
current date, the expression returns the number of days that have elapsed so far in this period.

This value is then multiplied by the interest rate and divided by 365 to return the effective interest rate
incurred for this period. The result is then multiplied by the starting balance of the loan to return the interest
that has been accrued so far this period.

Script syntax and chart functions - Qlik Sense, May 2023 943

5 Script and chart functions

monthstart
This function returns a value corresponding to a timestamp of the first millisecond of the first
day of the month containing date. The default output format will be the DateFormat set in the
script.

Syntax:
MonthStart(date[, period_no])

Return data type: dual

Diagram of monthstart() function

The monthstart() function determines which month the date falls into. It then returns a timestamp, in date
format, for the first millisecond of that month.

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer, which, if 0 or omitted, indicates the month that contains date.
Negative values in period_no indicate preceding months and positive values indicate
succeeding months.

Arguments

When to use it
The monthstart() function is commonly used as part of an expression when the user would like the
calculation to use the fraction of the month that has elapsed thus far. For example, it can be used to calculate
the interest that has been accumulated in a month up to a certain date.

Example Result

monthstart('10/19/2001') Returns 10/01/2001.

monthstart('10/19/2001', -1) Returns 09/01/2001.

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 944

5 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called Transactions.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, start_of_month, which returns a timestamp for the start of the month when

the transactions took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthstart(date) as start_of_month,

timestamp(monthstart(date)) as start_of_month_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

Script syntax and chart functions - Qlik Sense, May 2023 945

5 Script and chart functions

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l start_of_month

l start_of_month_timestamp

date start_of_month start_of_month_timestamp

1/7/2022 01/01/2022 1/1/2022 12:00:00 AM

1/19/2022 01/01/2022 1/1/2022 12:00:00 AM

2/5/2022 02/01/2022 2/1/2022 12:00:00 AM

2/28/2022 02/01/2022 2/1/2022 12:00:00 AM

3/16/2022 03/01/2022 3/1/2022 12:00:00 AM

4/1/2022 04/01/2022 4/1/2022 12:00:00 AM

5/7/2022 05/01/2022 5/1/2022 12:00:00 AM

5/16/2022 05/01/2022 5/1/2022 12:00:00 AM

6/15/2022 06/01/2022 6/1/2022 12:00:00 AM

6/26/2022 07/01/2022 6/1/2022 12:00:00 AM

7/9/2022 07/01/2022 7/1/2022 12:00:00 AM

7/22/2022 07/01/2022 7/1/2022 12:00:00 AM

7/23/2022 07/01/2022 7/1/2022 12:00:00 AM

7/27/2022 07/01/2022 7/1/2022 12:00:00 AM

8/2/2022 08/01/2022 8/1/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 946

5 Script and chart functions

date start_of_month start_of_month_timestamp

8/8/2022 08/01/2022 8/1/2022 12:00:00 AM

8/19/2022 08/01/2022 8/1/2022 12:00:00 AM

9/26/2022 09/01/2022 9/1/2022 12:00:00 AM

10/14/2022 10/01/2022 10/1/2022 12:00:00 AM

10/29/2022 10/01/2022 10/1/2022 12:00:00 AM

The start_of_month field is created in the preceding load statement by using the monthstart() function and
passing the date field as the function’s argument.

The monthstart() function identifies which month the date value falls into, returning a timestamp for the first
millisecond of that month.

Diagram of monthstart() function, example with no additional arguments

Transaction 8192 took place on March 16. The monthstart() function returns the first millisecond of that
month, which is March 1 at 12:00:00 AM.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, previous_month_start, which returns the timestamp for the start of the month

before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Script syntax and chart functions - Qlik Sense, May 2023 947

5 Script and chart functions

Transactions:

Load

*,

monthstart(date,-1) as previous_month_start,

timestamp(monthstart(date,-1)) as previous_month_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_month_start

l previous_month_start_timestamp

date previous_month_start previous_month_start_timestamp

1/7/2022 12/01/2021 12/1/2021 12:00:00 AM

1/19/2022 12/01/2021 12/1/2021 12:00:00 AM

2/5/2022 01/01/2022 1/1/2022 12:00:00 AM

2/28/2022 01/01/2022 1/1/2022 12:00:00 AM

3/16/2022 02/01/2022 2/1/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 948

5 Script and chart functions

date previous_month_start previous_month_start_timestamp

4/1/2022 03/01/2022 3/1/2022 12:00:00 AM

5/7/2022 04/01/2022 4/1/2022 12:00:00 AM

5/16/2022 04/01/2022 4/1/2022 12:00:00 AM

6/15/2022 05/01/2022 5/1/2022 12:00:00 AM

6/26/2022 05/01/2022 5/1/2022 12:00:00 AM

7/9/2022 06/01/2022 6/1/2022 12:00:00 AM

7/22/2022 06/01/2022 6/1/2022 12:00:00 AM

7/23/2022 06/01/2022 6/1/2022 12:00:00 AM

7/27/2022 06/01/2022 6/1/2022 12:00:00 AM

8/2/2022 07/01/2022 7/1/2022 12:00:00 AM

8/8/2022 07/01/2022 7/1/2022 12:00:00 AM

8/19/2022 07/01/2022 7/1/2022 12:00:00 AM

9/26/2022 08/01/2022 8/1/2022 12:00:00 AM

10/14/2022 09/01/2022 9/1/2022 12:00:00 AM

10/29/2022 09/01/2022 9/1/2022 12:00:00 AM

In this instance, because a period_no of -1 was used as the offset argument in the monthstart() function, the
function first identifies the month that the transactions take place in. It then shifts one month prior and
identifies the first millisecond of that month.

Diagram of monthstart() function, period_no example

Transaction 8192 took place on March 16. The monthstart() function identifies that the month before the
transaction took place in was February. It then returns the first millisecond of that month, February 1 at
12:00:00 AM.

Script syntax and chart functions - Qlik Sense, May 2023 949

5 Script and chart functions

Example 3 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that returns a
timestamp for the start of the month when the transactions took place is created as a measure in a chart
object of the application.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

To calculate the start date of the month that a transaction takes place in, create the following measures:

Script syntax and chart functions - Qlik Sense, May 2023 950

5 Script and chart functions

l =monthstart(date)

l =timestamp(monthstart(date))

date =monthstart(date) =timestamp(monthstart(date))

10/14/2022 10/01/2022 10/1/2022 12:00:00 AM

10/29/2022 10/01/2022 10/1/2022 12:00:00 AM

9/26/2022 09/01/2022 9/1/2022 12:00:00 AM

8/2/2022 08/01/2022 8/1/2022 12:00:00 AM

8/8/2022 08/01/2022 8/1/2022 12:00:00 AM

8/19/2022 08/01/2022 8/1/2022 12:00:00 AM

7/9/2022 07/01/2022 7/1/2022 12:00:00 AM

7/22/2022 07/01/2022 7/1/2022 12:00:00 AM

7/23/2022 07/01/2022 7/1/2022 12:00:00 AM

7/27/2022 07/01/2022 7/1/2022 12:00:00 AM

6/15/2022 06/01/2022 6/1/2022 12:00:00 AM

6/26/2022 06/01/2022 6/1/2022 12:00:00 AM

5/7/2022 05/01/2022 5/1/2022 12:00:00 AM

5/16/2022 05/01/2022 5/1/2022 12:00:00 AM

4/1/2022 04/01/2022 4/1/2022 12:00:00 AM

3/16/2022 03/01/2022 3/1/2022 12:00:00 AM

2/5/2022 02/01/2022 2/1/2022 12:00:00 AM

2/28/2022 02/01/2022 2/1/2022 12:00:00 AM

1/7/2022 01/01/2022 1/1/2022 12:00:00 AM

1/19/2022 01/01/2022 1/1/2022 12:00:00 AM

Results table

The start_of_month measure is created in the chart object by using the monthstart() function and passing
the date field as the function’s argument.

The monthstart() function identifies which month the date value falls into returning a timestamp for the first
millisecond of that month.

Script syntax and chart functions - Qlik Sense, May 2023 951

5 Script and chart functions

Diagram of monthstart() function, chart object example

Transaction 8192 took place on March 16. The monthstart() function identifies that the transaction took
place in March and returns the first millisecond of that month, which is March 1 at 12:00:00 AM.

Example 4 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of loan balances, which is loaded into a table called Loans.
l Data consisting of loan IDs, the balance at the start of the month, and the simple interest rate charged

on each loan per annum.

The end user would like a chart object that displays, by loan ID, the current interest that has been accrued on
each loan in the month to date.

Load script

SET DateFormat='MM/DD/YYYY';

Loans:

Load

*

Inline

[

loan_id,start_balance,rate

8188,$10000.00,0.024

8189,$15000.00,0.057

8190,$17500.00,0.024

8191,$21000.00,0.034

8192,$90000.00,0.084

];

Script syntax and chart functions - Qlik Sense, May 2023 952

5 Script and chart functions

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add these fields as dimensions:
l loan_id

l start_balance

2. Next, create a measure to calculate the accumulated interest:
=start_balance*(rate*(today(1)-monthstart(today(1)))/365)

3. Set the measure's Number formatting to Money.

loan_id start_balance =start_balance*(rate*(today(1)-monthstart(today(1)))/365)

8188 $10000.00 $16.44

8189 $15000.00 $58.56

8190 $17500.00 $28.77

8191 $21000.00 $48.90

8192 $90000.00 $517.81

Results table

The monthstart() function, using today’s date as its only argument, returns the start date of the current
month. By subtracting that result from the current date, the expression returns the number of days that have
elapsed so far this month.

This value is then multiplied by the interest rate and divided by 365 to return the effective interest rate
incurred for this period. The result is then multiplied by the starting balance of the loan to return the interest
that has been accrued so far this month.

networkdays
The networkdays function returns the number of working days (Monday-Friday) between and
including start_date and end_date taking into account any optionally listed holiday.

Syntax:
networkdays (start_date, end_date [, holiday])

Script syntax and chart functions - Qlik Sense, May 2023 953

5 Script and chart functions

Return data type: integer

Calendar diagram displaying date range returned by networkdays function

The networkdays function has the following limitations:

l There is no method to modify workdays. In other words, there is no way to modify the function for
regions or situations that involve anything other than working Monday to Friday.

l The holiday parameter must be a string constant. Expressions are not accepted.

Argument Description

start_date The start date to evaluate.

end_date The end date to evaluate.

holiday Holiday periods to exclude from working days. A holiday is stated as a string constant date.
You can specify multiple holiday dates, separated by commas.

Example: '12/25/2013', '12/26/2013', '12/31/2013', '01/01/2014'

Arguments

When to use it
The networkdays() function is commonly used as part of an expression when the user would like the
calculation to use the number of working week days that occur between two dates. For example, if a user
would like to calculate the total wages that will be earned by an employee on a PAYE (pay-as-you-earn)
contract.

Script syntax and chart functions - Qlik Sense, May 2023 954

5 Script and chart functions

Example Result

networkdays ('12/19/2013', '01/07/2014') Returns 14. This example does not take
holidays into account.

networkdays ('12/19/2013', '01/07/2014',

'12/25/2013', '12/26/2013')
Returns 12. This example takes the holiday
12/25/2013 to 12/26/2013 into account.

networkdays ('12/19/2013', '01/07/2014',

'12/25/2013', '12/26/2013', '12/31/2013',

'01/01/2014')

Returns 10. This example takes two holiday
periods into account.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing project IDs, their start dates, and their end dates. This information is loaded into a
table called Projects.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of an additional field, net_work_days, to calculate the number of working days involved

in each project.

Load script

SET DateFormat='MM/DD/YYYY';

Projects:

Load

*,

networkdays(start_date,end_date) as net_work_days

Script syntax and chart functions - Qlik Sense, May 2023 955

5 Script and chart functions

;

Load

id,

start_date,

end_date

Inline

[

id,start_date,end_date

1,01/01/2022,01/18/2022

2,02/10/2022,02/17/2022

3,05/17/2022,07/05/2022

4,06/01/2022,06/12/2022

5,08/10/2022,08/26/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l start_date

l end_date

l net_work_days

id start_date end_date net_work_days

1 01/01/2022 01/18/2022 12

2 02/10/2022 02/17/2022 6

3 05/17/2022 07/05/2022 36

4 06/01/2022 06/12/2022 8

5 08/10/2022 08/26/2022 13

Results table

Because there are no scheduled holidays (this would have been present in the third argument of the
networkdays() function), the function subtracts the start_date from the end_date, as well as all weekends,
to calculate the number of working days between the two dates.

Script syntax and chart functions - Qlik Sense, May 2023 956

5 Script and chart functions

Calendar diagram highlighting work days for project 5 (no holidays)

The calendar above visually outlines the project with id of 5. Project 5 begins on Wednesday, August 10, 2022
and ends on August 26, 2022. With all Saturdays and Sundays ignored, there are 13 working days between,
and including, these two dates.

Example 2 – Single holiday
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario from the previous example.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of an additional field, net_work_days, to calculate the number of working days involved

in each project.

In this example, there is a one-day holiday scheduled on August 19, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Projects:

Script syntax and chart functions - Qlik Sense, May 2023 957

5 Script and chart functions

Load

*,

networkdays(start_date,end_date,'08/19/2022') as net_work_days

;

Load

id,

start_date,

end_date

Inline

[

id,start_date,end_date

1,01/01/2022,01/18/2022

2,02/10/2022,02/17/2022

3,05/17/2022,07/05/2022

4,06/01/2022,06/12/2022

5,08/10/2022,08/26/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l start_date

l end_date

l net_work_days

id start_date end_date net_work_days

1 01/01/2022 01/18/2022 12

2 02/10/2022 02/17/2022 6

3 05/17/2022 07/05/2022 36

4 06/01/2022 06/12/2022 8

5 08/10/2022 08/26/2022 12

Results table

The single scheduled holiday is entered as the third argument in the networkdays() function.

Script syntax and chart functions - Qlik Sense, May 2023 958

5 Script and chart functions

Calendar diagram highlighting work days for project 5 (single holiday)

The calendar above visually outlines project 5, demonstrating this adjustment to include the holiday. This
holiday occurs during project 5 on Friday, August 19, 2022. As a result, the total net_work_days value for
project 5 decreases by one day, from 13 to 12 days.

Example 3 – Multiple holidays
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario from the first example.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of an additional field, net_work_days, to calculate the number of working days involved

in each project.

However, in this example, there are four holidays scheduled from August 18 to August 21, 2022.

Script syntax and chart functions - Qlik Sense, May 2023 959

5 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Projects:

Load

*,

networkdays(start_date,end_date,'08/18/2022','08/19/2022','08/20/2022','08/21/2022')

as net_work_days

;

Load

id,

start_date,

end_date

Inline

[

id,start_date,end_date

1,01/01/2022,01/18/2022

2,02/10/2022,02/17/2022

3,05/17/2022,07/05/2022

4,06/01/2022,06/12/2022

5,08/10/2022,08/26/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l start_date

l end_date

l net_work_days

id start_date end_date net_work_days

1 01/01/2022 01/18/2022 12

2 02/10/2022 02/17/2022 6

3 05/17/2022 07/05/2022 36

4 06/01/2022 06/12/2022 8

5 08/10/2022 08/26/2022 11

Results table

The four scheduled holidays are entered as a comma separated list, from the third argument onwards in the
networkdays() function.

Script syntax and chart functions - Qlik Sense, May 2023 960

5 Script and chart functions

Calendar diagram highlighting work days for project 5 (multiple holidays)

The calendar above visually outlines project 5, demonstrating this adjustment to include these holidays. This
period of scheduled holidays occurs during project 5, with two of the days occurring on a Thursday and
Friday. As a result, the total net_work_days value for project 5 decreases from 13 to 11 days.

Example 4 – Single holiday
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario from the first example.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.

There is a one-day holiday scheduled on August 19, 2022.

However, in this example, the unchanged dataset is loaded into the application. The net_work_days field is
calculated as a measure in a chart object.

Script syntax and chart functions - Qlik Sense, May 2023 961

5 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Projects:

Load

id,

start_date,

end_date

Inline

[

id,start_date,end_date

1,01/01/2022,01/18/2022

2,02/10/2022,02/17/2022

3,05/17/2022,07/05/2022

4,06/01/2022,06/12/2022

5,08/10/2022,08/26/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l start_date

l end_date

Create the following measure:

= networkdays(start_date,end_date,’08/19/2022’)

id start_date end_date net_work_days

1 01/01/2022 01/18/2022 12

2 02/10/2022 02/17/2022 6

3 05/17/2022 07/05/2022 36

4 06/01/2022 06/12/2022 8

5 08/10/2022 08/26/2022 12

Results table

The single scheduled holiday is entered as the third argument in the networkdays() function.

Script syntax and chart functions - Qlik Sense, May 2023 962

5 Script and chart functions

Calendar diagram showing net work days with single holiday (chart object)

The calendar above visually outlines project 5, demonstrating this adjustment to include the holiday. This
holiday occurs during project 5 on Friday, August 19, 2022. As a result, the total net_work_days value for
project 5 decreases by one day, from 13 to 12 days.

now
This function returns a timestamp of the current time. The function returns values in the
TimeStamp system variable format. The default timer_mode value is 1.

Syntax:
now([timer_mode])

Return data type: dual

The now() function can be used either in the load script or in chart objects.

Script syntax and chart functions - Qlik Sense, May 2023 963

5 Script and chart functions

Argument Description

timer_mode Can have the following values:

0 (time at last finished data load)
1 (time at function call)
2 (time when the app was opened)

If you use the function in a data load script, timer_mode=0 will result in the time
of the last finished data load, while timer_mode=1 will give the time of the
function call in the current data load.

Arguments

When to use it
The now() function is commonly used as a component within an expression. For example, it can be used to
calculate the time remaining in a product's lifecycle. The now() function would be used instead of the today()

function when the expression requires the use of a fraction of a day.

The following table provides an explanation of the result returned by the now() function, given different
values for the timer_mode argument:

timer_
mode
value

Result if used in load script Result if used in chart object

0 Returns a timestamp, in the TimeStamp

system variable format, of the last
successful data reload prior to the latest
data reload.

Returns a timestamp, in the TimeStamp system
variable format, for the latest data reload.

1 Returns a timestamp, in the TimeStamp

system variable format, for the latest data
reload.

Returns a timestamp, in the TimeStamp system
variable format, of the function call.

2 Returns a timestamp, in the TimeStamp

system variable format, for when the
user’s session in the application began.
This will not be updated unless the user
reloads the script.

Returns the timestamp, in the TimeStamp system
variable format, for when the user’s session in the
application began. This will be refreshed once a
new session begins or the data in the application
is reloaded.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may

Script syntax and chart functions - Qlik Sense, May 2023 964

5 Script and chart functions

be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – Generation of objects using load script
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

This example creates three variables using the now() function. Each variable uses one of the timer_mode

options to demonstrate their effect.

For the variables to demonstrate their purpose, reload the script and then, after a short period of time, reload
the script a second time. This will result in the now(0) and now(1) variables showing different values, thereby
correctly demonstrating their purpose.

Load script

LET vPreviousDataLoad = now(0);

LET vCurrentDataLoad = now(1);

LET vApplicationOpened = now(2);

Results

Once the data has been loaded for a second time, create three textboxes using the directions below.

First, create a textbox for the data which has previously been loaded.

Do the following:

1. Using the Text & Image chart object, create a textbox.

2. Add the following measure to the object:
=vPreviousDataLoad

3. Under Appearance, select Show titles and add the title 'Previous Reload Time' to the object.

Next, create a textbox for the data which is currently being loaded.

Script syntax and chart functions - Qlik Sense, May 2023 965

5 Script and chart functions

Do the following:

1. Using the Text & Image chart object, create a textbox.

2. Add the following measure to the object:
=vCurrentDataLoad

3. Under Appearance, select Show titles and add the title 'Current Reload Time' to the object.

Create a final textbox to show when the user's session in the application was started.

Do the following:

1. Using the Text & Image chart object, create a textbox.

2. Add the following measure to the object:
=vApplicationOpened

3. Under Appearance, select Show titles and add the title 'User Session Started' to the object.

now() load script variables

The above image shows example values for each of the created variables. For example, the values could be as
follows:

l Previous Reload Time: 6/22/2022 8:54:03 AM
l Current Reload Time: 6/22/2022 9:02:08 AM
l User Session Began: 6/22/2022 8:40:40 AM

Example 2 – Generation of objects without load script
Load script and chart expression

Overview

In this example, you will create three chart objects using the now() function, without loading any variables or
data into the application. Each chart object uses one of the timer_mode options to demonstrate their effect.

There is no load script for this example.

Do the following:

1. Open the Data load editor.

2. Without changing the existing load script, click Load data.

3. After a short period of time, load the script a second time.

Script syntax and chart functions - Qlik Sense, May 2023 966

5 Script and chart functions

Results

Once the data has been loaded for a second time, create three textboxes.

First, create a textbox for the latest data reload.

Do the following:

1. Using the Text & Image chart object, create a textbox.

2. Add the following measure:
=now(0)

3. Under Appearance, select Show titles and add the title 'Latest Data Reload' to the object.

Next, create a textbox to show the current time.

Do the following:

1. Using the Text & Image chart object, create a textbox.

2. Add the following measure:
=now(1)

3. Under Appearance, select Show titles and add the title 'Current Time' to the object.

Create a final textbox to show when the user's session in the application was started.

Do the following:

1. Using the Text & Image chart object, create a textbox.

2. Add the following measure:
=now(2)

3. Under Appearance, select Show titles and add the title 'User Session Began' to the object.

now() chart object examples

The above image shows example values for each of the created objects. For example, the values could be as
follows:

l Latest Data Reload: 6/22/2022 9:02:08 AM
l Current Time: 6/22/2022 9:25:16 AM
l User Session Began: 6/22/2022 8:40:40 AM

The 'Latest Data Reload' chart object uses a timer_mode value of 0. This returns the timestamp for the last
time the data was successfully reloaded.

Script syntax and chart functions - Qlik Sense, May 2023 967

5 Script and chart functions

The 'Current Time' chart object uses a timer_mode value of 1. This returns the current time according to the
system clock. If the sheet or object is refreshed, this value will be updated.

The 'User Session Began' chart object uses a timer_mode value of 2. This returns the timestamp for when the
application was opened, and the user’s session began.

Example 3 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset consisting of inventory for a cryptocurrency mining operation, which is loaded into a table
called Inventory.

l Data with the following fields: id, purchase_date, and wph (watts per hour).

The user would like a table that displays, by id, the total cost each mining rig has incurred in the month so
far, in terms of power consumption.

This value should update whenever the chart object is refreshed. The current cost of electricity is $0.0678 per
kWH.

Load script

SET DateFormat='MM/DD/YYYY';

Inventory:

Load

*

Inline

[

id,purchase_date,wph

8188,1/7/2022,1123

8189,1/19/2022,1432

8190,2/28/2022,1227

8191,2/5/2022,1322

8192,3/16/2022,1273

8193,4/1/2022,1123

8194,5/7/2022,1342

8195,5/16/2022,2342

8196,6/15/2022,1231

8197,6/26/2022,1231

8198,7/9/2022,1123

8199,7/22/2022,1212

8200,7/23/2022,1223

8201,7/27/2022,1232

8202,8/2/2022,1232

8203,8/8/2022,1211

Script syntax and chart functions - Qlik Sense, May 2023 968

5 Script and chart functions

8204,8/19/2022,1243

8205,9/26/2022,1322

8206,10/14/2022,1133

8207,10/29/2022,1231

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: id.

Create the following measure:

=(now(1)-monthstart(now(1)))*24*wph/1000*0.0678

If the chart object was refreshed at 6/22/2022 10:39:05 AM, it would return the following results:

id =(now(1)-monthstart(now(1)))*24*wph/1000*0.0678

8188 $39.18

8189 $49.97

8190 $42.81

8191 $46.13

8192 $44.42

8193 $39.18

8194 $46.83

8195 $81.72

8196 $42.95

8197 $42.95

8198 $39.18

8199 $42.29

8200 $42.67

8201 $42.99

8202 $42.99

8203 $42.25

8204 $43.37

8205 $46.13

8206 $39.53

Results table

Script syntax and chart functions - Qlik Sense, May 2023 969

5 Script and chart functions

The user would like the object results to refresh every time the object is refreshed. Therefore, the timer_mode

argument of supplied for instances of the now() function in the expression. The timestamp for the start of the
month, identified by using the now() function as the timestamp argument in the monthstart() function, is
subtracted from the current time which is identified by the now() function. This provides the total amount of
time that has elapsed so far this month, in days.

This value is multiplied by 24 (the number of hours in a day) and then by the value in the wph field.

To convert from watts per hour to kilowatts per hour, the result is divided by 1000 before finally being
multiplied by the kWH rate supplied.

quarterend
This function returns a value corresponding to a timestamp of the last millisecond of the quarter
containing date. The default output format will be the DateFormat set in the script.

Syntax:
QuarterEnd(date[, period_no[, first_month_of_year]])

Return data type: dual

Diagram of the quarterend() function

The quarterend() function determines which quarter the date falls into. It then returns a timestamp, in date
format, for the last millisecond of the last month of that quarter. The first month of the year is, by default,
January. However, you can change which month is set as first by using the first_month_of_year argument in
the quarterend() function.

The quarterend() function does not consider the FirstMonthOfYear system variable. The year
begins on January 1 unless the first_month_of_year argument is used to change it.

When to use it

The quarterend() function is commonly used as part of an expression when you would like the calculation to
use the fraction of the quarter that has not yet occurred. For example, if you want to calculate the total
interest not yet incurred during the quarter.

Script syntax and chart functions - Qlik Sense, May 2023 970

5 Script and chart functions

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer, where the value 0 indicates the quarter which contains date.
Negative values in period_no indicate preceding quarters and positive values indicate
succeeding quarters.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value between 2
and 12 in first_month_of_year.

Arguments

You can use the following values to set the first month of year in the first_month_of_year argument:

Month Value

February 2

March 3

April 4

May 5

June 6

July 7

August 8

September 9

October 10

November 11

December 12

first_month_of_year values

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Script syntax and chart functions - Qlik Sense, May 2023 971

5 Script and chart functions

Example Result

quarterend('10/29/2005') Returns 12/31/2005 23:59:59.

quarterend('10/29/2005', -1) Returns 09/30/2005 23:59:59.

quarterend('10/29/2005', 0, 3) Returns 11/30/2005 23:59:59.

Function examples

Example 1 - Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions in 2022 which is loaded into a table called ‘Transactions’.
l A preceding load which contains the following:

l The quarterend() function that is set as the ‘end_of_quarter’ field and returns a timestamp
for the end of the quarter when the transactions took place.

l The timestamp() function that is set as the ‘end_of_quarter_timestamp’ field and returns the
exact timestamp of the end of the selected quarter.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

quarterend(date) as end_of_quarter,

timestamp(quarterend(date)) as end_of_quarter_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

Script syntax and chart functions - Qlik Sense, May 2023 972

5 Script and chart functions

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l end_of_quarter

l end_of_quarter_timestamp

id date end_of_quarter end_of_quarter_timestamp

8188 1/7/2022 03/31/2022 3/31/2022 11:59:59 PM

8189 1/19/2022 03/31/2022 3/31/2022 11:59:59 PM

8190 2/5/2022 03/31/2022 3/31/2022 11:59:59 PM

8191 2/28/2022 03/31/2022 3/31/2022 11:59:59 PM

8192 3/16/2022 03/31/2022 3/31/2022 11:59:59 PM

8193 4/1/2022 06/30/2022 6/30/2022 11:59:59 PM

8194 5/7/2022 06/30/2022 6/30/2022 11:59:59 PM

8195 5/16/2022 06/30/2022 6/30/2022 11:59:59 PM

8196 6/15/2022 06/30/2022 6/30/2022 11:59:59 PM

8197 6/26/2022 06/30/2022 6/30/2022 11:59:59 PM

8198 7/9/2022 09/30/2022 9/30/2022 11:59:59 PM

8199 7/22/2022 09/30/2022 9/30/2022 11:59:59 PM

8200 7/23/2022 09/30/2022 9/30/2022 11:59:59 PM

8201 7/27/2022 09/30/2022 9/30/2022 11:59:59 PM

8202 8/2/2022 09/30/2022 9/30/2022 11:59:59 PM

8203 8/8/2022 09/30/2022 9/30/2022 11:59:59 PM

8204 8/19/2022 09/30/2022 9/30/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 973

5 Script and chart functions

id date end_of_quarter end_of_quarter_timestamp

8205 9/26/2022 09/30/2022 9/30/2022 11:59:59 PM

8206 10/14/2022 12/31/2022 12/31/2022 11:59:59 PM

8207 10/29/2022 12/31/2022 12/31/2022 11:59:59 PM

The ‘end_of_quarter’ field is created in the preceding load statement by using the quarterend() function and
passing the date field as the function’s argument.

The quarterend() function initially identifies which quarter the date value falls into and then returns a
timestamp for the last millisecond of that quarter.

Diagram of the quarterend() function with the quarter end of transaction 8203 identified

Transaction 8203 took place on August 8. The quarterend() function identifies that the transaction took place
in the third quarter, and returns the last millisecond of that quarter, which is September 30 at 11:59:59 PM.

Example 2 - period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions in 2022 which is loaded into a table called ‘Transactions’.
l A preceding load which contains the following:

l The quarterend() function that is set as the ‘previous_quarter_end’ field and returns a
timestamp for the end of the quarter before the transaction took place.

l The timestamp() function that is set as the ‘previous_end_of_quarter_timestamp’ field and
returns the exact timestamp of the end of the quarter before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Script syntax and chart functions - Qlik Sense, May 2023 974

5 Script and chart functions

Transactions:

Load

*,

quarterend(date, -1) as previous_quarter_end,

timestamp(quarterend(date, -1)) as previous_quarter_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l previous_quarter_end

l previous_quarter_end_timestamp

id date previous_quarter_end previous_quarter_end_timestamp

8188 1/7/2022 12/31/2021 12/31/2021 11:59:59 PM

8189 1/19/2022 12/31/2021 12/31/2021 11:59:59 PM

8190 2/5/2022 12/31/2021 12/31/2021 11:59:59 PM

8191 2/28/2022 12/31/2021 12/31/2021 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 975

5 Script and chart functions

id date previous_quarter_end previous_quarter_end_timestamp

8192 3/16/2022 12/31/2021 12/31/2021 11:59:59 PM

8193 4/1/2022 03/31/2022 3/31/2022 11:59:59 PM

8194 5/7/2022 03/31/2022 3/31/2022 11:59:59 PM

8195 5/16/2022 03/31/2022 3/31/2022 11:59:59 PM

8196 6/15/2022 03/31/2022 3/31/2022 11:59:59 PM

8197 6/26/2022 03/31/2022 3/31/2022 11:59:59 PM

8198 7/9/2022 06/30/2022 6/30/2022 11:59:59 PM

8199 7/22/2022 06/30/2022 6/30/2022 11:59:59 PM

8200 7/23/2022 06/30/2022 6/30/2022 11:59:59 PM

8201 7/27/2022 06/30/2022 6/30/2022 11:59:59 PM

8202 8/2/2022 06/30/2022 6/30/2022 11:59:59 PM

8203 8/8/2022 06/30/2022 6/30/2022 11:59:59 PM

8204 8/19/2022 06/30/2022 6/30/2022 11:59:59 PM

8205 9/26/2022 06/30/2022 6/30/2022 11:59:59 PM

8206 10/14/2022 09/30/2022 9/30/2022 11:59:59 PM

8207 10/29/2022 09/30/2022 9/30/2022 11:59:59 PM

Because a period_no of -1 is used as the offset argument in the quarterend() function, the function first
identifies the quarter that the transactions take place in. It then shifts one quarter prior and identifies the final
millisecond of that quarter.

Diagram of the quarterend() function with a period_no of -1

Transaction 8203 took place on August 8. The quarterend() function identifies that the quarter before the
transaction took place was between April 1 and June 30. The function then returns the final millisecond of
that quarter, June 30 at 11:59:59 PM.

Script syntax and chart functions - Qlik Sense, May 2023 976

5 Script and chart functions

Example 3 - first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions in 2022 which is loaded into a table called ‘Transactions’.
l A preceding load which contains the following:

l The quarterend() function that is set as the ‘end_of_quarter’ field and returns a timestamp
for the end of the quarter when the transactions took place.

l The timestamp() function that is set as the ‘end_of_quarter_timestamp’ field and returns the
exact timestamp of the end of the selected quarter.

However, in this example, the company policy is that the financial year begins on March 1.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

quarterend(date, 0, 3) as end_of_quarter,

timestamp(quarterend(date, 0, 3)) as end_of_quarter_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

Script syntax and chart functions - Qlik Sense, May 2023 977

5 Script and chart functions

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

id date end_of_quarter end_of_quarter_timestamp

8188 1/7/2022 02/28/2022 2/28/2022 11:59:59 PM

8189 1/19/2022 02/28/2022 2/28/2022 11:59:59 PM

8190 2/5/2022 02/28/2022 2/28/2022 11:59:59 PM

8191 2/28/2022 02/28/2022 2/28/2022 11:59:59 PM

8192 3/16/2022 05/31/2022 5/31/2022 11:59:59 PM

8193 4/1/2022 05/31/2022 5/31/2022 11:59:59 PM

8194 5/7/2022 05/31/2022 5/31/2022 11:59:59 PM

8195 5/16/2022 05/31/2022 5/31/2022 11:59:59 PM

8196 6/15/2022 08/31/2022 8/31/2022 11:59:59 PM

8197 6/26/2022 08/31/2022 8/31/2022 11:59:59 PM

8198 7/9/2022 08/31/2022 8/31/2022 11:59:59 PM

8199 7/22/2022 08/31/2022 8/31/2022 11:59:59 PM

8200 7/23/2022 08/31/2022 8/31/2022 11:59:59 PM

8201 7/27/2022 08/31/2022 8/31/2022 11:59:59 PM

8202 8/2/2022 08/31/2022 8/31/2022 11:59:59 PM

8203 8/8/2022 08/31/2022 8/31/2022 11:59:59 PM

8204 8/19/2022 08/31/2022 8/31/2022 11:59:59 PM

8205 9/26/2022 11/30/2022 11/30/2022 11:59:59 PM

8206 10/14/2022 11/30/2022 11/30/2022 11:59:59 PM

8207 10/29/2022 11/30/2022 11/30/2022 11:59:59 PM

Results table

Because the first_month_of_year argument of 3 is used in the quarterend() function, the start of the year
moves from January 1 to March 1.

Script syntax and chart functions - Qlik Sense, May 2023 978

5 Script and chart functions

Diagram of the quarterend() function with March as the first month of the year

Transaction 8203 took place on August 8. Because the beginning of the year is March 1, the quarters in the
year occur between Mar-May, Jun-Aug, Sep-Nov, and Dec-Feb.

The quarterend() function identifies that the transaction took place in the quarter between the start of June
and of August and returns the last millisecond of that quarter, which is August 31 at 11:59:59 PM.

Example 4 - Chart object example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

However, in this example, the dataset is unchanged and loaded into the application. The calculation that
returns a timestamp for the end of the quarter when the transactions took place is created as a measure in a
chart in the app.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

Script syntax and chart functions - Qlik Sense, May 2023 979

5 Script and chart functions

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

To calculate the end date of the quarter that a transaction takes place in, create the following measures:

l =quarterend(date)

l =timestamp(quarterend(date))

id date =quarterend(date) =timestamp(quarterend(date))

8188 1/7/2022 03/31/2022 3/31/2022 11:59:59 PM

8189 1/19/2022 03/31/2022 3/31/2022 11:59:59 PM

8190 2/5/2022 03/31/2022 3/31/2022 11:59:59 PM

8191 2/28/2022 03/31/2022 3/31/2022 11:59:59 PM

8192 3/16/2022 03/31/2022 3/31/2022 11:59:59 PM

8193 4/1/2022 06/30/2022 6/30/2022 11:59:59 PM

8194 5/7/2022 06/30/2022 6/30/2022 11:59:59 PM

8195 5/16/2022 06/30/2022 6/30/2022 11:59:59 PM

8196 6/15/2022 06/30/2022 6/30/2022 11:59:59 PM

8197 6/26/2022 06/30/2022 6/30/2022 11:59:59 PM

8198 7/9/2022 09/30/2022 9/30/2022 11:59:59 PM

8199 7/22/2022 09/30/2022 9/30/2022 11:59:59 PM

8200 7/23/2022 09/30/2022 9/30/2022 11:59:59 PM

8201 7/27/2022 09/30/2022 9/30/2022 11:59:59 PM

8202 8/2/2022 09/30/2022 9/30/2022 11:59:59 PM

8203 8/8/2022 09/30/2022 9/30/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 980

5 Script and chart functions

id date =quarterend(date) =timestamp(quarterend(date))

8204 8/19/2022 09/30/2022 9/30/2022 11:59:59 PM

8205 9/26/2022 09/30/2022 9/30/2022 11:59:59 PM

8206 10/14/2022 12/31/2022 12/31/2022 11:59:59 PM

8207 10/29/2022 12/31/2022 12/31/2022 11:59:59 PM

The ‘end_of_quarter’ field is created in the preceding load statement by using the quarterend() function and
passing the date field as the function’s argument.

The quarterend() function initially identifies which quarter the date value falls into and then returns a
timestamp for the last millisecond of that quarter.

Diagram of the quarterend() function with the quarter end of transaction 8203 identified

Transaction 8203 took place on August 8. The quarterend() function identifies that the transaction took place
in the third quarter, and returns the last millisecond of that quarter, which is September 30 at 11:59:59 PM.

Example 5 - Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset is loaded into a table called ‘Employee_Expenses’. The table contains the following fields:
l Employee IDs
l Employee names
l The average daily expense claims of each employee.

The end user would like a chart object that displays, by employee id and employee name, the estimated
expense claims still to be incurred for the remainder of the quarter. The financial year begins in January.

Script syntax and chart functions - Qlik Sense, May 2023 981

5 Script and chart functions

Load script

Employee_Expenses:

Load

*

Inline

[

employee_id,employee_name,avg_daily_claim

182,Mark, $15

183,Deryck, $12.5

184,Dexter, $12.5

185,Sydney,$27

186,Agatha,$18

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l employee_id

l employee_name

To calculate the accumulated interest, create the following measure:

l =(quarterend(today(1))-today(1))*avg_daily_claim

Set the measure’s Number Formatting to Money.

employee_id employee_name =(quarterend(today(1))-today(1))*avg_daily_claim

182 Mark $480.00

183 Deryck $400.00

184 Dexter $400.00

185 Sydney $864.00

186 Agatha $576.00

Results table

The quarterend() function uses today’s date as its only argument and returns the end date of the current
month. Then, it subtracts today’s date from the year end date, and the expression returns the number of days
that remain this month.

This value is then multiplied by the average daily expense claim of each employee to calculate the estimated
value of claims each employee is expected to make in the remaining quarter.

Script syntax and chart functions - Qlik Sense, May 2023 982

5 Script and chart functions

quartername
This function returns a display value showing the months of the quarter (formatted according to
the MonthNames script variable) and year with an underlying numeric value corresponding to a
timestamp of the first millisecond of the first day of the quarter.

Syntax:
QuarterName(date[, period_no[, first_month_of_year]])

Return data type: dual

Diagram of quartername() function

The quartername() function determines which quarter the date falls into. It then returns a value showing the
start-end months of this quarter as well as the year. The underlying numeric value of this result is the first
millisecond of the quarter.

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer, where the value 0 indicates the quarter which contains date.
Negative values in period_no indicate preceding quarters and positive values indicate
succeeding quarters.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value between 2
and 12 in first_month_of_year.

Arguments

When to use it
The quartername() function is useful when you would like to compare aggregations by quarter. For example,
if you would like to see the total sales of products by quarter.

This function could be used in the load script to create a field in a Master Calendar table. Alternatively, it could
be used directly in a chart as a calculated dimension.

These examples use the date format MM/DD/YYYY. The date format is specified in the SET DateFormat

statement at the top of your data load script. Change the format in the examples to suit your requirements.

Script syntax and chart functions - Qlik Sense, May 2023 983

5 Script and chart functions

Example Result

quartername('10/29/2013') Returns Oct-Dec 2013.

quartername('10/29/2013', -1) Returns Jul-Sep 2013.

quartername('10/29/2013', 0, 3) Returns Sep-Nov 2013.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – date with no additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called Transactions.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, transaction_quarter, which returns the quarter in which the transactions took

place.

Add your other text here, as needed, with lists etc.

Load script

SET DateFormat='MM/DD/YYYY';

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

Transactions:

Load

*,

quartername(date) as transaction_quarter

;

Load

Script syntax and chart functions - Qlik Sense, May 2023 984

5 Script and chart functions

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l transaction_quarter

date transaction_quarter

1/7/2022 Jan-Mar 2022

1/19/2022 Jan-Mar 2022

2/5/2022 Jan-Mar 2022

2/28/2022 Jan-Mar 2022

3/16/2022 Jan-Mar 2022

4/1/2022 Apr-Jun 2022

5/7/2022 Apr-Jun 2022

5/16/2022 Apr-Jun 2022

6/15/2022 Apr-Jun 2022

6/26/2022 Apr-Jun 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2023 985

5 Script and chart functions

date transaction_quarter

7/9/2022 Jul-Sep 2022

7/22/2022 Jul-Sep 2022

7/23/2022 Jul-Sep 2022

7/27/2022 Jul-Sep 2022

8/2/2022 Jul-Sep 2022

8/8/2022 Jul-Sep 2022

8/19/2022 Jul-Sep 2022

9/26/2022 Jul-Sep 2022

10/14/2022 Oct-Dec 2022

10/29/2022 Oct-Dec 2022

The transaction_quarter field is created in the preceding load statement by using the quartername()

function and passing the date field as the function’s argument.

The quartername() function initially identifies the quarter into which the date value falls. It then returns a
value showing the start-end months of this quarter, as well as the year.

Diagram of quartername() function, example with no additional arguments

Transaction 8203 took place on August 8, 2022. The quartername() function identifies that the transaction
took place in the third quarter, and therefore returns Jul-Sep 2022. The months are displayed in the same
format as the MonthNames system variable.

Example 2 – date with period_no argument
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2023 986

5 Script and chart functions

l The same dataset and scenario as the first example.
l The creation of a field, previous_quarter, that that returns the previous quarter to when the

transactions took place.

Load script

SET DateFormat='MM/DD/YYYY';

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

Transactions:

Load

*,

quartername(date,-1) as previous_quarter

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_quarter

Script syntax and chart functions - Qlik Sense, May 2023 987

5 Script and chart functions

date previous_quarter

1/7/2022 Oct-Dec 2021

1/19/2022 Oct-Dec 2021

2/5/2022 Oct-Dec 2021

2/28/2022 Oct-Dec 2021

3/16/2022 Oct-Dec 2021

4/1/2022 Jan-Mar 2022

5/7/2022 Jan-Mar 2022

5/16/2022 Jan-Mar 2022

6/15/2022 Jan-Mar 2022

6/26/2022 Jan-Mar 2022

7/9/2022 Apr-Jun 2022

7/22/2022 Apr-Jun 2022

7/23/2022 Apr-Jun 2022

7/27/2022 Apr-Jun 2022

8/2/2022 Apr-Jun 2022

8/8/2022 Apr-Jun 2022

8/19/2022 Apr-Jun 2022

9/26/2022 Apr-Jun 2022

10/14/2022 Jul-Sep 2022

10/29/2022 Jul-Sep 2022

Results table

In this instance, because a period_no of -1 was used as the offset argument in the quartername() function,
the function first identifies that the transactions took place in the third quarter. It then shifts one quarter prior
and returns a value showing the start-end months of this quarter, as well as the year.

Script syntax and chart functions - Qlik Sense, May 2023 988

5 Script and chart functions

Diagram of quartername() function, period_no example

Transaction 8203 took place on August 8. The quartername() function identifies that the quarter before the
transaction took place was between April 1 and June 30. Therefore, it returns Apr-Jun 2022.

Example 3 – date with first_week_day argument
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this example, we
need to set March 1 as the beginning of the financial year.

Load script

SET DateFormat='MM/DD/YYYY';

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

Transactions:

Load

*,

quartername(date,0,3) as transaction_quarter

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

Script syntax and chart functions - Qlik Sense, May 2023 989

5 Script and chart functions

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l transaction_quarter

date transaction_quarter

1/7/2022 Dec-Feb 2021

1/19/2022 Dec-Feb 2021

2/5/2022 Dec-Feb 2021

2/28/2022 Dec-Feb 2021

3/16/2022 Mar-May 2022

4/1/2022 Mar-May 2022

5/7/2022 Mar-May 2022

5/16/2022 Mar-May 2022

6/15/2022 Jun-Aug 2022

6/26/2022 Jun-Aug 2022

7/9/2022 Jun-Aug 2022

7/22/2022 Jun-Aug 2022

7/23/2022 Jun-Aug 2022

7/27/2022 Jun-Aug 2022

8/2/2022 Jun-Aug 2022

8/8/2022 Jun-Aug 2022

8/19/2022 Jun-Aug 2022

9/26/2022 Sep-Nov 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2023 990

5 Script and chart functions

date transaction_quarter

10/14/2022 Sep-Nov 2022

10/29/2022 Sep-Nov 2022

In this instance, because the first_month_of_year argument of 3 is used in the quartername() function, the
start of the year moves from January 1 to March 1. Therefore, the quarters in the year are separated into
March-May, June-August, September-November and December-February.

Diagram of quartername() function, first_week_day example

Transaction 8203 took place on August 8. The quartername() function identifies that the transaction took
place in the second quarter, between the start of June and the end of August. Therefore, it returns Jun-Aug
2022.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that returns a
timestamp for the end of the quarter when the transactions took place is created as a measure in a chart
object of the application.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

Script syntax and chart functions - Qlik Sense, May 2023 991

5 Script and chart functions

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measure:

=quartername(date)

date =quartername(date)

1/7/2022 Jan-Mar 2022

1/19/2022 Jan-Mar 2022

2/5/2022 Jan-Mar 2022

2/28/2022 Jan-Mar 2022

3/16/2022 Jan-Mar 2022

4/1/2022 Apr-Jun 2022

5/7/2022 Apr-Jun 2022

5/16/2022 Apr-Jun 2022

6/15/2022 Apr-Jun 2022

6/26/2022 Apr-Jun 2022

7/9/2022 Jul-Sep 2022

7/22/2022 Jul-Sep 2022

7/23/2022 Jul-Sep 2022

7/27/2022 Jul-Sep 2022

8/2/2022 Jul-Sep 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2023 992

5 Script and chart functions

date =quartername(date)

8/8/2022 Jul-Sep 2022

8/19/2022 Jul-Sep 2022

9/26/2022 Jul-Sep 2022

10/14/2022 Oct-Dec 2022

10/29/2022 Oct-Dec 2022

The transaction_quarter measure is created in the chart object by using the quartername() function and
passing the date field as the function’s argument.

The quartername() function initially identifies the quarter into which the date value falls. It then returns a
value showing the start-end months of this quarter, as well as the year.

Diagram of quartername() function, chart object example

Transaction 8203 took place on August 8, 2022. The quartername() function identifies that the transaction
took place in the third quarter, and therefore returns Jul-Sep 2022. The months are displayed in the same
format as the MonthNames system variable.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called Transactions.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.

The end user would like a chart object that presents the total sales by quarter for the transactions. This could
be achieved even when this dimension is not available in the data model, using the quartername() function
as a calculated dimension in the chart.

Script syntax and chart functions - Qlik Sense, May 2023 993

5 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'1/7/2022',17.17

8189,'1/19/2022',37.23

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table.

2. Create a calculated dimension using the following expression:
=quartername(date)

3. Next, calculate total sales using the following aggregation measure:
=sum(amount)

4. Set the measure's Number formatting to Money.

=quartername(date) =sum(amount)

Jul-Sep 2022 $446.31

Apr-Jun 2022 $351.48

Jan-Mar 2022 $253.89

Oct-Dec 2022 $163.91

Results table

Script syntax and chart functions - Qlik Sense, May 2023 994

5 Script and chart functions

quarterstart
This function returns a value corresponding to a timestamp of the first millisecond of the
quarter containing date. The default output format will be the DateFormat set in the script.

Syntax:
QuarterStart(date[, period_no[, first_month_of_year]])

Return data type: dual

Diagram of quarterstart() function

The quarterstart() function determines which quarter the date falls into. It then returns a timestamp, in
date format, for the first millisecond of the first month of that quarter.

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer, where the value 0 indicates the quarter which contains date.
Negative values in period_no indicate preceding quarters and positive values indicate
succeeding quarters.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value between 2
and 12 in first_month_of_year.

Arguments

When to use it
The quarterstart() function is commonly used as part of an expression when the user would like the
calculation to use the fraction of the quarter that has elapsed thus far. For example, it could be used if a user
would like to calculate the interest that has been accumulated in a quarter to date.

Example Result

quarterstart('10/29/2005') Returns 10/01/2005.

quarterstart('10/29/2005', -1) Returns 07/01/2005.

quarterstart('10/29/2005', 0, 3) Returns 09/01/2005.

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 995

5 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called Transactions.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, start_of_quarter, which returns a timestamp for the start of the quarter when

the transactions took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

quarterstart(date) as start_of_quarter,

timestamp(quarterstart(date)) as start_of_quarter_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

Script syntax and chart functions - Qlik Sense, May 2023 996

5 Script and chart functions

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l start_of_quarter

l start_of_quarter_timestamp

date start_of_quarter start_of_quarter_timestamp

1/7/2022 01/01/2022 1/1/2022 12:00:00 AM

1/19/2022 01/01/2022 1/1/2022 12:00:00 AM

2/5/2022 01/01/2022 1/1/2022 12:00:00 AM

2/28/2022 01/01/2022 1/1/2022 12:00:00 AM

3/16/2022 01/01/2022 1/1/2022 12:00:00 AM

4/1/2022 04/01/2022 4/1/2021 12:00:00 AM

5/7/2022 04/01/2022 4/1/2021 12:00:00 AM

5/16/2022 04/01/2022 4/1/2021 12:00:00 AM

6/15/2022 04/01/2022 4/1/2021 12:00:00 AM

6/26/2022 04/01/2022 4/1/2021 12:00:00 AM

7/9/2022 07/01/2022 7/1/2021 12:00:00 AM

7/22/2022 07/01/2022 7/1/2021 12:00:00 AM

7/23/2022 07/01/2022 7/1/2021 12:00:00 AM

7/27/2022 07/01/2022 7/1/2021 12:00:00 AM

8/2/2022 07/01/2022 7/1/2021 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 997

5 Script and chart functions

date start_of_quarter start_of_quarter_timestamp

8/8/2022 07/01/2022 7/1/2021 12:00:00 AM

8/19/2022 07/01/2022 7/1/2021 12:00:00 AM

9/26/2022 07/01/2022 7/1/2021 12:00:00 AM

10/14/2022 10/01/2022 10/1/2022 12:00:00 AM

10/29/2022 10/01/2022 10/1/2022 12:00:00 AM

The start_of_quarter field is created in the preceding load statement by using the quarterstart() function
and passing the date field as the function’s argument. The quarterstart() function initially identifies which
quarter the date value falls into. It then returns a timestamp for the first millisecond of that quarter.

Diagram of quarterstart() function, example with no additional arguments

Transaction 8203 took place on August 8. The quarterstart() function identifies that the transaction took
place in the third quarter, and returns the first millisecond of that quarter, which is July 1 at 12:00:00 AM.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, previous_quarter_start, that returns the timestamp for the start of the

quarter before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

Script syntax and chart functions - Qlik Sense, May 2023 998

5 Script and chart functions

quarterstart(date,-1) as previous_quarter_start,

timestamp(quarterstart(date,-1)) as previous_quarter_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_quarter_start

l previous_quarter_start_timestamp

date previous_quarter_start previous_quarter_start_timestamp

1/7/2022 10/01/2021 10/1/2021 12:00:00 AM

1/19/2022 10/01/2021 10/1/2021 12:00:00 AM

2/5/2022 10/01/2021 10/1/2021 12:00:00 AM

2/28/2022 10/01/2021 10/1/2021 12:00:00 AM

3/16/2022 10/01/2021 10/1/2021 12:00:00 AM

4/1/2022 01/01/2022 1/1/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 999

5 Script and chart functions

date previous_quarter_start previous_quarter_start_timestamp

5/7/2022 01/01/2022 1/1/2022 12:00:00 AM

5/16/2022 01/01/2022 1/1/2022 12:00:00 AM

6/15/2022 01/01/2022 1/1/2022 12:00:00 AM

6/26/2022 01/01/2022 1/1/2022 12:00:00 AM

7/9/2022 04/01/2022 4/1/2021 12:00:00 AM

7/22/2022 04/01/2022 4/1/2021 12:00:00 AM

7/23/2022 04/01/2022 4/1/2021 12:00:00 AM

7/27/2022 04/01/2022 4/1/2021 12:00:00 AM

8/2/2022 04/01/2022 4/1/2021 12:00:00 AM

8/8/2022 04/01/2022 4/1/2021 12:00:00 AM

8/19/2022 04/01/2022 4/1/2021 12:00:00 AM

9/26/2022 04/01/2022 4/1/2021 12:00:00 AM

10/14/2022 07/01/2022 7/1/2022 12:00:00 AM

10/29/2022 07/01/2022 7/1/2022 12:00:00 AM

In this instance, because a period_no of -1 was used as the offset argument in the quarterstart() function,
the function first identifies the quarter that the transactions take place in. It then shifts one quarter prior and
identifies the first millisecond of that quarter.

Diagram of quarterstart() function, period_no example

Transaction 8203 took place on August 8. The quarterstart() function identifies that the quarter before the
transaction took place was between April 1 and June 30. It then returns the first millisecond of that quarter,
April 1 at 12:00:00 AM.

Script syntax and chart functions - Qlik Sense, May 2023 1000

5 Script and chart functions

Example 3 – first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this example, we
need to set March 1 as the beginning of the financial year.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

quarterstart(date,0,3) as start_of_quarter,

timestamp(quarterstart(date,0,3)) as start_of_quarter_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2023 1001

5 Script and chart functions

l date

l start_of_quarter

l start_of_quarter_timestamp

date start_of_quarter start_of_quarter_timestamp

1/7/2022 12/01/2021 12/1/2021 12:00:00 AM

1/19/2022 12/01/2021 12/1/2021 12:00:00 AM

2/5/2022 12/01/2021 12/1/2021 12:00:00 AM

2/28/2022 12/01/2021 12/1/2021 12:00:00 AM

3/16/2022 03/01/2022 3/1/2022 12:00:00 AM

4/1/2022 03/01/2022 3/1/2022 12:00:00 AM

5/7/2022 03/01/2022 3/1/2022 12:00:00 AM

5/16/2022 03/01/2022 3/1/2022 12:00:00 AM

6/15/2022 06/01/2022 6/1/2022 12:00:00 AM

6/26/2022 06/01/2022 6/1/2022 12:00:00 AM

7/9/2022 06/01/2022 6/1/2022 12:00:00 AM

7/22/2022 06/01/2022 6/1/2022 12:00:00 AM

7/23/2022 06/01/2022 6/1/2022 12:00:00 AM

7/27/2022 06/01/2022 6/1/2022 12:00:00 AM

8/2/2022 06/01/2022 6/1/2022 12:00:00 AM

8/8/2022 06/01/2022 6/1/2022 12:00:00 AM

8/19/2022 06/01/2022 6/1/2022 12:00:00 AM

9/26/2022 09/01/2022 9/1/2022 12:00:00 AM

10/14/2022 09/01/2022 9/1/2022 12:00:00 AM

10/29/2022 09/01/2022 9/1/2022 12:00:00 AM

Results table

In this instance, because the first_month_of_year argument of 3 is used in the quarterstart() function,
the start of the year moves from January 1 to March 1.

Script syntax and chart functions - Qlik Sense, May 2023 1002

5 Script and chart functions

Diagram of quarterstart() function, first_month_of_year example

Transaction 8203 took place on August 8. Because the beginning of the year is March 1, the quarters in the
year occur between March-May, June-August, September-November and December-February. The
quarterstart() function identifies that the transaction took place in the quarter between the start of June
and of August and returns the first millisecond of that quarter, which is June 1 at 12:00:00 AM.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that returns a
timestamp for the end of the quarter when the transactions took place is created as a measure in a chart
object of the application.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

Script syntax and chart functions - Qlik Sense, May 2023 1003

5 Script and chart functions

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Add the following measures:

l =quarterstart(date)

l =timestamp(quarterstart(date))

date =quarterstart(date) =timestamp(quarterstart(date))

10/14/2022 10/01/2022 10/1/2022 12:00:00 AM

10/29/2022 10/01/2022 10/1/2022 12:00:00 AM

7/9/2022 07/01/2022 7/1/2022 12:00:00 AM

7/22/2022 07/01/2022 7/1/2022 12:00:00 AM

7/23/2022 07/01/2022 7/1/2022 12:00:00 AM

7/27/2022 07/01/2022 7/1/2022 12:00:00 AM

8/2/2022 07/01/2022 7/1/2022 12:00:00 AM

8/8/2022 07/01/2022 7/1/2022 12:00:00 AM

8/19/2022 07/01/2022 7/1/2022 12:00:00 AM

9/26/2022 07/01/2022 7/1/2022 12:00:00 AM

4/1/2022 04/01/2022 4/1/2022 12:00:00 AM

5/7/2022 04/01/2022 4/1/2022 12:00:00 AM

5/16/2022 04/01/2022 4/1/2022 12:00:00 AM

6/15/2022 04/01/2022 4/1/2022 12:00:00 AM

6/26/2022 04/01/2022 4/1/2022 12:00:00 AM

1/7/2022 01/01/2022 1/1/2022 12:00:00 AM

1/19/2022 01/01/2022 1/1/2022 12:00:00 AM

2/5/2022 01/01/2022 1/1/2022 12:00:00 AM

2/28/2022 01/01/2022 1/1/2022 12:00:00 AM

3/16/2022 01/01/2022 1/1/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1004

5 Script and chart functions

The start_of_quarter measure is created in the chart object by using the quarterstart() function and
passing the date field as the function’s argument.

The quarterstart() function identifies the quarter into which the date value falls, returning a timestamp for
the first millisecond of that quarter.

Diagram of quarterstart() function, chart object example

Transaction 8203 took place on August 8. The quarterstart() function identifies that the transaction took
place in the third quarter, and returns the first millisecond of that quarter. This returned value is July 1 at
12:00:00 AM.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of loan balances, which is loaded into a table called Loans.
l Data consisting of loan IDs, the balance at the beginning of the quarter, and the simple interest rate

charged on each loan per annum.

The end user would like a chart object that displays, by loan ID, the current interest that has been accrued on
each loan in the quarter to date.

Load script

Loans:

Load

*

Inline

[

loan_id,start_balance,rate

8188,$10000.00,0.024

8189,$15000.00,0.057

8190,$17500.00,0.024

8191,$21000.00,0.034

Script syntax and chart functions - Qlik Sense, May 2023 1005

5 Script and chart functions

8192,$90000.00,0.084

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add these fields as dimensions:
l loan_id

l start_balance

2. Next, create this measure to calculate the accumulated interest:
=start_balance*(rate*(today(1)-quarterstart(today(1)))/365)

3. Set the measure's Number formatting to Money.

loan_id start_balance =start_balance*(rate*(today(1)-quarterstart(today(1)))/365)

8188 $10000.00 $15.07

8189 $15000.00 $128.84

8190 $17500.00 $63.29

8191 $21000.00 $107.59

8192 $90000.00 $1139.18

Results table

The quarterstart() function, using today’s date as its only argument, returns the start date of the current
year. By subtracting that result from the current date, the expression returns the number of days that have
elapsed so far this quarter.

This value is then multiplied by the interest rate and divided by 365 to return the effective interest rate
incurred for this period. The result is then multiplied by the starting balance of the loan to return the interest
that has been accrued so far this quarter.

second
This function returns an integer representing the second when the fraction of the expression is
interpreted as a time according to the standard number interpretation.

Syntax:
second (expression)

Return data type: integer

When to use it
The second() function is useful when you would like to compare aggregations by second. For example, the
function can be used if you would like to see activity count distribution by second.

Script syntax and chart functions - Qlik Sense, May 2023 1006

5 Script and chart functions

These dimensions can be created either in the load script by using the function to create a field in a Master
Calendar table, or used directly in a chart as a calculated dimension.

Example Result

second('09:14:36') returns 36

second('0.5555') returns 55 (Because 0.5555 = 13:19:55)

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – Variable
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing transactions by timestamp, which is loaded into a table called Transactions.
l The default TimeStamp system variable (M/D/YYYY h:mm:ss[.fff] TT) is used.
l The creation of a field, second, to calculate when purchases took place.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

second(date) as second

;

Load

*

Inline

[

Script syntax and chart functions - Qlik Sense, May 2023 1007

5 Script and chart functions

id,date,amount

9497,'01/05/2022 7:04:57 PM',47.25

9498,'01/03/2022 2:21:53 PM',51.75

9499,'01/03/2022 5:40:49 AM',73.53

9500,'01/04/2022 6:49:38 PM',15.35

9501,'01/01/2022 10:10:22 PM',31.43

9502,'01/05/2022 7:34:46 PM',13.24

9503,'01/06/2022 10:58:34 PM',74.34

9504,'01/06/2022 11:29:38 AM',50.00

9505,'01/02/2022 8:35:54 AM',36.34

9506,'01/06/2022 8:49:09 AM',74.23

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l second

date second

01/01/2022 10:10:22 PM 22

01/02/2022 8:35:54 AM 54

01/03/2022 5:40:49 AM 49

01/03/2022 2:21:53 PM 53

01/04/2022 6:49:38 PM 38

01/05/2022 7:04:57 PM 57

01/05/2022 7:34:46 PM 46

01/06/2022 8:49:09 AM 9

01/06/2022 11:29:38 AM 38

01/06/2022 10:58:34 PM 34

Results table

The values in the second field are created by using the second() function and passing the date as the
expression in the preceding load statement.

Example 2 – Chart object
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2023 1008

5 Script and chart functions

The load script contains the same dataset and scenario as the first example. However, in this example, the
unchanged dataset is loaded into the application. The second values are calculated via a measure in a chart
object.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*

Inline

[

id,date,amount

9497,'01/05/2022 7:04:57 PM',47.25

9498,'01/03/2022 2:21:53 PM',51.75

9499,'01/03/2022 5:40:49 AM',73.53

9500,'01/04/2022 6:49:38 PM',15.35

9501,'01/01/2022 10:10:22 PM',31.43

9502,'01/05/2022 7:34:46 PM',13.24

9503,'01/06/2022 10:58:34 PM',74.34

9504,'01/06/2022 11:29:38 AM',50.00

9505,'01/02/2022 8:35:54 AM',36.34

9506,'01/06/2022 8:49:09 AM',74.23

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:date.

Create the following measure:

=second(date)

date =second(date)

01/01/2022 10:10:22 PM 22

01/02/2022 8:35:54 AM 54

01/03/2022 5:40:49 AM 49

01/03/2022 2:21:53 PM 53

01/04/2022 6:49:38 PM 38

01/05/2022 7:04:57 PM 57

01/05/2022 7:34:46 PM 46

01/06/2022 8:49:09 AM 9

01/06/2022 11:29:38 AM 38

01/06/2022 10:58:34 PM 34

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1009

5 Script and chart functions

The values for second are created by using the second() function and passing the date as the expression in a
measure for the chart object.

Example 3 – Scenario
Load script and chart expressions

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of timestamps, which is generated to represent the traffic to a particular festival's ticket sales
website. These timestamps and a corresponding id are loaded into a table called Web_Traffic.

l The TimeStamp system variable M/D/YYYY h:mm:ss[.fff] TT is used.

In this scenario, there were 10000 tickets, which went on sale at 9:00 AM on May 20, 2021. One minute later,
the tickets were sold out.

The user would like a chart object that shows, by second, the count of visits to the website.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

tmpTimeStampCreator:

load

makedate(2022,05,20) as date

AutoGenerate 1;

join load

maketime(9+floor(rand()*2),0,floor(rand()*59)) as time

autogenerate 10000;

Web_Traffic:

load

recno() as id,

timestamp(date + time) as timestamp

resident tmpTimeStampCreator;

drop table tmpTimeStampCreator;

Results

Do the following:

1. Load the data and open a sheet. Create a new table.

2. Next, create a calculated dimensions using the following expression:
=second(timestamp)

Script syntax and chart functions - Qlik Sense, May 2023 1010

5 Script and chart functions

3. Create an aggregation measure to calculate the total count of entries:
=count(id)

The results table will look similar to the table below, but with different values for the aggregation measure:

second(timestamp) =count(id)

0 150

1 184

2 163

3 178

4 179

5 158

6 177

7 169

8 149

9 186

10 169

11 179

12 186

13 182

14 180

15 153

16 191

17 203

18 158

19 159

20 163

+ 39 more rows

Results table

setdateyear
This function takes as input a timestamp and a year and updates the timestamp with the year
specified in input.

Syntax:
setdateyear (timestamp, year)

Script syntax and chart functions - Qlik Sense, May 2023 1011

5 Script and chart functions

Return data type: dual

Arguments:

Argument Description

timestamp A standard Qlik Sense timestamp (often just a date).

year A four-digit year.

Arguments

Examples and results:
These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat
statement at the top of your data load script. Change the format in the examples to suit your requirements.

Example Result

setdateyear

('29/10/2005',

2013)

Returns '29/10/2013

setdateyear

('29/10/2005

04:26:14', 2013)

Returns '29/10/2013 04:26:14'
To see the time part of the timestamp in a visualization, you must set the number
formatting to Date and choose a value for Formatting that displays time values.

Scripting examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

SetYear:

Load *,

SetDateYear(testdates, 2013) as NewYear

Inline [

testdates

1/11/2012

10/12/2012

1/5/2013

2/1/2013

19/5/2013

15/9/2013

11/12/2013

2/3/2014

14/5/2014

13/6/2014

7/7/2014

4/8/2014

];

The resulting table contains the original dates and a column in which the year has be set to 2013.

Script syntax and chart functions - Qlik Sense, May 2023 1012

5 Script and chart functions

testdates NewYear

1/11/2012 1/11/2013

10/12/2012 10/12/2013

2/1/2012 2/1/2013

1/5/2013 1/5/2013

19/5/2013 19/5/2013

15/9/2013 15/9/2013

11/12/2013 11/12/2013

2/3/2014 2/3/2013

14/5/2014 14/5/2013

13/6/2014 13/6/2013

7/7/2014 7/7/2013

4/8/2014 4/8/2013

Results table

setdateyearmonth
This function takes as input a timestamp, a month and a year and updates the timestamp
with the year and the month specified in input. .

Syntax:
SetDateYearMonth (timestamp, year, month)

Return data type: dual

Arguments:

Argument Description

timestamp A standard Qlik Sense timestamp (often just a date).

year A four-digit year.

month A one or two-digit month.

Arguments

Examples and results:
These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat
statement at the top of your data load script. Change the format in the examples to suit your requirements.

Script syntax and chart functions - Qlik Sense, May 2023 1013

5 Script and chart functions

Example Result

setdateyearmonth

('29/10/2005', 2013,

3)

Returns '29/03/2013

setdateyearmonth

('29/10/2005

04:26:14', 2013, 3)

Returns '29/03/2013 04:26:14'
To see the time part of the timestamp in a visualization, you must set the
number formatting to Date and choose a value for Formatting that displays
time values.

Scripting examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

SetYearMonth:

Load *,

SetDateYearMonth(testdates, 2013,3) as NewYearMonth

Inline [

testdates

1/11/2012

10/12/2012

2/1/2013

19/5/2013

15/9/2013

11/12/2013

14/5/2014

13/6/2014

7/7/2014

4/8/2014

];

The resulting table contains the original dates and a column in which the year has be set to 2013.

testdates NewYearMonth

1/11/2012 1/3/2013

10/12/2012 10/3/2013

2/1/2012 2/3/2013

19/5/2013 19/3/2013

15/9/2013 15/3/2013

11/12/2013 11/3/2013

14/5/2014 14/3/2013

13/6/2014 13/3/2013

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1014

5 Script and chart functions

testdates NewYearMonth

7/7/2014 7/3/2013

4/8/2014 4/3/2013

timezone
This function returns the time zone, as defined on the computer where the Qlik engine is
running.

Syntax:
TimeZone()

Return data type: dual

Example:

timezone()

If you want to see a different timezone in a measure in your app, you can use the localtime() function in a
measure.

today
This function returns the current date. The function returns values in the DateFormat system
variable format.

Syntax:
today([timer_mode])

Return data type: dual

The today() function can be used either in the load script or in chart objects.

The default timer_mode value is 1.

Argument Description

timer_mode Can have the following values:

0 (day of last finished data load)
1 (day of function call)
2 (day when the app was opened)

If you use the function in a load script, timer_mode=0 will result in the day of the
last finished data load, while timer_mode=1 will give the day of the current data
load.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1015

5 Script and chart functions

timer_
mode
value

Result if used in load script Result if used in chart object

0 Returns a date, in the DateFormat system
variable format, of the last successful
data reload prior to the latest data
reload.

Returns a date, in the DateFormat system variable
format, for the latest data reload.

1 Returns a date, in the DateFormat system
variable format, for the latest data reload.

Returns a date, in the DateFormat system variable
format, of the function call.

2 Returns a date, in the DateFormat system
variable format, for when the user’s
session in the application began. This will
not be updated unless the user reloads
the script.

Returns the date, in the DateFormat system
variable format, for when the user’s session in the
application began. This will be refreshed once a
new session begins or the data in the application
is reloaded.

Function examples

When to use it
The today() function is commonly used as a component within an expression. For example, it can be used to
calculate the interest that has accumulated in a month up to the current date.

The following table provides an explanation of the result returned by the today() function, given different
values for the timer_mode argument:

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – Generation of objects using load script
Load script and results

Overview

The following example creates three variables using the today() function. Each variable uses one of the
timer_mode options to demonstrate their effect.

Script syntax and chart functions - Qlik Sense, May 2023 1016

5 Script and chart functions

For the variables to demonstrate their purpose, reload the script and then, after 24 hours, reload the script a
second time. This will result in the today(0) and today(1) variables showing different values, thereby
correctly demonstrating their purpose.

Load script

LET vPreviousDataLoad = today(0);

LET vCurrentDataLoad = today(1);

LET vApplicationOpened = today(2);

Results

Once the data has been loaded for a second time, create three textboxes using the directions below.

First, create a textbox for the data which has previously been loaded.

Do the following:

1. Using the Text & Image chart object, create a textbox.

2. Add the following measure to the object:
=vPreviousDataLoad

3. Under Appearance, select Show titles and add the title 'Previous Reload Time' to the object.

Next, create a textbox for the data which is currently being loaded.

Do the following:

1. Using the Text & Image chart object, create a textbox.

2. Add the following measure to the object:
=vCurrentDataLoad

3. Under Appearance, select Show titles and add the title 'Current Reload Time' to the object.

Create a final textbox to show when the user's session in the application was started.

Do the following:

1. Using the Text & Image chart object, create a textbox.

2. Add the following measure to the object:
=vApplicationOpened

3. Under Appearance, select Show titles and add the title 'User Session Started' to the object.

Diagram of variables created using today() function in load script

Script syntax and chart functions - Qlik Sense, May 2023 1017

5 Script and chart functions

The above image shows example values for each of the created variables. For example, the values could be as
follows:

l Previous Reload Time: 06/22/2022
l Current Reload Time: 06/23/2022
l User Session Began: 06/23/2022

Example 2 – Generation of objects without load script
Load script and chart expression

Overview

The following example creates three chart objects using the today() function. Each chart object uses one of
the timer_mode options to demonstrate their effect.

There is no load script for this example.

Results

Once the data has been loaded for a second time, create three textboxes.

First, create a textbox for the latest data reload.

Do the following:

1. Using the Text & Image chart object, create a textbox.

2. Add the following measure:
=today(0)

3. Under Appearance, select Show titles and add the title 'Latest Data Reload' to the object.

Next, create a textbox to show the current time.

Do the following:

1. Using the Text & Image chart object, create a textbox.

2. Add the following measure:
=today(1)

3. Under Appearance, select Show titles and add the title 'Current Time' to the object.

Create a final textbox to show when the user's session in the application was started.

Do the following:

1. Using the Text & Image chart object, create a textbox.

2. Add the following measure:
=today(2)

3. Under Appearance, select Show titles and add the title 'User Session Began' to the object.

Script syntax and chart functions - Qlik Sense, May 2023 1018

5 Script and chart functions

Diagram of objects created using today() function without load script

The above image shows example values for each of the created objects. For example, the values could be as
follows:

l Latest Data Reload: 06/23/2022
l Current Time: 06/23/2022
l User Session Began: 06/23/2022

The 'Latest Data Reload' chart object uses a timer_mode value of 0. This returns the timestamp for the last
time the data was successfully reloaded.

The 'Current Time' chart object uses a timer_mode value of 1. This returns the current time according to the
system clock. If the sheet or object is refreshed, this value will be updated.

The 'User Session Began' chart object uses a timer_mode value of 2. This returns the timestamp for when the
application was opened, and the user’s session began.

Example 3 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of loan balances, which is loaded into a table called Loans.
l Table data with fields for loan ID, balance at the start of the month, and the simple interest rate

charged on each loan per annum.

The end user would like a chart object that displays, by loan ID, the current interest that has been accrued on
each loan in the month to date. Although the application is only reloaded once per week, the user would like
the results to be refreshed whenever the object or application is refreshed.

Load script

Loans:

Load

*

Inline

[

Script syntax and chart functions - Qlik Sense, May 2023 1019

5 Script and chart functions

loan_id,start_balance,rate

8188,$10000.00,0.024

8189,$15000.00,0.057

8190,$17500.00,0.024

8191,$21000.00,0.034

8192,$90000.00,0.084

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table.

2. Add the following fields as dimensions:
l loan_id

l start_balance

3. Next, create a measure to calculate accumulated interest:
=start_balance*(rate*(today(1)-monthstart(today(1)))/365)

4. Set the measure's Number formatting to Money.

loan_id start_balance =start_balance*(rate*(today(1)-monthstart(today(1)))/365)

8188 $10000.00 $16.44

8189 $15000.00 $58.56

8190 $17500.00 $28.77

8191 $21000.00 $48.90

8192 $90000.00 $517.81

Results table

The monthstart() function, using the today() function to return today’s date as its only argument, returns
the start date of the current month. By subtracting that result from the current date, again using the today()

function, the expression returns the number of days that have elapsed so far this month.

This value is then multiplied by the interest rate and divided by 365 to return the effective interest rate
incurred for this period. The result is then multiplied by the starting balance of the loan to return the interest
that has been accrued so far this month.

Because the value of 1 is used as the timer_mode argument in the today() functions inside the expression,
each time the chart object is refreshed (by opening the application, refreshing the page, moving between
sheets, etc.), the date returned will be for the current date, and the results will be refreshed accordingly.

UTC
Returns the current Coordinated Universal Time.

Syntax:
UTC()

Script syntax and chart functions - Qlik Sense, May 2023 1020

5 Script and chart functions

Return data type: dual

Example:

utc()

week
This function returns an integer representing the week number corresponding to the date
entered.

Syntax:
week(timestamp [, first_week_day [, broken_weeks [, reference_day]]])

Return data type: integer

Argument Description

timestamp The date or timestamp to evaluate.

first_week_
day

Specifies the day on which the week starts. If omitted, the value of variable FirstWeekDay
is used.

The possible values first_week_day are 0 for Monday, 1 for Tuesday, 2 for Wednesday, 3
for Thursday, 4 for Friday, 5 for Saturday, and 6 for Sunday.

For more information about the system variable, see FirstWeekDay (page 215).

broken_
weeks

If you don't specify broken_weeks, the value of variable BrokenWeeks will be used to
define if weeks are broken or not.

reference_
day

If you don't specify reference_day, the value of variable ReferenceDay will be used to
define which day in January to set as reference day to define week 1. By default, Qlik
Sense functions use 4 as the reference day. This means that week 1 must contain January
4, or put differently, that week 1 must always have at least 4 days in January.

Arguments

The week() function determines which week the date falls into and returns the week number.

 In Qlik Sense, the regional settings are fetched when the app is created, and the corresponding settings are
stored in the script as environment variables. These are used to determine the week number.

This means that most European app developers gets the following environment variables, corresponding to
the ISO 8601 definition:

Set FirstWeekDay =0; // Monday as first week day

Set BrokenWeeks =0; // Use unbroken weeks

Set ReferenceDay =4; // Jan 4th is always in week 1

A North American app developer often gets the following environment variables:

Script syntax and chart functions - Qlik Sense, May 2023 1021

5 Script and chart functions

Set FirstWeekDay =6; // Sunday as first week day

Set BrokenWeeks =1; // Use broken weeks

Set ReferenceDay =1; // Jan 1st is always in week 1

The first day of the week is determined by the FirstWeekDay system variable. You can also change the first
day of the week by using the first_week_day argument in the week() function.

If your application uses broken weeks, the week number count begins on January 1 and ends on the day prior
to the FirstWeekDay system variable regardless of how many days have occurred.

If your application is using unbroken weeks, week 1 can begin in the previous year or in the first few days of
January. This depends on how you use the FirstWeekDay and the ReferenceDay environment variables.

When to use it
The week() function is useful when you would like to compare aggregations by weeks. For example, it could
be used if you would like to see the total sales of products by week. The week() function is chosen over
weekname() when the user would like the calculation to not necessarily use the application’s BrokenWeeks,
FirstWeekDay, or ReferenceDay system variables.

For example, if you want to see the total sales of products by week.

If the application is using unbroken weeks, week 1 may contain dates from December of the previous year or
exclude dates in January of the current year. If the application is using broken weeks, week 1 may contain less
than seven days..

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

The examples below assume

Set DateFormat= 'MM/DD/YYYY';

Set FirstWeekDay=0;

Set BrokenWeeks=0;

Set ReferenceDay=4;

Example Result

week('12/28/2021') Returns 52.

week(44614) Returns 8, since this is the serial number for 02/22/2022.

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 1022

5 Script and chart functions

Example Result

week('01/03/2021') Returns 53.

week('01/03/2021',6) Returns 1.

Example 1 – Default system variables
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the last week of 2021 and the first two weeks of 2022,
which is loaded into a table called Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, week_number, that returns the year and week number when the transactions

took place.
l The creation of a field called week_day, showing the weekday value of each transaction date.

Load script

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=6;

SET BrokenWeeks=1;

SET ReferenceDay=0;

Transactions:

Load

*,

WeekDay(date) as week_day,

Week(date) as week_number

;

Load

*

Inline

[

id,date,amount

8183,12/27/2021,58.27

8184,12/28/2021,67.42

8185,12/29/2021,23.80

8186,12/30/2021,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

Script syntax and chart functions - Qlik Sense, May 2023 1023

5 Script and chart functions

8194,01/07/2022,40.56

8195,01/08/2022,53.67

8196,01/09/2022,26.63

8197,01/10/2022,72.48

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l week_day

l week_number

id date week_day week_number

8183 12/27/2021 Mon 53

8184 12/28/2021 Tue 53

8185 12/29/2021 Wed 53

8186 12/30/2021 Thu 53

8187 12/31/2021 Fri 53

8188 01/01/2022 Sat 1

8189 01/02/2022 Sun 2

8190 01/03/2022 Mon 2

8191 01/04/2022 Tue 2

8192 01/05/2022 Wed 2

8193 01/06/2022 Thu 2

8194 01/07/2022 Fri 2

8195 01/08/2022 Sat 2

8196 01/09/2022 Sun 3

8197 01/10/2022 Mon 3

8198 01/11/2022 Tue 3

8199 01/12/2022 Wed 3

8200 01/13/2022 Thu 3

8201 01/14/2022 Fri 3

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1024

5 Script and chart functions

The week_number field is created in the preceding load statement by using the week() function and passing
the date field as the function’s argument.

No other parameters are passed into the function, and therefore the following default variables that affect the
week() function are in effect:

l BrokenWeeks: The week count begins on January 1
l FirstWeekDay: The first day of the week is Sunday

Diagram of week() function, using default system variables

Because the application is using the default BrokenWeeks system variable, week 1 begins on January 1, a
Saturday.

Because of the default FirstWeekDay system variable, weeks begin on a Sunday. The first Sunday after
January 1 occurs on January 2, which is when week 2 begins.

Example 2 – first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The creation of a field, week_number, that returns the year and week number when the transactions
took place.

l The creation of a field called week_day, showing the weekday value of each transaction date.

In this example, we would like to set the start of the work week to Tuesday.

Load script

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=6;

SET BrokenWeeks=1;

SET ReferenceDay=0;

Transactions:

Script syntax and chart functions - Qlik Sense, May 2023 1025

5 Script and chart functions

Load

*,

WeekDay(date) as week_day,

Week(date,1) as week_number

;

Load

*

Inline

[

id,date,amount

8183,12/27/2022,58.27

8184,12/28/2022,67.42

8185,12/29/2022,23.80

8186,12/30/2022,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.56

8195,01/08/2022,53.67

8196,01/09/2022,26.63

8197,01/10/2022,72.48

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l week_day

l week_number

id date week_day week_number

8183 12/27/2021 Mon 52

8184 12/28/2021 Tue 53

8185 12/29/2021 Wed 53

8186 12/30/2021 Thu 53

8187 12/31/2021 Fri 53

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1026

5 Script and chart functions

id date week_day week_number

8188 01/01/2022 Sat 1

8189 01/02/2022 Sun 1

8190 01/03/2022 Mon 1

8191 01/04/2022 Tue 2

8192 01/05/2022 Wed 2

8193 01/06/2022 Thu 2

8194 01/07/2022 Fri 2

8195 01/08/2022 Sat 2

8196 01/09/2022 Sun 2

8197 01/10/2022 Mon 2

8198 01/11/2022 Tue 3

8199 01/12/2022 Wed 3

8200 01/13/2022 Thu 3

8201 01/14/2022 Fri 3

The application is still using broken weeks. However, the first_week_day argument has been set to 1 in the
week() function. This sets the first day of the week to a Tuesday.

Diagram of week() function, first_week_day example

The application is using the default BrokenWeeks system variable, so week 1 begins on January 1, a Saturday.

The first_week_day argument of the week() function sets the first week day to a Tuesday. Therefore, week 53
begins on December 28, 2021.

However, because the function is still using broken weeks, week 1 will only be two days long, due to the first
Tuesday after January 1 occurring on January 3.

Script syntax and chart functions - Qlik Sense, May 2023 1027

5 Script and chart functions

Example 3 – unbroken_weeks
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

In this example, we use unbroken weeks.

Load script

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=6;

SET BrokenWeeks=1;

SET ReferenceDay=0;

Transactions:

Load

*,

WeekDay(date) as week_day,

Week(date,6,0) as week_number

;

Load

*

Inline

[

id,date,amount

8183,12/27/2022,58.27

8184,12/28/2022,67.42

8185,12/29/2022,23.80

8186,12/30/2022,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.56

8195,01/08/2022,53.67

8196,01/09/2022,26.63

8197,01/10/2022,72.48

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Script syntax and chart functions - Qlik Sense, May 2023 1028

5 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l week_day

l week_number

Diagram of week() function, chart object example

id date week_day week_number

8183 12/27/2021 Mon 52

8184 12/28/2021 Tue 52

8185 12/29/2021 Wed 52

8186 12/30/2021 Thu 52

8187 12/31/2021 Fri 52

8188 01/01/2022 Sat 52

8189 01/02/2022 Sun 1

8190 01/03/2022 Mon 1

8191 01/04/2022 Tue 1

8192 01/05/2022 Wed 1

8193 01/06/2022 Thu 1

8194 01/07/2022 Fri 1

8195 01/08/2022 Sat 1

8196 01/09/2022 Sun 2

8197 01/10/2022 Mon 2

8198 01/11/2022 Tue 2

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1029

5 Script and chart functions

id date week_day week_number

8199 01/12/2022 Wed 2

8200 01/13/2022 Thu 2

8201 01/14/2022 Fri 2

The first_week_date parameter is set to 1, making Tuesday the first day of the week. The broken_weeks
parameter it set to 0, forcing the function to use unbroken weeks. Finally, the third parameter sets the
reference_day to 2.

The first_week_date parameter is set to 6, making Sunday the first day of the week. The broken_weeks

parameter is set to 0, forcing the function to use unbroken weeks.

Diagram of week() function, example using unbroken weeks

By using unbroken weeks, week 1 does not necessarily begin on January 1; instead, it is required to have a
minimum of four days. Therefore, in the dataset, week 52 concludes on Saturday, January 1, 2022. Week 1
then begins on the FirstWeekDay system variable, which is Sunday, January 2. This week will conclude on the
following Saturday, January 8.

Example 4 – reference_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the third example.
l The creation of a field, week_number, that returns the year and week number when the transactions

took place.
l The creation of a field called week_day, showing the weekday value of each transaction date.

Additionally, the following conditions must be met:

Script syntax and chart functions - Qlik Sense, May 2023 1030

5 Script and chart functions

l The work week begins on a Tuesday.
l The company uses unbroken weeks.
l The reference_day value is 2. In other words, the minimum number of days in January in week 1 will

be 2.

Load script

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=6;

SET BrokenWeeks=1;

SET ReferenceDay=0;

Transactions:

Load

*,

WeekDay(date) as week_day,

Week(date,1,0,2) as week_number

;

Load

*

Inline

[

id,date,amount

8183,12/27/2022,58.27

8184,12/28/2022,67.42

8185,12/29/2022,23.80

8186,12/30/2022,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.56

8195,01/08/2022,53.67

8196,01/09/2022,26.63

8197,01/10/2022,72.48

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

Script syntax and chart functions - Qlik Sense, May 2023 1031

5 Script and chart functions

l week_day

l week_number

id date week_day week_number

8183 12/27/2021 Mon 52

8184 12/28/2021 Tue 1

8185 12/29/2021 Wed 1

8186 12/30/2021 Thu 1

8187 12/31/2021 Fri 1

8188 01/01/2022 Sat 1

8189 01/02/2022 Sun 1

8190 01/03/2022 Mon 1

8191 01/04/2022 Tue 2

8192 01/05/2022 Wed 2

8193 01/06/2022 Thu 2

8194 01/07/2022 Fri 2

8195 01/08/2022 Sat 2

8196 01/09/2022 Sun 2

8197 01/10/2022 Mon 2

8198 01/11/2022 Tue 3

8199 01/12/2022 Wed 3

8200 01/13/2022 Thu 3

8201 01/14/2022 Fri 3

Results table

The first_week_date parameter is set to 1, making Tuesday the first day of the week. The broken_weeks

parameter it set to 0, forcing the function to use unbroken weeks. Finally, the third parameter sets the
reference_day parameter to 2.

Script syntax and chart functions - Qlik Sense, May 2023 1032

5 Script and chart functions

Diagram of week() function, reference_day example

With the function using unbroken weeks and a reference_day value of 2 used as a parameter, week 1 only
needs to include two days in January. Due to the first weekday being Tuesday, week 1 begins on December 28,
2021, and concludes on Monday, January 3, 2022.

Example 5 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that returns
the week number is created as a measure in a chart object.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8183,12/27/2022,58.27

8184,12/28/2022,67.42

8185,12/29/2022,23.80

8186,12/30/2022,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.56

8195,01/08/2022,53.67

8196,01/09/2022,26.63

8197,01/10/2022,72.48

Script syntax and chart functions - Qlik Sense, May 2023 1033

5 Script and chart functions

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table.

2. Add the following fields as dimensions:
l id

l date

3. Next, create the following measure:
=week (date)

4. Create a measure, week_day, to show the weekday value of each transaction date:
=weekday(date)

id date =week(date) =weekday(date)

8183 12/27/2021 53 Mon

8184 12/28/2021 53 Tue

8185 12/29/2021 53 Wed

8186 12/30/2021 53 Thu

8187 12/31/2021 53 Fri

8188 01/01/2022 1 Sat

8189 01/02/2022 2 Sun

8190 01/03/2022 2 Mon

8191 01/04/2022 2 Tue

8192 01/05/2022 2 Wed

8193 01/06/2022 2 Thu

8194 01/07/2022 2 Fri

8195 01/08/2022 2 Sat

8196 01/09/2022 3 Sun

8197 01/10/2022 3 Mon

8198 01/11/2022 3 Tue

8199 01/12/2022 3 Wed

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1034

5 Script and chart functions

id date =week(date) =weekday(date)

8200 01/13/2022 3 Thu

8201 01/14/2022 3 Fri

The week_number field is created in the preceding load statement by using the week() function and passing
the date field as the function’s argument.

No other parameters are passed into the function, and therefore the following default variables that affect the
week() function are in effect:

l BrokenWeeks: The week count begins on January 1
l FirstWeekDay: The first day of the week is Sunday

Diagram of week() function, chart object example

Because the application is using the default BrokenWeeks system variable, week 1 begins on January 1, a
Saturday.

Because of the default FirstWeekDay system variable, weeks begin on a Sunday. The first Sunday after
January 1 occurs on January 2, which is when week 2 begins.

Example 6 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the last week of 2019 and first two weeks of 2020, which
is loaded into a table called Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.

Script syntax and chart functions - Qlik Sense, May 2023 1035

5 Script and chart functions

The application primarily uses broken weeks across its dashboard. However, the end user would like a chart
object that presents the total sales by week using unbroken weeks. The reference day should be January 2,
with weeks beginning on a Tuesday. This could be achieved even when this dimension is not available in the
data model, using the week() function as a calculated dimension in the chart.

Load script

SET BrokenWeeks=1;

SET ReferenceDay=0;

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8183,12/27/2019,58.27

8184,12/28/2019,67.42

8185,12/29/2019,23.80

8186,12/30/2019,82.06

8187,12/31/2019,40.56

8188,01/01/2020,37.23

8189,01/02/2020,17.17

8190,01/03/2020,88.27

8191,01/04/2020,57.42

8192,01/05/2020,53.80

8193,01/06/2020,82.06

8194,01/07/2020,40.56

8195,01/08/2020,53.67

8196,01/09/2020,26.63

8197,01/10/2020,72.48

8198,01/11/2020,18.37

8199,01/12/2020,45.26

8200,01/13/2020,58.23

8201,01/14/2020,18.52

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table.

2. Create the following calculated dimension:
=week(date)

3. Next, create the following aggregation measure:
=sum(amount)

4. Set the measure's Number formatting to Money.

5. Select the Sorting menu, and for the calculated dimension, remove custom sorting.

6. De-select the Sort numerically and Sort alphabetically options.

Script syntax and chart functions - Qlik Sense, May 2023 1036

5 Script and chart functions

week(date) sum(amount)

52 $125.69

53 $146.42

1 $200.09

2 $347.57

3 $122.01

Results table

weekday
This function returns a dual value with:

l A day name as defined in the environment variable DayNames.
l An integer between 0-6 corresponding to the nominal day of the week (0-6).

Syntax:
weekday(date [,first_week_day=0])

Return data type: dual

The weekday() function determines which day of the week a date occurs on. It then returns a string value
representing that day.

Diagram of weekday() function that returns the name of the day a date falls on

The result returns the number value corresponding to that day of the week (0-6), based on the week’s start
day. For example, if the first day of the week is set to Sunday, a Wednesday will return a number value of 3.
This start day is determined either by the FirstWeekDay system variable, or the first_week_day function
parameter.

You can use this number value as a part of an arithmetic expression. For example, multiply it by 1 to return
the value itself.

Script syntax and chart functions - Qlik Sense, May 2023 1037

5 Script and chart functions

Diagram of weekday() function with the number value of the day being shown instead of the name of the day

When to use it

The weekday() function is useful when you want to compare aggregations by day of the week. For example, if
you want to compare the average sales of products by weekday.

These dimensions can be created in the load script by using the function to create a field in a Master
Calendar table; or created directly in a chart as a calculated measure.

Topics Interaction

FirstWeekDay (page 215) Defines the start day of each week.

Related topics

Argument Description

date The date or timestamp to evaluate.

first_week_
day

Specifies the day on which the week starts. If omitted, the value of variable FirstWeekDay
is used.

FirstWeekDay (page 215)

Arguments

You can use the following values to set the day on which the week starts in the first_week_day argument:

Day Value

Monday 0

Tuesday 1

Wednesday 2

Thursday 3

Friday 4

Saturday 5

Sunday 6

first_week_day values

Script syntax and chart functions - Qlik Sense, May 2023 1038

5 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Unless stated otherwise, FirstWeekDay is set to 0 in these examples.

Example Result

weekday('10/12/1971') Returns 'Tue' and 1.

weekday('10/12/1971' , 6) Returns 'Tue' and 2.

In this example, Sunday (6) is the first day of the week.

SET FirstWeekDay=6;

...

weekday('10/12/1971')

Returns 'Tue' and 2.

Function examples

Example 1 - Weekday string
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 which is loaded into a table called ‘Transactions’.
l The FirstWeekDay system variable which is set to 6 (Sunday).
l The DayNames variable which is set to use the default day names.
l A preceding load which contains the weekday() function, which is set as the ‘week_day’ field and

returns the weekday the transactions took place.

Script syntax and chart functions - Qlik Sense, May 2023 1039

5 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

SET FirstWeekDay=6;

Transactions:

Load

*,

WeekDay(date) as week_day

;

Load

*

Inline

[

id,date,amount

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.39

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l week_day

id date week_day

8188 01/01/2022 Sat

8189 01/02/2022 Sun

8190 01/03/2022 Mon

8191 01/04/2022 Tue

8192 01/05/2022 Wed

8193 01/06/2022 Thu

8194 01/07/2022 Fri

Results table

The ‘week_day’ field is created in the preceding load statement by using the weekday() function and passing
the date field as the function’s argument.

Script syntax and chart functions - Qlik Sense, May 2023 1040

5 Script and chart functions

The weekday() function returns the weekday string value; that is, it returns the name of the weekday which is
set by the DayNames system variable.

Diagram of weekday() function that returns Wednesday as the weekday for transaction 8192

Transaction 8192 took place on January 5. The FirstWeekDay system variable sets the first day of the week as
Sunday. The weekday() function transaction took place on a Wednesday and returns this value, in the
abbreviated form of the DayNames system variable, in the week_day field.

The values in the ‘week_day’ field are right aligned in the column because there is a dual number and text
result for the field (Wednesday, 3). To convert the field value into its number equivalent, the field can be
wrapped inside the num() function. For example, in Transaction 8192, the Wednesday value would be
converted into the number 3.

Example 2 - first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 which is loaded into a table called ‘Transactions’.
l The FirstWeekDay system variable which is set to 6 (Sunday).
l The DayNames variable which is set to use the default day names.
l A preceding load which contains the weekday() function, which is set as the ‘week_day’ field and

returns the weekday the transactions took place.

Load script

SET DateFormat='MM/DD/YYYY';

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

SET FirstWeekDay=6;

Transactions:

Load

*,

WeekDay(date,1) as week_day

;

Load

Script syntax and chart functions - Qlik Sense, May 2023 1041

5 Script and chart functions

*

Inline

[

id,date,amount

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.39

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l week_day

id date week_day

8188 01/01/2022 Sat

8189 01/02/2022 Sun

8190 01/03/2022 Mon

8191 01/04/2022 Tue

8192 01/05/2022 Wed

8193 01/06/2022 Thu

8194 01/07/2022 Fri

Results table

Diagram of weekday() function that shows Wednesday has the dual number value of 1

Because the first_week_day argument is set to 1 in the weekday() function, the first day of the week is
Tuesday. Therefore, all transactions that take place on a Tuesday will have a dual number value of 0.

Script syntax and chart functions - Qlik Sense, May 2023 1042

5 Script and chart functions

Transaction 8192 took place on January 5. The weekday() function identifies that this is a Wednesday, and so
the expression would return the dual number value of 1.

Example 3 - Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 which is loaded into a table called ‘Transactions’.
l The FirstWeekDay system variable which is set to 6 (Sunday).
l The DayNames variable which is set to use the default day names.

However, in this example, the dataset is unchanged and loaded into the application. The calculation that
identifies the weekday value is created as a measure in a chart in the app.

Load script

SET DateFormat='MM/DD/YYYY';

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

SET FirstWeekDay=6;

Transactions:

Load

*

Inline

[

id,date,amount

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.39

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

To calculate the weekday value, create the following measure:

l =weekday(date)

Script syntax and chart functions - Qlik Sense, May 2023 1043

5 Script and chart functions

id date =weekday(date)

8188 01/01/2022 Sat

8189 01/02/2022 Sun

8190 01/03/2022 Mon

8191 01/04/2022 Tue

8192 01/05/2022 Wed

8193 01/06/2022 Thu

8194 01/07/2022 Fri

Results table

The ‘=weekday(date)’ field is created in the chart by using the weekday() function and passing the date field
as the function’s argument.

The weekday() function returns the weekday string value; that is, it returns the name of the weekday which is
set by the DayNames system variable.

Diagram of weekday() function that returns Wednesday as the weekday for transaction 8192

Transaction 8192 took place on January 5. The FirstWeekDay system variable sets the first day of the week as
Sunday. The weekday() function transaction took place on a Wednesday and returns this value, in the
abbreviated form of the DayNames system variable, in the =weekday(date) field.

Example 4 - Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 which is loaded into a table called ‘Transactions’.
l The FirstWeekDay system variable which is set to 6 (Sunday).
l The DayNames variable which is set to use the default day names.

The end user would like a chart that presents the average sales by weekday for the transactions.

Script syntax and chart functions - Qlik Sense, May 2023 1044

5 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

SET FirstWeekDay=6;

Transactions:

LOAD

RecNo() AS id,

MakeDate(2022, 1, Ceil(Rand() * 31)) as date,

Rand() * 1000 AS amount

Autogenerate(1000);

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l =weekday(date)

l =avg(amount)

Set the measure’s Number Formatting to Money.

weekday(date) Avg(amount)

Sun $536.96

Mon $500.80

Tue $515.63

Wed $509.21

Thu $482.70

Fri $441.33

Sat $505.22

Results table

weekend
This function returns a value corresponding to a timestamp of the last millisecond of the last
day of the calendar week containing date. The default output format will be the DateFormat set
in the script.

Syntax:
WeekEnd(timestamp [, period_no [, first_week_day]])

Script syntax and chart functions - Qlik Sense, May 2023 1045

5 Script and chart functions

Return data type: dual

The weekend() function determines which week the date falls into. It then returns a timestamp, in date
format, for the last millisecond of that week. The first day of the week is determined by the FirstWeekDay

environment variable. However, this can be superseded by the first_week_day argument in the weekend()

function.

Argument Description

timestamp The date or timestamp to evaluate.

period_no shift is an integer, where the value 0 indicates the week which contains date. Negative
values in shift indicate preceding weeks and positive values indicate succeeding weeks.

first_week_
day

Specifies the day on which the week starts. If omitted, the value of variable FirstWeekDay
is used.

The possible values for first_week_day are 0 for Monday, 1 for Tuesday, 2 for Wednesday,
3 for Thursday, 4 for Friday, 5 for Saturday, and 6 for Sunday.

For more information about the system variable, see FirstWeekDay (page 215)

Arguments

When to use it
The weekend() function is commonly used as part of an expression when the user would like the calculation
to use remaining days of the week for the specified date. For example, it could be used if a user would like to
calculate the total interest not yet incurred during the week.

The following examples assume:

SET FirstWeekDay=0;

Example Result

weekend('01/10/2013') Returns 01/12/2013 23:59:59.

weekend('01/10/2013', -1) Returns 01/05/2013 23:59:59..

weekend('01/10/2013', 0, 1) Returns 01/14/2013 23:59:59.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Script syntax and chart functions - Qlik Sense, May 2023 1046

5 Script and chart functions

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Examples:

If you want ISO settings for weeks and week numbers, make sure to have the following in the script:

Set DateFormat ='YYYY-MM-DD';

Set FirstWeekDay =0; // Monday as first week day

Set BrokenWeeks =0; //(use unbroken weeks)

Set ReferenceDay =4; // Jan 4th is always in week 1

If you want US settings, make sure to have the following in the script:

Set DateFormat ='M/D/YYYY';

Set FirstWeekDay =6; // Sunday as first week day

Set BrokenWeeks =1; //(use broken weeks)

Set ReferenceDay =1; // Jan 1st is always in week 1

The examples above results in the following from the weekend() function:

Date ISO week end US week end

Sat 2020 Dec 26 2020-12-27 12/26/2020

Sun 2020 Dec 27 2020-12-27 1/2/2021

Mon 2020 Dec 28 2021-01-03 1/2/2021

Tue 2020 Dec 29 2021-01-03 1/2/2021

Wed 2020 Dec 30 2021-01-03 1/2/2021

Thu 2020 Dec 31 2021-01-03 1/2/2021

Fri 2021 Jan 1 2021-01-03 1/2/2021

Sat 2021 Jan 2 2021-01-03 1/2/2021

Sun 2021 Jan 3 2021-01-03 1/9/2021

Mon 2021 Jan 4 2021-01-10 1/9/2021

Tue 2021 Jan 5 2021-01-10 1/9/2021

Example of Weekend function

The week ends are on Sundays in the ISO column, and on Saturdays in the US column.

Script syntax and chart functions - Qlik Sense, May 2023 1047

5 Script and chart functions

Example 1 – Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called Transactions.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, end_of_week, that returns a timestamp for the end of the week when the

transactions took place.

Load script

SET FirstWeekDay=6;

Transactions:

Load

*,

weekend(date) as end_of_week,

timestamp(weekend(date)) as end_of_week_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Script syntax and chart functions - Qlik Sense, May 2023 1048

5 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l end_of_week

l end_of_week_timestamp

date end_of_week end_of_week_timestamp

1/7/2022 01/08/2022 1/8/2022 11:59:59 PM

1/19/2022 01/22/2022 1/22/2022 11:59:59 PM

2/5/2022 02/05/2022 2/5/2022 11:59:59 PM

2/28/2022 03/05/2022 3/5/2022 11:59:59 PM

3/16/2022 03/19/2022 3/19/2022 11:59:59 PM

4/1/2022 04/02/2022 4/2/2022 11:59:59 PM

5/7/2022 05/07/2022 5/7/2022 11:59:59 PM

5/16/2022 05/21/2022 5/21/2022 11:59:59 PM

6/15/2022 06/18/2022 6/18/2022 11:59:59 PM

6/26/2022 07/02/2022 7/2/2022 11:59:59 PM

7/9/2022 07/09/2022 7/9/2022 11:59:59 PM

7/22/2022 07/23/2022 7/23/2022 11:59:59 PM

7/23/2022 07/23/2022 7/23/2022 11:59:59 PM

7/27/2022 07/30/2022 7/30/2022 11:59:59 PM

8/2/2022 08/06/2022 8/6/2022 11:59:59 PM

8/8/2022 08/13/2022 8/13/2022 11:59:59 PM

8/19/2022 08/20/2022 8/20/2022 11:59:59 PM

9/26/2022 10/01/2022 10/1/2022 11:59:59 PM

10/14/2022 10/15/2022 10/15/2022 11:59:59 PM

10/29/2022 10/29/2022 10/29/2022 11:59:59 PM

Results table

The end_of_week field is created in the preceding load statement by using the weekend() function and passing
the date field as the function’s argument.

The weekend() function identifies which week the date value falls into and returns a timestamp for the last
millisecond of that week.

Script syntax and chart functions - Qlik Sense, May 2023 1049

5 Script and chart functions

Diagram of weekend() function, basic example

Transaction 8191 took place on February 5. The FirstWeekDay system variable sets the first day of the week to
a Sunday. The weekend() function identifies that the first Saturday after February 5– and therefore the end of
the week – was on February 5. Therefore, the end_of_week value for that transaction returns the last
millisecond of that day, which is February 5 at 11:59:59 PM.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, previous_week_end,that returns the timestamp for the start of the week before

the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

weekend(date,-1) as previous_week_end,

timestamp(weekend(date,-1)) as previous_week_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

Script syntax and chart functions - Qlik Sense, May 2023 1050

5 Script and chart functions

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_week_end

l previous_week_end_timestamp

date end_of_week end_of_week_timestamp

1/7/2022 01/01/2022 1/1/2022 11:59:59 PM

1/19/2022 01/15/2022 1/15/2022 11:59:59 PM

2/5/2022 01/29/2022 1/29/2022 11:59:59 PM

2/28/2022 02/26/2022 2/26/2022 11:59:59 PM

3/16/2022 03/12/2022 3/12/2022 11:59:59 PM

4/1/2022 03/26/2022 3/26/2022 11:59:59 PM

5/7/2022 04/30/2022 4/30/2022 11:59:59 PM

5/16/2022 05/14/2022 5/14/2022 11:59:59 PM

6/15/2022 06/11/2022 6/11/2022 11:59:59 PM

6/26/2022 06/25/2022 6/25/2022 11:59:59 PM

7/9/2022 07/02/2022 7/2/2022 11:59:59 PM

7/22/2022 07/16/2022 7/16/2022 11:59:59 PM

7/23/2022 07/16/2022 7/16/2022 11:59:59 PM

7/27/2022 07/23/2022 7/23/2022 11:59:59 PM

8/2/2022 07/30/2022 7/30/2022 11:59:59 PM

8/8/2022 08/06/2022 8/6/2022 11:59:59 PM

8/19/2022 08/13/2022 8/13/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1051

5 Script and chart functions

date end_of_week end_of_week_timestamp

9/26/2022 09/24/2022 9/24/2022 11:59:59 PM

10/14/2022 10/08/2022 10/8/2022 11:59:59 PM

10/29/2022 10/22/2022 10/22/2022 11:59:59 PM

In this instance, because a period_no of -1 was used as the offset argument in the weekend() function, the
function first identifies the week in which the transactions take place. It then looks one week prior and
identifies the last millisecond of that week.

Diagram of weekend() function, period_no example

Transaction 8196 took place on June 15. The weekend() function identifies that the week begins on June 12.
Therefore, the previous week ends on June 11 at 11:59:59 PM; this is the value returned for the previous_

week_end field.

Example 3 – first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this example, we
need to set Tuesday as the first day of the work week.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

weekend(date,0,1) as end_of_week,

timestamp(weekend(date,0,1)) as end_of_week_timestamp,

;

Load

*

Inline

[

id,date,amount

Script syntax and chart functions - Qlik Sense, May 2023 1052

5 Script and chart functions

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l end_of_week

l end_of_week_timestamp

date end_of_week end_of_week_timestamp

1/7/2022 01/10/2022 1/10/2022 11:59:59 PM

1/19/2022 01/24/2022 1/24/2022 11:59:59 PM

2/5/2022 02/07/2022 2/7/2022 11:59:59 PM

2/28/2022 02/28/2022 2/28/2022 11:59:59 PM

3/16/2022 03/21/2022 3/21/2022 11:59:59 PM

4/1/2022 04/04/2022 4/4/2022 11:59:59 PM

5/7/2022 05/09/2022 5/9/2022 11:59:59 PM

5/16/2022 05/16/2022 5/16/2022 11:59:59 PM

6/15/2022 06/20/2022 6/20/2022 11:59:59 PM

6/26/2022 06/27/2022 6/27/2022 11:59:59 PM

7/9/2022 07/11/2022 7/11/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1053

5 Script and chart functions

date end_of_week end_of_week_timestamp

7/22/2022 07/25/2022 7/25/2022 11:59:59 PM

7/23/2022 07/25/2022 7/25/2022 11:59:59 PM

7/27/2022 08/01/2022 8/1/2022 11:59:59 PM

8/2/2022 08/08/2022 8/8/2022 11:59:59 PM

8/8/2022 08/08/2022 8/8/2022 11:59:59 PM

8/19/2022 08/22/2022 8/22/2022 11:59:59 PM

9/26/2022 09/26/2022 9/26/2022 11:59:59 PM

10/14/2022 10/17/2022 10/17/2022 11:59:59 PM

10/29/2022 10/31/2022 10/31/2022 11:59:59 PM

In this instance, because the first_week_date argument of 1 is used in the weekend() function, it sets the first
day of the week to Tuesday.

Diagram of weekend() function, first_week_day example

Transaction 8191 took place on February 5. The weekend() function identifies that the first Monday after the
this date – and therefore the end of the week and value returned – was on February 6 at 11:59:59 PM.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this example, the
unchanged dataset is loaded into the application. The calculation that returns a timestamp for the end of the
week when the transactions took place is created as a measure in a chart object of the application.

Load script

Transactions:

Load

*

Inline

[

Script syntax and chart functions - Qlik Sense, May 2023 1054

5 Script and chart functions

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

To calculate the start of the week that a transaction takes place in, add the following measures:

l =weekend(date)

l =timestamp(weekend(date))

date =weekend(date) =timestamp(weekend(date))

1/7/2022 01/08/2022 1/8/2022 11:59:59 PM

1/19/2022 01/22/2022 1/22/2022 11:59:59 PM

2/5/2022 02/05/2022 2/5/2022 11:59:59 PM

2/28/2022 03/05/2022 3/5/2022 11:59:59 PM

3/16/2022 03/19/2022 3/19/2022 11:59:59 PM

4/1/2022 04/02/2022 4/2/2022 11:59:59 PM

5/7/2022 05/07/2022 5/7/2022 11:59:59 PM

5/16/2022 05/21/2022 5/21/2022 11:59:59 PM

6/15/2022 06/18/2022 6/18/2022 11:59:59 PM

6/26/2022 07/02/2022 7/2/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1055

5 Script and chart functions

date =weekend(date) =timestamp(weekend(date))

7/9/2022 07/09/2022 7/9/2022 11:59:59 PM

7/22/2022 07/23/2022 7/23/2022 11:59:59 PM

7/23/2022 07/23/2022 7/23/2022 11:59:59 PM

7/27/2022 07/30/2022 7/30/2022 11:59:59 PM

8/2/2022 08/06/2022 8/6/2022 11:59:59 PM

8/8/2022 08/13/2022 8/13/2022 11:59:59 PM

8/19/2022 08/20/2022 8/20/2022 11:59:59 PM

9/26/2022 10/01/2022 10/1/2022 11:59:59 PM

10/14/2022 10/15/2022 10/15/2022 11:59:59 PM

10/29/2022 10/29/2022 10/29/2022 11:59:59 PM

The end_of_week measure is created in the chart object by using the weekend() function and passing the date
field as the function’s argument. The weekend() function identifies which week the date value falls into,
returning a timestamp for the last millisecond of that week.

Diagram of weekend() function, chart object example

Transaction 8191 took place on February 5. The FirstWeekDay system variable sets the first day of the week to
a Sunday. The weekend() function identifies that the first Saturday after February 5 – and therefore the end of
the week – was on February 5. Therefore, the end_of_week value for that transaction returns the last
millisecond of that day, which is February 5 at 11:59:59 PM.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called Employee_Expenses.
l Data consisting of employee IDs, employee names, and the average daily expense claims of each

employee.

Script syntax and chart functions - Qlik Sense, May 2023 1056

5 Script and chart functions

The end user would like a chart object that displays, by employee ID and employee name, the estimated
expense claims still to be incurred for the remainder of the week.

Load script

Employee_Expenses:

Load

*

Inline

[

employee_id,employee_name,avg_daily_claim

182,Mark, $15

183,Deryck, $12.5

184,Dexter, $12.5

185,Sydney,$27

186,Agatha,$18

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add these fields as dimensions:
l employee_id

l employee_name

2. Next, create a measure to calculate the accumulated interest:
=(weekend(today(1))-today(1))*avg_daily_claim

3. Set the measure's Number formatting to Money.

employee_id employee_name =(weekend(today(1))-today(1))*avg_daily_claim

182 Mark $90.00

183 Deryck $75.00

184 Dexter $75.00

185 Sydney $162.00

186 Agatha $108.00

Results table

The weekend() function, by using today’s date as its only argument, returns the end date of the current week.
Then, by subtracting today’s date from the week end date, the expression returns the number of days that
remain this week.

This value is then multiplied by the average daily expense claim by each employee to calculate the estimated
value of claims that each employee is expected to make in the remaining week.

Script syntax and chart functions - Qlik Sense, May 2023 1057

5 Script and chart functions

weekname
This function returns a value showing the year and week number with an underlying numeric
value corresponding to a timestamp of the first millisecond of the first day of the week
containing date.

Syntax:
WeekName(date[, period_no [, first_week_day [, broken_weeks [, reference_

day]]]])
The weekname() function determines which week the date falls into and returns the week number and year of
that week. The first day of the week is determined by the FirstWeekDay system variable. However, you can
also change the first day of the week by using the first_week_day argument in the weekname() function.

 In Qlik Sense, the regional settings are fetched when the app is created, and the corresponding settings are
stored in the script as environment variables.

A North American app developer often gets Set BrokenWeeks=1; in the script, corresponding to broken
weeks. A European app developer often gets Set BrokenWeeks=0; in the script, corresponding to unbroken
weeks.

If your application uses broken weeks, the week number count begins on the January 1 and ends on the day
prior to the FirstWeekDay system variable regardless of how many days have occurred.

However, if your application is using unbroken weeks, week 1 can begin in the previous year or in the first few
days in January. This depends on how you use the ReferenceDay and FirstWeekDay system variables.

Date ISO week name US week name

Sat 2020 Dec 26 2020/52 2020/52

Sun 2020 Dec 27 2020/52 2020/53

Mon 2020 Dec 28 2020/53 2020/53

Tue 2020 Dec 29 2020/53 2020/53

Wed 2020 Dec 30 2020/53 2020/53

Thu 2020 Dec 31 2020/53 2020/53

Fri 2021 Jan 1 2020/53 2021/01

Sat 2021 Jan 2 2020/53 2021/01

Sun 2021 Jan 3 2020/53 2021/02

Mon 2021 Jan 4 2021/01 2021/02

Tue 2021 Jan 5 2021/01 2021/02

Example of Weekname function

When to use it

The weekname() function is useful for when you would like to compare aggregations by weeks.

Script syntax and chart functions - Qlik Sense, May 2023 1058

5 Script and chart functions

For example, if you want to see the total sales of products by week. To maintain consistency with the
BrokenWeeks environment variable in the application, use weekname() instead of lunarweekname(). If the
application is using unbroken weeks, week 1 may contain dates from December of the previous year or
exclude dates in January of the current year. If the application is using broken weeks, week 1 may contain less
than seven days.

Return data type: dual

Argument Description

timestamp The date or timestamp to evaluate.

period_no shift is an integer, where the value 0 indicates the week which contains date. Negative
values in shift indicate preceding weeks and positive values indicate succeeding weeks.

first_week_
day

Specifies the day on which the week starts. If omitted, the value of variable FirstWeekDay
is used.

The possible values first_week_day are 0 for Monday, 1 for Tuesday, 2 for Wednesday, 3
for Thursday, 4 for Friday, 5 for Saturday, and 6 for Sunday.

For more information about the system variable, see FirstWeekDay (page 215).

broken_
weeks

If you don't specify broken_weeks, the value of variable BrokenWeeks will be used to
define if weeks are broken or not.

reference_
day

If you don't specify reference_day, the value of variable ReferenceDay will be used to
define which day in January to set as reference day to define week 1. By default, Qlik
Sense functions use 4 as the reference day. This means that week 1 must contain January
4, or put differently, that week 1 must always have at least 4 days in January.

Arguments

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

The examples below assume:

Set FirstWeekDay=0;

Set BrokenWeeks=0;

Set ReferenceDay=4;

Script syntax and chart functions - Qlik Sense, May 2023 1059

5 Script and chart functions

Example Result

weekname('01/12/2013') Returns 2013/02.

weekname('01/12/2013', -1) Returns 2013/01.

weekname('01/12/2013', 0, 1) Returns 2013/02.

Function examples

Example 1 – Date with no additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the last week of 2021 and first two weeks of 2022 is
loaded into a table called ‘Transactions’.

l The DateFormat system variable which is set to the MM/DD/YYYY format.
l The BrokenWeeks system variable which is set to 1.
l The FirstWeekDay system variable which is set to 6.
l A preceding load which contains the following:

l The weekday() function which is set as the field, ‘week_number’, that returns the year and week
number when the transactions took place.

l The weekname() function which is set as the field called ‘week_day’, to show the weekday value
of each transaction date.

Load script

SET BrokenWeeks=1;

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=6;

Transactions:

Load

*,

WeekDay(date) as week_day,

Weekname(date) as week_number

;

Load

*

Inline

[

id,date,amount

8183,12/27/2021,58.27

8184,12/28/2021,67.42

8185,12/29/2021,23.80

Script syntax and chart functions - Qlik Sense, May 2023 1060

5 Script and chart functions

8186,12/30/2021,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.56

8195,01/08/2022,53.67

8196,01/09/2022,26.63

8197,01/10/2022,72.48

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l week_day

l week_number

id date week_day week_number

8183 12/27/2021 Mon 2021/53

8184 12/28/2021 Tue 2021/53

8185 12/29/2021 Wed 2021/53

8186 12/30/2021 Thu 2021/53

8187 12/31/2021 Fri 2021/53

8188 01/01/2022 Sat 2022/01

8189 01/02/2022 Sun 2022/02

8190 01/03/2022 Mon 2022/02

8191 01/04/2022 Tue 2022/02

8192 01/05/2022 Wed 2022/02

8193 01/06/2022 Thu 2022/02

8194 01/07/2022 Fri 2022/02

8195 01/08/2022 Sat 2022/02

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1061

5 Script and chart functions

id date week_day week_number

8196 01/09/2022 Sun 2022/03

8197 01/10/2022 Mon 2022/03

8198 01/11/2022 Tue 2022/03

8199 01/12/2022 Wed 2022/03

8200 01/13/2022 Thu 2022/03

8201 01/14/2022 Fri 2022/03

The ‘week_number’ field is created in the preceding load statement by using the weekname() function and
passing the date field as the function’s argument.

The weekname() function initially identifies which week the date value falls into and returns the week number
count and the year the transaction takes place.

The FirstWeekDay system variable sets Sunday as the first day of the week. The BrokenWeeks system variable
sets the application to use broken weeks, meaning that week 1 will begin on January 1.

Diagram of weekname() function with the default variables.

Week 1 begins on January 1, which is a Saturday, and therefore transactions occurring on this date return the
value 2022/01 (the year and week number).

Diagram of weekname() function identifying the week number of transaction 8192.

Because the application is using broken weeks and the first weekday is Sunday, transactions occurring from
January 2 to January 8 return the value 2022/02 (week number 2 in 2022.) An example of this would be
transaction 8192 which took place on January 5 and returns the value 2022/02 for the ‘week_number’ field.

Script syntax and chart functions - Qlik Sense, May 2023 1062

5 Script and chart functions

Example 2 – period_no
Load script and results

Overview

The same dataset and scenario as the first example are used.

However, in this example, the task is to create a field, ‘previous_week_number’, that returns the year, and
week number, prior to when the transactions took place.

Open the Data load editor and add the following load script to a new tab.

Load script

SET BrokenWeeks=1;

SET FirstWeekDay=6;

Transactions:

Load

*,

weekname(date,-1) as previous_week_number

;

Load

*

Inline

[

id,date,amount

8183,12/27/2021,58.27

8184,12/28/2021,67.42

8185,12/29/2021,23.80

8186,12/30/2021,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.56

8195,01/08/2022,53.67

8196,01/09/2022,26.63

8197,01/10/2022,72.48

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2023 1063

5 Script and chart functions

l id

l date

l week_day

l week_number

id date week_day week_number

8183 12/27/2021 Mon 2021/52

8184 12/28/2021 Tue 2021/52

8185 12/29/2021 Wed 2021/52

8186 12/30/2021 Thu 2021/52

8187 12/31/2021 Fri 2021/52

8188 01/01/2022 Sat 2021/52

8189 01/02/2022 Sun 2021/53

8190 01/03/2022 Mon 2021/53

8191 01/04/2022 Tue 2021/53

8192 01/05/2022 Wed 2021/53

8193 01/06/2022 Thu 2021/53

8194 01/07/2022 Fri 2021/53

8195 01/08/2022 Sat 2022/01

8196 01/09/2022 Sun 2022/02

8197 01/10/2022 Mon 2022/02

8198 01/11/2022 Tue 2022/02

8199 01/12/2022 Wed 2022/02

8200 01/13/2022 Thu 2022/02

8201 01/14/2022 Fri 2022/02

Results table

Because a period_no of -1 is used as the offset argument in the weekname() function, the function first
identifies the week that the transactions take place in. It then looks one week prior and identifies the first
millisecond of that week.

Script syntax and chart functions - Qlik Sense, May 2023 1064

5 Script and chart functions

Diagram of weekname() function with a period_no offset of -1.

Transaction 8192 took place on January 5, 2022. The weekname() function looks one week prior, December 30,
2021, and returns the week number and year for that date – 2021/53.

Example 3 – first_week_day
Load script and results

Overview

The same dataset and scenario as the first example are used.

However, in this example, the company policy is for the work week to begin on Tuesday.

Open the Data load editor and add the following load script to a new tab.

Load script

SET BrokenWeeks=1;

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

weekday(date) as week_day,

weekname(date,0,1) as week_number

;

Load

*

Inline

[

id,date,amount

8183,12/27/2021,58.27

8184,12/28/2021,67.42

8185,12/29/2021,23.80

8186,12/30/2021,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

Script syntax and chart functions - Qlik Sense, May 2023 1065

5 Script and chart functions

8193,01/06/2022,82.06

8194,01/07/2022,40.56

8195,01/08/2022,53.67

8196,01/09/2022,26.63

8197,01/10/2022,72.48

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l week_day

l week_number

id date week_day week_number

8183 12/27/2021 Mon 2021/52

8184 12/28/2021 Tue 2021/53

8185 12/29/2021 Wed 2021/53

8186 12/30/2021 Thu 2021/53

8187 12/31/2021 Fri 2021/53

8188 01/01/2022 Sat 2022/01

8189 01/02/2022 Sun 2022/01

8190 01/03/2022 Mon 2022/01

8191 01/04/2022 Tue 2022/02

8192 01/05/2022 Wed 2022/02

8193 01/06/2022 Thu 2022/02

8194 01/07/2022 Fri 2022/02

8195 01/08/2022 Sat 2022/02

8196 01/09/2022 Sun 2022/02

8197 01/10/2022 Mon 2022/02

8198 01/11/2022 Tue 2022/03

8199 01/12/2022 Wed 2022/03

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1066

5 Script and chart functions

id date week_day week_number

8200 01/13/2022 Thu 2022/03

8201 01/14/2022 Fri 2022/03

Diagram of weekname() function with Tuesday as the first day of the week.

Because the first_week_date argument of 1 is used in the weekname() function, it uses Tuesday as the first
day of the week. The function therefore determines that week 53 of 2021 begins on Tuesday December 28;
and, due to the application using broken weeks, week 1 begins on January 1, 2022, and ends on the last
millisecond of Monday January 3, 2022.

Diagram showing week number of transaction 8192 with Tuesday as the first day of week.

Transaction 8192 took place on January 5, 2022. Therefore, using a first_week_day parameter of Tuesday,
the weekname() function returns the value 2022/02 for the ‘week_number’ field.

Example 4 – Chart object example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

However, in this example, the dataset is unchanged and loaded into the application. The calculation that
returns the year number of the week for when the transactions took place is created as a measure in a chart
object of the application.

Script syntax and chart functions - Qlik Sense, May 2023 1067

5 Script and chart functions

Load script

SET BrokenWeeks=1;

Transactions:

Load

*

Inline

[

id,date,amount

8183,12/27/2021,58.27

8184,12/28/2021,67.42

8185,12/29/2021,23.80

8186,12/30/2021,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.56

8195,01/08/2022,53.67

8196,01/09/2022,26.63

8197,01/10/2022,72.48

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l =week_day (date)

To calculate the start of the week that a transaction takes place in, create the following measure:

=weekname(date)

id date =weekday(date) =weekname(date)

8183 12/27/2021 Mon 2021/53

8184 12/28/2021 Tue 2021/53

8185 12/29/2021 Wed 2021/53

8186 12/30/2021 Thu 2021/53

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1068

5 Script and chart functions

id date =weekday(date) =weekname(date)

8187 12/31/2021 Fri 2021/53

8188 01/01/2022 Sat 2022/01

8189 01/02/2022 Sun 2022/02

8190 01/03/2022 Mon 2022/02

8191 01/04/2022 Tue 2022/02

8192 01/05/2022 Wed 2022/02

8193 01/06/2022 Thu 2022/02

8194 01/07/2022 Fri 2022/02

8195 01/08/2022 Sat 2022/02

8196 01/09/2022 Sun 2022/03

8197 01/10/2022 Mon 2022/03

8198 01/11/2022 Tue 2022/03

8199 01/12/2022 Wed 2022/03

8200 01/13/2022 Thu 2022/03

8201 01/14/2022 Fri 2022/03

The ‘week_number’ field is created as a measure in the chart object by using the weekname() function and
passing the date field as the function’s argument.

The weekname() function initially identifies which week the date value falls into and returns the week number
count and the year that the transaction takes place.

The FirstWeekDay system variable sets Sunday as the first day of the week. The BrokenWeeks system variable
sets the application to use broken weeks, meaning that week 1 begins on January 1.

Diagram showing week number with Sunday as the first day of the week.

Script syntax and chart functions - Qlik Sense, May 2023 1069

5 Script and chart functions

Diagram showing that transaction 8192 took place in week number two.

Because the application is using broken weeks and the first weekday is Sunday, transactions occurring from
January 2 to January 8 return the value 2022/02, week number 2 in 2022. Note that transaction 8192 took
place on January 5 and returns the value 2022/02 for the ‘week_number’ field.

Example 5 – Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the last week of 2019 and first two weeks of 2020 is
loaded into a table called ‘Transactions’.

l The BrokenWeeks system variable which is set to 0.
l The ReferenceDay system variable which is set to 2.
l The DateFormat system variable which is set to the MM/DD/YYYY format.

Load script

SET BrokenWeeks=0;

SET ReferenceDay=2;

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8183,12/27/2019,58.27

8184,12/28/2019,67.42

8185,12/29/2019,23.80

8186,12/30/2019,82.06

8187,12/31/2019,40.56

8188,01/01/2020,37.23

8189,01/02/2020,17.17

8190,01/03/2020,88.27

8191,01/04/2020,57.42

8192,01/05/2020,53.80

Script syntax and chart functions - Qlik Sense, May 2023 1070

5 Script and chart functions

8193,01/06/2020,82.06

8194,01/07/2020,40.56

8195,01/08/2020,53.67

8196,01/09/2020,26.63

8197,01/10/2020,72.48

8198,01/11/2020,18.37

8199,01/12/2020,45.26

8200,01/13/2020,58.23

8201,01/14/2020,18.52

];

Results

Load the data and open a sheet. Create a new table.

Create a calculated dimension using the following expression:

=weekname(date)

To calculate total sales create the following aggregation measure:

=sum(amount)

Set the measure’s Number Formatting to Money.

weekname(date) =sum(amount)

2019/52 $125.69

2020/01 $346.51

2020/02 $347.57

2020/03 $122.01

Results table

To demonstrate the results of using the weekname() function in this scenario, add the following field as a
dimension:

date

weekname(date) date =sum(amount)

2019/52 12/27/2019 $58.27

2019/52 12/28/2019 $67.42

2020/01 12/29/2019 $23.80

2020/01 12/30/2019 $82.06

2020/01 12/31/2019 $40.56

2020/01 01/01/2020 $37.23

Results table with date field

Script syntax and chart functions - Qlik Sense, May 2023 1071

5 Script and chart functions

weekname(date) date =sum(amount)

2020/01 01/02/2020 $17.17

2020/01 01/03/2020 $88.27

2020/01 01/04/2020 $57.42

2020/02 01/05/2020 $53.80

2020/02 01/06/2020 $82.06

2020/02 01/07/2020 $40.56

2020/02 01/08/2020 $53.67

2020/02 01/09/2020 $26.63

2020/02 01/10/2020 $72.48

2020/02 01/11/2020 $18.37

2020/03 01/12/2020 $45.26

2020/03 01/13/2020 $58.23

2020/03 01/14/2020 $18.52

Because the application uses unbroken weeks, and week 1 requires a minimum of two days in January
because of the ReferenceDay system variable, week 1 of 2020 includes transactions from December 29, 2019.

weekstart
This function returns a value corresponding to a timestamp of the first millisecond of the first
day of the calendar week containing date. The default output format is the DateFormat set in
the script.

Syntax:
WeekStart(timestamp [, period_no [, first_week_day]])

Return data type: dual

The weekstart() function determines which week the date falls into. It then returns a timestamp, in date
format, for the first millisecond of that week. The first day of the week is determined by the FirstWeekDay

environment variable. However, this can be superseded by the first_week_day argument in the weekstart()

function.

Argument Description

timestamp The date or timestamp to evaluate.

period_no shift is an integer, where the value 0 indicates the week which contains date. Negative
values in shift indicate preceding weeks and positive values indicate succeeding weeks.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1072

5 Script and chart functions

Argument Description

first_week_
day

Specifies the day on which the week starts. If omitted, the value of variable FirstWeekDay
is used.

The possible values first_week_day are 0 for Monday, 1 for Tuesday, 2 for Wednesday, 3
for Thursday, 4 for Friday, 5 for Saturday, and 6 for Sunday.

For more information about the system variable, see FirstWeekDay (page 215).

When to use it
The weekstart() function is commonly used as part of an expression when the user would like the calculation
to use the fraction of the week that has elapsed thus far. For example, it could be used if a user would like to
calculate the total wages earned by employees in the week so far.

The following examples assume:

SET FirstWeekDay=0;

Example Result

weekstart('01/12/2013') Returns 01/07/2013.

weekstart('01/12/2013', -1) Returns 11/31/2012.

weekstart('01/12/2013', 0, 1) Returns 01/08/2013.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Examples:

If you want ISO settings for weeks and week numbers, make sure to have the following in the script:

Set DateFormat ='YYYY-MM-DD';

Set FirstWeekDay =0; // Monday as first week day

Set BrokenWeeks =0; //(use unbroken weeks)

Set ReferenceDay =4; // Jan 4th is always in week 1

If you want US settings, make sure to have the following in the script:

Script syntax and chart functions - Qlik Sense, May 2023 1073

5 Script and chart functions

Set DateFormat ='M/D/YYYY';

Set FirstWeekDay =6; // Sunday as first week day

Set BrokenWeeks =1; //(use broken weeks)

Set ReferenceDay =1; // Jan 1st is always in week 1

The examples above results in the following from the weekstart() function:

Date ISO week start US week start

Sat 2020 Dec 26 2020-12-21 12/20/2020

Sun 2020 Dec 27 2020-12-21 12/27/2020

Mon 2020 Dec 28 2020-12-28 12/27/2020

Tue 2020 Dec 29 2020-12-28 12/27/2020

Wed 2020 Dec 30 2020-12-28 12/27/2020

Thu 2020 Dec 31 2020-12-28 12/27/2020

Fri 2021 Jan 1 2020-12-28 12/27/2020

Sat 2021 Jan 2 2020-12-28 12/27/2020

Sun 2021 Jan 3 2020-12-28 1/3/2021

Mon 2021 Jan 4 2021-01-04 1/3/2021

Tue 2021 Jan 5 2021-01-04 1/3/2021

Example of Weekstart function

The week starts are on Mondays in the ISO column, and on Sundays in the US column.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called Transactions.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, start_of_week, that returns a timestamp for the start of the week when the

transactions took place.

Load script

SET FirstWeekDay=6;

Transactions:

Script syntax and chart functions - Qlik Sense, May 2023 1074

5 Script and chart functions

Load

*,

weekstart(date) as start_of_week,

timestamp(weekstart(date)) as start_of_week_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l start_of_week

l start_of_week_timestamp

date start_of_week start_of_week_timestamp

1/7/2022 01/02/2022 1/2/2022 12:00:00 AM

1/19/2022 01/16/2022 1/16/2022 12:00:00 AM

2/5/2022 01/30/2022 1/30/2022 12:00:00 AM

2/28/2022 02/27/2022 2/27/2022 12:00:00 AM

3/16/2022 03/13/2022 3/13/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1075

5 Script and chart functions

date start_of_week start_of_week_timestamp

4/1/2022 03/27/2022 3/27/2022 12:00:00 AM

5/7/2022 05/01/2022 5/1/2022 12:00:00 AM

5/16/2022 05/15/2022 5/15/2022 12:00:00 AM

6/15/2022 06/12/2022 6/12/2022 12:00:00 AM

6/26/2022 06/26/2022 6/26/2022 12:00:00 AM

7/9/2022 07/03/2022 7/3/2022 12:00:00 AM

7/22/2022 07/17/2022 7/17/2022 12:00:00 AM

7/23/2022 07/17/2022 7/17/2022 12:00:00 AM

7/27/2022 07/24/2022 7/24/2022 12:00:00 AM

8/2/2022 07/31/2022 7/31/2022 12:00:00 AM

8/8/2022 08/07/2022 8/7/2022 12:00:00 AM

8/19/2022 08/14/2022 8/14/2022 12:00:00 AM

9/26/2022 09/25/2022 9/25/2022 12:00:00 AM

10/14/2022 10/09/2022 10/9/2022 12:00:00 AM

10/29/2022 10/23/2022 10/23/2022 12:00:00 AM

The start_of_week field is created in the preceding load statement by using the weekstart() function and
passing the date field as the function’s argument.

The weekstart() function initially identifies which week the date value falls into, returning a timestamp for
the first millisecond of that week.

Diagram of weekstart() function, example with no additional arguments

Transaction 8191 took place on February 5. The FirstWeekDay system variable sets the first day of the week to
a Sunday. The weekstart() function identifies that the first Sunday before February 5 – and therefore the
start of the week – was on January 30, Therefore, the start_of_week value for that transaction returns the
first millisecond of that day, which is January 30 at 12:00:00 AM.

Script syntax and chart functions - Qlik Sense, May 2023 1076

5 Script and chart functions

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, previous_week_start, that returns the timestamp for the start of the quarter

before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

weekstart(date,-1) as previous_week_start,

timestamp(weekstart(date,-1)) as previous_week_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Script syntax and chart functions - Qlik Sense, May 2023 1077

5 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_week_start

l previous_week_start_timestamp

date previous_week_start previous_week_start_timestamp

1/7/2022 12/26/2021 12/26/2021 12:00:00 AM

1/19/2022 01/09/2022 1/9/2022 12:00:00 AM

2/5/2022 01/23/2022 1/23/2022 12:00:00 AM

2/28/2022 02/20/2022 2/20/2022 12:00:00 AM

3/16/2022 03/06/2022 3/6/2022 12:00:00 AM

4/1/2022 03/20/2022 3/20/2022 12:00:00 AM

5/7/2022 04/24/2022 4/24/2022 12:00:00 AM

5/16/2022 05/08/2022 5/8/2022 12:00:00 AM

6/15/2022 06/05/2022 6/5/2022 12:00:00 AM

6/26/2022 06/19/2022 6/19/2022 12:00:00 AM

7/9/2022 06/26/2022 6/26/2022 12:00:00 AM

7/22/2022 07/10/2022 7/10/2022 12:00:00 AM

7/23/2022 07/10/2022 7/10/2022 12:00:00 AM

7/27/2022 07/17/2022 7/17/2022 12:00:00 AM

8/2/2022 07/24/2022 7/24/2022 12:00:00 AM

8/8/2022 07/31/2022 7/31/2022 12:00:00 AM

8/19/2022 08/07/2022 8/7/2022 12:00:00 AM

9/26/2022 09/18/2022 9/18/2022 12:00:00 AM

10/14/2022 10/02/2022 10/2/2022 12:00:00 AM

10/29/2022 10/16/2022 10/16/2022 12:00:00 AM

Results table

In this instance, because a period_no of -1 was used as the offset argument in the weekstart() function, the
function first identifies the week that the transactions take place in. It then looks one week prior and identifies
the first millisecond of that week.

Script syntax and chart functions - Qlik Sense, May 2023 1078

5 Script and chart functions

Diagram of weekstart() function, period_no example

Transaction 8196 took place on June 15. The weekstart() function identifies that the week begins on June 12.
Therefore, the previous week began on June 5 at 12:00:00 AM; this is the value that is returned for the
previous_week_start field.

Example 3 – first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this example, we
need to set Tuesday as the first day of the work week.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

weekstart(date,0,1) as start_of_week,

timestamp(weekstart(date,0,1)) as start_of_week_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

Script syntax and chart functions - Qlik Sense, May 2023 1079

5 Script and chart functions

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l start_of_week

l start_of_week_timestamp

date start_of_week start_of_week_timestamp

1/7/2022 01/04/2022 1/4/2022 12:00:00 AM

1/19/2022 01/18/2022 1/18/2022 12:00:00 AM

2/5/2022 02/01/2022 2/1/2022 12:00:00 AM

2/28/2022 02/22/2022 2/22/2022 12:00:00 AM

3/16/2022 03/15/2022 3/15/2022 12:00:00 AM

4/1/2022 03/29/2022 3/29/2022 12:00:00 AM

5/7/2022 05/03/2022 5/3/2022 12:00:00 AM

5/16/2022 05/10/2022 5/10/2022 12:00:00 AM

6/15/2022 06/14/2022 6/14/2022 12:00:00 AM

6/26/2022 06/21/2022 6/21/2022 12:00:00 AM

7/9/2022 07/05/2022 7/5/2022 12:00:00 AM

7/22/2022 07/19/2022 7/19/2022 12:00:00 AM

7/23/2022 07/19/2022 7/19/2022 12:00:00 AM

7/27/2022 07/26/2022 7/26/2022 12:00:00 AM

8/2/2022 08/02/2022 8/2/2022 12:00:00 AM

8/8/2022 08/02/2022 8/2/2022 12:00:00 AM

8/19/2022 08/16/2022 8/16/2022 12:00:00 AM

9/26/2022 09/20/2022 9/20/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1080

5 Script and chart functions

date start_of_week start_of_week_timestamp

10/14/2022 10/11/2022 10/11/2022 12:00:00 AM

10/29/2022 10/25/2022 10/25/2022 12:00:00 AM

In this instance, because the first_week_date argument of 1 is used in the weekstart() function, it sets the
first day of the week to Tuesday.

Diagram of weekstart() function, first_week_day example

Transaction 8191 took place on February 5. The weekstart() function identifies that the first Tuesday before
the this date – and therefore the start of the week and value returned – was February 1 at 12:00:00 AM.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that returns a
timestamp for the start of the week when the transactions took place is created as a measure in a chart object
of the application.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

Script syntax and chart functions - Qlik Sense, May 2023 1081

5 Script and chart functions

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

To calculate the start of the week in which a transaction takes place, add the following measures:

l =weekstart(date)

l =timestamp(weekstart(date))

date start_of_week start_of_week_timestamp

1/7/2022 01/02/2022 1/2/2022 12:00:00 AM

1/19/2022 01/16/2022 1/16/2022 12:00:00 AM

2/5/2022 01/30/2022 1/30/2022 12:00:00 AM

2/28/2022 02/27/2022 2/27/2022 12:00:00 AM

3/16/2022 03/13/2022 3/13/2022 12:00:00 AM

4/1/2022 03/27/2022 3/27/2022 12:00:00 AM

5/7/2022 05/01/2022 5/1/2022 12:00:00 AM

5/16/2022 05/15/2022 5/15/2022 12:00:00 AM

6/15/2022 06/12/2022 6/12/2022 12:00:00 AM

6/26/2022 06/26/2022 6/26/2022 12:00:00 AM

7/9/2022 07/03/2022 7/3/2022 12:00:00 AM

7/22/2022 07/17/2022 7/17/2022 12:00:00 AM

7/23/2022 07/17/2022 7/17/2022 12:00:00 AM

7/27/2022 07/24/2022 7/24/2022 12:00:00 AM

8/2/2022 07/31/2022 7/31/2022 12:00:00 AM

8/8/2022 08/07/2022 8/7/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1082

5 Script and chart functions

date start_of_week start_of_week_timestamp

8/19/2022 08/14/2022 8/14/2022 12:00:00 AM

9/26/2022 09/25/2022 9/25/2022 12:00:00 AM

10/14/2022 10/09/2022 10/9/2022 12:00:00 AM

10/29/2022 10/23/2022 10/23/2022 12:00:00 AM

The start_of_week measure is created in the chart object by using the weekstart() function and passing the
date field as the function’s argument.

The weekstart() function initially identifies which week the date value falls into, returning a timestamp for
the first millisecond of that week.

Diagram of weekstart() function, chart object example

Transaction 8191 took place on February 5. The FirstWeekDay system variable sets the first day of the week to
a Sunday. The weekstart() function identifies that the first Sunday before February 5 – and therefore the
start of the week – was January 30. Therefore, the start_of_week value for that transaction returns the first
millisecond of that day, which is January 30 at 12:00:00 AM.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called Payroll.
l Data consisting of employee IDs, employee names, and the daily wage earned by each employee.

Employees begin work on Monday and work six days per week. The FirstWeekDay system variable must not
be modified.

The end user would like a chart object that displays, by employee ID and employee name, the wages earned in
the week to date.

Load script

Payroll:

Load

Script syntax and chart functions - Qlik Sense, May 2023 1083

5 Script and chart functions

*

Inline

[

employee_id,employee_name,day_rate

182,Mark, $150

183,Deryck, $125

184,Dexter, $125

185,Sydney,$270

186,Agatha,$128

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add these fields as dimensions:
l employee_id

l employee_name

2. Next, create a measure to calculate the wages earned in the week to date:
=if(today(1)-weekstart(today(1),0,0)<7,(today(1)-weekstart(today(1),0,0))*day_rate,day_

rate*6)

3. Set the measure's Number formatting to Money.

employee_id
employee_
name

=if(today(1)-weekstart(today(1),0,0)<7,(today(1)-weekstart(today
(1),0,0))*day_rate,day_rate*6)

182 Mark $600.00

183 Deryck $500.00

184 Dexter $500.00

185 Sydney $1080.00

186 Agatha $512.00

Results table

The weekstart() function, by using today’s date as its first argument and 0 as its third argument, sets Monday
as the first day of the week and returns the start date of the current week. By subtracting that result from the
current date, the expression then returns the number of days that have elapsed so far this week.

The condition then evaluates whether there have been more than six days this week. If so, the employee’s
day_rate is multiplied by 6 days. Otherwise, the day_rate is multiplied by the number of days that have
occurred so far this week.

weekyear
This function returns the year to which the week number belongs according to the environment
variables. The week number ranges between 1 and approximately 52.

Syntax:
weekyear(timestamp [, first_week_day [, broken_weeks [, reference_day]]])

Script syntax and chart functions - Qlik Sense, May 2023 1084

5 Script and chart functions

Return data type: integer

Argument Description

timestamp The date or timestamp to evaluate.

first_week_
day

Specifies the day on which the week starts. If omitted, the value of variable FirstWeekDay
is used.

The possible values first_week_day are 0 for Monday, 1 for Tuesday, 2 for Wednesday, 3
for Thursday, 4 for Friday, 5 for Saturday, and 6 for Sunday.

For more information about the system variable, see FirstWeekDay (page 215).

broken_
weeks

If you don't specify broken_weeks, the value of variable BrokenWeeks will be used to
define if weeks are broken or not.

reference_
day

If you don't specify reference_day, the value of variable ReferenceDay will be used to
define which day in January to set as reference day to define week 1. By default, Qlik
Sense functions use 4 as the reference day. This means that week 1 must contain January
4, or put differently, that week 1 must always have at least 4 days in January.

Arguments

The weekyear() function determines which week of a year a date falls into. It then returns the year
corresponding to that week number.

If BrokenWeeks is set to 0 (false), weekyear() will return the same as year().

Diagram of weekyear() function's range

However, if the BrokenWeeks system variable is set to use unbroken weeks, week 1 must only contain a certain
number of days in January based on the value specified in the ReferenceDay system variable.

For example, if a ReferenceDay value of 4 is used, week 1 must include at least four days in January. It is
possible for week 1 to include dates in December of the previous year or for the final week number of a year to
include dates in January of the following year. In situations like this, the weekyear() function will return a
different value to the year() function.

Script syntax and chart functions - Qlik Sense, May 2023 1085

5 Script and chart functions

Diagram of weekyear() function's range when using unbroken weeks

When to use it

The weekyear() function is useful when you would like to compare aggregations by years. For example, if you
would like to see the total sales of products by year. The weekyear() function is chosen over year() when the
user would like to retain consistency with the BrokenWeeks system variable in the app.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

weekyear('12/30/1996',0,0,4) Returns 1997, because week 1 of 1997 starts on 12/30/1996

weekyear('01/02/1997',0,0,4) Returns 1997

weekyear('12/28/1997',0,0,4) Returns 1997

weekyear('12/30/1997',0,0,4) Returns 1998, because week 1 of 1998 starts on 12/29/1997

weekyear('01/02/1999',0,0,4) Returns 1998, because week 53 of 1998 ends on 01/03/1999

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 1086

5 Script and chart functions

Topic Interaction

week
(page
1021)

Returns an integer representing the week number according to ISO 8601

year (page
1094)

Returns an integer representing the year when the expression is interpreted as a date
according to the standard number interpretation.

Related topics

Example 1 - Broken weeks
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the last week of 2020 and first week of 2021 which is
loaded into a table called ‘Transactions’.

l The BrokenWeeks variable which is set to 1.
l A preceding load which contains the following:

l The weekyear() function, set as the field ‘week_year’ that returns the year in which the
transactions took place.

l The week() function, set as the field ‘week’ that shows the week number of each transaction
date.

Load script

SET BrokenWeeks=1;

Transactions:

Load

*,

week(date) as week,

weekyear(date) as week_year

;

Load

*

Inline

[

id,date,amount

8176,12/28/2020,19.42

8177,12/29/2020,23.80

8178,12/30/2020,82.06

8179,12/31/2020,40.56

8180,01/01/2021,37.23

8181,01/02/2021,17.17

Script syntax and chart functions - Qlik Sense, May 2023 1087

5 Script and chart functions

8182,01/03/2021,88.27

8183,01/04/2021,57.42

8184,01/05/2021,67.42

8185,01/06/2021,23.80

8186,01/07/2021,82.06

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l week

l week_year

id date week week_year

8176 12/28/2020 53 2020

8177 12/29/2020 53 2020

8178 12/30/2020 53 2020

8179 12/31/2020 53 2020

8180 01/01/2021 1 2021

8181 01/02/2021 1 2021

8182 01/03/2021 2 2021

8183 01/04/2021 2 2021

8184 01/05/2021 2 2021

8185 01/06/2021 2 2021

8186 01/07/2021 2 2021

Results table

The ‘week_year’ field is created in the preceding load statement by using the weekyear() function and passing
the date field as the function’s argument.

The BrokenWeeks system variable is set to 1 meaning that the app uses broken weeks. Week 1 begins on
January 1.

Script syntax and chart functions - Qlik Sense, May 2023 1088

5 Script and chart functions

Diagram of weekyear() function's range with the use of broken weeks

Transaction 8181 takes place on January 2, which is part of week 1. Therefore, it returns a value of 2021 for
the ‘week_year’ field.

Example 2 - Unbroken weeks
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the last week of 2020 and first week of 2021 which is
loaded into a table called ‘Transactions’.

l The BrokenWeeks variable which is set to 0.
l A preceding load which contains the following:

l The weekyear() function, set as the field ‘week_year’ that returns the year in which the
transactions took place.

l The week() function, set as the field ‘week’ that shows the week number of each transaction
date.

However, in this example, the company policy is to use unbroken weeks.

Load script

SET BrokenWeeks=0;

Transactions:

Load

*,

week(date) as week,

weekyear(date) as week_year

;

Load

*

Inline

[

id,date,amount

8176,12/28/2020,19.42

Script syntax and chart functions - Qlik Sense, May 2023 1089

5 Script and chart functions

8177,12/29/2020,23.80

8178,12/30/2020,82.06

8179,12/31/2020,40.56

8180,01/01/2021,37.23

8181,01/02/2021,17.17

8182,01/03/2021,88.27

8183,01/04/2021,57.42

8184,01/05/2021,67.42

8185,01/06/2021,23.80

8186,01/07/2021,82.06

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l week

l week_year

id date week week_year

8176 12/28/2020 53 2020

8177 12/29/2020 53 2020

8178 12/30/2020 53 2020

8179 12/31/2020 53 2020

8180 01/01/2021 53 2020

8181 01/02/2021 53 2020

8182 01/03/2021 1 2021

8183 01/04/2021 1 2021

8184 01/05/2021 1 2021

8185 01/06/2021 1 2021

8186 01/07/2021 1 2021

Results table

The BrokenWeeks system variable is set to 0 meaning that the application uses unbroken weeks. Therefore,
week 1 is not required to begin on January 1.

Week 53 of 2020 continues until the end of January 2, 2021, with week 1 of 2020 beginning on Sunday,
January 3, 2021.

Script syntax and chart functions - Qlik Sense, May 2023 1090

5 Script and chart functions

Diagram of weekyear() function's range with the use of unbroken weeks

Transaction 8181 takes place on January 2, which is part of week 1. Therefore, it returns a value of 2021 for
the ‘week_year’ field.

Example 3 - Chart object example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

However, in this example the dataset is unchanged and loaded into the application. The calculation that
returns the week number of the year when the transactions took place is created as a measure in a chart in
the app.

Load script

SET BrokenWeeks=1;

Transactions:

Load

*

Inline

[

id,date,amount

8176,12/28/2020,19.42

8177,12/29/2020,23.80

8178,12/30/2020,82.06

8179,12/31/2020,40.56

8180,01/01/2021,37.23

8181,01/02/2021,17.17

8182,01/03/2021,88.27

8183,01/04/2021,57.42

8184,01/05/2021,67.42

8185,01/06/2021,23.80

8186,01/07/2021,82.06

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2023 1091

5 Script and chart functions

l id

l date

To calculate the week that a transaction takes place in, create the following measure:

l =week(date)

To calculate the year that a transaction takes place in based on the week number, create the following
measure:

l =weekyear(date)

id date week week_year

8176 12/28/2020 53 2020

8177 12/29/2020 53 2020

8178 12/30/2020 53 2020

8179 12/31/2020 53 2020

8180 01/01/2021 1 2021

8181 01/02/2021 1 2021

8182 01/03/2021 2 2021

8183 01/04/2021 2 2021

8184 01/05/2021 2 2021

8185 01/06/2021 2 2021

8186 01/07/2021 2 2021

Results table

The ‘week_year’ field is created in the preceding load statement by using the weekyear() function and passing
the date field as the function’s argument.

The BrokenWeeks system variable is set to 1 meaning that the app uses broken weeks. week 1 begins on
January 1.

Diagram of weekyear() function's range with the use of broken weeks

Script syntax and chart functions - Qlik Sense, May 2023 1092

5 Script and chart functions

Transaction 8181 takes place on January 2, which is part of week 1. Therefore, it returns a value of 2021 for
the ‘week_year’ field.

Example 4 - Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the last week of 2020 and first week of 2021 which is
loaded into a table called ‘Transactions’.

l The BrokenWeeks variable which is set to 0. This means the app will use unbroken weeks.
l The ReferenceDay variable which is set to 2. This means the year will begin on January 2 and will

contain a minimum of two days in January.
l The FirstWeekDay variable which is set to 1. This means the first day of the week will be Tuesday.

The company policy is to use broken weeks. The end user would like a chart that presents the total sales by
year. The app uses unbroken weeks with week 1 containing a minimum of two days in January.

Load script

SET BrokenWeeks=0;

SET ReferenceDay=2;

SET FirstWeekDay=1;

Transactions:

Load

*

Inline

[

id,date,amount

8176,12/28/2020,19.42

8177,12/29/2020,23.80

8178,12/30/2020,82.06

8179,12/31/2020,40.56

8180,01/01/2021,37.23

8181,01/02/2021,17.17

8182,01/03/2021,88.27

8183,01/04/2021,57.42

8184,01/05/2021,67.42

8185,01/06/2021,23.80

8186,01/07/2021,82.06

];

Results

Load the data and open a sheet. Create a new table.

Script syntax and chart functions - Qlik Sense, May 2023 1093

5 Script and chart functions

To calculate the year that a transaction takes place in based on the week number, create the following
measure:

l =weekyear(date)

To calculate total sales, create the following measure:

l sum(amount)

Set the measure’s Number Formatting to Money.

weekyear(date) =sum(amount)

2020 19.42

2021 373.37

Results table

year
This function returns an integer representing the year when the expression is interpreted as a
date according to the standard number interpretation.

Syntax:
year(expression)

Return data type: integer

The year() function is available as both a script and chart function. The function returns the year for a
particular date. It is commonly used to create a year field as a dimension in a Master Calendar.

When to use it
The year() function is useful when you would like to compare aggregations by year. For example, the
function could be used if you would like to see the total sales of products by year.

These dimensions can be created either in the load script by using the function to create a field in a Master
Calendar table. Alternatively, it could be used directly in a chart as a calculated dimension.

Example Result

year('2012-10-12') returns 2012

year('35648') returns 1997, because 35648 = 1997-08-06

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may

Script syntax and chart functions - Qlik Sense, May 2023 1094

5 Script and chart functions

be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – DateFormat dataset (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates, which is loaded into a table named Master Calendar.
l The default DateFormat system variable (MM/DD/YYYY) is used.
l A preceding load, which is used to create an additional field, year, using the year() function.

Load script

SET DateFormat='MM/DD/YYYY';

Master_Calendar:

Load

date,

year(date) as year

;

Load

date

Inline

[

date

12/28/2020

12/29/2020

12/30/2020

12/31/2020

01/01/2021

01/02/2021

01/03/2021

01/04/2021

01/05/2021

01/06/2021

01/07/2021

];

Script syntax and chart functions - Qlik Sense, May 2023 1095

5 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l year

date year

12/28/2020 2020

12/29/2020 2020

12/30/2020 2020

12/31/2020 2020

01/01/2021 2021

01/02/2021 2021

01/03/2021 2021

01/04/2021 2021

01/05/2021 2021

01/06/2021 2021

01/07/2021 2021

Results table

Example 2 – ANSI Dates
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates, which is loaded into a table named Master Calendar.
l The default DateFormat system variable (MM/DD/YYYY) is used. However, the dates included in the

dataset are in ANSI standard date format.
l A preceding load, which is used to create an additional field, named year, using the year() function.

Load script

SET DateFormat='MM/DD/YYYY';

Master_Calendar:

Load

Script syntax and chart functions - Qlik Sense, May 2023 1096

5 Script and chart functions

date,

year(date) as year

;

Load

date

Inline

[

date

2020-12-28

2020-12-29

2020-12-30

2020-12-31

2021-01-01

2021-01-02

2021-01-03

2021-01-04

2021-01-05

2021-01-06

2021-01-07

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l year

date year

2020-12-28 2020

2020-12-29 2020

2020-12-30 2020

2020-12-31 2020

2021-01-01 2021

2021-01-02 2021

2021-01-03 2021

2021-01-04 2021

2021-01-05 2021

2021-01-06 2021

2021-01-07 2021

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1097

5 Script and chart functions

Example 3 – Unformatted dates
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates in numerical format, which is loaded into a table named Master Calendar.
l The default DateFormat system variable (MM/DD/YYYY) is used.
l A preceding load, which is used to create an additional field, year, using the year() function.

The original unformatted date is loaded, named unformatted_date, and to provide clarity, a further additional
field, named long_date, is used to convert the numerical date into a formatted date field using the date()

function.

Load script

SET DateFormat='MM/DD/YYYY';

Master_Calendar:

Load

unformatted_date,

date(unformatted_date) as long_date,

year(unformatted_date) as year

;

Load

unformatted_date

Inline

[

unformatted_date

44868

44898

44928

44958

44988

45018

45048

45078

45008

45038

45068

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2023 1098

5 Script and chart functions

l unformatted_date

l long_date

l year

unformatted_date long_date year

44868 11/03/2022 2022

44898 12/03/2022 2022

44928 01/02/2023 2023

44958 02/01/2023 2023

44988 03/03/2023 2023

45008 03/23/2023 2023

45018 04/02/2023 2023

45038 04/22/2023 2023

45048 05/02/2023 2023

45068 05/22/2023 2023

45078 06/01/2023 2023

Results table

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

In this example, a dataset of orders placed is loaded into a table named Sales. The table contains three fields:

l id

l sales_date

l amount

Warranties on product sales last two years from the date of sale. The task is to create a measure in a chart to
determine the year in which each warranty will expire.

Load script

Sales:

Load

id,

sales_date,

amount

Inline

Script syntax and chart functions - Qlik Sense, May 2023 1099

5 Script and chart functions

[

id,sales_date,amount

1,12/28/2020,231.24,

2,12/29/2020,567.28,

3,12/30/2020,364.28,

4,12/31/2020,575.76,

5,01/01/2021,638.68,

6,01/02/2021,785.38,

7,01/03/2021,967.46,

8,01/04/2021,287.67

9,01/05/2021,764.45,

10,01/06/2021,875.43,

11,01/07/2021,957.35

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: sales_date.

Create the following measure:

=year(sales_date+365*2)

sales_date =year(sales_date+365*2)

12/28/2020 2022

12/29/2020 2022

12/30/2020 2022

12/31/2020 2022

01/01/2021 2023

01/02/2021 2023

01/03/2021 2023

01/04/2021 2023

01/05/2021 2023

01/06/2021 2023

01/07/2021 2023

Results table

The results of this measure can be seen in the table above. To add two years to a date, multiply 365 by 2 and
add the result to the sales date. Therefore, sales that took place in 2020 have an expiry year of 2022.

yearend
This function returns a value corresponding to a timestamp of the last millisecond of the last
day of the year containing date. The default output format will be the DateFormat set in the
script.

Script syntax and chart functions - Qlik Sense, May 2023 1100

5 Script and chart functions

Syntax:
YearEnd(date[, period_no[, first_month_of_year = 1]])
In other words, the yearend() function determines which year the date falls into. It then returns a timestamp,
in date format, for the last millisecond of that year. The first month of the year is, by default, January.
However, you can change which month is set as first by using the first_month_of_year argument in the
yearend() function.

The yearend() function does not consider the FirstMonthOfYear system variable. The year begins
on January 1 unless the first_month_of_year argument is used to change it.

Diagram of yearend() function.

When to use it

The yearend() function is used as part of an expression when you want the calculation to use the fraction of
the year that has not yet occurred. For example, if you want to calculate the total interest not yet incurred
during the year.

Return data type: dual

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer, where the value 0 indicates the year which contains date. Negative
values in period_no indicate preceding years and positive values indicate succeeding years.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value between 2
and 12 in first_month_of_year.

Arguments

You can use the following values to set the first month of year in the first_month_of_year argument:

Month Value

February 2

March 3

first_month_of_year values

Script syntax and chart functions - Qlik Sense, May 2023 1101

5 Script and chart functions

Month Value

April 4

May 5

June 6

July 7

August 8

September 9

October 10

November 11

December 12

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

yearend('10/19/2001') Returns 12/31/2001 23:59:59.

yearend('10/19/2001', -1) Returns 12/31/2000 23:59:59.

yearend('10/19/2001', 0, 4) Returns 03/31/2002 23:59:59.

Function examples

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2023 1102

5 Script and chart functions

l A dataset containing a set of transactions between 2020 and 2022 is loaded into a table called
‘Transactions’.

l The date field has been provided in the DateFormat system variable (MM/DD/YYYY) format.
l A preceding load statement which contains the following:

l yearend() function which is set as the year_end field.
l Timestamp() function which is set as the year_end_timestamp field.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearend(date) as year_end,

timestamp(yearend(date)) as year_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,01/13/2020,37.23

8189,02/26/2020,17.17

8190,03/27/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,06/06/2022,46.23

8205,07/18/2022,84.21

8206,11/14/2022,96.24

8207,12/12/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

Script syntax and chart functions - Qlik Sense, May 2023 1103

5 Script and chart functions

l year_end

l year_end_timestamp

id date year_end year_end_timestamp

8188 01/13/2020 12/31/2020 12/31/2020 11:59:59 PM

8189 02/26/2020 12/31/2020 12/31/2020 11:59:59 PM

8190 03/27/2020 12/31/2020 12/31/2020 11:59:59 PM

8191 04/16/2020 12/31/2020 12/31/2020 11:59:59 PM

8192 05/21/2020 12/31/2020 12/31/2020 11:59:59 PM

8193 08/14/2020 12/31/2020 12/31/2020 11:59:59 PM

8194 10/07/2020 12/31/2020 12/31/2020 11:59:59 PM

8195 12/05/2020 12/31/2020 12/31/2020 11:59:59 PM

8196 01/22/2021 12/31/2021 12/31/2021 11:59:59 PM

8197 02/03/2021 12/31/2021 12/31/2021 11:59:59 PM

8198 03/17/2021 12/31/2021 12/31/2021 11:59:59 PM

8199 04/23/2021 12/31/2021 12/31/2021 11:59:59 PM

8200 05/04/2021 12/31/2021 12/31/2021 11:59:59 PM

8201 06/30/2021 12/31/2021 12/31/2021 11:59:59 PM

8202 07/26/2021 12/31/2021 12/31/2021 11:59:59 PM

8203 12/27/2021 12/31/2021 12/31/2021 11:59:59 PM

8204 06/06/2022 12/31/2022 12/31/2022 11:59:59 PM

8205 07/18/2022 12/31/2022 12/31/2022 11:59:59 PM

8206 11/14/2022 12/31/2022 12/31/2022 11:59:59 PM

8207 12/12/2022 12/31/2022 12/31/2022 11:59:59 PM

Results table

The ‘year_end’ field is created in the preceding load statement by using the yearend() function and passing
the date field as the function’s argument.

The yearend() function initially identifies which year the date value falls into and returns a timestamp for the
last millisecond of that year.

Script syntax and chart functions - Qlik Sense, May 2023 1104

5 Script and chart functions

Diagram of yearend() function with transaction 8199 selected.

Transaction 8199 took place on April 23, 2021. The yearend() function returns the last millisecond of that
year, which is December 31 at 11:59:59 PM.

Example 2 – period_no
Load script and results

Overview

The same dataset and scenario as the first example are used.

However, in this example, the task is to create a field, ‘previous_year_end’ , that returns the end date
timestamp of the year prior to the year in which a transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearend(date,-1) as previous_year_end,

timestamp(yearend(date,-1)) as previous_year_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,01/13/2020,37.23

8189,02/26/2020,17.17

8190,03/27/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

Script syntax and chart functions - Qlik Sense, May 2023 1105

5 Script and chart functions

8204,06/06/2022,46.23

8205,07/18/2022,84.21

8206,11/14/2022,96.24

8207,12/12/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l previous_year_end

l previous_ year_end_timestamp

id date previous_year_end previous_year_end_timestamp

8188 01/13/2020 12/31/2019 12/31/2019 11:59:59 PM

8189 02/26/2020 12/31/2019 12/31/2019 11:59:59 PM

8190 03/27/2020 12/31/2019 12/31/2019 11:59:59 PM

8191 04/16/2020 12/31/2019 12/31/2019 11:59:59 PM

8192 05/21/2020 12/31/2019 12/31/2019 11:59:59 PM

8193 08/14/2020 12/31/2019 12/31/2019 11:59:59 PM

8194 10/07/2020 12/31/2019 12/31/2019 11:59:59 PM

8195 12/05/2020 12/31/2019 12/31/2019 11:59:59 PM

8196 01/22/2021 12/31/2020 12/31/2020 11:59:59 PM

8197 02/03/2021 12/31/2020 12/31/2020 11:59:59 PM

8198 03/17/2021 12/31/2020 12/31/2020 11:59:59 PM

8199 04/23/2021 12/31/2020 12/31/2020 11:59:59 PM

8200 05/04/2021 12/31/2020 12/31/2020 11:59:59 PM

8201 06/30/2021 12/31/2020 12/31/2020 11:59:59 PM

8202 07/26/2021 12/31/2020 12/31/2020 11:59:59 PM

8203 12/27/2021 12/31/2020 12/31/2020 11:59:59 PM

8204 06/06/2022 12/31/2021 12/31/2021 11:59:59 PM

8205 07/18/2022 12/31/2021 12/31/2021 11:59:59 PM

8206 11/14/2022 12/31/2021 12/31/2021 11:59:59 PM

8207 12/12/2022 12/31/2021 12/31/2021 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1106

5 Script and chart functions

Because a period_no of -1 was used as the offset argument in the yearend() function, the function first
identifies the year that the transactions take place in. It then looks one year prior and identifies the last
millisecond of that year.

Diagram of yearend() function with a period_no of -1.

Transaction 8199 takes place on April 23, 2021. The yearend() function returns the last millisecond of the
prior year, December 31, 2020 at 11:59:59 PM, for the ‘previous_year_end’ field.

Example 3 – first_month_of_year
Load script and results

Overview

The same dataset and scenario as the first example are used.

However, in this example, the company policy is for the year to begin from April 1.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearend(date,0,4) as year_end,

timestamp(yearend(date,0,4)) as year_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,01/13/2020,37.23

8189,02/26/2020,17.17

8190,03/27/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

Script syntax and chart functions - Qlik Sense, May 2023 1107

5 Script and chart functions

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,06/06/2022,46.23

8205,07/18/2022,84.21

8206,11/14/2022,96.24

8207,12/12/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l year_end

l year_end_timestamp

id date year_end year_end_timestamp

8188 01/13/2020 03/31/2020 3/31/2020 11:59:59 PM

8189 02/26/2020 03/31/2020 3/31/2020 11:59:59 PM

8190 03/27/2020 03/31/2020 3/31/2020 11:59:59 PM

8191 04/16/2020 03/31/2021 3/31/2021 11:59:59 PM

8192 05/21/2020 03/31/2021 3/31/2021 11:59:59 PM

8193 08/14/2020 03/31/2021 3/31/2021 11:59:59 PM

8194 10/07/2020 03/31/2021 3/31/2021 11:59:59 PM

8195 12/05/2020 03/31/2021 3/31/2021 11:59:59 PM

8196 01/22/2021 03/31/2021 3/31/2021 11:59:59 PM

8197 02/03/2021 03/31/2021 3/31/2021 11:59:59 PM

8198 03/17/2021 03/31/2021 3/31/2021 11:59:59 PM

8199 04/23/2021 03/31/2022 3/31/2022 11:59:59 PM

8200 05/04/2021 03/31/2022 3/31/2022 11:59:59 PM

8201 06/30/2021 03/31/2022 3/31/2022 11:59:59 PM

8202 07/26/2021 03/31/2022 3/31/2022 11:59:59 PM

8203 12/27/2021 03/31/2022 3/31/2022 11:59:59 PM

8204 06/06/2022 03/31/2023 3/31/2023 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1108

5 Script and chart functions

id date year_end year_end_timestamp

8205 07/18/2022 03/31/2023 3/31/2023 11:59:59 PM

8206 11/14/2022 03/31/2023 3/31/2023 11:59:59 PM

8207 12/12/2022 03/31/2023 3/31/2023 11:59:59 PM

Because the first_month_of_year argument of 4 is used in the yearend() function, it sets the first day of the
year to April 1, and the last day of the year to March 31.

Diagram of yearend() function with April as the first month of the year.

Transaction 8199 takes place on April 23, 2021. Because the yearend() function sets the start of the year to
April 1, it returns March 31, 2022 as the ‘year_end’ value for the transaction.

Example 4 – Chart object example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

However, in this example, the dataset is unchanged and loaded into the application. The calculation that
returns the end date timestamp of the year in which a transaction took place is created as a measure in a
chart object of the application.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,01/13/2020,37.23

8189,02/26/2020,17.17

8190,03/27/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

Script syntax and chart functions - Qlik Sense, May 2023 1109

5 Script and chart functions

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,06/06/2022,46.23

8205,07/18/2022,84.21

8206,11/14/2022,96.24

8207,12/12/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

To calculate in which year a transaction took place, create the following measures:

l =yearend(date)

l =timestamp(yearend(date))

id date =yearend(date) =timestamp(yearend(date))

8188 01/13/2020 12/31/2020 12/31/2020 11:59:59 PM

8189 02/26/2020 12/31/2020 12/31/2020 11:59:59 PM

8190 03/27/2020 12/31/2020 12/31/2020 11:59:59 PM

8191 04/16/2020 12/31/2020 12/31/2020 11:59:59 PM

8192 05/21/2020 12/31/2020 12/31/2020 11:59:59 PM

8193 08/14/2020 12/31/2020 12/31/2020 11:59:59 PM

8194 10/07/2020 12/31/2020 12/31/2020 11:59:59 PM

8195 12/05/2020 12/31/2020 12/31/2020 11:59:59 PM

8196 01/22/2021 12/31/2021 12/31/2021 11:59:59 PM

8197 02/03/2021 12/31/2021 12/31/2021 11:59:59 PM

8198 03/17/2021 12/31/2021 12/31/2021 11:59:59 PM

8199 04/23/2021 12/31/2021 12/31/2021 11:59:59 PM

8200 05/04/2021 12/31/2021 12/31/2021 11:59:59 PM

8201 06/30/2021 12/31/2021 12/31/2021 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1110

5 Script and chart functions

id date =yearend(date) =timestamp(yearend(date))

8202 07/26/2021 12/31/2021 12/31/2021 11:59:59 PM

8203 12/27/2021 12/31/2021 12/31/2021 11:59:59 PM

8204 06/06/2022 12/31/2022 12/31/2022 11:59:59 PM

8205 07/18/2022 12/31/2022 12/31/2022 11:59:59 PM

8206 11/14/2022 12/31/2022 12/31/2022 11:59:59 PM

8207 12/12/2022 12/31/2022 12/31/2022 11:59:59 PM

The ‘end_of_year’ measure is created in the chart object by using the yearend() function and passing the
date field as the function’s argument.

The yearend() function initially identifies which year the date value falls into returning a timestamp for the
last millisecond of that year.

Diagram of yearend() function that shows Transaction 8199 took place in April.

Transaction 8199 takes place on April 23, 2021. The yearend() function returns the last millisecond of that
year, which is December 31 at 11:59:59 PM.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset is loaded into a table called ‘Employee_Expenses’. The table contains the following fields:
l employee IDs
l employee name
l average daily expense claims of each employee

The end user would like a chart object that displays, by employee id and employee name, the estimated
expense claims still to be incurred for the remainder of the year. The financial year begins in January.

Load script

Employee_Expenses:

Load

Script syntax and chart functions - Qlik Sense, May 2023 1111

5 Script and chart functions

*

Inline

[

employee_id,employee_name,avg_daily_claim

182,Mark, $15

183,Deryck, $12.5

184,Dexter, $12.5

185,Sydney,$27

186,Agatha,$18

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l employee_id

l employee_name

To calculate the projected expense claims, create the following measure:

=(yearend(today(1))-today(1))*avg_daily_claim

Set the measure’s Number Formatting to Money.

employee_id employee_name =(yearend(today(1))-today(1))*avg_daily_claim

182 Mark $3240.00

183 Deryck $2700.00

184 Dexter $2700.00

185 Sydney $5832.00

186 Agatha $3888.00

Results table

By using today’s date as its only argument, the yearend() function returns the end date of the current year.
Then, by subtracting today’s date from the year end date, the expression returns the number of days
remaining in this year.

This value is then multiplied by the average daily expense claim by each employee to calculate the estimated
value of claims each employee is expected to make in the remaining year.

yearname
This function returns a four-digit year as display value with an underlying numeric value
corresponding to a timestamp of the first millisecond of the first day of the year containing date.

Script syntax and chart functions - Qlik Sense, May 2023 1112

5 Script and chart functions

Diagram of range of time of the yearname() function.

The yearname() function is different to the year() function as it lets you offset the date you want evaluated
and lets you set the first month of the year.

If the first month of the year is not January, the function will return the two four-digit years across the twelve
month period that contain the date. For example, if the start of the year is April and the date being evaluated
is 06/30/2020, the result returned would be 2020-2021.

Diagram of yearname() function with April set as the first month of the year.

Syntax:
YearName(date[, period_no[, first_month_of_year]])

Return data type: dual

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer, where the value 0 indicates the year which contains date. Negative
values in period_no indicate preceding years and positive values indicate succeeding years.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value between 2
and 12 in first_month_of_year. The display value will then be a string showing two years.

You can use the following values to set the first month of year in the first_month_of_year argument:

Month Value

February 2

first_month_of_year values

Script syntax and chart functions - Qlik Sense, May 2023 1113

5 Script and chart functions

Month Value

March 3

April 4

May 5

June 6

July 7

August 8

September 9

October 10

November 11

December 12

When to use it

The yearname() function is useful for comparing aggregations by year. For example, if you want to see the
total sales of products by year.

These dimensions can be created in the load script by using the function to create a field in a Master Calendar
table. They can also be created in a chart as calculated dimensions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

yearname('10/19/2001') Returns '2001.'

yearname('10/19/2001',-1) Returns '2000.'

yearname('10/19/2001',0,4) Returns '2001-2002.'

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 1114

5 Script and chart functions

Topic Description

year
(page
1094)

This function returns an integer representing the year when the expression is interpreted as a
date according to the standard number interpretation.

Related topics

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022 is loaded into a table called
‘Transactions’.

l The DateFormat system variable which is set to ‘MM/DD/YYYY’.
l A preceding load that uses the yearname() and which is set as the year_name field.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearname(date) as year_name

;

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

Script syntax and chart functions - Qlik Sense, May 2023 1115

5 Script and chart functions

8203,'12/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l year_name

date year_name

01/13/2020 2020

02/26/2020 2020

03/27/2020 2020

04/16/2020 2020

05/21/2020 2020

08/14/2020 2020

10/07/2020 2020

12/05/2020 2020

01/22/2021 2021

02/03/2021 2021

03/17/2021 2021

04/23/2021 2021

05/04/2021 2021

06/30/2021 2021

07/26/2021 2021

12/27/2021 2021

06/06/2022 2022

07/18/2022 2022

11/14/2022 2022

12/12/2022 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1116

5 Script and chart functions

The ‘year_name’ field is created in the preceding load statement by using the yearname() function and passing
the date field as the function’s argument.

The yearname() function identifies which year the date value falls into and returns this as a four-digit year
value.

Diagram of yearname() function that shows 2021 as the year value.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022 is loaded into a table called
‘Transactions’.

l The DateFormat system variable which is set to ‘MM/DD/YYYY’.
l A preceding load that uses the yearname() and which is set as the year_name field.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearname(date,-1) as prior_year_name

;

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

Script syntax and chart functions - Qlik Sense, May 2023 1117

5 Script and chart functions

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l prior_year_name

date prior_year_name

01/13/2020 2019

02/26/2020 2019

03/27/2020 2019

04/16/2020 2019

05/21/2020 2019

08/14/2020 2019

10/07/2020 2019

12/05/2020 2019

01/22/2021 2020

02/03/2021 2020

03/17/2021 2020

04/23/2021 2020

05/04/2021 2020

06/30/2021 2020

07/26/2021 2020

12/27/2021 2020

06/06/2022 2021

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1118

5 Script and chart functions

date prior_year_name

07/18/2022 2021

11/14/2022 2021

12/12/2022 2021

Because a period_no of -1 is used as the offset argument in the yearname() function, the function first
identifies the year that the transactions take place in. The function then shifts one year prior and returns the
resulting year.

Diagram of yearname() function with the period_no set -1.

Example 3 – first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the first example.
l The DateFormat system variable which is set to ‘MM/DD/YYYY’.
l A preceding load that uses the yearname() and which is set as the year_name field.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearname(date,0,4) as year_name

;

Load

*

Inline

[

id,date,amount

Script syntax and chart functions - Qlik Sense, May 2023 1119

5 Script and chart functions

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l year_name

date year_name

01/13/2020 2019-2020

02/26/2020 2019-2020

03/27/2020 2019-2020

04/16/2020 2020-2021

05/21/2020 2020-2021

08/14/2020 2020-2021

10/07/2020 2020-2021

12/05/2020 2020-2021

01/22/2021 2020-2021

02/03/2021 2020-2021

03/17/2021 2020-2021

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1120

5 Script and chart functions

date year_name

04/23/2021 2021-2022

05/04/2021 2021-2022

06/30/2021 2021-2022

07/26/2021 2021-2022

12/27/2021 2021-2022

06/06/2022 2022-2023

07/18/2022 2022-2023

11/14/2022 2022-2023

12/12/2022 2022-2023

Because the first_month_of_year argument of 4 is used in the yearname() function, the start of the year
moves from January 1 to April 1. Therefore, each twelve month period crosses two calendar years and the
yearname() function returns the two four-digit years for dates evaluated.

Transaction 8198 takes place on March 17, 2021. The yearname() function sets the beginning of the year on
April 1 and the ending on March 30. Therefore, transaction 8198 occurred in the year period from April 1, 2020
and March 30, 2021. As a result, the yearname() function returns the value 2020-2021.

Diagram of yearname() function with March set as the first month of the year.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the first example.
l The DateFormat system variable which is set to ‘MM/DD/YYYY’.

Script syntax and chart functions - Qlik Sense, May 2023 1121

5 Script and chart functions

However, the field that returns the year that the transaction took place in is created as a measure in a chart
object.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

date

To calculate the ‘year_name’ field, create this measure:

=yearname(date)

date =yearname(date)

01/13/2020 2020

02/26/2020 2020

03/27/2020 2020

04/16/2020 2020

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1122

5 Script and chart functions

date =yearname(date)

05/21/2020 2020

08/14/2020 2020

10/07/2020 2020

12/05/2020 2020

01/22/2021 2021

02/03/2021 2021

03/17/2021 2021

04/23/2021 2021

05/04/2021 2021

06/30/2021 2021

07/26/2021 2021

12/27/2021 2021

06/06/2022 2022

07/18/2022 2022

11/14/2022 2022

12/12/2022 2022

The ‘year_name’ measure is created in the chart object using the yearname() function and passing the date
field as the function’s argument.

The yearname() function identifies which year the date value falls into and returns this as a four-digit year
value.

Diagram of yearname() function with 2021 as the year value.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2023 1123

5 Script and chart functions

The load script contains:

l The same dataset from the first example.
l The DateFormat system variable which is set to ‘MM/DD/YYYY’.

The end user would like a chart that presents the total sales by quarter for the transactions. Use the yearname

() function as a calculated dimension to create this chart when the yearname() dimension is not available in
the data model.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table.

To compare aggregations by year, create this calculated dimension:

=yearname(date)

Create this measure:

=sum(amount)

Set the measure’s Number Formatting to Money.

Script syntax and chart functions - Qlik Sense, May 2023 1124

5 Script and chart functions

yearname(date) =sum(amount)

2020 $463.55

2021 $457.69

2022 $294.35

Results table

yearstart
This function returns a timestamp corresponding to the start of the first day of the year
containing date. The default output format will be the DateFormat set in the script.

Syntax:
YearStart(date[, period_no[, first_month_of_year]])
In other words, the yearstart() function determines which year the date falls into. It then returns a
timestamp, in date format, for the first millisecond of that year. The first month of the year is, by default,
January; however, you can change which month is set as first by using the first_month_of_year argument in
the yearstart() function.

Diagram of yearstart() function that shows the range of time that the function can cover.

When to use it

The yearstart() function is used as part of an expression when you want the calculation to use the fraction
of the year that has elapsed thus far. For example, if you want to calculate the interest that has accumulated
in a year to date.

Return data type: dual

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer, where the value 0 indicates the year which contains date. Negative
values in period_no indicate preceding years and positive values indicate succeeding years.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value between 2
and 12 in first_month_of_year.

Arguments

The following months can be used in the first_month_of_year argument:

Script syntax and chart functions - Qlik Sense, May 2023 1125

5 Script and chart functions

Month Value

February 2

March 3

April 4

May 5

June 6

July 7

August 8

September 9

October 10

November 11

December 12

first_month_of_year values

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example Result

yearstart('10/19/2001') Returns 01/01/2001 00:00:00.

yearstart('10/19/2001',-1) Returns 01/01/2000 00:00:00.

yearstart('10/19/2001',0,4) Returns 04/01/2001 00:00:00.

Function examples

Script syntax and chart functions - Qlik Sense, May 2023 1126

5 Script and chart functions

Example 1 – Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022 is loaded into a table called
‘Transactions’.

l The date field has been provided in the DateFormat system variable (MM/DD/YYYY) format.
l A preceding load statement which contains the following:

l yearstart() function which is set as the year_start field.
l Timestamp() function which is set as the year_start_timestamp field

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearstart(date) as year_start,

timestamp(yearstart(date)) as year_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,01/13/2020,37.23

8189,02/26/2020,17.17

8190,03/27/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,06/06/2022,46.23

8205,07/18/2022,84.21

8206,11/14/2022,96.24

Script syntax and chart functions - Qlik Sense, May 2023 1127

5 Script and chart functions

8207,12/12/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l year_start

l year_start_timestamp

id date year_start year_start_timestamp

8188 01/13/2020 01/01/2020 1/1/2020 12:00:00 AM

8189 02/26/2020 01/01/2020 1/1/2020 12:00:00 AM

8190 03/27/2020 01/01/2020 1/1/2020 12:00:00 AM

8191 04/16/2020 01/01/2020 1/1/2020 12:00:00 AM

8192 05/21/2020 01/01/2020 1/1/2020 12:00:00 AM

8193 08/14/2020 01/01/2020 1/1/2020 12:00:00 AM

8194 10/07/2020 01/01/2020 1/1/2020 12:00:00 AM

8195 12/05/2020 01/01/2020 1/1/2020 12:00:00 AM

8196 01/22/2021 01/01/2021 1/1/2021 12:00:00 AM

8197 02/03/2021 01/01/2021 1/1/2021 12:00:00 AM

8198 03/17/2021 01/01/2021 1/1/2021 12:00:00 AM

8199 04/23/2021 01/01/2021 1/1/2021 12:00:00 AM

8200 05/04/2021 01/01/2021 1/1/2021 12:00:00 AM

8201 06/30/2021 01/01/2021 1/1/2021 12:00:00 AM

8202 07/26/2021 01/01/2021 1/1/2021 12:00:00 AM

8203 12/27/2021 01/01/2021 1/1/2021 12:00:00 AM

8204 06/06/2022 01/01/2022 1/1/2022 12:00:00 AM

8205 07/18/2022 01/01/2022 1/1/2022 12:00:00 AM

8206 11/14/2022 01/01/2022 1/1/2022 12:00:00 AM

8207 12/12/2022 01/01/2022 1/1/2022 12:00:00 AM

Results table

The ‘year_start’ field is created in the preceding load statement by using the yearstart() function and
passing the date field as the function’s argument.

Script syntax and chart functions - Qlik Sense, May 2023 1128

5 Script and chart functions

The yearstart() function initially identifies which year the date value falls into and returns a timestamp for
the first millisecond of that year.

Diagram of the yearstart() function and transaction 8199.

Transaction 8199 took place on April 23, 2021. The yearstart() function returns the first millisecond of that
year, which is January 1 at 12:00:00 AM.

Example 2 – period_no
Load script and results

Overview

The same dataset and scenario as the first example are used.

However, in this example, the task is to create a field, ‘previous_year_start’, that returns the start date
timestamp of the year prior to the year in which a transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearstart(date,-1) as previous_year_start,

timestamp(yearstart(date,-1)) as previous_year_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,01/13/2020,37.23

8189,02/26/2020,17.17

8190,03/27/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

Script syntax and chart functions - Qlik Sense, May 2023 1129

5 Script and chart functions

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,06/06/2022,46.23

8205,07/18/2022,84.21

8206,11/14/2022,96.24

8207,12/12/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l previous_year_start

l previous_ year_start_timestamp

id date previous_year_start previous_year_start_timestamp

8188 01/13/2020 01/01/2019 1/1/2019 12:00:00 AM

8189 02/26/2020 01/01/2019 1/1/2019 12:00:00 AM

8190 03/27/2020 01/01/2019 1/1/2019 12:00:00 AM

8191 04/16/2020 01/01/2019 1/1/2019 12:00:00 AM

8192 05/21/2020 01/01/2019 1/1/2019 12:00:00 AM

8193 08/14/2020 01/01/2019 1/1/2019 12:00:00 AM

8194 10/07/2020 01/01/2019 1/1/2019 12:00:00 AM

8195 12/05/2020 01/01/2019 1/1/2019 12:00:00 AM

8196 01/22/2021 01/01/2020 1/1/2020 12:00:00 AM

8197 02/03/2021 01/01/2020 1/1/2020 12:00:00 AM

8198 03/17/2021 01/01/2020 1/1/2020 12:00:00 AM

8199 04/23/2021 01/01/2020 1/1/2020 12:00:00 AM

8200 05/04/2021 01/01/2020 1/1/2020 12:00:00 AM

8201 06/30/2021 01/01/2020 1/1/2020 12:00:00 AM

8202 07/26/2021 01/01/2020 1/1/2020 12:00:00 AM

8203 12/27/2021 01/01/2020 1/1/2020 12:00:00 AM

8204 06/06/2022 01/01/2021 1/1/2021 12:00:00 AM

8205 07/18/2022 01/01/2021 1/1/2021 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1130

5 Script and chart functions

id date previous_year_start previous_year_start_timestamp

8206 11/14/2022 01/01/2021 1/1/2021 12:00:00 AM

8207 12/12/2022 01/01/2021 1/1/2021 12:00:00 AM

In this instance, because a period_no of -1 is used as the offset argument in the yearstart() function, the
function first identifies the year that the transactions take place in. It then looks one year prior and identifies
the first millisecond of that year.

Diagram of the yearstart() function with a period_no of -1.

Transaction 8199 took place on April 23, 2021. The yearstart() function returns the first millisecond of the
prior year, January 1, 2020 at 12:00:00 AM, for the ‘previous_year_start’ field.

Example 3 – first_month_of_year
Load script and results

Overview

The same dataset and scenario as the first example are used.

However, in this example, the company policy is for the year to begin from April 1.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearstart(date,0,4) as year_start,

timestamp(yearstart(date,0,4)) as year_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,01/13/2020,37.23

8189,02/26/2020,17.17

8190,03/27/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

Script syntax and chart functions - Qlik Sense, May 2023 1131

5 Script and chart functions

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,06/06/2022,46.23

8205,07/18/2022,84.21

8206,11/14/2022,96.24

8207,12/12/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l year_start

l year_start_timestamp

id date year_start year_start_timestamp

8188 01/13/2020 04/01/2019 4/1/2019 12:00:00 AM

8189 02/26/2020 04/01/2019 4/1/2019 12:00:00 AM

8190 03/27/2020 04/01/2019 4/1/2019 12:00:00 AM

8191 04/16/2020 04/01/2020 4/1/2020 12:00:00 AM

8192 05/21/2020 04/01/2020 4/1/2020 12:00:00 AM

8193 08/14/2020 04/01/2020 4/1/2020 12:00:00 AM

8194 10/07/2020 04/01/2020 4/1/2020 12:00:00 AM

8195 12/05/2020 04/01/2020 4/1/2020 12:00:00 AM

8196 01/22/2021 04/01/2020 4/1/2020 12:00:00 AM

8197 02/03/2021 04/01/2020 4/1/2020 12:00:00 AM

8198 03/17/2021 04/01/2020 4/1/2020 12:00:00 AM

8199 04/23/2021 04/01/2021 4/1/2021 12:00:00 AM

8200 05/04/2021 04/01/2021 4/1/2021 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1132

5 Script and chart functions

id date year_start year_start_timestamp

8201 06/30/2021 04/01/2021 4/1/2021 12:00:00 AM

8202 07/26/2021 04/01/2021 4/1/2021 12:00:00 AM

8203 12/27/2021 04/01/2021 4/1/2021 12:00:00 AM

8204 06/06/2022 04/01/2022 4/1/2022 12:00:00 AM

8205 07/18/2022 04/01/2022 4/1/2022 12:00:00 AM

8206 11/14/2022 04/01/2022 4/1/2022 12:00:00 AM

8207 12/12/2022 04/01/2022 4/1/2022 12:00:00 AM

In this instance, because the first_month_of_year argument of 4 is used in the yearstart() function, it sets
the first day of the year to April 1, and the last day of the year to March 31.

Diagram of the yearstart() function with the first month set as April.

Transaction 8199 took place on April 23, 2021. Because the yearstart() function sets the start of the year to
April 1 and returns it as the ‘year_start’ value for the transaction.

Example 4 – Chart object example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

However, in this example, the dataset is unchanged and loaded into the application. The calculation that
returns the start date timestamp of the year in which a transaction took place is created as a measure in a
chart object of the application.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,01/13/2020,37.23

8189,02/26/2020,17.17

8190,03/27/2020,88.27

Script syntax and chart functions - Qlik Sense, May 2023 1133

5 Script and chart functions

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,06/06/2022,46.23

8205,07/18/2022,84.21

8206,11/14/2022,96.24

8207,12/12/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

To calculate in which year a transaction took place, create the following measures:

l =yearstart(date)

l =timestamp(yearstart(date))

id date =yearstart(date) =timestamp(yearstart(date))

8188 06/06/2022 01/01/2022 1/1/2022 12:00:00 AM

8189 07/18/2022 01/01/2022 1/1/2022 12:00:00 AM

8190 11/14/2022 01/01/2022 1/1/2022 12:00:00 AM

8191 12/12/2022 01/01/2022 1/1/2022 12:00:00 AM

8192 01/22/2021 01/01/2021 1/1/2021 12:00:00 AM

8193 02/03/2021 01/01/2021 1/1/2021 12:00:00 AM

8194 03/17/2021 01/01/2021 1/1/2021 12:00:00 AM

8195 04/23/2021 01/01/2021 1/1/2021 12:00:00 AM

8196 05/04/2021 01/01/2021 1/1/2021 12:00:00 AM

8197 06/30/2021 01/01/2021 1/1/2021 12:00:00 AM

8198 07/26/2021 01/01/2021 1/1/2021 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1134

5 Script and chart functions

id date =yearstart(date) =timestamp(yearstart(date))

8199 12/27/2021 01/01/2021 1/1/2021 12:00:00 AM

8200 01/13/2020 01/01/2020 1/1/2020 12:00:00 AM

8201 02/26/2020 01/01/2020 1/1/2020 12:00:00 AM

8202 03/27/2020 01/01/2020 1/1/2020 12:00:00 AM

8203 04/16/2020 01/01/2020 1/1/2020 12:00:00 AM

8204 05/21/2020 01/01/2020 1/1/2020 12:00:00 AM

8205 08/14/2020 01/01/2020 1/1/2020 12:00:00 AM

8206 10/07/2020 01/01/2020 1/1/2020 12:00:00 AM

8207 12/05/2020 01/01/2020 1/1/2020 12:00:00 AM

The ‘start_of_year’ measure is created in the chart object by using the yearstart() function and passing
the date field as the function’s argument.

The yearstart() function initially identifies which year the date value falls into and returns a timestamp for
the first millisecond of that year.

Diagram of theyearstart() function and transaction 8199.

Transaction 8199 took place on April 23, 2021. The yearstart() function returns the first millisecond of that
year, which is January 1 at 12:00:00 AM.

Example 5 – Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset is loaded into a table called ‘Loans’. The table contains the following fields:
l Loan IDs.
l The balance at the beginning of the year.
l The simple interest rate charged on each loan per annum.

Script syntax and chart functions - Qlik Sense, May 2023 1135

5 Script and chart functions

The end user would like a chart object that displays, by loan id, the current interest that has been accrued on
each loan in the year to date.

Load script

Loans:

Load

*

Inline

[

loan_id,start_balance,rate

8188,$10000.00,0.024

8189,$15000.00,0.057

8190,$17500.00,0.024

8191,$21000.00,0.034

8192,$90000.00,0.084

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l loan_id

l start_balance

To calculate the accumulated interest, create the following measure:

=start_balance*(rate*(today(1)-yearstart(today(1)))/365)

Set the measure’s Number Formatting to Money.

loan_id start_balance =start_balance*(rate*(today(1)-yearstart(today(1)))/365)

8188 $10000.00 $39.73

8189 $15000.00 $339.66

8190 $17500.00 $166.85

8191 $21000.00 $283.64

8192 $90000.00 $3003.29

Results table

The yearstart() function, using today’s date as its only argument, returns the start date of the current year.
By subtracting that result from the current date, the expression returns the number of days that have elapsed
so far this year.

This value is then multiplied by the interest rate and divided by 365 to return the effective interest rate for the
period. The effective interest rate for the period is then multiplied by the starting balance of the loan to return
the interest that has been accrued so far this year.

Script syntax and chart functions - Qlik Sense, May 2023 1136

5 Script and chart functions

yeartodate
This function finds if the input timestamp falls within the year of the date the script was last
loaded, and returns True if it does, False if it does not.

Syntax:
YearToDate(timestamp[, yearoffset [, firstmonth [, todaydate]]])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Example diagram of yeartodate() function

If none of the optional parameters are used, the year to date means any date within one calendar year from
January 1 up to and including the date of the last script execution.

In other words, the yeartodate() function, when triggered with no additional parameters, is used to evaluate
a timestamp and return a Boolean result based on whether the date occurred within the calendar year up to
and including the date that the reload took place.

However, it is also possible to supersede the start date of the year using the firstmonth argument, as well as
to make comparisons with preceding or following years using the yearoffset argument.

Finally, in instances of historical datasets, the yeartodate() function provides a parameter to set todaydate,
which will instead compare the timestamp to the calendar year up to and including the date provided in the
todaydate argument.

Argument Description

timestamp The timestamp to evaluate, for example '10/12/2012'.

yearoffset By specifying a yearoffset, yeartodate returns True for the same period in another year. A
negative yearoffset indicates a previous year, a positive offset a future year. The most
recent year-to-date is achieved by specifying yearoffset = -1. If omitted, 0 is assumed.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1137

5 Script and chart functions

Argument Description

firstmonth By specifying a firstmonth between 1 and 12 (1 if omitted), the beginning of the year may
be moved forward to the first day of any month. For example, if you want to work with a
fiscal year beginning on May 1, specify firstmonth = 5. A value of 1 would indicate a fiscal
year starting on January 1, and a value of 12 would indicate a fiscal year starting on
December 1.

todaydate By specifying a todaydate (timestamp of the last script execution if omitted) it is possible
to move the day used as the upper boundary of the period.

When to use it
The yeartodate() function returns a Boolean result. Typically, this type of function will be used as a condition
in an if expression. This would return an aggregation or calculation dependent on whether the evaluated date
occurred in the year up to and including the last reload date of the application.

For example, the YearToDate() function can be used to identify all equipment manufactured so far in the
current year.

The following examples assume last reload time = 11/18/2011.

Example Result

yeartodate('11/18/2010') returns False

yeartodate('02/01/2011') returns True

yeartodate('11/18/2011') returns True

yeartodate('11/19/2011') returns False

yeartodate('11/19/2011', 0, 1, '12/31/2011') returns True

yeartodate('11/18/2010', -1) returns True

yeartodate('11/18/2011', -1) returns False

yeartodate('04/30/2011', 0, 5) returns False

yeartodate('05/01/2011', 0, 5) returns True

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The date
format is specified in the SET DateFormat statement in your data load script. The default date formatting may
be different in your system, due to your regional settings and other factors. You can change the formats in the
examples below to suit your requirements. Or you can change the formats in your load script to match these
examples.

Script syntax and chart functions - Qlik Sense, May 2023 1138

5 Script and chart functions

Default regional settings in apps are based on the regional system settings of the computer or server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor will use
Swedish regional settings for dates, time, and currency. These regional format settings are not related to the
language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same language as the
browser you are using.

Example 1 – Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, year_to_date, that determines which transactions took place in the calendar

year up to the date of the last reload.

At the time of writing, the date is April 26, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yeartodate(date) as year_to_date

;

Load

*

Inline

[

id,date,amount

8188,01/10/2020,37.23

8189,02/28/2020,17.17

8190,04/09/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

Script syntax and chart functions - Qlik Sense, May 2023 1139

5 Script and chart functions

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,02/02/2022,46.23

8205,02/26/2022,84.21

8206,03/07/2022,96.24

8207,03/11/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l year_to_date

date year_to_date

01/10/2020 0

02/28/2020 0

04/09/2020 0

04/16/2020 0

05/21/2020 0

08/14/2020 0

10/07/2020 0

12/05/2020 0

01/22/2021 0

02/03/2021 0

03/17/2021 0

04/23/2021 0

05/04/2021 0

06/30/2021 0

07/26/2021 0

12/27/2021 0

02/02/2022 -1

02/26/2022 -1

03/07/2022 -1

03/11/2022 -1

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1140

5 Script and chart functions

Diagram of yeartodate() function, basic example

The year_to_date field is created in the preceding load statement by using the yeartodate() function and
passing the date field as the function’s argument.

Because no further parameters are passed into the function, the yeartodate() function initially identifies the
reload date and therefore the boundaries for the current calendar year (starting January 1) that will return a
Boolean result of TRUE.

Therefore, any transaction that occurs between January 1 and April 26, the reload date, will return a Boolean
result of TRUE. Any transaction that occurs before the start of 2022 will return a Boolean result of FALSE.

Example 2 – yearoffset
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, two_years_prior, that determines which transactions took place a full two

years before the calendar year to date.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yeartodate(date,-2) as two_years_prior

;

Load

*

Inline

[

id,date,amount

8188,01/10/2020,37.23

Script syntax and chart functions - Qlik Sense, May 2023 1141

5 Script and chart functions

8189,02/28/2020,17.17

8190,04/09/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,02/02/2022,46.23

8205,02/26/2022,84.21

8206,03/07/2022,96.24

8207,03/11/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l two_years_prior

date two_years_prior

01/10/2020 -1

02/28/2020 -1

04/09/2020 -1

04/16/2020 -1

05/21/2020 0

08/14/2020 0

10/07/2020 0

12/05/2020 0

01/22/2021 0

02/03/2021 0

03/17/2021 0

04/23/2021 0

05/04/2021 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1142

5 Script and chart functions

date two_years_prior

06/30/2021 0

07/26/2021 0

12/27/2021 0

02/02/2022 0

02/26/2022 0

03/07/2022 0

03/11/2022 0

By using -2 as the yearoffset argument in the yeartodate() function, the function shifts the boundaries of
the comparator calendar year segment by a full two years. Initially, the year segment equates to between
January 1 and April 26, 2022. The yearoffset argument then offsets this segment to two years prior. The date
boundaries will then fall between the January 1 and April 26, 2020.

Diagram of yeartodate() function, yearoffset example

Therefore, any transaction that occurs between January 1 and April 26, 2020 will return a Boolean result of
TRUE. Any transactions that appear before or after this segment will return FALSE.

Example 3 – firstmonth
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, year_to_date, that determines which transactions took place in the calendar

year up to the date of the last reload.

Script syntax and chart functions - Qlik Sense, May 2023 1143

5 Script and chart functions

In this example, we set the start of the fiscal year to July 1.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yeartodate(date,0,7) as year_to_date

;

Load

*

Inline

[

id,date,amount

8188,01/10/2020,37.23

8189,02/28/2020,17.17

8190,04/09/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,02/02/2022,46.23

8205,02/26/2022,84.21

8206,03/07/2022,96.24

8207,03/11/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l year_to_date

date year_to_date

01/10/2020 0

02/28/2020 0

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1144

5 Script and chart functions

date year_to_date

04/09/2020 0

04/16/2020 0

05/21/2020 0

08/14/2020 0

10/07/2020 0

12/05/2020 0

01/22/2021 0

02/03/2021 0

03/17/2021 0

04/23/2021 0

05/04/2021 0

06/30/2021 0

07/26/2021 -1

12/27/2021 -1

02/02/2022 -1

02/26/2022 -1

03/07/2022 -1

03/11/2022 -1

In this instance, because the firstmonth argument of 7 is used in the yeartodate() function, it sets the first
day of the year to July 1, and the last day of the year to June 30.

Diagram of yeartodate() function, firstmonth example

Therefore, any transaction that occurs between July 1, 2021 and April 26, 2022, the reload date, will return a
Boolean result of TRUE. Any transaction that occurs before July 1, 2021 will return a Boolean result of FALSE.

Script syntax and chart functions - Qlik Sense, May 2023 1145

5 Script and chart functions

Example 4 – todaydate
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, year_to_date, that determines which transactions took place in the calendar

year up to the date of the last reload.

However, in this example, we need to identify all transactions that took place in the calendar year up to and
including March 1, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yeartodate(date, 0, 1, '03/01/2022') as year_to_date

;

Load

*

Inline

[

id,date,amount

8188,01/10/2020,37.23

8189,02/28/2020,17.17

8190,04/09/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,02/02/2022,46.23

8205,02/26/2022,84.21

8206,03/07/2022,96.24

8207,03/11/2022,67.67

];

Script syntax and chart functions - Qlik Sense, May 2023 1146

5 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l year_to_date

date year_to_date

01/10/2020 0

02/28/2020 0

04/09/2020 0

04/16/2020 0

05/21/2020 0

08/14/2020 0

10/07/2020 0

12/05/2020 0

01/22/2021 0

02/03/2021 0

03/17/2021 0

04/23/2021 0

05/04/2021 0

06/30/2021 0

07/26/2021 0

12/27/2021 0

02/02/2022 -1

02/26/2022 -1

03/07/2022 0

03/11/2022 0

Results table

In this instance, because the todaydate argument of 03/01/2022 is used in the yeartodate() function, it sets
the end boundary of the comparator calendar year segment to March 1, 2022. It is critical to provide the
firstmonth parameter (between 1 and 12); otherwise the function will return null results.

Script syntax and chart functions - Qlik Sense, May 2023 1147

5 Script and chart functions

Diagram of yeartodate() function, example using todaydate argument

Therefore, any transaction that occurs between January 1, 2022 and March 1, 2022, the todaydate parameter,
will return a Boolean result of TRUE. Any transaction that occurs before January 1, 2022 or after March 1, 2022
will return a Boolean result of FALSE.

Example 5 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that
determines which transactions took place in the calendar year up to the date of the last reload is created as a
measure in a chart object of the application.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,01/10/2020,37.23

8189,02/28/2020,17.17

8190,04/09/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

Script syntax and chart functions - Qlik Sense, May 2023 1148

5 Script and chart functions

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,02/02/2022,46.23

8205,02/26/2022,84.21

8206,03/07/2022,96.24

8207,03/11/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Add the following measure:

=yeartodate(date)

date =yeartodate(date)

01/10/2020 0

02/28/2020 0

04/09/2020 0

04/16/2020 0

05/21/2020 0

08/14/2020 0

10/07/2020 0

12/05/2020 0

01/22/2021 0

02/03/2021 0

03/17/2021 0

04/23/2021 0

05/04/2021 0

06/30/2021 0

07/26/2021 0

12/27/2021 0

02/02/2022 -1

02/26/2022 -1

03/07/2022 -1

03/11/2022 -1

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1149

5 Script and chart functions

The year_to_date measure is created in the chart object by using the yeartodate() function and passing the
date field as the function’s argument.

Because no further parameters are passed into the function, the yeartodate() function initially identifies the
reload date, and therefore the boundaries for the current calendar year (starting January 1) that will return a
Boolean result of TRUE.

Diagram of yeartodate() function, example using chart object

Any transaction that occurs between January 1 and April 26, the reload date, will return a Boolean result of
TRUE. Any transaction that occurs before the start of 2022 will return a Boolean result of FALSE.

Example 6 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.

The end user would like a KPI object that presents the total sales for the equivalent period in 2021 as the
current year to date as at the last reload time.

At the time of writing, the date is June 16, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

Script syntax and chart functions - Qlik Sense, May 2023 1150

5 Script and chart functions

8188,01/10/2020,37.23

8189,02/28/2020,17.17

8190,04/09/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,02/02/2022,46.23

8205,02/26/2022,84.21

8206,03/07/2022,96.24

8207,03/11/2022,67.67

];

Results

Do the following:

1. Create a KPI object.

2. Create the following aggregation measure to calculate total sales:
=sum(if(yeartodate(date,-1),amount,0))

3. Set the measure’s Number formatting to Money.

KPI yeartodate() chart for 2021

Script syntax and chart functions - Qlik Sense, May 2023 1151

5 Script and chart functions

The yeartodate() function returns a Boolean value when evaluating the dates of each transaction ID. Because
the reload took place on June 16, 2022, the yeartodate function segments the year period to between
01/01/2022 and 06/16/2022. However, since a period_no value of -1 was used in the function, these
boundaries are then shifted to the previous year. Therefore, for any transaction that occurs between
01/01/2021 and 06/16/2021, the yeartodate() function returns a Boolean value of TRUE and sums the amount.

5.8 Exponential and logarithmic functions
This section describes functions related to exponential and logarithmic calculations. All functions can be used
in both the data load script and in chart expressions.

In the functions below, the parameters are expressions where x and y should be interpreted as real valued
numbers.

exp
The natural exponential function, e^x, using the natural logarithm e as base. The result is a positive number.

exp(x)

Examples and results:

exp(3) returns 20.085.

log
The natural logarithm of x. The function is only defined if x> 0. The result is a number.

log(x)

Examples and results:

log(3) returns 1.0986

log10
The common logarithm (base 10) of x. The function is only defined if x> 0. The result is a number.

log10(x)

Examples and results:

log10(3) returns 0.4771

pow
Returns x to the power of y. The result is a number.

pow(x,y)

Examples and results:

pow(3, 3) returns 27

Script syntax and chart functions - Qlik Sense, May 2023 1152

5 Script and chart functions

sqr
x squared (x to the power of 2). The result is a number.

sqr (x)

Examples and results:

sqr(3) returns 9

sqrt
Square root of x. The function is only defined if x >= 0. The result is a positive number.

sqrt(x)

Examples and results:

sqrt(3) returns 1.732

5.9 Field functions
These functions can only be used in chart expressions.

Field functions either return integers or strings identifying different aspects of field selections.

Count functions
GetAlternativeCount
GetAlternativeCount()is used to find the number of alternative (light gray) values in the identified field.

GetAlternativeCount - chart function (field_name)

GetExcludedCount
GetExcludedCount() finds the number of excluded distinct values in the identified field. Excluded values
include alternative (light gray), excluded (dark gray), and selected excluded (dark gray with check mark) fields.

GetExcludedCount - chart function (page 1157)(field_name)

GetNotSelectedCount
This chart function returns the number of not-selected values in the field named fieldname. The field must be
in and-mode for this function to be relevant.

GetNotSelectedCount - chart function(fieldname [, includeexcluded=false])

GetPossibleCount
GetPossibleCount() is used to find the number of possible values in the identified field. If the identified field
includes selections, then the selected (green) fields are counted. Otherwise associated (white) values are
counted.

GetPossibleCount - chart function(field_name)

Script syntax and chart functions - Qlik Sense, May 2023 1153

5 Script and chart functions

GetSelectedCount
GetSelectedCount() finds the number of selected (green) values in a field.

GetSelectedCount - chart function (field_name [, include_excluded])

Field and selection functions
GetCurrentSelections
GetCurrentSelections() returns a list of the current selections in the app. If the selections are instead made

using a search string in a search box, GetCurrentSelections() returns the search string.

GetCurrentSelections - chart function([record_sep [,tag_sep [,value_sep

[,max_values]]]])

GetFieldSelections
GetFieldSelections() returns a string with the current selections in a field.

GetFieldSelections - chart function (field_name [, value_sep [, max_

values]])

GetObjectDimension
GetObjectDimension() returns the name of the dimension. Index is an optional integer denoting the
dimension that should be returned.

GetObjectDimension - chart function ([index])

GetObjectField
GetObjectField() returns the name of the dimension. Index is an optional integer denoting the dimension
that should be returned.

GetObjectField - chart function ([index])

GetObjectMeasure
GetObjectMeasure() returns the name of the measure. Index is an optional integer denoting the measure that
should be returned.

GetObjectMeasure - chart function ([index])

GetAlternativeCount - chart function
GetAlternativeCount()is used to find the number of alternative (light gray) values in the identified field.

Syntax:
GetAlternativeCount (field_name)

Script syntax and chart functions - Qlik Sense, May 2023 1154

5 Script and chart functions

Return data type: integer

Arguments:

Argument Description

field_name The field containing the range of data to be measured.

Arguments

Examples and results:

The following example uses the First name field loaded to a filter pane.

Examples Results

Given that John is selected in First name.

GetAlternativeCount ([First name])

4 as there are 4 unique and excluded (gray) values in First
name.

Given that John and Peter are selected.

GetAlternativeCount ([First name])

3 as there are 3 unique and excluded (gray) values in First
name.

Given that no values are selected in First
name.

GetAlternativeCount ([First name])

0 as there are no selections.

Examples and results

Data used in example:

Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC|No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

GetCurrentSelections - chart function
GetCurrentSelections() returns a list of the current selections in the app. If the selections are instead made

using a search string in a search box, GetCurrentSelections() returns the search string.

If options are used, you will need to specify record_sep. To specify a new line, set record_sep to chr(13)&chr
(10).

If all but two, or all but one, values, are selected, the format 'NOT x,y' or 'NOT y' will be used respectively. If
you select all values and the count of all values is greater than max_values, the text ALL will be returned.

Script syntax and chart functions - Qlik Sense, May 2023 1155

5 Script and chart functions

Syntax:
GetCurrentSelections ([record_sep [, tag_sep [, value_sep [, max_values [,

state_name]]]]])

Return data type: string

Arguments:

Arguments Description

record_sep Separator to be put between field records. The default is <CR><LF> meaning a new line.

tag_sep Separator to be put between the field name tag and the field values. The default is ': '.

value_sep The separator to be put between field values. The default is ', '.

max_values The maximum number of field values to be individually listed. When a larger number of
values is selected, the format 'x of y values' will be used instead. The default is 6.

state_name The name of an alternate state that has been chosen for the specific visualization. If the
state_name argument is used, only the selections associated with the specified state
name are taken into account.

Arguments

Examples and results:

The following example uses two fields loaded to different filter panes, one for First name name and one for
Initials.

Examples Results

Given that John is selected in First name.

GetCurrentSelections ()

'First name: John'

Given that John and Peter are selected in First name.

GetCurrentSelections ()

'First name: John,
Peter'

Given that John and Peter are selected in First name and JA is selected in Initials.

GetCurrentSelections ()

'First name: John,
Peter

Initials: JA'

Given that John is selected in First name and JA is selected in Initials.

GetCurrentSelections (chr(13)&chr(10) , ' = ')

'First name = John

Initials = JA'

Given that you have selected all names except Sue in First name and no selections
in Initials.

GetCurrentSelections (chr(13)&chr(10), '=', ',' ,3)

'First
name=NOT Sue'

Examples and results

Script syntax and chart functions - Qlik Sense, May 2023 1156

5 Script and chart functions

Data used in example:

Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC|No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

GetExcludedCount - chart function
GetExcludedCount() finds the number of excluded distinct values in the identified field. Excluded values
include alternative (light gray), excluded (dark gray), and selected excluded (dark gray with check mark) fields.

Syntax:
GetExcludedCount (field_name)

Return data type: string

Arguments:

Arguments Description

field_name The field containing the range of data to be measured.

Arguments

Examples and results:

The following example uses three fields loaded to different filter panes, one for First name , one for Last
name, and one for Initials.

Examples Results

If no values are selected in First
name.

GetExcludedCount (Initials) = 0

There are no selections.

If John is selected in First name. GetExcludedCount (Initials) = 5

There are 5 excluded values in Initials with dark gray color. The
sixth cell (JA) will be white as it is associated with the selection
John in First name.

If John and Peter are selected. GetExcludedCount (Initials) = 3

John is associated with 1 value and Peter is associated with 2
values, in Initials.

Examples and results

Script syntax and chart functions - Qlik Sense, May 2023 1157

5 Script and chart functions

Examples Results

If John and Peter are selected in
First name, and then Franc is
selected in Last name.

GetExcludedCount ([First name]) = 4

There are 4 excluded values in First name with dark gray color.
GetExcludedCount() evaluates for fields with excluded values,
including alternative and selected excluded fields.

If John and Peter are selected in
First name, and then Franc and
Anderson are selected in Last name.

GetExcludedCount (Initials) = 4

There are 4 excluded values in Initials with dark gray color. The
other two cells (JA and PF) will be white as they associated with
the selections John and Peter in First name.

If John and Peter are selected in
First name, and then Franc and
Anderson are selected in Last name.

GetExcludedCount ([Last name]) = 4

There are 4 excluded values in Initials. Devonshire has light gray
color while Brown, Carr, and Elliot have dark gray color.

Data used in example:

Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC|No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

GetFieldSelections - chart function
GetFieldSelections() returns a string with the current selections in a field.

Script syntax and chart functions - Qlik Sense, May 2023 1158

5 Script and chart functions

If all but two, or all but one of the values are selected, the format 'NOT x,y' or 'NOT y' will be used
respectively. If you select all values and the count of all values is greater than max_values, the text ALL will be
returned.

Syntax:
GetFieldSelections (field_name [, value_sep [, max_values [, state_name]]])

Return data type: string

Format Description

'a, b, c' If the number of selected values is max_values or less, the string returned is a list of the
selected values.

The values are separated with value_sep as delimiter.

'NOT a, b, c' If the number of non-selected values is max_values or less, the string returned is a list of the
non-selected values with NOT as a prefix.

The values are separated with value_sep as delimiter.

'x of y' x = the number of selected values

y = the total number of values

This is returned when max_values < x < (y - max_values).

'ALL' Returned if all values are selected.

'-' Returned if no value is selected.

<search
string>

If you have selected using search, the search string is returned.

Return string formats

Arguments:

Arguments Description

field_name The field containing the range of data to be measured.

value_sep The separator to be put between field values. The default is ', '.

max_values The maximum number of field values to be individually listed. When a larger number of
values is selected, the format 'x of y values' will be used instead. The default is 6.

state_name The name of an alternate state that has been chosen for the specific visualization. If the
state_name argument is used, only the selections associated with the specified state
name are taken into account.

Arguments

Examples and results:

The following example uses the First name field loaded to a filter pane.

Script syntax and chart functions - Qlik Sense, May 2023 1159

5 Script and chart functions

Examples Results

Given that John is selected
in First name.

GetFieldSelections

([First name])

'John'

Given that John and Peter
are selected.

GetFieldSelections

([First name])

'John,Peter'

Given that John and Peter
are selected.

GetFieldSelections

([First name],'; ')

'John; Peter'

Given that John, Sue, Mark
are selected in First name.

GetFieldSelections

([First name],';',2)

'NOT Jane;Peter', because the value 2 is stated as the value of the max_
values argument. Otherwise, the result would have been John; Sue; Mark.

Examples and results

Data used in example:

Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC|No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

GetNotSelectedCount - chart function
This chart function returns the number of not-selected values in the field named fieldname. The field must be
in and-mode for this function to be relevant.

Syntax:
GetNotSelectedCount(fieldname [, includeexcluded=false])

Arguments:

Argument Description

fieldname The name of the field to be evaluated.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1160

5 Script and chart functions

Argument Description

includeexcluded If includeexcluded is stated as True, the count will include selected values which are
excluded by selections in another field.

Examples:

GetNotSelectedCount(Country)

GetNotSelectedCount(Country, true)

GetObjectDimension - chart function
GetObjectDimension() returns the name of the dimension. Index is an optional integer denoting the
dimension that should be returned.

You cannot use this function in a chart in the following locations: title, subtitle, footer, reference line
expression.

You cannot reference the name of a dimension or measure in another object using the Object ID.

Syntax:
GetObjectDimension ([index])

Example:

GetObjectDimension(1)

Example: Chart expression
Qlik Sense table showing examples of the GetObjectDimension function in a chart expression

transactio
n_date

custome
r_id

transactio
n_quantity

=GetObjectDimen
sion ()

=GetObjectDimen
sion (0)

=GetObjectDimen
sion (1)

2018/08/30 049681 13 transaction_date transaction_date customer_id

2018/08/30 203521 6 transaction_date transaction_date customer_id

2018/08/30 203521 21 transaction_date transaction_date customer_id

If you want to return the name of a measure, use the GetObjectMeasure function instead.

GetObjectField - chart function
GetObjectField() returns the name of the dimension. Index is an optional integer denoting the dimension
that should be returned.

Script syntax and chart functions - Qlik Sense, May 2023 1161

5 Script and chart functions

You cannot use this function in a chart in the following locations: title, subtitle, footer, reference line
expression.

You cannot reference the name of a dimension or measure in another object using the Object ID.

Syntax:
GetObjectField ([index])

Example:

GetObjectField(1)

Example: Chart expression

transaction_
date

customer_
id

transaction_
quantity

=GetObjectField
()

=GetObjectField
(0)

=GetObjectField
(1)

2018/08/30 049681 13 transaction_date transaction_date customer_id

2018/08/30 203521 6 transaction_date transaction_date customer_id

2018/08/30 203521 21 transaction_date transaction_date customer_id

Qlik Sense table showing examples of the GetObjectField function in a chart expression.

If you want to return the name of a measure, use the GetObjectMeasure function instead.

GetObjectMeasure - chart function
GetObjectMeasure() returns the name of the measure. Index is an optional integer denoting the measure that
should be returned.

You cannot use this function in a chart in the following locations: title, subtitle, footer, reference line
expression.

You cannot reference the name of a dimension or measure in another object using the Object ID.

Syntax:
GetObjectMeasure ([index])

Example:

GetObjectMeasure(1)

Example: Chart expression
Qlik Sense table showing examples of the GetObjectMeasure function in a chart expression

Script syntax and chart functions - Qlik Sense, May 2023 1162

5 Script and chart functions

custome
r_id

sum
(transactio
n_quantity)

Avg
(transactio
n_quantity)

=GetObjectMeas
ure ()

=GetObjectMeas
ure(0)

=GetObjectMeasur
e(1)

49681 13 13 sum(transaction_
quantity)

sum(transaction_
quantity)

Avg(transaction_
quantity)

203521 27 13.5 sum(transaction_
quantity)

sum(transaction_
quantity)

Avg(transaction_
quantity)

If you want to return the name of a dimension, use the GetObjectField function instead.

GetPossibleCount - chart function
GetPossibleCount() is used to find the number of possible values in the identified field. If the identified field
includes selections, then the selected (green) fields are counted. Otherwise associated (white) values are
counted. .

For fields with selections, GetPossibleCount() returns the number of selected (green) fields.

Return data type: integer

Syntax:
GetPossibleCount (field_name)

Arguments:

Arguments Description

field_name The field containing the range of data to be measured.

Arguments

Examples and results:

The following example uses two fields loaded to different filter panes, one for First name name and one for
Initials.

Examples Results

Given that John is selected in First
name.

GetPossibleCount ([Initials])

1 as there is 1 value in Initials associated with the selection, John,
in First name.

Given that John is selected in First
name.

GetPossibleCount ([First name])

1 as there is 1 selection, John, in First name.

Examples and results

Script syntax and chart functions - Qlik Sense, May 2023 1163

5 Script and chart functions

Examples Results

Given that Peteris selected in First
name.

GetPossibleCount ([Initials])

2 as Peter is associated with 2 values in Initials.

Given that no values are selected in
First name.

GetPossibleCount ([First name])

5 as there are no selections and there are 5 unique values in First
name.

Given that no values are selected in
First name.

GetPossibleCount ([Initials])

6 as there are no selections and there are 6 unique values in
Initials.

Data used in example:

Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC|No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

GetSelectedCount - chart function
GetSelectedCount() finds the number of selected (green) values in a field.

Syntax:
GetSelectedCount (field_name [, include_excluded [, state_name]])

Return data type: integer

Arguments:

Arguments Description

field_name The field containing the range of data to be measured.

include_
excluded

If set to True(), the count will include selected values, which are currently excluded by
selections in other fields. If False or omitted, these values will not be included.

state_name The name of an alternate state that has been chosen for the specific visualization. If the
state_name argument is used, only the selections associated with the specified state
name are taken into account.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1164

5 Script and chart functions

Examples and results:

The following example uses three fields loaded to different filter panes, one for First name name, one for
Initials and one for Has cellphone.

Examples Results

Given that John is selected in First name.

GetSelectedCount ([First name])

1 as one value is selected in First name.

Given that John is selected in First name.

GetSelectedCount ([Initials])

0 as no values are selected in Initials.

With no selections in .First name, select all
values in Initials and after that select the
value Yes in Has cellphone.

GetSelectedCount ([Initials], True())

6. Although selections with InitialsMC and PD have Has
cellphone set to No, the result is still 6, because the
argument include_excluded is set to True().

Examples and results

Data used in example:

Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC|No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

5.10 File functions
The file functions (only available in script expressions) return information about the table file
which is currently being read. These functions will return NULL for all data sources except table
files (exception: ConnectString()).

File functions overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Attribute
This script function returns the value of the meta tags of different media files as text. The following file
formats are supported: MP3, WMA, WMV, PNG and JPG. If the file filename does not exist, is not a supported
file format or does not contain a meta tag named attributename, NULL will be returned.

Script syntax and chart functions - Qlik Sense, May 2023 1165

5 Script and chart functions

Attribute (filename, attributename)

ConnectString
The ConnectString() function returns the name of the active data connection for ODBC or
OLE DB connections. The function returns an empty string if no connect statement has been executed, or
after a disconnect statement.

ConnectString ()

FileBaseName
The FileBaseName function returns a string containing the name of the table file currently being read,
without path or extension.

FileBaseName ()

FileDir
The FileDir function returns a string containing the path to the directory of the table file currently being read.

FileDir ()

FileExtension
The FileExtension function returns a string containing the extension of the table file currently being read.

FileExtension ()

FileName
The FileName function returns a string containing the name of the table file currently being read, without
path but including the extension.

FileName ()

FilePath
The FilePath function returns a string containing the full path to the table file currently being read.

FilePath ()

FileSize
The FileSize function returns an integer containing the size in bytes of the file filename or, if no filename is
specified, of the table file currently being read.

FileSize ()

FileTime
The FileTime function returns a timestamp in UTC format of the last modification of a specified file. If a file is
not specified, the function returns a timestamp in UTC of the last modification of the currently read table file.

FileTime ([filename])

GetFolderPath
The GetFolderPath function returns the value of the Microsoft Windows SHGetFolderPath function. This
function takes as input the name of a Microsoft Windows folder and returns the full path of the folder.

Script syntax and chart functions - Qlik Sense, May 2023 1166

5 Script and chart functions

GetFolderPath ()

QvdCreateTime
This script function returns the XML-header timestamp from a QVD file, if any is present, otherwise it returns
NULL. In the timestamp, time is provided in UTC.

QvdCreateTime (filename)

QvdFieldName
This script function returns the name of field number fieldno in a QVD file. If the field does not exist NULL is
returned.

QvdFieldName (filename , fieldno)

QvdNoOfFields
This script function returns the number of fields in a QVD file.

QvdNoOfFields (filename)

QvdNoOfRecords
This script function returns the number of records currently in a QVD file.

QvdNoOfRecords (filename)

QvdTableName
This script function returns the name of the table stored in a QVD file.

QvdTableName (filename)

Attribute
This script function returns the value of the meta tags of different media files as text. The
following file formats are supported: MP3, WMA, WMV, PNG and JPG. If the file filename does
not exist, is not a supported file format or does not contain a meta tag named attributename,
NULL will be returned.

Syntax:
Attribute(filename, attributename)

A large number of meta tags can be read. The examples in this topic show which tags can be read for the
respective supported file types.

You can only read meta tags saved in the file according to the relevant specification, for example
ID2v3 for MP3 files or EXIF for JPG files, not meta information saved in the Windows File Explorer.

Script syntax and chart functions - Qlik Sense, May 2023 1167

5 Script and chart functions

Arguments:

Argument Description

filename The name of a media file including path, if needed, as a folder data connection.

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

attributename The name of a meta tag.

Arguments

The examples use the GetFolderPath function to find the paths to media files. As GetFolderPath is only
supported in legacy mode, you need to replace the references to GetFolderPath with a lib:// data connection
path when you use this function in standard mode or in Qlik Sense SaaS.

File system access restriction (page 1454)

Example 1: MP3 files

This script reads all possible MP3 meta tags in folder MyMusic.

// Script to read MP3 meta tags

for each vExt in 'mp3'

for each vFoundFile in filelist(GetFolderPath('MyMusic') & '*.'& vExt)

FileList:

LOAD FileLongName,

subfield(FileLongName,'\',-1) as FileShortName,

num(FileSize(FileLongName),'# ### ### ###',',',' ') as FileSize,

FileTime(FileLongName) as FileTime,

// ID3v1.0 and ID3v1.1 tags

Attribute(FileLongName, 'Title') as Title,

Attribute(FileLongName, 'Artist') as Artist,

Attribute(FileLongName, 'Album') as Album,

Attribute(FileLongName, 'Year') as Year,

Attribute(FileLongName, 'Comment') as Comment,

Attribute(FileLongName, 'Track') as Track,

Attribute(FileLongName, 'Genre') as Genre,

// ID3v2.3 tags

Attribute(FileLongName, 'AENC') as AENC, // Audio encryption

Attribute(FileLongName, 'APIC') as APIC, // Attached picture

Attribute(FileLongName, 'COMM') as COMM, // Comments

Attribute(FileLongName, 'COMR') as COMR, // Commercial frame

Attribute(FileLongName, 'ENCR') as ENCR, // Encryption method registration

Script syntax and chart functions - Qlik Sense, May 2023 1168

5 Script and chart functions

Attribute(FileLongName, 'EQUA') as EQUA, // Equalization

Attribute(FileLongName, 'ETCO') as ETCO, // Event timing codes

Attribute(FileLongName, 'GEOB') as GEOB, // General encapsulated object

Attribute(FileLongName, 'GRID') as GRID, // Group identification registration

Attribute(FileLongName, 'IPLS') as IPLS, // Involved people list

Attribute(FileLongName, 'LINK') as LINK, // Linked information

Attribute(FileLongName, 'MCDI') as MCDI, // Music CD identifier

Attribute(FileLongName, 'MLLT') as MLLT, // MPEG location lookup table

Attribute(FileLongName, 'OWNE') as OWNE, // Ownership frame

Attribute(FileLongName, 'PRIV') as PRIV, // Private frame

Attribute(FileLongName, 'PCNT') as PCNT, // Play counter

Attribute(FileLongName, 'POPM') as POPM, // Popularimeter

Attribute(FileLongName, 'POSS') as POSS, // Position synchronisation frame

Attribute(FileLongName, 'RBUF') as RBUF, // Recommended buffer size

Attribute(FileLongName, 'RVAD') as RVAD, // Relative volume adjustment

Attribute(FileLongName, 'RVRB') as RVRB, // Reverb

Attribute(FileLongName, 'SYLT') as SYLT, // Synchronized lyric/text

Attribute(FileLongName, 'SYTC') as SYTC, // Synchronized tempo codes

Attribute(FileLongName, 'TALB') as TALB, // Album/Movie/Show title

Attribute(FileLongName, 'TBPM') as TBPM, // BPM (beats per minute)

Attribute(FileLongName, 'TCOM') as TCOM, // Composer

Attribute(FileLongName, 'TCON') as TCON, // Content type

Attribute(FileLongName, 'TCOP') as TCOP, // Copyright message

Attribute(FileLongName, 'TDAT') as TDAT, // Date

Attribute(FileLongName, 'TDLY') as TDLY, // Playlist delay

Attribute(FileLongName, 'TENC') as TENC, // Encoded by

Attribute(FileLongName, 'TEXT') as TEXT, // Lyricist/Text writer

Attribute(FileLongName, 'TFLT') as TFLT, // File type

Attribute(FileLongName, 'TIME') as TIME, // Time

Attribute(FileLongName, 'TIT1') as TIT1, // Content group description

Attribute(FileLongName, 'TIT2') as TIT2, // Title/songname/content description

Attribute(FileLongName, 'TIT3') as TIT3, // Subtitle/Description refinement

Attribute(FileLongName, 'TKEY') as TKEY, // Initial key

Attribute(FileLongName, 'TLAN') as TLAN, // Language(s)

Attribute(FileLongName, 'TLEN') as TLEN, // Length

Attribute(FileLongName, 'TMED') as TMED, // Media type

Attribute(FileLongName, 'TOAL') as TOAL, // Original album/movie/show title

Attribute(FileLongName, 'TOFN') as TOFN, // Original filename

Attribute(FileLongName, 'TOLY') as TOLY, // Original lyricist(s)/text writer(s)

Attribute(FileLongName, 'TOPE') as TOPE, // Original artist(s)/performer(s)

Attribute(FileLongName, 'TORY') as TORY, // Original release year

Attribute(FileLongName, 'TOWN') as TOWN, // File owner/licensee

Attribute(FileLongName, 'TPE1') as TPE1, // Lead performer(s)/Soloist(s)

Attribute(FileLongName, 'TPE2') as TPE2, // Band/orchestra/accompaniment

Attribute(FileLongName, 'TPE3') as TPE3, // Conductor/performer refinement

Attribute(FileLongName, 'TPE4') as TPE4, // Interpreted, remixed, or otherwise modified by

Attribute(FileLongName, 'TPOS') as TPOS, // Part of a set

Attribute(FileLongName, 'TPUB') as TPUB, // Publisher

Attribute(FileLongName, 'TRCK') as TRCK, // Track number/Position in set

Attribute(FileLongName, 'TRDA') as TRDA, // Recording dates

Attribute(FileLongName, 'TRSN') as TRSN, // Internet radio station name

Attribute(FileLongName, 'TRSO') as TRSO, // Internet radio station owner

Attribute(FileLongName, 'TSIZ') as TSIZ, // Size

Attribute(FileLongName, 'TSRC') as TSRC, // ISRC (international standard recording code)

Attribute(FileLongName, 'TSSE') as TSSE, // Software/Hardware and settings used for

encoding

Script syntax and chart functions - Qlik Sense, May 2023 1169

5 Script and chart functions

Attribute(FileLongName, 'TYER') as TYER, // Year

Attribute(FileLongName, 'TXXX') as TXXX, // User defined text information frame

Attribute(FileLongName, 'UFID') as UFID, // Unique file identifier

Attribute(FileLongName, 'USER') as USER, // Terms of use

Attribute(FileLongName, 'USLT') as USLT, // Unsychronized lyric/text transcription

Attribute(FileLongName, 'WCOM') as WCOM, // Commercial information

Attribute(FileLongName, 'WCOP') as WCOP, // Copyright/Legal information

Attribute(FileLongName, 'WOAF') as WOAF, // Official audio file webpage

Attribute(FileLongName, 'WOAR') as WOAR, // Official artist/performer webpage

Attribute(FileLongName, 'WOAS') as WOAS, // Official audio source webpage

Attribute(FileLongName, 'WORS') as WORS, // Official internet radio station homepage

Attribute(FileLongName, 'WPAY') as WPAY, // Payment

Attribute(FileLongName, 'WPUB') as WPUB, // Publishers official webpage

Attribute(FileLongName, 'WXXX') as WXXX; // User defined URL link frame

LOAD @1:n as FileLongName Inline "$(vFoundFile)" (fix, no labels);

Next vFoundFile

Next vExt

Example 2: JPEG

This script reads all possible EXIF meta tags from JPG files in folder MyPictures.

// Script to read Jpeg Exif meta tags

for each vExt in 'jpg', 'jpeg', 'jpe', 'jfif', 'jif', 'jfi'

for each vFoundFile in filelist(GetFolderPath('MyPictures') & '*.'& vExt)

FileList:

LOAD FileLongName,

subfield(FileLongName,'\',-1) as FileShortName,

num(FileSize(FileLongName),'# ### ### ###',',',' ') as FileSize,

FileTime(FileLongName) as FileTime,

// ************ Exif Main (IFD0) Attributes ************

Attribute(FileLongName, 'ImageWidth') as ImageWidth,

Attribute(FileLongName, 'ImageLength') as ImageLength,

Attribute(FileLongName, 'BitsPerSample') as BitsPerSample,

Attribute(FileLongName, 'Compression') as Compression,

// examples: 1=uncompressed, 2=CCITT, 3=CCITT 3, 4=CCITT 4,

//5=LZW, 6=JPEG (old style), 7=JPEG, 8=Deflate, 32773=PackBits RLE,

Attribute(FileLongName, 'PhotometricInterpretation') as PhotometricInterpretation,

// examples: 0=WhiteIsZero, 1=BlackIsZero, 2=RGB, 3=Palette, 5=CMYK, 6=YCbCr,

Attribute(FileLongName, 'ImageDescription') as ImageDescription,

Attribute(FileLongName, 'Make') as Make,

Attribute(FileLongName, 'Model') as Model,

Attribute(FileLongName, 'StripOffsets') as StripOffsets,

Attribute(FileLongName, 'Orientation') as Orientation,

// examples: 1=TopLeft, 2=TopRight, 3=BottomRight, 4=BottomLeft,

// 5=LeftTop, 6=RightTop, 7=RightBottom, 8=LeftBottom,

Attribute(FileLongName, 'SamplesPerPixel') as SamplesPerPixel,

Attribute(FileLongName, 'RowsPerStrip') as RowsPerStrip,

Attribute(FileLongName, 'StripByteCounts') as StripByteCounts,

Attribute(FileLongName, 'XResolution') as XResolution,

Attribute(FileLongName, 'YResolution') as YResolution,

Attribute(FileLongName, 'PlanarConfiguration') as PlanarConfiguration,

// examples: 1=chunky format, 2=planar format,

Attribute(FileLongName, 'ResolutionUnit') as ResolutionUnit,

// examples: 1=none, 2=inches, 3=centimeters,

Attribute(FileLongName, 'TransferFunction') as TransferFunction,

Script syntax and chart functions - Qlik Sense, May 2023 1170

5 Script and chart functions

Attribute(FileLongName, 'Software') as Software,

Attribute(FileLongName, 'DateTime') as DateTime,

Attribute(FileLongName, 'Artist') as Artist,

Attribute(FileLongName, 'HostComputer') as HostComputer,

Attribute(FileLongName, 'WhitePoint') as WhitePoint,

Attribute(FileLongName, 'PrimaryChromaticities') as PrimaryChromaticities,

Attribute(FileLongName, 'YCbCrCoefficients') as YCbCrCoefficients,

Attribute(FileLongName, 'YCbCrSubSampling') as YCbCrSubSampling,

Attribute(FileLongName, 'YCbCrPositioning') as YCbCrPositioning,

// examples: 1=centered, 2=co-sited,

Attribute(FileLongName, 'ReferenceBlackWhite') as ReferenceBlackWhite,

Attribute(FileLongName, 'Rating') as Rating,

Attribute(FileLongName, 'RatingPercent') as RatingPercent,

Attribute(FileLongName, 'ThumbnailFormat') as ThumbnailFormat,

// examples: 0=Raw Rgb, 1=Jpeg,

Attribute(FileLongName, 'Copyright') as Copyright,

Attribute(FileLongName, 'ExposureTime') as ExposureTime,

Attribute(FileLongName, 'FNumber') as FNumber,

Attribute(FileLongName, 'ExposureProgram') as ExposureProgram,

// examples: 0=Not defined, 1=Manual, 2=Normal program, 3=Aperture priority, 4=Shutter

priority,

// 5=Creative program, 6=Action program, 7=Portrait mode, 8=Landscape mode, 9=Bulb,

Attribute(FileLongName, 'ISOSpeedRatings') as ISOSpeedRatings,

Attribute(FileLongName, 'TimeZoneOffset') as TimeZoneOffset,

Attribute(FileLongName, 'SensitivityType') as SensitivityType,

// examples: 0=Unknown, 1=Standard output sensitivity (SOS), 2=Recommended exposure index

(REI),

// 3=ISO speed, 4=Standard output sensitivity (SOS) and Recommended exposure index (REI),

//5=Standard output sensitivity (SOS) and ISO Speed, 6=Recommended exposure index (REI)

and ISO Speed,

// 7=Standard output sensitivity (SOS) and Recommended exposure index (REI) and ISO speed,

Attribute(FileLongName, 'ExifVersion') as ExifVersion,

Attribute(FileLongName, 'DateTimeOriginal') as DateTimeOriginal,

Attribute(FileLongName, 'DateTimeDigitized') as DateTimeDigitized,

Attribute(FileLongName, 'ComponentsConfiguration') as ComponentsConfiguration,

// examples: 1=Y, 2=Cb, 3=Cr, 4=R, 5=G, 6=B,

Attribute(FileLongName, 'CompressedBitsPerPixel') as CompressedBitsPerPixel,

Attribute(FileLongName, 'ShutterSpeedValue') as ShutterSpeedValue,

Attribute(FileLongName, 'ApertureValue') as ApertureValue,

Attribute(FileLongName, 'BrightnessValue') as BrightnessValue, // examples: -1=Unknown,

Attribute(FileLongName, 'ExposureBiasValue') as ExposureBiasValue,

Attribute(FileLongName, 'MaxApertureValue') as MaxApertureValue,

Attribute(FileLongName, 'SubjectDistance') as SubjectDistance,

// examples: 0=Unknown, -1=Infinity,

Attribute(FileLongName, 'MeteringMode') as MeteringMode,

// examples: 0=Unknown, 1=Average, 2=CenterWeightedAverage, 3=Spot,

// 4=MultiSpot, 5=Pattern, 6=Partial, 255=Other,

Attribute(FileLongName, 'LightSource') as LightSource,

// examples: 0=Unknown, 1=Daylight, 2=Fluorescent, 3=Tungsten, 4=Flash, 9=Fine weather,

// 10=Cloudy weather, 11=Shade, 12=Daylight fluorescent,

// 13=Day white fluorescent, 14=Cool white fluorescent,

// 15=White fluorescent, 17=Standard light A, 18=Standard light B, 19=Standard light C,

// 20=D55, 21=D65, 22=D75, 23=D50, 24=ISO studio tungsten, 255=other light source,

Attribute(FileLongName, 'Flash') as Flash,

Attribute(FileLongName, 'FocalLength') as FocalLength,

Attribute(FileLongName, 'SubjectArea') as SubjectArea,

Attribute(FileLongName, 'MakerNote') as MakerNote,

Script syntax and chart functions - Qlik Sense, May 2023 1171

5 Script and chart functions

Attribute(FileLongName, 'UserComment') as UserComment,

Attribute(FileLongName, 'SubSecTime') as SubSecTime,

Attribute(FileLongName, 'SubsecTimeOriginal') as SubsecTimeOriginal,

Attribute(FileLongName, 'SubsecTimeDigitized') as SubsecTimeDigitized,

Attribute(FileLongName, 'XPTitle') as XPTitle,

Attribute(FileLongName, 'XPComment') as XPComment,

Attribute(FileLongName, 'XPAuthor') as XPAuthor,

Attribute(FileLongName, 'XPKeywords') as XPKeywords,

Attribute(FileLongName, 'XPSubject') as XPSubject,

Attribute(FileLongName, 'FlashpixVersion') as FlashpixVersion,

Attribute(FileLongName, 'ColorSpace') as ColorSpace, // examples: 1=sRGB,

65535=Uncalibrated,

Attribute(FileLongName, 'PixelXDimension') as PixelXDimension,

Attribute(FileLongName, 'PixelYDimension') as PixelYDimension,

Attribute(FileLongName, 'RelatedSoundFile') as RelatedSoundFile,

Attribute(FileLongName, 'FocalPlaneXResolution') as FocalPlaneXResolution,

Attribute(FileLongName, 'FocalPlaneYResolution') as FocalPlaneYResolution,

Attribute(FileLongName, 'FocalPlaneResolutionUnit') as FocalPlaneResolutionUnit,

// examples: 1=None, 2=Inch, 3=Centimeter,

Attribute(FileLongName, 'ExposureIndex') as ExposureIndex,

Attribute(FileLongName, 'SensingMethod') as SensingMethod,

// examples: 1=Not defined, 2=One-chip color area sensor, 3=Two-chip color area sensor,

// 4=Three-chip color area sensor, 5=Color sequential area sensor,

// 7=Trilinear sensor, 8=Color sequential linear sensor,

Attribute(FileLongName, 'FileSource') as FileSource,

// examples: 0=Other, 1=Scanner of transparent type,

// 2=Scanner of reflex type, 3=Digital still camera,

Attribute(FileLongName, 'SceneType') as SceneType,

// examples: 1=A directly photographed image,

Attribute(FileLongName, 'CFAPattern') as CFAPattern,

Attribute(FileLongName, 'CustomRendered') as CustomRendered,

// examples: 0=Normal process, 1=Custom process,

Attribute(FileLongName, 'ExposureMode') as ExposureMode,

// examples: 0=Auto exposure, 1=Manual exposure, 2=Auto bracket,

Attribute(FileLongName, 'WhiteBalance') as WhiteBalance,

// examples: 0=Auto white balance, 1=Manual white balance,

Attribute(FileLongName, 'DigitalZoomRatio') as DigitalZoomRatio,

Attribute(FileLongName, 'FocalLengthIn35mmFilm') as FocalLengthIn35mmFilm,

Attribute(FileLongName, 'SceneCaptureType') as SceneCaptureType,

// examples: 0=Standard, 1=Landscape, 2=Portrait, 3=Night scene,

Attribute(FileLongName, 'GainControl') as GainControl,

// examples: 0=None, 1=Low gain up, 2=High gain up, 3=Low gain down, 4=High gain down,

Attribute(FileLongName, 'Contrast') as Contrast,

// examples: 0=Normal, 1=Soft, 2=Hard,

Attribute(FileLongName, 'Saturation') as Saturation,

// examples: 0=Normal, 1=Low saturation, 2=High saturation,

Attribute(FileLongName, 'Sharpness') as Sharpness,

// examples: 0=Normal, 1=Soft, 2=Hard,

Attribute(FileLongName, 'SubjectDistanceRange') as SubjectDistanceRange,

// examples: 0=Unknown, 1=Macro, 2=Close view, 3=Distant view,

Attribute(FileLongName, 'ImageUniqueID') as ImageUniqueID,

Attribute(FileLongName, 'BodySerialNumber') as BodySerialNumber,

Attribute(FileLongName, 'CMNT_GAMMA') as CMNT_GAMMA,

Attribute(FileLongName, 'PrintImageMatching') as PrintImageMatching,

Attribute(FileLongName, 'OffsetSchema') as OffsetSchema,

// ************ Interoperability Attributes ************

Attribute(FileLongName, 'InteroperabilityIndex') as InteroperabilityIndex,

Script syntax and chart functions - Qlik Sense, May 2023 1172

5 Script and chart functions

Attribute(FileLongName, 'InteroperabilityVersion') as InteroperabilityVersion,

Attribute(FileLongName, 'InteroperabilityRelatedImageFileFormat') as

InteroperabilityRelatedImageFileFormat,

Attribute(FileLongName, 'InteroperabilityRelatedImageWidth') as

InteroperabilityRelatedImageWidth,

Attribute(FileLongName, 'InteroperabilityRelatedImageLength') as

InteroperabilityRelatedImageLength,

Attribute(FileLongName, 'InteroperabilityColorSpace') as InteroperabilityColorSpace,

// examples: 1=sRGB, 65535=Uncalibrated,

Attribute(FileLongName, 'InteroperabilityPrintImageMatching') as

InteroperabilityPrintImageMatching,

// ************ GPS Attributes ************

Attribute(FileLongName, 'GPSVersionID') as GPSVersionID,

Attribute(FileLongName, 'GPSLatitudeRef') as GPSLatitudeRef,

Attribute(FileLongName, 'GPSLatitude') as GPSLatitude,

Attribute(FileLongName, 'GPSLongitudeRef') as GPSLongitudeRef,

Attribute(FileLongName, 'GPSLongitude') as GPSLongitude,

Attribute(FileLongName, 'GPSAltitudeRef') as GPSAltitudeRef,

// examples: 0=Above sea level, 1=Below sea level,

Attribute(FileLongName, 'GPSAltitude') as GPSAltitude,

Attribute(FileLongName, 'GPSTimeStamp') as GPSTimeStamp,

Attribute(FileLongName, 'GPSSatellites') as GPSSatellites,

Attribute(FileLongName, 'GPSStatus') as GPSStatus,

Attribute(FileLongName, 'GPSMeasureMode') as GPSMeasureMode,

Attribute(FileLongName, 'GPSDOP') as GPSDOP,

Attribute(FileLongName, 'GPSSpeedRef') as GPSSpeedRef,

Attribute(FileLongName, 'GPSSpeed') as GPSSpeed,

Attribute(FileLongName, 'GPSTrackRef') as GPSTrackRef,

Attribute(FileLongName, 'GPSTrack') as GPSTrack,

Attribute(FileLongName, 'GPSImgDirectionRef') as GPSImgDirectionRef,

Attribute(FileLongName, 'GPSImgDirection') as GPSImgDirection,

Attribute(FileLongName, 'GPSMapDatum') as GPSMapDatum,

Attribute(FileLongName, 'GPSDestLatitudeRef') as GPSDestLatitudeRef,

Attribute(FileLongName, 'GPSDestLatitude') as GPSDestLatitude,

Attribute(FileLongName, 'GPSDestLongitudeRef') as GPSDestLongitudeRef,

Attribute(FileLongName, 'GPSDestLongitude') as GPSDestLongitude,

Attribute(FileLongName, 'GPSDestBearingRef') as GPSDestBearingRef,

Attribute(FileLongName, 'GPSDestBearing') as GPSDestBearing,

Attribute(FileLongName, 'GPSDestDistanceRef') as GPSDestDistanceRef,

Attribute(FileLongName, 'GPSDestDistance') as GPSDestDistance,

Attribute(FileLongName, 'GPSProcessingMethod') as GPSProcessingMethod,

Attribute(FileLongName, 'GPSAreaInformation') as GPSAreaInformation,

Attribute(FileLongName, 'GPSDateStamp') as GPSDateStamp,

Attribute(FileLongName, 'GPSDifferential') as GPSDifferential;

// examples: 0=No correction, 1=Differential correction,

LOAD @1:n as FileLongName Inline "$(vFoundFile)" (fix, no labels);

Next vFoundFile

Next vExt

Example 3: Windows media files

This script reads all possible WMA/WMV ASF meta tags in folder MyMusic.

/ Script to read WMA/WMV ASF meta tags

for each vExt in 'asf', 'wma', 'wmv'

for each vFoundFile in filelist(GetFolderPath('MyMusic') & '*.'& vExt)

Script syntax and chart functions - Qlik Sense, May 2023 1173

5 Script and chart functions

FileList:

LOAD FileLongName,

subfield(FileLongName,'\',-1) as FileShortName,

num(FileSize(FileLongName),'# ### ### ###',',',' ') as FileSize,

FileTime(FileLongName) as FileTime,

Attribute(FileLongName, 'Title') as Title,

Attribute(FileLongName, 'Author') as Author,

Attribute(FileLongName, 'Copyright') as Copyright,

Attribute(FileLongName, 'Description') as Description,

Attribute(FileLongName, 'Rating') as Rating,

Attribute(FileLongName, 'PlayDuration') as PlayDuration,

Attribute(FileLongName, 'MaximumBitrate') as MaximumBitrate,

Attribute(FileLongName, 'WMFSDKVersion') as WMFSDKVersion,

Attribute(FileLongName, 'WMFSDKNeeded') as WMFSDKNeeded,

Attribute(FileLongName, 'IsVBR') as IsVBR,

Attribute(FileLongName, 'ASFLeakyBucketPairs') as ASFLeakyBucketPairs,

Attribute(FileLongName, 'PeakValue') as PeakValue,

Attribute(FileLongName, 'AverageLevel') as AverageLevel;

LOAD @1:n as FileLongName Inline "$(vFoundFile)" (fix, no labels);

Next vFoundFile

Next vExt

Example 4: PNG

This script reads all possible PNG meta tags in folder MyPictures.

// Script to read PNG meta tags

for each vExt in 'png'

for each vFoundFile in filelist(GetFolderPath('MyPictures') & '*.'& vExt)

FileList:

LOAD FileLongName,

subfield(FileLongName,'\',-1) as FileShortName,

num(FileSize(FileLongName),'# ### ### ###',',',' ') as FileSize,

FileTime(FileLongName) as FileTime,

Attribute(FileLongName, 'Comment') as Comment,

Attribute(FileLongName, 'Creation Time') as Creation_Time,

Attribute(FileLongName, 'Source') as Source,

Attribute(FileLongName, 'Title') as Title,

Attribute(FileLongName, 'Software') as Software,

Attribute(FileLongName, 'Author') as Author,

Attribute(FileLongName, 'Description') as Description,

Attribute(FileLongName, 'Copyright') as Copyright;

LOAD @1:n as FileLongName Inline "$(vFoundFile)" (fix, no labels);

Next vFoundFile

Next vExt

ConnectString
The ConnectString() function returns the name of the active data connection for ODBC or
OLE DB connections. The function returns an empty string if no connect statement has been
executed, or after a disconnect statement.

Script syntax and chart functions - Qlik Sense, May 2023 1174

5 Script and chart functions

Syntax:
ConnectString()

Examples and results:

Example Result

LIB CONNECT TO 'Tutorial ODBC';

ConnectString:

Load ConnectString() as

ConnectString AutoGenerate 1;

Returns 'Tutorial ODBC' in field ConnectString.

This examples assumes that you have an available data
connection called Tutorial ODBC.

Scripting examples

FileBaseName
The FileBaseName function returns a string containing the name of the table file currently being
read, without path or extension.

Syntax:
FileBaseName()

Examples and results:

Example Result

LOAD *, filebasename() as X from

C:\UserFiles\abc.txt
Will return 'abc' in field X in each record read.

Scripting examples

FileDir
The FileDir function returns a string containing the path to the directory of the table file
currently being read.

Syntax:
FileDir()

This function supports only folder data connections in standard mode.

Examples and results:

Example Result

Load *, filedir() as X from

C:\UserFiles\abc.txt
Will return 'C:\UserFiles' in field X in each record read.

Scripting examples

Script syntax and chart functions - Qlik Sense, May 2023 1175

5 Script and chart functions

FileExtension
The FileExtension function returns a string containing the extension of the table file currently
being read.

Syntax:
FileExtension()

Examples and results:

Example Result

LOAD *, FileExtension() as X from

C:\UserFiles\abc.txt
Will return 'txt' in field X in each record read.

Scripting examples

FileName
The FileName function returns a string containing the name of the table file currently being
read, without path but including the extension.

Syntax:
FileName()

Examples and results:

Example Result

LOAD *, FileName() as X from

C:\UserFiles\abc.txt
Will return 'abc.txt' in field X in each record read.

Scripting examples

FilePath
The FilePath function returns a string containing the full path to the table file currently being
read.

Syntax:
FilePath()

This function supports only folder data connections in standard mode.

Examples and results:

Example Result

Load *, FilePath() as X from

C:\UserFiles\abc.txt
Will return 'C:\UserFiles\abc.txt' in field X in each record read.

Scripting examples

Script syntax and chart functions - Qlik Sense, May 2023 1176

5 Script and chart functions

FileSize
The FileSize function returns an integer containing the size in bytes of the file filename or, if no filename is
specified, of the table file currently being read.

Syntax:
FileSize([filename])

Arguments:

Argument Description

filename The name of a file, if necessary including path, as a folder or web file data connection. If
you don't specify a file name, the table file currently being read is used.

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.

Example: http://www.qlik.com

Arguments

Examples and results:

Example Result

LOAD *, FileSize() as X from

abc.txt;
Will return the size of the specified file (abc.txt) as an integer in field X
in each record read.

FileSize(

'lib://DataFiles/xyz.xls')
Will return the size of the file xyz.xls.

Scripting examples

FileTime
The FileTime function returns a timestamp in UTC format of the last modification of a specified
file. If a file is not specified, the function returns a timestamp in UTC of the last modification of
the currently read table file.

Syntax:
FileTime([filename])

Script syntax and chart functions - Qlik Sense, May 2023 1177

5 Script and chart functions

Arguments:

Argument Description

filename The name of a file, if necessary including path, as a folder or web file data connection.

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.

Example: http://www.qlik.com

Arguments

Examples and results:

Example Result

LOAD *, FileTime() as X

from abc.txt;
Will return the timestamp of the last modification of the file (abc.txt) in
field X in each record read.

FileTime('xyz.xls') Will return the timestamp of the last modification of the file xyz.xls.

Script examples

GetFolderPath
The GetFolderPath function returns the value of the Microsoft Windows SHGetFolderPath
function. This function takes as input the name of a Microsoft Windows folder and returns the
full path of the folder.

This function is not supported in standard mode. .

Syntax:
GetFolderPath(foldername)

Script syntax and chart functions - Qlik Sense, May 2023 1178

5 Script and chart functions

Arguments:

Argument Description

foldername Name of the Microsoft Windows folder.

The folder name should not contain any space. Any space in the folder name seen in
Windows Explorer should be removed from the folder name.

Examples:

MyMusic

MyDocuments

Arguments

Examples and results:

The goal of this example is to get the paths of the following Microsoft Windows folders: MyMusic, MyPictures
and Windows. Add the example script to your app and reload it.

LOAD

GetFolderPath('MyMusic') as MyMusic,

GetFolderPath('MyPictures') as MyPictures,

GetFolderPath('Windows') as Windows

AutoGenerate 1;

Once the app is reloaded, the fields MyMusic, MyPictures and Windows are added to the data model. Each field
contains the path to the folder defined in input. For example:

l C:\Users\smu\Music for the folder MyMusic
l C:\Users\smu\Pictures for the folder MyPictures
l C:\Windows for the folder Windows

QvdCreateTime
This script function returns the XML-header timestamp from a QVD file, if any is present,
otherwise it returns NULL. In the timestamp, time is provided in UTC.

Syntax:
QvdCreateTime(filename)

Script syntax and chart functions - Qlik Sense, May 2023 1179

5 Script and chart functions

Arguments:

Argument Description

filename The name of a QVD file, if necessary including path, as a folder or web data connection.

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.

Example: http://www.qlik.com

Arguments

Example:

QvdCreateTime('MyFile.qvd')

QvdCreateTime('C:\MyDir\MyFile.qvd')

QvdCreateTime('lib://DataFiles/MyFile.qvd')

QvdFieldName
This script function returns the name of field number fieldno in a QVD file. If the field does not
exist NULL is returned.

Syntax:
QvdFieldName(filename , fieldno)

Script syntax and chart functions - Qlik Sense, May 2023 1180

5 Script and chart functions

Arguments:

Argument Description

filename The name of a QVD file, if necessary including path, as a folder or web data connection.

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.

Example: http://www.qlik.com

fieldno The number of the field within the table contained in the QVD file.

Arguments

Examples:

QvdFieldName ('MyFile.qvd', 5)

QvdFieldName ('C:\MyDir\MyFile.qvd', 5)

QvdFieldName ('lib://DataFiles/MyFile.qvd', 5)

All three examples return the name of the fifth field of the table contained in the QVD file.

QvdNoOfFields
This script function returns the number of fields in a QVD file.

Syntax:
QvdNoOfFields(filename)

Script syntax and chart functions - Qlik Sense, May 2023 1181

5 Script and chart functions

Arguments:

Argument Description

filename The name of a QVD file, if necessary including path, as a folder or web data connection.

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.

Example: http://www.qlik.com

Arguments

Examples:

QvdNoOfFields ('MyFile.qvd')

QvdNoOfFields ('C:\MyDir\MyFile.qvd')

QvdNoOfFields ('lib://DataFiles/MyFile.qvd')

QvdNoOfRecords

Example: This script function returns the number of records currently in a QVD file.

Syntax:
QvdNoOfRecords(filename)

Script syntax and chart functions - Qlik Sense, May 2023 1182

5 Script and chart functions

Arguments:

Argument Description

filename The name of a QVD file, if necessary including path, as a folder or web data connection.

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.

Example: http://www.qlik.com

Arguments

Examples:

QvdNoOfRecords ('MyFile.qvd')

QvdNoOfRecords ('C:\MyDir\MyFile.qvd')

QvdNoOfRecords ('lib://DataFiles/MyFile.qvd')

QvdTableName
This script function returns the name of the table stored in a QVD file.

Syntax:
QvdTableName(filename)

Script syntax and chart functions - Qlik Sense, May 2023 1183

5 Script and chart functions

Arguments:

Argument Description

filename The name of a QVD file, if necessary including path, as a folder or web data connection.

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.

Example: http://www.qlik.com

Arguments

Examples:

QvdTableName ('MyFile.qvd')

QvdTableName ('C:\MyDir\MyFile.qvd')

QvdTableName ('lib://data\MyFile.qvd')

5.11 Financial functions
Financial functions can be used in the data load script and in chart expressions to calculate payments and
interest rates.
For all the arguments, cash that is paid out is represented by negative numbers. Cash received is represented
by positive numbers.
Listed here are the arguments that are used in the financial functions (excepting the ones beginning with
range-).

For all financial functions it is vital that you are consistent when specifying units for rate and nper. If
monthly payments are made on a five-year loan at 6% annual interest, use 0.005 (6%/12) for rate
and 60 (5*12) for nper. If annual payments are made on the same loan, use 6% for rate and 5 for
nper.

Financial functions overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Script syntax and chart functions - Qlik Sense, May 2023 1184

5 Script and chart functions

FV
This function returns the future value of an investment based on periodic, constant payments and a simple
annual interest.

FV (rate, nper, pmt [,pv [, type]])

nPer
This function returns the number of periods for an investment based on periodic, constant payments and a
constant interest rate.

nPer (rate, pmt, pv [,fv [, type]])

Pmt
This function returns the payment for a loan based on periodic, constant payments and a constant interest
rate. It cannot change over the life of the annuity. A payment is stated as a negative number, for example, -20.

Pmt (rate, nper, pv [,fv [, type]])

PV
This function returns the present value of an investment.

PV (rate, nper, pmt [,fv [, type]])

Rate
This function returns the interest rate per period on annuity. The result has a default number format of Fix
two decimals and %.

Rate (nper, pmt , pv [,fv [, type]])

BlackAndSchole
The Black and Scholes model is a mathematical model for financial market derivative instruments. The
formula calculates the theoretical value of an option. In Qlik Sense, the BlackAndSchole function returns the
value according to the Black and Scholes unmodified formula (European style options).

BlackAndSchole(strike , time_left , underlying_price , vol , risk_free_rate ,

type)

Return data type: numeric

Arguments:

Argument Description

strike The future purchase price of the stock.

time_left The number of time periods remaining.

underlying_price The current value of the stock.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1185

5 Script and chart functions

Argument Description

vol Volatility (of the stock price) expressed as a percentage in decimal form, per time
period.

risk_free_rate The risk-free rate expressed as a percentage in decimal form, per time period.

call_or_put The type of option:

'c', 'call' or any non-zero numeric value for call options

'p', 'put' or 0 for put options.

Limitations:

The value of strike, time_left, and underlying_price must be >0.

The value of vol and risk_free_rate must be: <0 or >0.

Examples and results:

Example Result

BlackAndSchole(130, 4, 68.5, 0.4, 0.04, 'call')

This calculates the theoretical price of an option to buy a share that is worth 68.5 today, at a
value of 130 in 4 years. The formula uses a volatility of 0.4 (40%) per year and a risk-free
interest rate of 0.04 (4%).

Returns
11.245

Scripting examples

FV
This function returns the future value of an investment based on periodic, constant payments
and a simple annual interest.

Syntax:
FV(rate, nper, pmt [,pv [, type]])

Return data type: numeric. By default, the result will be formatted as currency..

Arguments:

Argument Description

rate The interest rate per period.

nper The total number of payment periods in an annuity.

pmt The payment made each period. It cannot change over the life of the annuity. A payment is
stated as a negative number, for example, -20.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1186

5 Script and chart functions

Argument Description

pv The present value, or lump-sum amount, that a series of future payments is worth right
now. If pv is omitted, it is assumed to be 0 (zero).

type Should be 0 if payments are due at the end of the period and 1 if payments are due at the
beginning of the period. If type is omitted, it is assumed to be 0.

Examples and results:

Example Result

You are paying a new household appliance by 36 monthly installments of $20. The interest
rate is 6% per annum. The bill comes at the end of every month. What is the total invested,
when the last bill has been paid?

FV(0.005,36,-20)

Returns
$786.72

Scripting example

nPer
This function returns the number of periods for an investment based on periodic, constant
payments and a constant interest rate.

Syntax:
nPer(rate, pmt, pv [,fv [, type]])

Return data type: numeric

Arguments:

Argument Description

rate The interest rate per period.

nper The total number of payment periods in an annuity.

pmt The payment made each period. It cannot change over the life of the annuity. A payment is
stated as a negative number, for example, -20.

pv The present value, or lump-sum amount, that a series of future payments is worth right
now. If pv is omitted, it is assumed to be 0 (zero).

fv The future value, or cash balance, you want to attain after the last payment is made. If fv is
omitted, it is assumed to be 0.

type Should be 0 if payments are due at the end of the period and 1 if payments are due at the
beginning of the period. If type is omitted, it is assumed to be 0.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1187

5 Script and chart functions

Examples and results:

Example Result

You want to sell a household appliance by monthly installments of $20. The interest rate is 6%
per annum. The bill comes at the end of every month. How many periods are required if the
value of the money received after the last bill has been paid should equal $800?

nPer(0.005,-20,0,800)

Returns
36.56

Scripting example

Pmt
This function returns the payment for a loan based on periodic, constant payments and a
constant interest rate. It cannot change over the life of the annuity. A payment is stated as a
negative number, for example, -20.

Pmt(rate, nper, pv [,fv [, type]])

Return data type: numeric. By default, the result will be formatted as currency..

To find the total amount paid over the duration of the loan, multiply the returned pmt value by nper.

Arguments:

Argument Description

rate The interest rate per period.

nper The total number of payment periods in an annuity.

pv The present value, or lump-sum amount, that a series of future payments is worth right
now. If pv is omitted, it is assumed to be 0 (zero).

fv The future value, or cash balance, you want to attain after the last payment is made. If fv is
omitted, it is assumed to be 0.

type Should be 0 if payments are due at the end of the period and 1 if payments are due at the
beginning of the period. If type is omitted, it is assumed to be 0.

Arguments

Examples and results:

Example Result

The following formula returns the monthly payment on a $20,000 loan at an annual rate of
10 percent, that must be paid off in 8 months:

Pmt(0.1/12,8,20000)

Returns -
$2,594.66

Scripting examples

Script syntax and chart functions - Qlik Sense, May 2023 1188

5 Script and chart functions

Example Result

For the same loan, if payment is due at the beginning of the period, the payment is:

Pmt(0.1/12,8,20000,0,1)

Returns -
$2,573.21

PV
This function returns the present value of an investment.

PV(rate, nper, pmt [,fv [, type]])

Return data type: numeric. By default, the result will be formatted as currency..

The present value is the total amount that a series of future payments is worth right now. For example, when
borrowing money, the loan amount is the present value to the lender.

Arguments:

Argument Description

rate The interest rate per period.

nper The total number of payment periods in an annuity.

pmt The payment made each period. It cannot change over the life of the annuity. A payment is
stated as a negative number, for example, -20.

fv The future value, or cash balance, you want to attain after the last payment is made. If fv is
omitted, it is assumed to be 0.

type Should be 0 if payments are due at the end of the period and 1 if payments are due at the
beginning of the period. If type is omitted, it is assumed to be 0.

Arguments

Examples and results:

Example Result

What is the present value of a debt, when you have to pay $100 at the end of each month
during a five-year period, given an interest rate of 7%?

PV(0.07/12,12*5,-100,0,0)

Returns
$5,050.20

Scripting example

Rate
This function returns the interest rate per period on annuity. The result has a default number
format of Fix two decimals and %.

Syntax:
Rate(nper, pmt , pv [,fv [, type]])

Script syntax and chart functions - Qlik Sense, May 2023 1189

5 Script and chart functions

Return data type: numeric.

The rate is calculated by iteration and can have zero or more solutions. If the successive results of rate do not
converge, a NULL value will be returned.

Arguments:

Argument Description

nper The total number of payment periods in an annuity.

pmt The payment made each period. It cannot change over the life of the annuity. A payment is
stated as a negative number, for example, -20.

pv The present value, or lump-sum amount, that a series of future payments is worth right
now. If pv is omitted, it is assumed to be 0 (zero).

fv The future value, or cash balance, you want to attain after the last payment is made. If fv is
omitted, it is assumed to be 0.

type Should be 0 if payments are due at the end of the period and 1 if payments are due at the
beginning of the period. If type is omitted, it is assumed to be 0.

Arguments

Examples and results:

Example Result

What is the interest rate of a five-year $10,000 annuity loan with monthly payments of
$300?

Rate(60,-300,10000)

Returns
2.00%

Scripting example

5.12 Formatting functions
The formatting functions impose the display format on the input numeric fields or expressions, Depending on
data type, you can specify the characters for the decimal separator, thousands separator, and so on.

The functions all return a dual value with both the string and the number value, but can be thought of as
performing a number-to-string conversion. Dual() is a special case, but the other formatting functions take the
numeric value of the input expression and generate a string representing the number.

In contrast, the interpretation functions do the opposite: they take string expressions and evaluate them as
numbers, specifying the format of the resulting number.

The functions can be used both in data load scripts and chart expressions.

All number representations are given with a decimal point as the decimal separator.

Script syntax and chart functions - Qlik Sense, May 2023 1190

5 Script and chart functions

Formatting functions overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

ApplyCodepage
ApplyCodepage() applies a different code page character set to the field or text stated in the expression. The
codepage argument must be in number format.

ApplyCodepage (text, codepage)

Date
Date() formats an expression as a date using the format set in the system variables in the data load script, or
the operating system, or a format string, if supplied.

Date (number[, format])

Dual
Dual() combines a number and a string into a single record, such that the number representation of the
record can be used for sorting and calculation purposes, while the string value can be used for display
purposes.

Dual (text, number)

Interval
Interval() formats a number as a time interval using the format in the system variables in the data load script,
or the operating system, or a format string, if supplied.

Interval (number[, format])

Money
Money() formats an expression numerically as a money value, in the format set in the system variables set in
the data load script, or in the operating system, unless a format string is supplied, and optional decimal and
thousands separators.

Money (number[, format[, dec_sep [, thou_sep]]])

Num
Num() formats a number, that is it converts the numeric value of the input to display text using the format
specified in the second parameter. If the second parameter is omitted, it uses the decimal and thousand
separators set in the data load script. Custom decimal and thousand separator symbols are optional
parameters.

Num (number[, format[, dec_sep [, thou_sep]]])

Time
Time() formats an expression as a time value, in the time format set in the system variables in the data load
script, or in the operating system, unless a format string is supplied.

Time (number[, format])

Script syntax and chart functions - Qlik Sense, May 2023 1191

5 Script and chart functions

Timestamp
TimeStamp() formats an expression as a date and time value, in the timestamp format set in the system
variables in the data load script, or in the operating system, unless a format string is supplied.

Timestamp (number[, format])

See also:

p Interpretation functions (page 1224)

ApplyCodepage
ApplyCodepage() applies a different code page character set to the field or text stated in the
expression. The codepage argument must be in number format.

Although ApplyCodepage can be used in chart expressions, it is more commonly used as a script
function in the data load editor. For example, as you load files that might have been saved in
different character sets out of your control, you can apply the code page that represents the
character set you require.

Syntax:
ApplyCodepage(text, codepage)

Return data type: string

Arguments:

Argument Description

text Field or text to which you want to apply a different code page, given by the argument
codepage.

codepage Number representing the code page to be applied to the field or expression given by text.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1192

5 Script and chart functions

Examples and results:

Example Result

LOAD

ApplyCodepage(ROWX,1253)

as GreekProduct,

ApplyCodepage (ROWY,

1255) as HebrewProduct,

ApplyCodepage (ROWZ,

65001) as

EnglishProduct;

SQL SELECT ROWX, ROWY,

ROWZ From Products;

When loading from SQL the source might have a mixture of different
character sets: Cyrillic, Hebrew, and so on, from the UTF-8 format. These
would be required to be loaded row by row, applying a different code page
for each row.

The codepage value 1253 represents Windows Greek character set, the value
1255 represents Hebrew, and the value 65001 represents standard Latin
UTF-8 characters.

Scripting examples

See also: Character set (page 161)

Date
Date() formats an expression as a date using the format set in the system variables in the data
load script, or the operating system, or a format string, if supplied.

Syntax:
Date(number[, format])

Return data type: dual

Arguments:

Argument Description

number The number to be formatted.

format String describing the format of the resulting string. If no format string is supplied, the date
format set in the system variables in the data load script, or the operating system is used.

Arguments

Examples and results:
The examples below assume the following default settings:

l Date setting 1: YY-MM-DD
l Date setting 2: M/D/YY

Example:

Date(A)

where A=35648

Script syntax and chart functions - Qlik Sense, May 2023 1193

5 Script and chart functions

Results Setting 1 Setting 2

String: 97-08-06 8/6/97

Number: 35648 35648

Results table

Example:

Date(A, 'YY.MM.DD')

where A=35648

Results Setting 1 Setting 2

String: 97.08.06 97.08.06

Number: 35648 35648

Results table

Example:

Date(A, 'DD.MM.YYYY')

where A=35648.375

Results Setting 1 Setting 2

String: 06.08.1997 06.08.1997

Number: 35648.375 35648.375

Results table

Example:

Date(A, 'YY.MM.DD')

where A=8/6/97

Results Setting 1 Setting 2

String: NULL (nothing) 97.08.06

Number: NULL 35648

Results table

Dual
Dual() combines a number and a string into a single record, such that the number
representation of the record can be used for sorting and calculation purposes, while the string
value can be used for display purposes.

Syntax:
Dual(text, number)

Script syntax and chart functions - Qlik Sense, May 2023 1194

5 Script and chart functions

Return data type: dual

All dual return values are right-aligned.

Arguments:

Argument Description

text The string value to be used in combination with the number argument.

number The number to be used in combination with the string in the string argument.

Arguments

In Qlik Sense, all field values are potentially dual values. This means that the field values can have both a
numeric value and a textual value. An example is a date that could have a numeric value of 40908 and the
textual representation '2011-12-31'.

When several data items read into one field have different string representations but the same valid
number representation, they will all share the first string representation encountered.

The dual function is typically used early in the script, before other data is read into the field
concerned, in order to create that first string representation, which will be shown in filter panes.

Examples and results:

Example Description

Add the following
examples to your script
and run it.

Load dual (

NameDay,NumDay) as

DayOfWeek inline

[NameDay,NumDay

Monday,0

Tuesday,1

Wednesday,2

Thursday,3

Friday,4

Saturday,5

Sunday,6];

The field DayOfWeek can be used in a visualization, as a dimension, for
example.In a table with the week days are automatically sorted into their
correct number sequence, instead of alphabetical order.

Scripting examples

Script syntax and chart functions - Qlik Sense, May 2023 1195

5 Script and chart functions

Example Description

Load Dual('Q' & Ceil

(Month(Now())/3), Ceil

(Month(Now())/3)) as

Quarter AutoGenerate 1;

This example finds the current quarter. It is displayed as Q1 when the Now()
function is run in the first three months of the year, Q2 for the second three
months, and so on. However, when used in sorting, the field Quarter will
behave as its numerical value: 1 to 4.

Dual('Q' & Ceil(Month

(Date)/3), Ceil(Month

(Date)/3)) as Quarter

As in the previous example, the field Quarter is created with the text values
'Q1' to 'Q4', and assigned the numeric values 1 to 4. In order to use this in the
script the values for Date must be loaded.

Dual(WeekYear(Date) &

'-W' & Week(Date),

WeekStart(Date)) as

YearWeek

This example create sa field YearWeek with text values of the form '2012-W22'
and at the same time, assigns a numeric value corresponding to the date
number of the first day of the week, for example: 41057. In order to use this
in the script the values for Date must be loaded.

Interval
Interval() formats a number as a time interval using the format in the system variables in the
data load script, or the operating system, or a format string, if supplied.

Intervals may be formatted as a time, as days or as a combination of days, hours, minutes, seconds and
fractions of seconds.

Syntax:
Interval(number[, format])

Return data type: dual

Arguments:

Argument Description

number The number to be formatted.

format String describing how the resulting interval string is to be formatted. If omitted, the short
date format, time format, and decimal separator set in the operating system are used.

Arguments

Examples and results:
The examples below assume the following default settings:

l Date format setting 1: YY-MM-DD
l Date format setting 2: hh:mm:ss
l Number decimal separator: .

Script syntax and chart functions - Qlik Sense, May 2023 1196

5 Script and chart functions

Example String Number

Interval(A)

where A=0.375
09:00:00 0.375

Interval(A)

where A=1.375
33:00:00 1.375

Interval(A, 'D hh:mm')

where A=1.375
1 09:00 1.375

Interval(A-B, 'D hh:mm')

where A=97-08-06 09:00:00 and B=96-08-06 00:00:00
365 09:00 365.375

Results table

Money
Money() formats an expression numerically as a money value, in the format set in the system
variables set in the data load script, or in the operating system, unless a format string is
supplied, and optional decimal and thousands separators.

Syntax:
Money(number[, format[, dec_sep[, thou_sep]]])

Return data type: dual

Arguments:

Argument Description

number The number to be formatted.

format String describing how the resulting money string is to be formatted.

dec_sep String specifying the decimal number separator.

thou_sep String specifying the thousands number separator.

Arguments

If arguments 2-4 are omitted, the currency format set in the operating system is used.

Examples and results:
The examples below assume the following default settings:

l MoneyFormat setting 1: kr ##0,00, MoneyThousandSep' '
l MoneyFormat setting 2: $ #,##0.00, MoneyThousandSep','

Example:

Money(A)

where A=35648

Script syntax and chart functions - Qlik Sense, May 2023 1197

5 Script and chart functions

Results Setting 1 Setting 2

String: kr 35 648,00 $ 35,648.00

Number: 35648.00 35648.00

Results table

Example:

Money(A, '#,##0 ¥', '.' , ',')

where A=3564800

Results Setting 1 Setting 2

String: 3,564,800 ¥ 3,564,800 ¥

Number: 3564800 3564800

Results table

Num
Num() formats a number, that is it converts the numeric value of the input to display text using
the format specified in the second parameter. If the second parameter is omitted, it uses the
decimal and thousand separators set in the data load script. Custom decimal and thousand
separator symbols are optional parameters.

Syntax:
Num(number[, format[, dec_sep [, thou_sep]]])

Return data type: dual

The Num function returns a dual value with both the string and the numeric value. The function takes the
numeric value of the input expression and generates a string representing the number.

Arguments:

Argument Description

number The number to be formatted.

format String specifying how the resulting string is to be formatted. If omitted, the decimal and
thousand separators that are set in the data load script are used.

dec_sep String specifying the decimal number separator. If omitted, the value of the variable
DecimalSep that is set in the data load script is used.

thou_sep String specifying the thousands number separator. If omitted, the value of the variable
ThousandSep that is set in the data load script is used.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1198

5 Script and chart functions

Example: Chart expression

Example:

The following table shows the results when field A equals 35648.312.

A Result

Num(A) 35648.312 (depends on environment variables in script)

Num(A, '0.0', '.') 35648.3

Num(A, '0,00', ',') 35648,31

Num(A, '#,##0.0', '.', ',') 35,648.3

Num(A, '# ##0', ',', ' ') 35 648

Results

Example: Load script

Load script

Num can be used in load script to format a number, even if the thousand and decimal separators are already
set in the script. The load script below includes specific thousand and decimal separators but then uses Num
to format data in different ways.

In the Data load editor, create a new section, and then add the example script and run it. Then add, at least,
the fields listed in the results column to a sheet in your app to see the result.

SET ThousandSep=',';

SET DecimalSep='.';

Transactions:

Load

*,

Num(transaction_amount) as [No formatting],

Num(transaction_amount,'0') as [0],

Num(transaction_amount,'#,##0') as [#,##0],

Num(transaction_amount,'# ###,00') as [# ###,00],

Num(transaction_amount,'# ###,00',',',' ') as [# ###,00 , ',' , ' '],

Num(transaction_amount,'#,###.00','.',',') as [#,###.00 , '.' , ','],

Num(transaction_amount,'$#,###.00') as [$#,###.00],

;

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, discount,

customer_id, size, color_code

3750, 20180830, 12423.56, 23, 0,2038593, L, Red

3751, 20180907, 5356.31, 6, 0.1, 203521, m, orange

3752, 20180916, 15.75, 1, 0.22, 5646471, S, blue

3753, 20180922, 1251, 7, 0, 3036491, l, Black

3754, 20180922, 21484.21, 1356, 75, 049681, xs, Red

3756, 20180922, -59.18, 2, 0.333333333333333, 2038593, M, Blue

3757, 20180923, 3177.4, 21, .14, 203521, XL, Black

];

Script syntax and chart functions - Qlik Sense, May 2023 1199

5 Script and chart functions

No
formatting

0 #,##0 # ###,00
###,00 , ',' ,
' '

#,###.00 , '.' ,
','

$#,###.00

-59.18 -59 -59 -59###,00 -59,18 -59.18 $-59,18

15.75 16 16 16###,00 15,75 15.75 $15,75

1251 1251 1,251 1251###,00 1 251,00 1,251.00 $1,251.00

3177.4 3177 3,177 3177###,00 3 177,40 3,177.40 $3,177.40

5356.31 5356 5,356 5356###,00 5 356,31 5,356.31 $5,356.31

12423.56 12424 12,424 12424###,00 12 423,56 12,423.56 $12,423.56

21484.21 21484 21,484 21484###,00 21 484,21 21,484.21 $21,484.21

Qlik Sense table showing the results from different uses of the Num function in the load script. The fourth
column of the table contains incorrect formatting use, for example purposes.

Example: Load script

Load script

Num can be used in a load script to format a number as a percentage.

In the Data load editor, create a new section, and then add the example script and run it. Then add, at least,
the fields listed in the results column to a sheet in your app to see the result.

SET ThousandSep=',';

SET DecimalSep='.';

Transactions:

Load

*,

Num(discount,'#,##0%') as [Discount #,##0%]

;

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, discount,

customer_id, size, color_code

3750, 20180830, 12423.56, 23, 0,2038593, L, Red

3751, 20180907, 5356.31, 6, 0.1, 203521, m, orange

3752, 20180916, 15.75, 1, 0.22, 5646471, S, blue

3753, 20180922, 1251, 7, 0, 3036491, l, Black

3754, 20180922, 21484.21, 1356, 75, 049681, xs, Red

3756, 20180922, -59.18, 2, 0.333333333333333, 2038593, M, Blue

3757, 20180923, 3177.4, 21, .14, 203521, XL, Black

];

Discount Discount #,##0%

0.333333333333333 33%

Qlik Sense table showing the results of the
Num function being used in the load script to

format percentages.

Script syntax and chart functions - Qlik Sense, May 2023 1200

5 Script and chart functions

Discount Discount #,##0%

0.22 22%

0 0%

.14 14%

0.1 10%

0 0%

75 7,500%

Time
Time() formats an expression as a time value, in the time format set in the system variables in
the data load script, or in the operating system, unless a format string is supplied.

Syntax:
Time(number[, format])

Return data type: dual

Arguments:

Argument Description

number The number to be formatted.

format String describing how the resulting time string is to be formatted. If omitted, the short date
format, time format, and decimal separator set in the operating system is used.

Arguments

Examples and results:
The examples below assume the following default settings:

l Time format setting 1: hh:mm:ss
l Time format setting 2: hh.mm.ss

Example:

Time(A)

where A=0.375

Results Setting 1 Setting 2

String: 09:00:00 09.00.00

Number: 0.375 0.375

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1201

5 Script and chart functions

Example:

Time(A)

where A=35648.375

Results Setting 1 Setting 2

String: 09:00:00 09.00.00

Number: 35648.375 35648.375

Results table

Example:

Time(A, 'hh-mm')

where A=0.99999

Results Setting 1 Setting 2

String: 23-59 23-59

Number: 0.99999 0.99999

Results table

Timestamp
TimeStamp() formats an expression as a date and time value, in the timestamp format set in
the system variables in the data load script, or in the operating system, unless a format string is
supplied.

Syntax:
Timestamp(number[, format])

Return data type: dual

Arguments:

Argument Description

number The number to be formatted.

format String describing how the resulting timestamp string is to be formatted. If omitted, the
short date format, time format, and decimal separator set in the operating system is used.

Arguments

Examples and results:
The examples below assume the following default settings:

Script syntax and chart functions - Qlik Sense, May 2023 1202

5 Script and chart functions

l TimeStampFormat setting 1: YY-MM-DD hh:mm:ss
l TimeStampFormat setting 2: M/D/YY hh:mm:ss

Example:

Timestamp(A)

where A=35648.375

Results Setting 1 Setting 2

String: 97-08-06 09:00:00 8/6/97 09:00:00

Number: 35648.375 35648.375

Results table

Example:

Timestamp(A,'YYYY-MM-DD hh.mm')

where A=35648

Results Setting 1 Setting 2

String: 1997-08-06 00.00 1997-08-06 00.00

Number: 35648 35648

Results table

5.13 General numeric functions
In these general numeric functions, the arguments are expressions where x should be interpreted as a real
valued number. All functions can be used in both data load scripts and chart expressions.

General numeric functions overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

bitcount
BitCount() returns how many bits in the binary equivalent of a decimal number are set to 1. That is, the
function returns the number of set bits in integer_number, where integer_number is interpreted as a signed
32-bit integer.

BitCount(integer_number)

div
Div() returns the integer part of the arithmetic division of the first argument by the second argument. Both
parameters are interpreted as real numbers, that is, they do not have to be integers.

Div(integer_number1, integer_number2)

Script syntax and chart functions - Qlik Sense, May 2023 1203

5 Script and chart functions

fabs
Fabs() returns the absolute value of x. The result is a positive number.

Fabs(x)

fact
Fact() returns the factorial of a positive integer x.

Fact(x)

frac
Frac() returns the fraction part of x.

Frac(x)

sign
Sign() returns 1, 0 or -1 depending on whether x is a positive number, 0, or a negative number.

Sign(x)

Combination and permutation functions
combin
Combin() returns the number of combinations of q elements that can be picked from a set of p items. As
represented by the formula: Combin(p,q) = p! / q!(p-q)! The order in which the items are selected is
insignificant.

Combin(p, q)

permut
Permut() returns the number of permutations of q elements that can be selected from a set of p items. As
represented by the formula: Permut(p,q) = (p)! / (p - q)! The order in which the items are selected is
significant.

Permut(p, q)

Modulo functions
fmod
fmod() is a generalized modulo function that returns the remainder part of the integer division of the first
argument (the dividend) by the second argument (the divisor). The result is a real number. Both arguments
are interpreted as real numbers, that is, they do not have to be integers.

Fmod(a, b)

mod
Mod() is a mathematical modulo function that returns the non-negative remainder of an integer division. The
first argument is the dividend, the second argument is the divisor, Both arguments must be integer values.

Mod(integer_number1, integer_number2)

Script syntax and chart functions - Qlik Sense, May 2023 1204

5 Script and chart functions

Parity functions
even
Even() returns True (-1), if integer_number is an even integer or zero. It returns False (0), if integer_number
is an odd integer, and NULL if integer_number is not an integer.

Even(integer_number)

odd
Odd() returns True (-1), if integer_number is an odd integer or zero. It returns False (0), if integer_number is
an even integer, and NULL if integer_number is not an integer.

Odd(integer_number)

Rounding functions
ceil
Ceil() rounds up a number to the nearest multiple of the step shifted by the offset number.

Ceil(x[, step[, offset]])

floor
Floor() rounds down a number to the nearest multiple of the step shifted by the offset number.

Floor(x[, step[, offset]])

round
Round() returns the result of rounding a number up or down to the nearest multiple of step shifted by the
offset number.

Round(x [, step [, offset]])

BitCount
BitCount() returns how many bits in the binary equivalent of a decimal number are set to 1. That is, the
function returns the number of set bits in integer_number, where integer_number is interpreted as a signed
32-bit integer.

Syntax:
BitCount(integer_number)

Return data type: integer

Examples and results:

Examples Results

BitCount (3) 3 is binary 11, therefore this returns 2

BitCount (-1) -1 is 64 ones in binary, therefore this returns 64

Examples and results

Script syntax and chart functions - Qlik Sense, May 2023 1205

5 Script and chart functions

Ceil
Ceil() rounds up a number to the nearest multiple of the step shifted by the offset number.

Compare with the floor function, which rounds input numbers down.

Syntax:
Ceil(x[, step[, offset]])

Return data type: numeric

Arguments:

Argument Description

x Input number.

step Interval increment. The default value is 1.

offset Defines the base of the step interval. The default value is 0.

Arguments

Examples and results:

Examples Results

Ceil(2.4) Returns 3

In this example, the size of the step is 1 and the base of the step interval is
0.

The intervals are ...0 < x <=1, 1 < x <= 2, 2< x <=3, 3< x <=4...

Ceil(4.2) Returns 5

Ceil(3.88 ,0.1) Returns 3.9

In this example, the size of the interval is 0.1 and the base of the interval is
0.

The intervals are ... 3.7 < x <= 3.8, 3.8 < x <= 3.9, 3.9 < x <= 4.0...

Ceil(3.88 ,5) Returns 5

Ceil(1.1 ,1) Returns 2

Examples and results

Script syntax and chart functions - Qlik Sense, May 2023 1206

5 Script and chart functions

Examples Results

Ceil(1.1 ,1,0.5) Returns 1.5

In this example, the size of the step is 1 and the offset is 0.5. It means that
the base of the step interval is 0.5 and not 0.

The intervals are ...0.5 < x <=1.5, 1.5 < x <= 2.5, 2.5< x <=3.5, 3.5< x <=4.5...

Ceil(1.1 ,1,-0.01) Returns 1.99

The intervals are ...-0.01< x <= 0.99, 0.99< x <= 1.99, 1.99 < x <=2.99...

Combin
Combin() returns the number of combinations of q elements that can be picked from a set of p items. As
represented by the formula: Combin(p,q) = p! / q!(p-q)! The order in which the items are selected is
insignificant.

Syntax:
Combin(p, q)

Return data type: integer

Limitations:

Non-integer items will be truncated.

Examples and results:

Examples Results

How many combinations of 7 numbers can be picked from a total of 35 lottery
numbers?

Combin(35,7)

Returns
6,724,520

Examples and results

Div
Div() returns the integer part of the arithmetic division of the first argument by the second argument. Both
parameters are interpreted as real numbers, that is, they do not have to be integers.

Syntax:
Div(integer_number1, integer_number2)

Script syntax and chart functions - Qlik Sense, May 2023 1207

5 Script and chart functions

Return data type: integer

Examples and results:

Examples Results

Div(7,2) Returns 3

Div(7.1,2.3) Returns 3

Div(9,3) Returns 3

Div(-4,3) Returns -1

Div(4,-3) Returns -1

Div(-4,-3) Returns 1

Examples and results

Even
Even() returns True (-1), if integer_number is an even integer or zero. It returns False (0), if integer_number
is an odd integer, and NULL if integer_number is not an integer.

Syntax:
Even(integer_number)

Return data type: Boolean

Examples and results:

Examples Results

Even(3) Returns 0, False

Even(2 * 10) Returns -1, True

Even(3.14) Returns NULL

Examples and results

Fabs
Fabs() returns the absolute value of x. The result is a positive number.

Syntax:
fabs(x)

Script syntax and chart functions - Qlik Sense, May 2023 1208

5 Script and chart functions

Return data type: numeric

Examples and results:

Examples Results

fabs(2.4) Returns 2.4

fabs(-3.8) Returns 3.8

Examples and results

Fact
Fact() returns the factorial of a positive integer x.

Syntax:
Fact(x)

Return data type: integer

Limitations:

If the number x is not an integer, it will be truncated. Non-positive numbers will return NULL.

Examples and results:

Examples Results

Fact(1) Returns 1

Fact(5) Returns 120 (1 * 2 * 3 * 4 * 5 = 120)

Fact(-5) Returns NULL

Examples and results

Floor
Floor() rounds down a number to the nearest multiple of the step shifted by the offset number.

Compare with the ceil function, which rounds input numbers up.

Syntax:
Floor(x[, step[, offset]])

Script syntax and chart functions - Qlik Sense, May 2023 1209

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

x Input number.

step Interval increment. The default value is 1.

offset Defines the base of the step interval. The default value is 0.

Arguments

Examples and results:

Examples Results

Floor(2.4) Returns 2

In this example, the size of the step is 1 and the base of the step interval is 0.

The intervals are ...0 <= x <1, 1 <= x < 2, 2<= x <3, 3<= x <4....

Floor(4.2) Returns 4

Floor(3.88 ,0.1) Returns 3.8

In this example, the size of the interval is 0.1 and the base of the interval is 0.

The intervals are ... 3.7 <= x < 3.8, 3.8 <= x < 3.9, 3.9 <= x < 4.0...

Floor(3.88 ,5) Returns 0

Floor(1.1 ,1) Returns 1

Floor(1.1 ,1,0.5) Returns 0.5

In this example, the size of the step is 1 and the offset is 0.5. It means that the
base of the step interval is 0.5 and not 0.

The intervals are ...0.5 <= x <1.5, 1.5 <= x < 2.5, 2.5<= x <3.5,...

Examples and results

Fmod
fmod() is a generalized modulo function that returns the remainder part of the integer division of the first
argument (the dividend) by the second argument (the divisor). The result is a real number. Both arguments
are interpreted as real numbers, that is, they do not have to be integers.

Syntax:
fmod(a, b)

Script syntax and chart functions - Qlik Sense, May 2023 1210

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

a Dividend

b Divisor

Arguments

Examples and results:

Examples Results

fmod(7,2) Returns 1

fmod(7.5,2) Returns 1.5

fmod(9,3) Returns 0

fmod(-4,3) Returns -1

fmod(4,-3) Returns 1

fmod(-4,-3) Returns -1

Examples and results

Frac
Frac() returns the fraction part of x.

The fraction is defined in such a way that Frac(x) + Floor(x) = x. In simple terms, this means that the
fractional part of a positive number is the difference between the number (x) and the integer that precedes
the fractional part.

For example: The fractional part of 11.43 = 11.43 - 11 = 0.43

For a negative number, say -1.4, Floor(-1.4) = -2, which produces the following result:

The fractional part of -1.4 = -1.4 - (-2) = -1.4 + 2 = 0.6

Syntax:
Frac(x)

Script syntax and chart functions - Qlik Sense, May 2023 1211

5 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

x Number to return fraction for.

Arguments

Examples and results:

Examples Results

Frac(11.43) Returns
0.43

Frac(-1.4) Returns
0.6

Extract the time component from the numeric representation of a timestamp, thus omitting
the date.

Time(Frac(44518.663888889))

Returns
3:56:00
PM

Examples and results

Mod
Mod() is a mathematical modulo function that returns the non-negative remainder of an integer division. The
first argument is the dividend, the second argument is the divisor, Both arguments must be integer values.

Syntax:
Mod(integer_number1, integer_number2)

Return data type: integer

Limitations:

integer_number2 must be greater than 0.

Examples and results:

Examples Results

Mod(7,2) Returns 1

Mod(7.5,2) Returns NULL

Mod(9,3) Returns 0

Examples and results

Script syntax and chart functions - Qlik Sense, May 2023 1212

5 Script and chart functions

Examples Results

Mod(-4,3) Returns 2

Mod(4,-3) Returns NULL

Mod(-4,-3) Returns NULL

Odd
Odd() returns True (-1), if integer_number is an odd integer or zero. It returns False (0), if integer_number is
an even integer, and NULL if integer_number is not an integer.

Syntax:
Odd(integer_number)

Return data type: Boolean

Examples and results:

Examples Results

Odd(3) Returns -1, True

Odd(2 * 10) Returns 0, False

Odd(3.14) Returns NULL

Examples and results

Permut
Permut() returns the number of permutations of q elements that can be selected from a set of p items. As
represented by the formula: Permut(p,q) = (p)! / (p - q)! The order in which the items are selected is
significant.

Syntax:
Permut(p, q)

Return data type: integer

Limitations:

Non-integer arguments will be truncated.

Script syntax and chart functions - Qlik Sense, May 2023 1213

5 Script and chart functions

Examples and results:

Examples Results

In how many ways could the gold, silver and bronze medals be distributed after a 100 m final
with 8 participants?

Permut(8,3)

Returns
336

Examples and results

Round
Round() returns the result of rounding a number up or down to the nearest multiple of step shifted by the
offset number.

If the number to round is exactly in the middle of an interval, it is rounded upwards.

Syntax:
Round(x[, step[, offset]])

Return data type: numeric

If you are rounding a floating point number you may observe erroneous results. These rounding
errors occur because floating point numbers are represented by a finite number of binary digits.
Therefore, results are calculated using a number that is already rounded. If these rounding errors
will affect your work, multiply the numbers to convert them to integers before rounding.

Arguments:

Argument Description

x Input number.

step Interval increment. The default value is 1.

offset Defines the base of the step interval. The default value is 0.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1214

5 Script and chart functions

Examples and results:

Examples Results

Round(3.8) Returns 4

In this example, the size of the step is 1 and the base of the step interval is 0.

The intervals are ...0 <= x <1, 1 <= x < 2, 2<= x <3, 3<= x <4...

Round(3.8,4) Returns 4

Round(2.5) Returns 3.

In this example, the size of the step is 1 and the base of the step interval is 0.

The intervals are ...0 <= x <1, 1 <= x <2, 2<= x <3...

Round(2,4) Returns 4. Rounded up because 2 is exactly half of the step interval of 4.

In this example, the size of the step is 4 and the base of the step interval is 0.

The intervals are ...0 <= x <4, 4 <= x <8, 8<= x <12...

Round(2,6) Returns 0. Rounded down because 2 is less than half of the step interval of 6.

In this example, the size of the step is 6 and the base of the step interval is 0.

The intervals are ...0 <= x <6, 6 <= x <12, 12<= x <18...

Round(3.88 ,0.1) Returns 3.9

In this example, the size of the step is 0.1 and the base of the step interval is 0.

The intervals are ... 3.7 <= x <3.8, 3.8 <= x <3.9, 3.9 <= x < 4.0...

Round

(3.88875,1/1000)
Returns 3.889

In this example, the size of the step is 0.001, which rounds the number up and
limits it to three decimal places.

Round(3.88 ,5) Returns 5

Round(1.1 ,1,0.5) Returns 1.5

In this example, the size of the step is 1 and the base of the step interval is 0.5.

The intervals are ...0.5 <= x <1.5, 1.5 <= x <2.5, 2.5<= x <3.5...

Examples and results

Sign
Sign() returns 1, 0 or -1 depending on whether x is a positive number, 0, or a negative number.

Syntax:
Sign(x)

Script syntax and chart functions - Qlik Sense, May 2023 1215

5 Script and chart functions

Return data type: numeric

Limitations:

If no numeric value is found, NULL is returned.

Examples and results:

Examples Results

Sign(66) Returns 1

Sign(0) Returns 0

Sign(- 234) Returns -1

Examples and results

5.14 Geospatial functions
These functions are used to handle geospatial data in map visualizations. Qlik Sense follows
GeoJSON specifications for geospatial data and supports the following:

l Point
l Linestring
l Polygon
l Multipolygon

For more information on GeoJSON specifications, see:
≤ GeoJSON.org

Geospatial functions overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

There are two categories of geospatial functions: aggregation and non-aggregation.

Aggregation functions take a geometry set (points or areas) as input, and return a single geometry. For
example, multiple areas can be merged together, and a single boundary for the aggregation can be drawn on
the map.

Non-aggregation function take a sinlge geometry and return one geometry. For example, for the function
GeoGetPolygonCenter(), if the boundary geometry of one area is set as input, the point geometry (longitude
and latitude) for the center of that area is returned.

The following are aggregation functions:

Script syntax and chart functions - Qlik Sense, May 2023 1216

http://geojson.org/

5 Script and chart functions

GeoAggrGeometry
GeoAggrGeometry() is used to aggregate a number of areas into a larger area, for example aggregating a
number of sub-regions to a region.

GeoAggrGeometry (field_name)

GeoBoundingBox
GeoBoundingBox() is used to aggregate a geometry into an area and calculate the smallest bounding box
that contains all coordinates.

GeoBoundingBox (field_name)

GeoCountVertex
GeoCountVertex() is used to find the number of vertices a polygon geometry contains.

GeoCountVertex(field_name)

GeoInvProjectGeometry
GeoInvProjectGeometry() is used to aggregate a geometry into an area and apply the inverse of a projection.

GeoInvProjectGeometry(type, field_name)

GeoProjectGeometry
GeoProjectGeometry() is used to aggregate a geometry into an area and apply a projection.

GeoProjectGeometry(type, field_name)

GeoReduceGeometry
GeoReduceGeometry() is used to reduce the number of vertices of a geometry, and to aggregate a number of
areas into one area, but still displaying the boundary lines from the individual areas.

GeoReduceGeometry (geometry)

The following are non-aggregation functions:

GeoGetBoundingBox
GeoGetBoundingBox() is used in scripts and chart expressions to calculate the smallest geospatial bounding
box that contains all coordinates of a geometry.

GeoGetBoundingBox (geometry)

GeoGetPolygonCenter
GeoGetPolygonCenter() is used in scripts and chart expressions to calculate and return the center point of a
geometry.

GeoGetPolygonCenter (geometry)

GeoMakePoint
GeoMakePoint() is used in scripts and chart expressions to create and tag a point with latitude and longitude.

GeoMakePoint (lat_field_name, lon_field_name)

Script syntax and chart functions - Qlik Sense, May 2023 1217

5 Script and chart functions

GeoProject
GeoProject() is used in scripts and chart expressions to apply a projection to a geometry.

GeoProject (type, field_name)

GeoAggrGeometry
GeoAggrGeometry() is used to aggregate a number of areas into a larger area, for example
aggregating a number of sub-regions to a region.

Syntax:
GeoAggrGeometry(field_name)

Return data type: string

Arguments:

Argument Description

field_name A field or expression referring to a field containing the geometry to be represented. This
could be either a point (or set of points) giving longitude and latitude, or an area.

Arguments

Typically, GeoAggrGeometry() can be used to combine geospatial boundary data. For example, you might
have postcode areas for suburbs in a city and sales revenues for each area. If a sales person’s territory covers
several postcode areas, it might be useful to present total sales by sales territory, rather than individual areas,
and show the results on a color-filled map.

GeoAggrGeometry() can calculate the aggregation of the individual suburb geometries and generate the
merged territory geometry in the data model. If then, the sales territory boundaries are adjusted, when the
data is reloaded the new merged boundaries and revenues are reflected in the map.

As GeoAggrGeometry() is an aggregating function, if you use it in the script a LOAD statement with a Group
by clause is required.

The boundary lines of maps created using GeoAggrGeometry() are those of the merged areas. If you
want to display the individual boundary lines of the pre-aggregated areas, use
GeoReduceGeometry().

Examples:
This example loads a KML file with area data, and then loads a table with the aggregated area data.

[MapSource]:

LOAD [world.Name],

[world.Point],

[world.Area]

FROM [lib://Downloads/world.kml]

(kml, Table is [World.shp/Features]);

Script syntax and chart functions - Qlik Sense, May 2023 1218

5 Script and chart functions

Map:

LOAD world.Name,

GeoAggrGeometry(world.Area) as [AggrArea]

resident MapSource Group By world.Name;

Drop Table MapSource;

GeoBoundingBox
GeoBoundingBox() is used to aggregate a geometry into an area and calculate the smallest
bounding box that contains all coordinates.

A GeoBoundingBox is represented as a list of four values: left, right, top, bottom.

Syntax:
GeoBoundingBox(field_name)

Return data type: string

Arguments:

Argument Description

field_name A field or expression referring to a field containing the geometry to be represented. This
could be either a point (or set of points) giving longitude and latitude, or an area.

Arguments

GeoBoundingBox() aggregates a set of geometries and returns four coordinates for the smallest rectangle that
contains all the coordinates of that aggregated geometry.

To visualize the result on a map, transfer the resulting string of four coordinates into a polygon format, tag the
transferred field with a geopolygon format, and drag and drop that field into the map object. The rectangular
boxes .will then be displayed in the map visualization.

GeoCountVertex
GeoCountVertex() is used to find the number of vertices a polygon geometry contains.

Syntax:
GeoCountVertex(field_name)

Return data type: integer

Arguments:

Argument Description

field_name A field or expression referring to a field containing the geometry to be represented. This
could be either a point (or set of points) giving longitude and latitude, or an area.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1219

5 Script and chart functions

GeoGetBoundingBox
GeoGetBoundingBox() is used in scripts and chart expressions to calculate the smallest
geospatial bounding box that contains all coordinates of a geometry.

A geospatial bounding box, created by the function GeoBoundingBox() is represented as a list of four values:
left, right, top, bottom.

Syntax:
GeoGetBoundingBox(field_name)

Return data type: string

Arguments:

Argument Description

field_name A field or expression referring to a field containing the geometry to be represented. This
could be either a point (or set of points) giving longitude and latitude, or an area.

Arguments

Do not use the Group by clause in the data load editor with this and other non-aggregating
geospatial functions, because this will cause an error on load.

GeoGetPolygonCenter
GeoGetPolygonCenter() is used in scripts and chart expressions to calculate and return the
center point of a geometry.

In some cases, the requirement is to plot a dot instead of color fill on a map. If the existing geospatial data is
only available in the form of area geometry (for example, a boundary), use GeoGetPolygonCenter() to
retrieve a pair of longitude and latitude for the center of area.

Syntax:
GeoGetPolygonCenter(field_name)

Return data type: string

Arguments:

Argument Description

field_name A field or expression referring to a field containing the geometry to be represented. This
could be either a point (or set of points) giving longitude and latitude, or an area.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1220

5 Script and chart functions

Do not use the Group by clause in the data load editor with this and other non-aggregating
geospatial functions, because this will cause an error on load.

GeoInvProjectGeometry
GeoInvProjectGeometry() is used to aggregate a geometry into an area and apply the inverse
of a projection.

Syntax:
GeoInvProjectGeometry(type, field_name)

Return data type: string

Arguments:

Argument Description

type Projection type used in transforming the geometry of the map. This can take one of two
values: 'unit', (default), which results in a 1:1 projection, or 'mercator', which uses the
standard Mercator projection.

field_name A field or expression referring to a field containing the geometry to be represented. This
could be either a point (or set of points) giving longitude and latitude, or an area.

Arguments

Example:

Example Result

In a Load statement:
GeoInvProjectGeometry

('mercator',AreaPolygon) as

InvProjectGeometry

The geometry loaded as AreaPolygon is transformed using the inverse
transformation of the Mercator projection and stored as
InvProjectGeometry for use in visualizations.

Scripting example

GeoMakePoint
GeoMakePoint() is used in scripts and chart expressions to create and tag a point with latitude
and longitude. GeoMakePoint returns points in the order of longitude and latitude.

Syntax:
GeoMakePoint(lat_field_name, lon_field_name)

Script syntax and chart functions - Qlik Sense, May 2023 1221

5 Script and chart functions

Return data type: string, formatted [longitude, latitude]

Arguments:

Argument Description

lat_field_name A field or expression referring to a field representing the latitude of the point.

lon_field_name A field or expression referring to a field representing the longitude of the point.

Arguments

Do not use the Group by clause in the data load editor with this and other non-aggregating
geospatial functions, because this will cause an error on load.

GeoProject
GeoProject() is used in scripts and chart expressions to apply a projection to a geometry.

Syntax:
GeoProject(type, field_name)

Return data type: string

Arguments:

Argument Description

type Projection type used in transforming the geometry of the map. This can take one of two
values: 'unit', (default), which results in a 1:1 projection, or 'mercator', which uses the web
Mercator projection.

field_name A field or expression referring to a field containing the geometry to be represented. This
could be either a point (or set of points) giving longitude and latitude, or an area.

Arguments

Do not use the Group by clause in the data load editor with this and other non-aggregating
geospatial functions, because this will cause an error on load.

Example:

Example Result

In a Load statement:
GeoProject('mercator',Area)

as GetProject

The Mercator projection is applied to the geometry loaded as Area, and
the result is stored as GetProject.

Script examples

Script syntax and chart functions - Qlik Sense, May 2023 1222

5 Script and chart functions

GeoProjectGeometry
GeoProjectGeometry() is used to aggregate a geometry into an area and apply a projection.

Syntax:
GeoProjectGeometry(type, field_name)

Return data type: string

Arguments:

Argument Description

type Projection type used in transforming the geometry of the map. This can take one of two
values: 'unit', (default), which results in a 1:1 projection, or 'mercator', which uses the web
Mercator projection.

field_name A field or expression referring to a field containing the geometry to be represented. This
could be either a point (or set of points) giving longitude and latitude, or an area.

Arguments

Example:

Example Result

In a Load statement:
GeoProjectGeometry

('mercator',AreaPolygon) as

ProjectGeometry

The geometry loaded as AreaPolygon is transformed using the
Mercator projection and stored as ProjectGeometry for use in
visualizations.

GeoReduceGeometry
GeoReduceGeometry() is used to reduce the number of vertices of a geometry, and to
aggregate a number of areas into one area, but still displaying the boundary lines from the
individual areas.

Syntax:
GeoReduceGeometry(field_name[, value])

Return data type: string

Arguments:

Argument Description

field_name A field or expression referring to a field containing the geometry to be represented. This
could be either a point (or set of points) giving longitude and latitude, or an area.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1223

5 Script and chart functions

Argument Description

value The amount of reduction to apply to the geometry. The range is from 0 to 1, with 0
representing no reduction and 1 representing maximal reduction of vertices.

Using a value of 0.9 or higher with a complex data set can reduce the number of
vertices to a level where the visual representation is inaccurate.

GeoReduceGeometry() also performs a similar function to, GeoAggrGeometry() in that it aggregates a
number of areas into one area. The difference being that individual boundary lines from the pre-aggregation
data are displayed on the map if you use GeoReduceGeometry().

As GeoReduceGeometry() is an aggregating function, if you use it in the script a LOAD statement with a
Group by clause is required.

Examples:
This example loads a KML file with area data, and then loads a table with the reduced and aggregated area
data.

[MapSource]:

LOAD [world.Name],

[world.Point],

[world.Area]

FROM [lib://Downloads/world.kml]

(kml, Table is [World.shp/Features]);

Map:

LOAD world.Name,

GeoReduceGeometry(world.Area,0.5) as [ReducedArea]

resident MapSource Group By world.Name;

Drop Table MapSource;

5.15 Interpretation functions
The interpretation functions evaluate the contents of input text fields or expressions, and
impose a specified data format on the resulting numeric value. With these functions, you can
specify the format of the number, in accordance with its data type, including attributes such as:
decimal separator, thousands separator,and date format.

The interpretation functions all return a dual value with both the string and the number value, but can be
thought of as performing a string-to-number conversion. The functions take the text value of the input
expression and generate a number representing the string.

In contrast, the formatting functions do the opposite: they take numeric expressions and evaluate them as
strings, specifying the display format of the resulting text.

Script syntax and chart functions - Qlik Sense, May 2023 1224

5 Script and chart functions

If no interpretation functions are used, Qlik Sense interprets the data as a mix of numbers, dates, times, time
stamps and strings, using the default settings for number format, date format, and time format, defined by
script variables and by the operating system.

All interpretation functions can be used in both data load scripts and chart expressions.

All number representations are given with a decimal point as the decimal separator.

Interpretation functions overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Date#
Date# evaluates an expression as a date in the format specified in the second argument, if supplied. If the
format code is omitted, the default date format set in the operating system is used.

Date# (page 1226)(text[, format])

Interval#
Interval#() evaluates a text expression as a time interval in the format set in the operating system, by default,
or in the format specified in the second argument, if supplied.

Interval# (page 1227)(text[, format])

Money#
Money#() converts a text string to a money value, in the format set in the load script or the operating system,
unless a format string is supplied. Custom decimal and thousand separator symbols are optional parameters.

Money# (page 1227)(text[, format[, dec_sep[, thou_sep]]])

Num#
Num#() interprets a text string as a numerical value, that is it converts the input string to a number using the
format specified in the second parameter. If the second parameter is omitted, it uses the decimal and
thousand separators set in the data load script. Custom decimal and thousand separator symbols are optional
parameters.

Num# (page 1229)(text[, format[, dec_sep[, thou_sep]]])

Text
Text() forces the expression to be treated as text, even if a numeric interpretation is possible.

Text(expr)

Time#
Time#() evaluates an expression as a time value, in the time format set in the data load script or the operating
system, unless a format string is supplied..

Time# (page 1230)(text[, format])

Script syntax and chart functions - Qlik Sense, May 2023 1225

5 Script and chart functions

Timestamp#
Timestamp#() evaluates an expression as a date and time value, in the timestamp format set in the data load
script or the operating system, unless a format string is supplied.

Timestamp# (page 1231)(text[, format])

See also:

p Formatting functions (page 1190)

Date#
Date# evaluates an expression as a date in the format specified in the second argument, if
supplied.

Syntax:
Date#(text[, format])

Return data type: dual

Arguments:

Argument Description

text The text string to be evaluated.

format String describing the format of the text string to be evaluated. If omitted, the date format
set in the system variables in the data load script, or the operating system is used.

Arguments

Examples and results:
The following example uses the date format M/D/YYYY. The date format is specified in the SET DateFormat
statement at the top of the data load script.

Add this example script to your app and run it.

Load *,

Num(Date#(StringDate)) as Date;

LOAD * INLINE [

StringDate

8/7/97

8/6/1997

]

If you create a table with StringDate and Date as dimensions, the results are as follows:

StringDate Date

8/7/97 35649

8/6/1997 35648

Results

Script syntax and chart functions - Qlik Sense, May 2023 1226

5 Script and chart functions

Interval#
Interval#() evaluates a text expression as a time interval in the format set in the operating
system, by default, or in the format specified in the second argument, if supplied.

Syntax:
Interval#(text[, format])

Return data type: dual

Arguments:

Argument Description

text The text string to be evaluated.

format String describing the expected input format to use when converting the string to a numeric
interval.

If omitted, the short date format, time format, and decimal separator set in the operating
system are used.

Arguments

The interval# function converts a text time interval to a numeric equivalent.

Examples and results:
The examples below assume the following operating system settings:

l Short date format: YY-MM-DD
l Time format: M/D/YY
l Number decimal separator: .

Example Result

Interval#(A, 'D hh:mm')

where A='1 09:00'
1.375

Results

Money#
Money#() converts a text string to a money value, in the format set in the load script or the
operating system, unless a format string is supplied. Custom decimal and thousand separator
symbols are optional parameters.

Syntax:
Money#(text[, format[, dec_sep [, thou_sep]]])

Script syntax and chart functions - Qlik Sense, May 2023 1227

5 Script and chart functions

Return data type: dual

Arguments:

Argument Description

text The text string to be evaluated.

format String describing the expected input format to use when converting the string to a numeric
interval.

If omitted, the money format set in the operating system is used.

dec_sep String specifying the decimal number separator. If omitted, the MoneyDecimalSep value set
in the data load script is used.

thou_sep String specifying the thousands number separator. If omitted, the MoneyThousandSep
value set in the data load script is used.

Arguments

The money# function generally behaves just like the num# function but takes its default values for decimal
and thousand separator from the script variables for money format or the system settings for currency.

Examples and results:
The examples below assume the two following operating system settings:

l Money format default setting 1: kr # ##0,00
l Money format default setting 2: $ #,##0.00

Money#(A , '# ##0,00 kr')

where A=35 648,37 kr

Results Setting 1 Setting 2

String 35 648.37 kr 35 648.37 kr

Number 35648.37 3564837

Results

Money#(A, ' $#', '.', ',')

where A= $35,648.37

Results Setting 1 Setting 2

String $35,648.37 $35,648.37

Number 35648.37 35648.37

Results

Script syntax and chart functions - Qlik Sense, May 2023 1228

5 Script and chart functions

Num#
Num#() interprets a text string as a numerical value, that is it converts the input string to a
number using the format specified in the second parameter. If the second parameter is omitted,
it uses the decimal and thousand separators set in the data load script. Custom decimal and
thousand separator symbols are optional parameters.

Syntax:
Num#(text[, format[, dec_sep [, thou_sep]]])

Return data type: dual

The Num#() function returns a dual value with both the string and the numeric value. The function takes the
textual representation of the input expression and generates a number. It does not change the format of the
number: the output is formatted in the same way as the input.

Arguments:

Argument Description

text The text string to be evaluated.

format String specifying the number format used in the first parameter. If omitted, the decimal and
thousand separators that are set in the data load script are used.

dec_sep String specifying the decimal number separator. If omitted, the value of the variable
DecimalSep that is set in the data load script is used.

thou_sep String specifying the thousands number separator. If omitted, the value of the variable
ThousandSep that is set in the data load script is used.

Arguments

Examples and results:
The following table shows the result of Num#(A, '#', '.' , ',') for different values of A.

A String representation Numeric value (here displayed with decimal point)

35,648.31 35,648.31 35648.31

35 648.312 35 648.312 35648.312

35.648,3123 35.648,3123 -

35 648,31234 35 648,31234 -

Results

Text
Text() forces the expression to be treated as text, even if a numeric interpretation is possible.

Script syntax and chart functions - Qlik Sense, May 2023 1229

5 Script and chart functions

Syntax:
Text (expr)

Return data type: dual

Example:

Text(A)

where A=1234

String Number

1234 -

Results

Example:

Text(pi())

String Number

3.1415926535898 -

Results

Time#
Time#() evaluates an expression as a time value, in the time format set in the data load script or
the operating system, unless a format string is supplied..

Syntax:
time#(text[, format])

Return data type: dual

Arguments:

Argument Description

text The text string to be evaluated.

format String describing the format of the text string to be evaluated. If omitted, the short date
format, time format, and decimal separator set in the operating system is used.

Arguments

Example:

l Time format default setting 1: hh:mm:ss
l Time format default setting 2: hh.mm.ss

Script syntax and chart functions - Qlik Sense, May 2023 1230

5 Script and chart functions

time#(A)

where A=09:00:00

Results Setting 1 Setting 2

String: 09:00:00 09:00:00

Number: 0.375 -

Results

Example:

l Time format default setting 1: hh:mm:ss
l Time format default setting 2: hh.mm.ss

time#(A, 'hh.mm')

where A=09.00

Results Setting 1 Setting 2

String: 09.00 09.00

Number: 0.375 0.375

Results

Timestamp#
Timestamp#() evaluates an expression as a date and time value, in the timestamp format set in
the data load script or the operating system, unless a format string is supplied.

Syntax:
timestamp#(text[, format])

Return data type: dual

Arguments:

Argument Description

text The text string to be evaluated.

format String describing the format of the text string to be evaluated. If omitted, the short date
format, time format, and decimal separator set in the operating system is used. ISO 8601 is
supported for timestamps.

Arguments

Example:

The following example uses the date format M/D/YYYY. The date format is specified in the SET DateFormat
statement at the top of the data load script.

Script syntax and chart functions - Qlik Sense, May 2023 1231

5 Script and chart functions

Add this example script to your app and run it.

Load *,

Timestamp(Timestamp#(String)) as TS;

LOAD * INLINE [

String

2015-09-15T12:13:14

1952-10-16T13:14:00+0200

1109-03-01T14:15

];

If you create a table with String and TS as dimensions, the results are as follows:

String TS

2015-09-15T12:13:14 9/15/2015 12:13:14 PM

1952-10-16T13:14:00+0200 10/16/1952 11:14:00 AM

1109-03-01T14:15 3/1/1109 2:15:00 PM

Results

5.16 Inter-record functions
Inter-record functions are used:

l In the data load script, when a value from previously loaded records of data is needed for the
evaluation of the current record.

l In a chart expression, when another value from the data set of a visualization is needed.

Sorting on y-values in charts or sorting by expression columns in tables is not allowed when an inter-
record chart function is used in any of the chart's expressions. These sort alternatives are therefore
automatically disabled. When you use an inter-record chart function in a visualization or table, the
sorting of the visualization will revert back to the sorted input to the inter-record function. This
limitation does not apply to the equivalent script function, if there is one.

Self-referencing expression definitions can only reliably be made in tables with fewer than 100 rows,
but this may vary depending on the hardware that the Qlik engine is running on.

Row functions
These functions can only be used in chart expressions.
Above
Above() evaluates an expression at a row above the current row within a column segment in a table. The row
for which it is calculated depends on the value of offset, if present, the default being the row directly above.
For charts other than tables, Above() evaluates for the row above the current row in the chart's straight table
equivalent.

Script syntax and chart functions - Qlik Sense, May 2023 1232

5 Script and chart functions

Above - chart function([TOTAL [<fld{,fld}>]] expr [, offset [,count]])

Below
Below() evaluates an expression at a row below the current row within a column segment in a table. The row
for which it is calculated depends on the value of offset, if present, the default being the row directly below.
For charts other than tables, Below() evaluates for the row below the current column in the chart's straight
table equivalent.

Below - chart function([TOTAL[<fld{,fld}>]] expression [, offset [,count]])

Bottom
Bottom() evaluates an expression at the last (bottom) row of a column segment in a table. The row for which
it is calculated depends on the value of offset, if present, the default being the bottom row. For charts other
than tables, the evaluation is made on the last row of the current column in the chart's straight table
equivalent.

Bottom - chart function([TOTAL[<fld{,fld}>]] expr [, offset [,count]])

Top
Top() evaluates an expression at the first (top) row of a column segment in a table. The row for which it is
calculated depends on the value of offset, if present, the default being the top row. For charts other than
tables, theTop() evaluation is made on the first row of the current column in the chart's straight table
equivalent.

Top - chart function([TOTAL [<fld{,fld}>]] expr [, offset [,count]])

NoOfRows
NoOfRows() returns the number of rows in the current column segment in a table. For bitmap charts,
NoOfRows() returns the number of rows in the chart's straight table equivalent.

NoOfRows - chart function([TOTAL])

Column functions
These functions can only be used in chart expressions.
Column
Column() returns the value found in the column corresponding to ColumnNo in a straight table, disregarding
dimensions. For example Column(2) returns the value of the second measure column.

Column - chart function(ColumnNo)

Dimensionality
Dimensionality() returns the number of dimensions for the current row. In the case of pivot tables, the
function returns the total number of dimension columns that have non-aggregation content, that is, do not
contain partial sums or collapsed aggregates.

Dimensionality - chart function ()

Script syntax and chart functions - Qlik Sense, May 2023 1233

5 Script and chart functions

Secondarydimensionality
SecondaryDimensionality() returns the number of dimension pivot table rows that have non-aggregation
content, that is, do not contain partial sums or collapsed aggregates. This function is the equivalent of the
dimensionality() function for horizontal pivot table dimensions.

SecondaryDimensionality - chart function ()

Field functions
FieldIndex
FieldIndex() returns the position of the field value value in the field field_name (by load order).

FieldIndex(field_name , value)

FieldValue
FieldValue() returns the value found in position elem_no of the field field_name (by load order).

FieldValue(field_name , elem_no)

FieldValueCount
FieldValueCount() is an integer function that returns the number of distinct values in a field.

FieldValueCount(field_name)

Pivot table functions
These functions can only be used in chart expressions.
After
After() returns the value of an expression evaluated with a pivot table's dimension values as they appear in
the column after the current column within a row segment in the pivot table.

After - chart function([TOTAL] expression [, offset [,n]])

Before
Before() returns the value of an expression evaluated with a pivot table's dimension values as they appear in
the column before the current column within a row segment in the pivot table.

Before - chart function([TOTAL] expression [, offset [,n]])

First
First() returns the value of an expression evaluated with a pivot table's dimension values as they appear in
the first column of the current row segment in the pivot table. This function returns NULL in all chart types
except pivot tables.

First - chart function([TOTAL] expression [, offset [,n]])

Last
Last() returns the value of an expression evaluated with a pivot table's dimension values as they appear in the
last column of the current row segment in the pivot table. This function returns NULL in all chart types except
pivot tables.

Last - chart function([TOTAL] expression [, offset [,n]])

Script syntax and chart functions - Qlik Sense, May 2023 1234

5 Script and chart functions

ColumnNo
ColumnNo() returns the number of the current column within the current row segment in a pivot table. The
first column is number 1.

ColumnNo - chart function([TOTAL])

NoOfColumns
NoOfColumns() returns the number of columns in the current row segment in a pivot table.

NoOfColumns - chart function([TOTAL])

Inter-record functions in the data load script
Exists
Exists() determines whether a specific field value has already been loaded into the field in the data load
script. The function returns TRUE or FALSE, so can be used in the where clause of a LOAD statement or an IF
statement.

Exists (field_name [, expr])

LookUp
Lookup() looks into a table that is already loaded and returns the value of field_name corresponding to the
first occurrence of the value match_field_value in the field match_field_name. The table can be the current
table or another table previously loaded.

LookUp (field_name, match_field_name, match_field_value [, table_name])

Peek
Peek() returns the value of a field in a table for a row that has already been loaded. The row number can be
specified, as can the table. If no row number is specified, the last previously loaded record will be used.

Peek (field_name[, row_no[, table_name]])

Previous
Previous() finds the value of the expr expression using data from the previous input record that has not been
discarded because of a where clause. In the first record of an internal table, the function will return NULL.

Previous (page 1271)(expr)

See also:

p Range functions (page 1290)

Above - chart function
Above() evaluates an expression at a row above the current row within a column segment in a table. The row
for which it is calculated depends on the value of offset, if present, the default being the row directly above.
For charts other than tables, Above() evaluates for the row above the current row in the chart's straight table
equivalent.

Script syntax and chart functions - Qlik Sense, May 2023 1235

5 Script and chart functions

Syntax:
Above([TOTAL] expr [, offset [,count]])

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

offset Specifying an offsetn, greater than 0, moves the evaluation of the expression n rows further
up from the current row.

Specifying an offset of 0 will evaluate the expression on the current row.

Specifying a negative offset number makes the Above function work like the Below function
with the corresponding positive offset number.

count By specifying a third argument count greater than 1, the function will return a range of
count values, one for each of count table rows counting upwards from the original cell.

In this form, the function can be used as an argument to any of the special range functions.
Range functions (page 1290)

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current
column segment is always equal to the entire column.

Arguments

On the first row of a column segment, a NULL value is returned, as there is no row above it.

A column segment is defined as a consecutive subset of cells having the same values for the
dimensions in the current sort order. Inter-record chart functions are computed in the column
segment excluding the right-most dimension in the equivalent straight table chart. If there is only
one dimension in the chart, or if the TOTAL qualifier is specified, the expression evaluates across full
table.

If the table or table equivalent has multiple vertical dimensions, the current column segment will
include only rows with the same values as the current row in all dimension columns, except for the
column showing the last dimension in the inter-field sort order.

Script syntax and chart functions - Qlik Sense, May 2023 1236

5 Script and chart functions

Limitations:

l Recursive calls will return NULL.
l Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this chart

function is used in any of the chart's expressions. These sort alternatives are therefore automatically
disabled. When you use this chart function in a visualization or table, the sorting of the visualization
will revert back to the sorted input to this function.

Examples and results:

Example 1:

Table visualization for Example 1

In the screenshot of the table shown in this example, the table visualization is created from the dimension
Customer and the measures: Sum(Sales) and Above(Sum(Sales)).

The column Above(Sum(Sales)) returns NULL for the Customer row containing Astrida, because there is no
row above it. The result for the row Betacab shows the value of Sum(Sales) for Astrida, the result for
Canutility shows the value for Sum(Sales) for Betacab, and so on.

For the column labeled Sum(Sales)+Above(Sum(Sales)), the row for Betacab shows the result of the addition
of the Sum(Sales) values for the rows Betacab + Astrida (539+587). The result for the row Canutility shows
the result of the addition of Sum(Sales) values for Canutility + Betacab (683+539).

The measure labeled Above offset 3 created using the expression Sum(Sales)+Above(Sum(Sales), 3) has the
argument offset, set to 3, and has the effect of taking the value in the row three rows above the current row.
It adds the Sum(Sales) value for the current Customer to the value for the Customerthree rows above. The
values returned for the first three Customer rows are null.

The table also shows more complex measures: one created from Sum(Sales)+Above(Sum(Sales)) and one
labeled Higher?, which is created from IF(Sum(Sales)>Above(Sum(Sales)), 'Higher').

This function can also be used in charts other than tables, for example bar charts.

For other chart types, convert the chart to the straight table equivalent so you can easily interpret
which row the function relates to.

Script syntax and chart functions - Qlik Sense, May 2023 1237

5 Script and chart functions

Example 2:

In the screenshots of tables shown in this example, more dimensions have been added to the visualizations:
Month and Product. For charts with more than one dimension, the results of expressions containing the
Above, Below, Top, and Bottom functions depend on the order in which the column dimensions are sorted
by Qlik Sense. Qlik Sense evaluates the functions based on the column segments that result from the
dimension that is sorted last. The column sort order is controlled in the properties panel under Sorting and is
not necessarily the order in which the columns appear in a table.

In the following screenshot of table visualization for Example 2, the last-sorted dimension is Month, so the
Above function evaluates based on months. There is a series of results for each Product value for each month
(Jan to Aug) - a column segment. This is followed by a series for the next column segment: for each Month for
the next Product. There will be a column segment for each Customer value for each Product.

Table visualization for Example 2

Example 3:

In the screenshot of table visualization for Example 3, the last sorted dimension is Product. This is done by
moving the dimension Product to position 3 in the Sorting tab in the properties panel. The Above function is
evaluated for each Product, and because there are only two products, AA and BB, there is only one non-null
result in each series. In row BB for the month Jan, the value for Above(Sum(Sales)), is 46. For row AA, the
value is null. The value in each row AA for any month will always be null, as there is no value of Product
above AA. The second series is evaluated on AA and BB for the month Feb, for the Customer value, Astrida.
When all the months have been evaluated for Astrida, the sequence is repeated for the second
CustomerBetacab, and so on.

Table visualization for Example 3

Script syntax and chart functions - Qlik Sense, May 2023 1238

5 Script and chart functions

Example 4: Result

The Above function can be used as input to
the range functions. For example: RangeAvg
(Above(Sum(Sales),1,3)).

In the arguments for the Above() function, offset is set to
1 and count is set to 3. The function finds the results of
the expressionSum(Sales) on the three rows immediately
above the current row in the column segment (where
there is a row). These three values are used as input to
the RangeAvg() function, which finds the average of the
values in the supplied range of numbers.

A table with Customer as dimension gives the following
results for the RangeAvg() expression.

Astrida

Betacab

Canutility

Divadip:

-

587

563

603

Example 4

Data used in examples:

Monthnames:

LOAD *, Dual(MonthText,MonthNumber) as Month INLINE [

MonthText, MonthNumber

Jan, 1

Feb, 2

Mar, 3

Apr, 4

May, 5

Jun, 6

Jul, 7

Aug, 8

Sep, 9

Oct, 10

Script syntax and chart functions - Qlik Sense, May 2023 1239

5 Script and chart functions

Nov, 11

Dec, 12

];

Sales2013:

Crosstable (MonthText, Sales) LOAD * inline [

Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

See also:

p Below - chart function (page 1240)
p Bottom - chart function (page 1243)
p Top - chart function (page 1272)
p RangeAvg (page 1293)

Below - chart function
Below() evaluates an expression at a row below the current row within a column segment in a table. The row
for which it is calculated depends on the value of offset, if present, the default being the row directly below.
For charts other than tables, Below() evaluates for the row below the current column in the chart's straight
table equivalent.

Syntax:
Below([TOTAL] expr [, offset [,count]])

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

offset Specifying an offsetn, greater than 1 moves the evaluation of the expression n rows further
down from the current row.

Specifying an offset of 0 will evaluate the expression on the current row.

Specifying a negative offset number makes the Below function work like the Above
function with the corresponding positive offset number.

count By specifying a third parameter count greater than 1, the function will return a range of
count values, one for each of count table rows counting downwards from the original cell.
In this form, the function can be used as an argument to any of the special range functions.
Range functions (page 1290)

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1240

5 Script and chart functions

Argument Description

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current
column segment is always equal to the entire column.

On the last row of a column segment, a NULL value is returned, as there is no row below it.

A column segment is defined as a consecutive subset of cells having the same values for the
dimensions in the current sort order. Inter-record chart functions are computed in the column
segment excluding the right-most dimension in the equivalent straight table chart. If there is only
one dimension in the chart, or if the TOTAL qualifier is specified, the expression evaluates across full
table.

If the table or table equivalent has multiple vertical dimensions, the current column segment will
include only rows with the same values as the current row in all dimension columns, except for the
column showing the last dimension in the inter-field sort order.

Limitations:

l Recursive calls will return NULL.
l Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this chart

function is used in any of the chart's expressions. These sort alternatives are therefore automatically
disabled. When you use this chart function in a visualization or table, the sorting of the visualization
will revert back to the sorted input to this function.

Examples and results:

Example 1:

Table visualization for Example 1

In the table shown in screenshot for Example 1, the table visualization is created from the dimension
Customer and the measures: Sum(Sales) and Below(Sum(Sales)).

The column Below(Sum(Sales)) returns NULL for the Customer row containing Divadip, because there is no
row below it. The result for the row Canutility shows the value of Sum(Sales) for Divadip, the result for
Betacab shows the value for Sum(Sales) for Canutility, and so on.

Script syntax and chart functions - Qlik Sense, May 2023 1241

5 Script and chart functions

The table also shows more complex measures, which you can see in the columns labeled: Sum(Sales)+Below
(Sum(Sales)), Below +Offset 3, and Higher?. These expressions work as described in the following
paragraphs.

For the column labeled Sum(Sales)+Below(Sum(Sales)), the row for Astrida shows the result of the addition
of the Sum(Sales) values for the rows Betacab + Astrida (539+587). The result for the row Betacab shows the
result of the addition of Sum(Sales) values for Canutility + Betacab (539+683).

The measure labeled Below +Offset 3 created using the expression Sum(Sales)+Below(Sum(Sales), 3) has
the argument offset, set to 3, and has the effect of taking the value in the row three rows below the current
row. It adds the Sum(Sales) value for the current Customer to the value from the Customer three rows
below. The values for the lowest three Customer rows are null.

The measure labeled Higher? is created from the expression:IF(Sum(Sales)>Below(Sum(Sales)),
'Higher'). This compares the values of the current row in the measure Sum(Sales) with the row below it. If
the current row is a greater value, the text "Higher" is output.

This function can also be used in charts other than tables, for example bar charts.

For other chart types, convert the chart to the straight table equivalent so you can easily interpret
which row the function relates to.

For charts with more than one dimension, the results of expressions containing the Above, Below, Top, and
Bottom functions depend on the order in which the column dimensions are sorted by Qlik Sense. Qlik Sense
evaluates the functions based on the column segments that result from the dimension that is sorted last. The
column sort order is controlled in the properties panel under Sorting and is not necessarily the order in which
the columns appear in a table.Please refer to Example: 2 in the Above function for further details.

Example 2: Result

The Below function can be used as input to the
range functions. For example: RangeAvg (Below

(Sum(Sales),1,3)).

In the arguments for the Below() function, offset is
set to 1 and count is set to 3. The function finds the
results of the expressionSum(Sales) on the three
rows immediately below the current row in the
column segment (where there is a row). These three
values are used as input to the RangeAvg() function,
which finds the average of the values in the supplied
range of numbers.

A table with Customer as dimension gives the
following results for the RangeAvg() expression.

Example 2

Script syntax and chart functions - Qlik Sense, May 2023 1242

5 Script and chart functions

Example 2: Result

Astrida

Betacab

Canutility

Divadip:

659.67

720

757

-

Data used in examples:

Monthnames:

LOAD *, Dual(MonthText,MonthNumber) as Month INLINE [

MonthText, MonthNumber

Jan, 1

Feb, 2

Mar, 3

Apr, 4

May, 5

Jun, 6

Jul, 7

Aug, 8

Sep, 9

Oct, 10

Nov, 11

Dec, 12

];

Sales2013:

Crosstable (MonthText, Sales) LOAD * inline [

Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

See also:

p Above - chart function (page 1235)
p Bottom - chart function (page 1243)
p Top - chart function (page 1272)
p RangeAvg (page 1293)

Bottom - chart function
Bottom() evaluates an expression at the last (bottom) row of a column segment in a table. The row for which
it is calculated depends on the value of offset, if present, the default being the bottom row. For charts other
than tables, the evaluation is made on the last row of the current column in the chart's straight table
equivalent.

Script syntax and chart functions - Qlik Sense, May 2023 1243

5 Script and chart functions

Syntax:
Bottom([TOTAL] expr [, offset [,count]])

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

offset Specifying an offsetn greater than 1 moves the evaluation of the expression up n rows
above the bottom row.

Specifying a negative offset number makes the Bottom function work like the Top function
with the corresponding positive offset number.

count By specifying a third parameter count greater than 1, the function will return not one but a
range of count values, one for each of the last count rows of the current column segment.
In this form, the function can be used as an argument to any of the special range functions.
Range functions (page 1290)

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current
column segment is always equal to the entire column.

Arguments

A column segment is defined as a consecutive subset of cells having the same values for the
dimensions in the current sort order. Inter-record chart functions are computed in the column
segment excluding the right-most dimension in the equivalent straight table chart. If there is only
one dimension in the chart, or if the TOTAL qualifier is specified, the expression evaluates across full
table.

If the table or table equivalent has multiple vertical dimensions, the current column segment will
include only rows with the same values as the current row in all dimension columns, except for the
column showing the last dimension in the inter-field sort order.

Limitations:

l Recursive calls will return NULL.
l Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this chart

function is used in any of the chart's expressions. These sort alternatives are therefore automatically
disabled. When you use this chart function in a visualization or table, the sorting of the visualization
will revert back to the sorted input to this function.

Script syntax and chart functions - Qlik Sense, May 2023 1244

5 Script and chart functions

Examples and results:

Table visualization for Example 1

In the screenshot of the table shown in this example, the table visualization is created from the dimension
Customer and the measures: Sum(Sales) and Bottom(Sum(Sales)).

The column Bottom(Sum(Sales)) returns 757 for all rows because this is the value of the bottom row:
Divadip.

The table also shows more complex measures: one created from Sum(Sales)+Bottom(Sum(Sales)) and one
labeled Bottom offset 3, which is created using the expression Sum(Sales)+Bottom(Sum(Sales), 3) and has
the argument offset set to 3. It adds the Sum(Sales) value for the current row to the value from the third row
from the bottom row, that is, the current row plus the value for Betacab.

Example: 2

In the screenshots of tables shown in this example, more dimensions have been added to the visualizations:
Month and Product. For charts with more than one dimension, the results of expressions containing the
Above, Below, Top, and Bottom functions depend on the order in which the column dimensions are sorted
by Qlik Sense. Qlik Sense evaluates the functions based on the column segments that result from the
dimension that is sorted last. The column sort order is controlled in the properties panel under Sorting and is
not necessarily the order in which the columns appear in a table.

In the first table, the expression is evaluated based on Month, and in the second table it is evaluated based on
Product. The measure End value contains the expression Bottom(Sum(Sales)). The bottom row for Month is
Dec, and the value for Dec both the values of Product shown in the screenshot is 22. (Some rows have been
edited out of the screenshot to save space.)

First table for Example 2. The value of Bottom for the End value measure based on Month (Dec).

Script syntax and chart functions - Qlik Sense, May 2023 1245

5 Script and chart functions

Second table for Example 2. The value of Bottom for the End value measure based on Product (BB for Astrida).

Please refer to Example: 2 in the Above function for further details.

Script syntax and chart functions - Qlik Sense, May 2023 1246

5 Script and chart functions

Example: 3 Result

The Bottom function can be used as input to the
range functions. For example: RangeAvg (Bottom

(Sum(Sales),1,3)).

In the arguments for the Bottom() function, offset is
set to 1 and count is set to 3. The function finds the
results of the expressionSum(Sales) on the three
rows starting with the row above the bottom row in
the column segment (because offset=1), and the two
rows above that (where there is a row). These three
values are used as input to the RangeAvg() function,
which finds the average of the values in the supplied
range of numbers.

A table with Customer as dimension gives the
following results for the RangeAvg() expression.

Astrida

Betacab

Canutility

Divadip:

659.67

659.67

659.67

659.67

Example 3

Monthnames:

LOAD *, Dual(MonthText,MonthNumber) as Month INLINE [

MonthText, MonthNumber

Jan, 1

Feb, 2

Mar, 3

Apr, 4

May, 5

Jun, 6

Jul, 7

Aug, 8

Sep, 9

Oct, 10

Nov, 11

Dec, 12

];

Sales2013:

Crosstable (MonthText, Sales) LOAD * inline [

Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

Script syntax and chart functions - Qlik Sense, May 2023 1247

5 Script and chart functions

See also:

p Top - chart function (page 1272)

Column - chart function
Column() returns the value found in the column corresponding to ColumnNo in a straight table, disregarding
dimensions. For example Column(2) returns the value of the second measure column.

Syntax:
Column(ColumnNo)

Return data type: dual

Arguments:

Argument Description

ColumnNo Column number of a column in the table containing a measure.

The Column() function disregards dimension columns.

Arguments

Limitations:

l Recursive calls will return NULL.
l If ColumnNo references a column for which there is no measure, a NULL value is returned.
l Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this chart

function is used in any of the chart's expressions. These sort alternatives are therefore automatically
disabled. When you use this chart function in a visualization or table, the sorting of the visualization
will revert back to the sorted input to this function.

Examples and results:

Example: Percentage total sales

Customer Product UnitPrice UnitSales Order Value Total Sales Value % Sales

A AA 15 10 150 505 29.70

A AA 16 4 64 505 12.67

A BB 9 9 81 505 16.04

B BB 10 5 50 505 9.90

Script syntax and chart functions - Qlik Sense, May 2023 1248

5 Script and chart functions

Customer Product UnitPrice UnitSales Order Value Total Sales Value % Sales

B CC 20 2 40 505 7.92

B DD 25 - 0 505 0.00

C AA 15 8 120 505 23.76

C CC 19 - 0 505 0.00

Example: Percentage of sales for selected customer

Customer Product UnitPrice UnitSales Order Value Total Sales Value % Sales

A AA 15 10 150 295 50.85

A AA 16 4 64 295 21.69

A BB 9 9 81 295 27.46

Examples Results

Order Value is added to the table as a
measure with the expression: Sum
(UnitPrice*UnitSales).

Total Sales Value is added as a measure
with the expression: Sum(TOTAL
UnitPrice*UnitSales)

% Sales is added as a measure with the
expression 100*Column(1)/Column(2)

The result of Column(1) is taken from the column Order Value,
because this is the first measure column.

The result of Column(2) is taken from Total Sales Value,
because this is the second measure column.

See the results in the column % Sales in the example
Percentage total sales (page 1248).

Make the selection Customer A. The selection changes the Total Sales Value, and therefore the
%Sales. See the example Percentage of sales for selected

customer (page 1249).

Examples and results

Data used in examples:

ProductData:

LOAD * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|CC|2|20

Betacab|DD||25

Canutility|AA|8|15

Canutility|CC||19

] (delimiter is '|');

Script syntax and chart functions - Qlik Sense, May 2023 1249

5 Script and chart functions

Dimensionality - chart function
Dimensionality() returns the number of dimensions for the current row. In the case of pivot tables, the
function returns the total number of dimension columns that have non-aggregation content, that is, do not
contain partial sums or collapsed aggregates.

Syntax:
Dimensionality ()

Return data type: integer

Limitations:

This function is only available in charts. For all chart types, except pivot table, it will return the number of
dimensions in all rows except the total, which will be 0.

Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this chart
function is used in any of the chart's expressions. These sort alternatives are therefore automatically disabled.
When you use this chart function in a visualization or table, the sorting of the visualization will revert back to
the sorted input to this function.

Example: Chart expression using Dimensionality
Example: Chart expression
The Dimensionality() function can be used with a pivot table as a chart expression where you want to apply
different cell formatting depending on the number of dimensions in a row that has non-aggregated data. This
example uses the Dimensionality() function to apply a background color to table cells that match a given
condition.

Load script
Load the following data as an inline load in the data load editor to create the chart expression example below.

ProductSales:

Load * inline [

Country,Product,Sales,Budget

Sweden,AA,100000,50000

Germany,AA,125000,175000

Canada,AA,105000,98000

Norway,AA,74850,68500

Ireland,AA,49000,48000

Sweden,BB,98000,99000

Germany,BB,115000,175000

Norway,BB,71850,68500

Ireland,BB,31000,48000

] (delimiter is ',');

Script syntax and chart functions - Qlik Sense, May 2023 1250

5 Script and chart functions

Chart expression
Create a pivot table visualization in a Qlik Sense sheet with Country and Product as dimensions. Add Sum
(Sales), Sum(Budget), and Dimensionality() as measures.

In the Properties panel, enter the following expression as the Background color expression for the Sum
(Sales) measure:

If(Dimensionality()=1 and Sum(Sales)<Sum(Budget),RGB(255,156,156),

If(Dimensionality()=2 and Sum(Sales)<Sum(Budget),RGB(178,29,29)

))

Result:

Explanation
The expression If(Dimensionality()=1 and Sum(Sales)<Sum(Budget),RGB(255,156,156), If

(Dimensionality()=2 and Sum(Sales)<Sum(Budget),RGB(178,29,29))) contains conditional statements
that check the dimensionality value and the Sum(Sales) and Sum(Budget) for each product. If the conditions
are met, a background color is applied to the Sum(Sales) value.

Exists
Exists() determines whether a specific field value has already been loaded into the field in the
data load script. The function returns TRUE or FALSE, so can be used in the where clause of a
LOAD statement or an IF statement.

Script syntax and chart functions - Qlik Sense, May 2023 1251

5 Script and chart functions

You can also use Not Exists() to determine if a field value has not been loaded, but caution is
recommended if you use Not Exists() in a where clause. The Exists() function tests both previously
loaded tables and previously loaded values in the current table. So, only the first occurrence will be
loaded. When the second occurrence is encountered, the value is already loaded. See the examples
for more information.

Syntax:
Exists(field_name [, expr])

Return data type: Boolean

Arguments:

Argument Description

field_name The name of the field where you want to search for a value. You can use an explicit field
name without quotes.

The field must already be loaded by the script. That means, you cannot refer to a field that
is loaded in a clause further down in the script.

expr The value that you want to check if it exists. You can use an explicit value or an expression
that refers to one or several fields in the current load statement.

You cannot refer to fields that are not included in the current load statement.

This argument is optional. If you omit it, the function will check if the value of field_name
in the current record already exists.

Arguments

Examples and results:

Example 1

Exists (Employee)

Returns -1 (True) if the value of the field Employee in the current record already exists in any previously read
record containing that field.

The statements Exists (Employee, Employee) and Exists (Employee) are equivalent.

Example 2

Exists(Employee, 'Bill')

Returns -1 (True) if the field value 'Bill' is found in the current content of the field Employee.

Script syntax and chart functions - Qlik Sense, May 2023 1252

5 Script and chart functions

Example 3

Employees:

LOAD * inline [

Employee|ID|Salary

Bill|001|20000

John|002|30000

Steve|003|35000

] (delimiter is '|');

Citizens:

Load * inline [

Employee|Address

Bill|New York

Mary|London

Steve|Chicago

Lucy|Madrid

Lucy|Paris

John|Miami

] (delimiter is '|') where Exists (Employee);

Drop Tables Employees;

This results in a table that you can use in a table visualization using the dimensions Employee and Address.

The where clause, where Exists (Employee), means only the names from the table Citizens that are also in
Employees are loaded into the new table. The Drop statement removes the table Employees to avoid
confusion.

Employee Address

Bill New York

John Miami

Steve Chicago

Results

Example 4

Employees:

Load * inline [

Employee|ID|Salary

Bill|001|20000

John|002|30000

Steve|003|35000

] (delimiter is '|');

Citizens:

Load * inline [

Employee|Address

Script syntax and chart functions - Qlik Sense, May 2023 1253

5 Script and chart functions

Bill|New York

Mary|London

Steve|Chicago

Lucy|Madrid

Lucy|Paris

John|Miami

] (delimiter is '|') where not Exists (Employee);

Drop Tables Employees;

The where clause includes not: where not Exists (Employee).

This means that only the names from the table Citizens that are not in Employees are loaded into the new
table.

Note that there are two values for Lucy in the Citizens table, but only one is included in the result table. When
you load the first row with the value Lucy, it is included in the Employee field. Hence, when the second line is
checked, the value already exists.

Employee Address

Mary London

Lucy Madrid

Results

Example 5

This example shows how to load all values.

Employees:

Load Employee As Name;

LOAD * inline [

Employee|ID|Salary

Bill|001|20000

John|002|30000

Steve|003|35000

] (delimiter is '|');

Citizens:

Load * inline [

Employee|Address

Bill|New York

Mary|London

Steve|Chicago

Lucy|Madrid

Lucy|Paris

John|Miami

] (delimiter is '|') where not Exists (Name, Employee);

Drop Tables Employees;

Script syntax and chart functions - Qlik Sense, May 2023 1254

5 Script and chart functions

To be able to get all values for Lucy, two things were changed:

l A preceding load to the Employees table was inserted where Employee was renamed to Name.
Load Employee As Name;

l The Where condition in Citizens was changed to:
not Exists (Name, Employee).

This creates fields for Name and Employee. When the second row with Lucy is checked, it still does not exist in
Name.

Employee Address

Mary London

Lucy Madrid

Lucy Paris

Results

FieldIndex
FieldIndex() returns the position of the field value value in the field field_name (by load order).

Syntax:
FieldIndex(field_name , value)

Return data type: integer

Arguments:

Argument Description

field_name Name of the field for which the index is required. For example, the column in a table. Must
be given as a string value. This means that the field name must be enclosed by single
quotes.

value The value of the field field_name.

Arguments

Limitations:

l If value cannot be found among the field values of the field field_name, 0 is returned.
l Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this chart

function is used in any of the chart's expressions. These sort alternatives are therefore automatically
disabled. When you use this chart function in a visualization or table, the sorting of the visualization
will revert back to the sorted input to this function. This limitation does not apply to the equivalent
script function.

Examples and results:

The following examples use the field: First name from the tableNames.

Script syntax and chart functions - Qlik Sense, May 2023 1255

5 Script and chart functions

Examples Results

Add the example data to your app
and run it.

The table Names is loaded, as in the sample data.

Chart function: In a table containing
the dimension First name, add as a
measure:

FieldIndex ('First name','John') 1, because 'John' appears first in the load order of the First name
field. Note that in a filter pane John would appear as number 2
from the top as it's sorted alphabetically and not as in the load
order.

FieldIndex ('First

name','Peter')
4, because FieldIndex() returns only one value, that is the first
occurrence in the load order.

Script function: Given the table
Names is loaded, as in the example
data:

John1:

Load FieldIndex('First

name','John') as MyJohnPos

Resident Names;

MyJohnPos=1, because 'John' appears first in the load order of the
First name field. Note that in a filter pane John would appear as
number 2 from the top as it's sorted alphabetically and not as in
the load order.

Peter1:

Load FieldIndex('First

name','Peter') as MyPeterPos

Resident Names;

MyPeterPos=4, because FieldIndex() returns only one value, that is
the first occurrence in the load order.

Examples and results

Data used in example:

Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC|No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

John1:

Load FieldIndex('First name','John') as MyJohnPos

Resident Names;

Peter1:

Load FieldIndex('First name','Peter') as MyPeterPos

Resident Names;

FieldValue
FieldValue() returns the value found in position elem_no of the field field_name (by load order).

Script syntax and chart functions - Qlik Sense, May 2023 1256

5 Script and chart functions

Syntax:
FieldValue(field_name , elem_no)

Return data type: dual

Arguments:

Argument Description

field_name Name of the field for which the value is required. For example, the column in a table. Must
be given as a string value. This means that the field name must be enclosed by single
quotes.

elem_no The position (element) number of the field, following the load order, that the value is
returned for. This could correspond to the row in a table, but it depends on the order in
which the elements (rows) are loaded.

Arguments

Limitations:

l If elem_no is larger than the number of field values, NULL is returned.
l Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this chart

function is used in any of the chart's expressions. These sort alternatives are therefore automatically
disabled. When you use this chart function in a visualization or table, the sorting of the visualization
will revert back to the sorted input to this function. This limitation does not apply to the equivalent
script function.

Example

Load script
Load the following data as an inline load in the data load editor to create the example below.

Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC |No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

John1:

Load FieldValue('First name',1) as MyPos1

Resident Names;

Peter1:

Script syntax and chart functions - Qlik Sense, May 2023 1257

5 Script and chart functions

Load FieldValue('First name',5) as MyPos2

Resident Names;

Create a visualization
Create a table visualization in a Qlik Sense sheet. Add fields First name, MyPos1, and MyPos2 to the table.

Result

First name MyPos1 MyPos2

Jane John Jane

John John Jane

Mark John Jane

Peter John Jane

Sue John Jane

Explanation
FieldValue('First name','1') results in John as the value for MyPos1 for all first names because John appears
first in the load order of the First name field. Note that in a filter pane John would appear as number 2 from
the top, after Jane, as it's sorted alphabetically and not as in the load order.

FieldValue('First name','5') results in Jane as the value for MyPos2 for all first names because Jane appears
fifth in the load order of the First name field.

FieldValueCount
FieldValueCount() is an integer function that returns the number of distinct values in a field.

A partial reload can remove values from the data, which will not be reflected in the number returned. The
returned number will correspond to all distinct values that were loaded in either the initial reload or any
subsequent partial reload.

Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this
chart function is used in any of the chart's expressions. These sort alternatives are therefore
automatically disabled. When you use this chart function in a visualization or table, the sorting of the
visualization will revert back to the sorted input to this function. This limitation does not apply to the
equivalent script function.

Syntax:
FieldValueCount(field_name)

Script syntax and chart functions - Qlik Sense, May 2023 1258

5 Script and chart functions

Return data type: integer

Arguments:

Argument Description

field_name Name of the field for which the value is required. For example, the column in a table. Must
be given as a string value. This means that the field name must be enclosed by single
quotes.

Arguments

Examples and results:

The following examples use the field First name from the table Names.

Examples Results

Add the example data to your app and run it. The table Names is loaded, as in the sample
data.

Chart function: In a table containing the dimension First
name, add as a measure:

FieldValueCount('First name') 5 as Peter appears twice.

FieldValueCount('Initials') 6 as Initials only has distinct values.

Script function: Given the table Names is loaded, as in the
example data:

FieldCount1:

Load FieldValueCount('First name') as MyFieldCount1

Resident Names;

MyFieldCount1=5, because 'Peter' appears
twice.

FieldCount2:

Load FieldValueCount('Initials') as

MyInitialsCount1

Resident Names;

MyFieldCount1=6, because 'Initials' only has
distinct values.

Examples and results

Data used in examples:
Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC|No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

FieldCount1:

Load FieldValueCount('First name') as MyFieldCount1

Resident Names;

Script syntax and chart functions - Qlik Sense, May 2023 1259

5 Script and chart functions

FieldCount2:

Load FieldValueCount('Initials') as MyInitialsCount1

Resident Names;

LookUp
Lookup() looks into a table that is already loaded and returns the value of field_name
corresponding to the first occurrence of the value match_field_value in the field match_field_
name. The table can be the current table or another table previously loaded.

Syntax:
lookup(field_name, match_field_name, match_field_value [, table_name])

Return data type: dual

Arguments:

Argument Description

field_name Name of the field for which the return value is required. Input value must be given as a
string (for example, quoted literals).

match_field_
name

Name of the field to look up match_field_value in. Input value must be given as a string
(for example, quoted literals).

match_field_
value

Value to look up in match_field_name field.

table_name Name of the table in which to look up the value. Input value must be given as a string (for
example quoted literals).

If table_name is omitted the current table is assumed.

Arguments

Arguments without quotes refer to the current table. To refer to other tables, enclose an argument in
single quotes.

Limitations:

The order in which the search is made is the load order, unless the table is the result of complex operations
such as joins, in which case, the order is not well defined. Both field_name and match_field_name must be
fields in the same table, specified by table_name.

If no match is found, NULL is returned.

Example

Load script
Load the following data as an inline load in the data load editor to create the example below.

Script syntax and chart functions - Qlik Sense, May 2023 1260

5 Script and chart functions

ProductList:

Load * Inline [

ProductID|Product|Category|Price

1|AA|1|1

2|BB|1|3

3|CC|2|8

4|DD|3|2

] (delimiter is '|');

OrderData:

Load *, Lookup('Category', 'ProductID', ProductID, 'ProductList') as CategoryID

Inline [

InvoiceID|CustomerID|ProductID|Units

1|Astrida|1|8

1|Astrida|2|6

2|Betacab|3|10

3|Divadip|3|5

4|Divadip|4|10

] (delimiter is '|');

Drop Table ProductList;

Create a visualization
Create a table visualization in a Qlik Sense sheet. Add fields ProductID, InvoiceID, CustomerID, Units, and
CategoryID to the table.

Result

ProductID InvoiceID CustomerID Units CategoryID

1 1 Astrida 8 1

2 1 Astrida 6 1

3 2 Betacab 10 2

3 3 Divadip 5 2

4 4 Divadip 10 3

Resulting table

Explanation
The sample data uses the Lookup() function in the following form:

Lookup('Category', 'ProductID', ProductID, 'ProductList')

The ProductList table is loaded first.

The Lookup() function is used to build the OrderData table. It specifies the third argument as ProductID. This
is the field for which the value is to be looked up in the second argument 'ProductID' in the ProductList, as
denoted by the enclosing single quotes.

The function returns the value for 'Category' (in the ProductList table), loaded as CategoryID.

Script syntax and chart functions - Qlik Sense, May 2023 1261

5 Script and chart functions

The drop statement deletes the ProductList table from the data model because it is not required, which
leaves the resulting OrderData table.

The Lookup() function is flexible and can access any previously loaded table. However, it is slow
compared with the Applymap() function.

See also:

p ApplyMap (page 1283)

NoOfRows - chart function
NoOfRows() returns the number of rows in the current column segment in a table. For bitmap charts,
NoOfRows() returns the number of rows in the chart's straight table equivalent.

If the table or table equivalent has multiple vertical dimensions, the current column segment will include only
rows with the same values as the current row in all dimension columns, except for the column showing the
last dimension in the inter-field sort order.

Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this
chart function is used in any of the chart's expressions. These sort alternatives are therefore
automatically disabled. When you use this chart function in a visualization or table, the sorting of the
visualization will revert back to the sorted input to this function.

Syntax:
NoOfRows([TOTAL])

Return data type: integer

Arguments:

Argument Description

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current
column segment is always equal to the entire column.

Arguments

Example: Chart expression using NoOfRows
Example - chart expression

Load script
Load the following data as an inline load in the data load editor to create the chart expression examples
below.

Script syntax and chart functions - Qlik Sense, May 2023 1262

5 Script and chart functions

Temp:

LOAD * inline [

Region|SubRegion|RowNo()|NoOfRows()

Africa|Eastern

Africa|Western

Americas|Central

Americas|Northern

Asia|Eastern

Europe|Eastern

Europe|Northern

Europe|Western

Oceania|Australia

] (delimiter is '|');

Chart expression
Create a table visualization in a Qlik Sense sheet with Region and SubRegion as dimensions. Add RowNo(),
NoOfRows(), and NoOfRows(Total) as measures.

Result

Region SubRegion RowNo() NoOfRows()
NoOfRows
(Total)

Africa Eastern 1 2 9

Africa Western 2 2 9

Americas Central 1 2 9

Americas Northern 2 2 9

Asia Eastern 1 1 9

Europe Eastern 1 3 9

Europe Northern 2 3 9

Eurrope Western 3 3 9

Oceania Australia 1 1 9

Explanation
In this example, the sort order is by the first dimension, Region. As a result, each column segment is made up
of a group of regions that has the same value, for example, Africa.

The RowNo() column shows the row numbers for each column segment, for example, there are two rows for
the Africa region. The row numbering then begins at 1 again for the next column segment, which is Americas.

The NoOfRows() column counts the number of rows in each column segment, for example, Europe has three
rows in the column segment.

Script syntax and chart functions - Qlik Sense, May 2023 1263

5 Script and chart functions

The NoOfRows(Total) column disregards the dimensions because of the TOTAL argument for NoOfRows() and
counts the rows in the table.

If the table was sorted on the second dimension, SubRegion, the column segments would be based on that
dimension so the row numbering would change for each SubRegion.

See also:

p RowNo - chart function (page 566)

Peek
Peek() returns the value of a field in a table for a row that has already been loaded. The row
number can be specified, as can the table. If no row number is specified, the last previously
loaded record will be used.

The peek() function is most often used to find the relevant boundaries in a previously loaded table, that is, the
first value or last value of a specific field. In most cases, this value is stored in a variable for later use, for
example, as a condition in a do-while loop.

Syntax:
Peek(
field_name
[, row_no[, table_name]])

Return data type: dual

Arguments:

Argument Description

field_name Name of the field for which the return value is required.Input value must be given as a
string (for example, quoted literals).

row_no The row in the table that specifies the field required. Can be an expression, but must
resolve to an integer. 0 denotes the first record, 1 the second, and so on. Negative numbers
indicate order from the end of the table. -1 denotes the last record read.

If no row_no is stated, -1 is assumed.

table_name A table label without the ending colon. If no table_name is stated, the current table is
assumed. If used outside the LOAD statement or referring to another table, the table_name
must be included.

Arguments

Limitations:

The function can only return values from already loaded records. This means that in the first record of a table,
a call using -1 as row_no will return NULL.

Script syntax and chart functions - Qlik Sense, May 2023 1264

5 Script and chart functions

Examples and results:

Example 1
Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

EmployeeDates:

Load * Inline [

EmployeeCode|StartDate|EndDate

101|02/11/2010|23/06/2012

102|01/11/2011|30/11/2013

103|02/01/2012|

104|02/01/2012|31/03/2012

105|01/04/2012|31/01/2013

106|02/11/2013|

] (delimiter is '|');

First_last_Employee:

Load

EmployeeCode,

Peek('EmployeeCode',0,'EmployeeDates') As FirstCode,

Peek('EmployeeCode',-1,'EmployeeDates') As LastCode

Resident EmployeeDates;

Employee code StartDate EndDate FirstCode LastCode

101 02/11/2010 23/06/2012 101 106

102 01/11/2011 30/11/2013 101 106

103 02/01/2012 101 106

104 02/01/2012 31/03/2012 101 106

105 01/04/2012 31/01/2013 101 106

106 02/11/2013 101 106

Resulting table

FirstCode = 101 because Peek('EmployeeCode',0, 'EmployeeDates') returns the first value of
EmployeeCode in the table EmployeeDates.

LastCode = 106 because Peek('EmployeeCode',-1, 'EmployeeDates') returns the last value of
EmployeeCode in the table EmployeeDates.

Substituting the value of the argument row_no returns the values of other rows in the table, as follows:

Peek('EmployeeCode',2, 'EmployeeDates') returns the third value, 103, in the table as the FirstCode.

However, note that without specifying the table as the third argument table_name in these examples, the
function references the current (in this case, internal) table.

Script syntax and chart functions - Qlik Sense, May 2023 1265

5 Script and chart functions

Example 2
If you want to access data further down in a table, you need to do it in two steps: first, load the entire table
into a temporary table, and then re-sort it when using Peek().

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

T1:

LOAD * inline [

ID|Value

1|3

1|4

1|6

3|7

3|8

2|1

2|11

5|2

5|78

5|13

] (delimiter is '|');

T2:

LOAD *,

IF(ID=Peek('ID'), Peek('List')&','&Value,Value) AS List

RESIDENT T1

ORDER BY ID ASC;

DROP TABLE T1;

Create a table in a sheet in your app with ID, List, and Value as the dimensions.

ID List Value

1 3,4 4

1 3,4,6 6

1 3 3

2 1,11 11

2 1 1

3 7,8 8

3 7 7

5 2,78 78

5 2,78,13 13

5 2 2

Resulting table

Script syntax and chart functions - Qlik Sense, May 2023 1266

5 Script and chart functions

The IF() statement is built from the temporary table T1.
Peek('ID') references the field ID in the previous row in the current table T2.
Peek('List') references the field List in the previous row in the table T2, currently being built as the
expression is evaluated.

The statement is evaluated as follows:
If the current value of ID is the same as the previous value of ID, then write the value of Peek('List')
concatenated with the current value of Value. Otherwise, write the current value of Value only.

If Peek('List') already contains a concatenated result, the new result of Peek('List') will be concatenated to it.

Note the Order by clause. This specifies how the table is ordered (by ID in ascending order). Without
this, the Peek() function will use whatever arbitrary ordering the internal table has, which can lead
to unpredictable results.

Example 3
Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Amounts:

Load

Date#(Month,'YYYY-MM') as Month,

Amount,

Peek(Amount) as AmountMonthBefore

Inline

[Month,Amount

2022-01,2

2022-02,3

2022-03,7

2022-04,9

2022-05,4

2022-06,1];

Amount AmountMonthBefore Month

1 4 2022-06

2 - 2022-01

3 2 2022-02

4 9 2022-05

7 3 2022-03

9 7 2022-04

Resulting table

The field AmountMonthBefore will hold the amount from the previous month.

Script syntax and chart functions - Qlik Sense, May 2023 1267

5 Script and chart functions

Here, the row_no and table_name parameters are omitted, so the default values are used. In this example, the
following three function calls are equivalent:

l Peek(Amount)
l Peek(Amount,-1)
l Peek(Amount,-1,'Amounts')

Using -1 as row_no means that the value from previous row will be used. By substituting this value, values of
other rows in the table can be fetched:

Peek(Amount,2) returns the third value in the table: 7.

Example 4
Data needs to be correctly sorted in order to get the correct results but, unfortunately, this is not always the
case. Furthermore, the Peek() function cannot be used to reference data that has not yet been loaded. By
using temporary tables and running multiple passes through the data, such problems can be avoided.

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

tmp1Amounts:

Load * Inline

[Month,Product,Amount

2022-01,B,3

2022-01,A,8

2022-02,B,4

2022-02,A,6

2022-03,B,1

2022-03,A,6

2022-04,A,5

2022-04,B,5

2022-05,B,6

2022-05,A,7

2022-06,A,4

2022-06,B,8];

tmp2Amounts:

Load *,

If(Product=Peek(Product),Peek(Amount)) as AmountMonthBefore

Resident tmp1Amounts

Order By Product, Month Asc;

Drop Table tmp1Amounts;

Amounts:

Load *,

If(Product=Peek(Product),Peek(Amount)) as AmountMonthAfter

Resident tmp2Amounts

Order By Product, Month Desc;

Drop Table tmp2Amounts;

Script syntax and chart functions - Qlik Sense, May 2023 1268

5 Script and chart functions

Explanation

The initial table is sorted according to month, which means that the peek() function would in many cases
return the amount for the wrong product. Hence, this table needs to be re-sorted. This is done by running a
second pass through the data creating a new table tmp2Amounts. Note the Order By clause. It orders the
records first by product, then by month in ascending order.

The If() function is needed since the AmountMonthBefore only should be calculated if the previous row
contains the data for the same product but for the previous month. By comparing the product on the current
row with the product on the previous row, this condition can be validated.

When the second table is created, the first table tmp1Amounts is dropped using a Drop Table statement.

Finally, a third pass is made through the data, but now with the months sorted in reverse order. This way,
AmountMonthAfter can also be calculated.

Order by clauses specify how the table is ordered; without these, the Peek() function will use
whatever arbitrary ordering the internal table has, which can lead to unpredictable results.

Result

Month Product Amount AmountMonthBefore AmountMonthAfter

2022-01 A 8 - 6

2022-02 B 3 - 4

2022-03 A 6 8 6

2022-04 B 4 3 1

2022-05 A 6 6 5

2022-06 B 1 4 5

2022-01 A 5 6 7

2022-02 B 5 1 6

2022-03 A 7 5 4

2022-04 B 6 5 8

2022-05 A 4 7 -

2022-06 B 8 6 -

Resulting table

Example 5
Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

Script syntax and chart functions - Qlik Sense, May 2023 1269

5 Script and chart functions

T1:

Load * inline [

Quarter, Value

2003q1, 10000

2003q1, 25000

2003q1, 30000

2003q2, 1250

2003q2, 55000

2003q2, 76200

2003q3, 9240

2003q3, 33150

2003q3, 89450

2003q4, 1000

2003q4, 3000

2003q4, 5000

2004q1, 1000

2004q1, 1250

2004q1, 3000

2004q2, 5000

2004q2, 9240

2004q2, 10000

2004q3, 25000

2004q3, 30000

2004q3, 33150

2004q4, 55000

2004q4, 76200

2004q4, 89450];

T2:

Load *, rangesum(SumVal,peek('AccSumVal')) as AccSumVal;

Load Quarter, sum(Value) as SumVal resident T1 group by Quarter;

Result

Quarter SumVal AccSumVal

2003q1 65000 65000

2003q2 132450 197450

2003q3 131840 329290

2003q4 9000 338290

2004q1 5250 343540

2004q2 24240 367780

2004q3 88150 455930

2004q4 220650 676580

Resulting table

Script syntax and chart functions - Qlik Sense, May 2023 1270

5 Script and chart functions

Explanation

The load statement Load *, rangesum(SumVal,peek('AccSumVal')) as AccSumVal includes a recursive call
where the previous values are added to the current value. This operation is used to calculate an accumulation
of values in the script.

See also:

Previous
Previous() finds the value of the expr expression using data from the previous input record that
has not been discarded because of a where clause. In the first record of an internal table, the
function will return NULL.

Syntax:
Previous(expr)

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.
The expression can contain nested previous() functions in order to access records further
back. Data are fetched directly from the input source, making it possible to refer also to
fields that have not been loaded into Qlik Sense, that is,even if they have not been stored in
its associative database.

Arguments

Limitations:

In the first record of an internal table, the function returns NULL.

Example:

Input the following into your load script

Sales2013:

Load *, (Sales - Previous(Sales))as Increase Inline [

Month|Sales

1|12

2|13

3|15

4|17

5|21

6|21

7|22

8|23

Script syntax and chart functions - Qlik Sense, May 2023 1271

5 Script and chart functions

9|32

10|35

11|40

12|41

] (delimiter is '|');

By using the Previous() function in the Load statement, we can compare the current value of Sales with the
preceding value, and use it in a third field, Increase.

Month Sales Increase

1 12 -

2 13 1

3 15 2

4 17 2

5 21 4

6 21 0

7 22 1

8 23 1

9 32 9

10 35 3

11 40 5

12 41 1

Resulting table

Top - chart function
Top() evaluates an expression at the first (top) row of a column segment in a table. The row for which it is
calculated depends on the value of offset, if present, the default being the top row. For charts other than
tables, theTop() evaluation is made on the first row of the current column in the chart's straight table
equivalent.

Syntax:
Top([TOTAL] expr [, offset [,count]])

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1272

5 Script and chart functions

Argument Description

offset Specifying an offsetof n, greater than 1, moves the evaluation of the expression down n
rows below the top row.

Specifying a negative offset number makes the Top function work like the Bottom function
with the corresponding positive offset number.

count By specifying a third parameter count greater than 1, the function will return a range of
count values, one for each of the last count rows of the current column segment. In this
form, the function can be used as an argument to any of the special range functions. Range
functions (page 1290)

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current
column segment is always equal to the entire column.

A column segment is defined as a consecutive subset of cells having the same values for the
dimensions in the current sort order. Inter-record chart functions are computed in the column
segment excluding the right-most dimension in the equivalent straight table chart. If there is only
one dimension in the chart, or if the TOTAL qualifier is specified, the expression evaluates across full
table.

If the table or table equivalent has multiple vertical dimensions, the current column segment will
include only rows with the same values as the current row in all dimension columns, except for the
column showing the last dimension in the inter-field sort order.

Limitations:

l Recursive calls will return NULL.
l Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this chart

function is used in any of the chart's expressions. These sort alternatives are therefore automatically
disabled. When you use this chart function in a visualization or table, the sorting of the visualization
will revert back to the sorted input to this function.

Examples and results:

Example: 1

In the screenshot of the table shown in this example, the table visualization is created from the dimension
Customer and the measures: Sum(Sales) and Top(Sum(Sales)).

The column Top(Sum(Sales)) returns 587 for all rows because this is the value of the top row: Astrida.

Script syntax and chart functions - Qlik Sense, May 2023 1273

5 Script and chart functions

The table also shows more complex measures: one created from Sum(Sales)+Top(Sum(Sales)) and one
labeled Top offset 3, which is created using the expression Sum(Sales)+Top(Sum(Sales), 3) and has the
argument offset set to 3. It adds the Sum(Sales) value for the current row to the value from the third row
from the top row, that is, the current row plus the value for Canutility.

Example 1

Example: 2

In the screenshots of tables shown in this example, more dimensions have been added to the visualizations:
Month and Product. For charts with more than one dimension, the results of expressions containing the
Above, Below, Top, and Bottom functions depend on the order in which the column dimensions are sorted
by Qlik Sense. Qlik Sense evaluates the functions based on the column segments that result from the
dimension that is sorted last. The column sort order is controlled in the properties panel under Sorting and is
not necessarily the order in which the columns appear in a table.

First table for Example 2. The value of Top for the First value measure based on Month (Jan).

Second table for Example 2. The value of Top for the First value measure based on Product (AA for Astrida).

Script syntax and chart functions - Qlik Sense, May 2023 1274

5 Script and chart functions

Please refer to Example: 2 in the Above function for further details.

Example: 3 Result

The Top function can be used as input to the range
functions. For example: RangeAvg (Top(Sum

(Sales),1,3)).

In the arguments for the Top() function, offset is set
to 1 and count is set to 3. The function finds the
results of the expressionSum(Sales) on the three
rows starting with the row below the bottom row in
the column segment (because the offset=1), and the
two rows below that (where there is a row). These
three values are used as input to the RangeAvg()
function, which finds the average of the values in
the supplied range of numbers.

A table with Customer as dimension gives the
following results for the RangeAvg() expression.

Astrida

Betacab

Canutility

Divadip:

603

603

603

603

Example 3

Monthnames:

LOAD *, Dual(MonthText,MonthNumber) as Month INLINE [

MonthText, MonthNumber

Jan, 1

Feb, 2

Mar, 3

Apr, 4

May, 5

Jun, 6

Jul, 7

Aug, 8

Script syntax and chart functions - Qlik Sense, May 2023 1275

5 Script and chart functions

Sep, 9

Oct, 10

Nov, 11

Dec, 12

];

Sales2013:

Crosstable (MonthText, Sales) LOAD * inline [

Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

See also:

p Bottom - chart function (page 1243)
p Above - chart function (page 1235)
p Sum - chart function (page 336)
p RangeAvg (page 1293)
p Range functions (page 1290)

SecondaryDimensionality - chart function
SecondaryDimensionality() returns the number of dimension pivot table rows that have non-aggregation
content, that is, do not contain partial sums or collapsed aggregates. This function is the equivalent of the
dimensionality() function for horizontal pivot table dimensions.

Syntax:
SecondaryDimensionality()

Return data type: integer

Limitations:

l Unless used in pivot tables, the SecondaryDimensionality function always returns 0.
l Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this chart

function is used in any of the chart's expressions. These sort alternatives are therefore automatically
disabled. When you use this chart function in a visualization or table, the sorting of the visualization
will revert back to the sorted input to this function.

After - chart function
After() returns the value of an expression evaluated with a pivot table's dimension values as they appear in
the column after the current column within a row segment in the pivot table.

Syntax:
after([TOTAL] expr [, offset [, count]])

Script syntax and chart functions - Qlik Sense, May 2023 1276

5 Script and chart functions

Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this
chart function is used in any of the chart's expressions. These sort alternatives are therefore
automatically disabled. When you use this chart function in a visualization or table, the sorting of the
visualization will revert back to the sorted input to this function.

This function returns NULL in all chart types except pivot tables.

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

offset Specifying an offset n, greater than 1 moves the evaluation of the expression n rows further
to the right from the current row.

Specifying an offset of 0 will evaluate the expression on the current row.

Specifying a negative offset number makes the After function work like the Before function
with the corresponding positive offset number.

count By specifying a third parameter count greater than 1, the function will return a range of
values, one for each of the table rows up to the value of count, counting to the right from
the original cell.

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current
column segment is always equal to the entire column.

On the last column of a row segment a NULL value will be returned, as there is no column after this one.

If the pivot table has multiple horizontal dimensions, the current row segment will include only columns with
the same values as the current column in all dimension rows except for the row showing the last horizontal
dimension of the inter-field sort order. The inter-field sort order for horizontal dimensions in pivot tables is
defined simply by the order of the dimensions from top to bottom.

Example:

after(sum(Sales))

after(sum(Sales), 2)

after(total sum(Sales))

rangeavg (after(sum(x),1,3)) returns an average of the three results of the sum(x) function evaluated in
the three columns immediately to the right of the current column.

Before - chart function
Before() returns the value of an expression evaluated with a pivot table's dimension values as they appear in
the column before the current column within a row segment in the pivot table.

Script syntax and chart functions - Qlik Sense, May 2023 1277

5 Script and chart functions

Syntax:
before([TOTAL] expr [, offset [, count]])

This function returns NULL in all chart types except pivot tables.

Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this
chart function is used in any of the chart's expressions. These sort alternatives are therefore
automatically disabled. When you use this chart function in a visualization or table, the sorting of the
visualization will revert back to the sorted input to this function.

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

offset Specifying an offset n, greater than 1 moves the evaluation of the expression n rows further
to the left from the current row.

Specifying an offset of 0 will evaluate the expression on the current row.

Specifying a negative offset number makes the Before function work like the After function
with the corresponding positive offset number.

count By specifying a third parameter count greater than 1, the function will return a range of
values, one for each of the table rows up to the value of count, counting to the left from the
original cell.

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current
column segment is always equal to the entire column.

Arguments

On the first column of a row segment a NULL value will be returned, as there is no column before this one.

If the pivot table has multiple horizontal dimensions, the current row segment will include only columns with
the same values as the current column in all dimension rows except for the row showing the last horizontal
dimension of the inter-field sort order.The inter-field sort order for horizontal dimensions in pivot tables is
defined simply by the order of the dimensions from top to bottom.

Examples:

before(sum(Sales))

before(sum(Sales), 2)

before(total sum(Sales))

rangeavg (before(sum(x),1,3)) returns an average of the three results of the sum(x) function evaluated in
the three columns immediately to the left of the current column.

Script syntax and chart functions - Qlik Sense, May 2023 1278

5 Script and chart functions

First - chart function
First() returns the value of an expression evaluated with a pivot table's dimension values as they appear in
the first column of the current row segment in the pivot table. This function returns NULL in all chart types
except pivot tables.

Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this
chart function is used in any of the chart's expressions. These sort alternatives are therefore
automatically disabled. When you use this chart function in a visualization or table, the sorting of the
visualization will revert back to the sorted input to this function.

Syntax:
first([TOTAL] expr [, offset [, count]])

Arguments:

Argument Description

expression The expression or field containing the data to be measured.

offset Specifying an offset n, greater than 1 moves the evaluation of the expression n rows
further to the right from the current row.

Specifying an offset of 0 will evaluate the expression on the current row.

Specifying a negative offset number makes the First function work like the Last function
with the corresponding positive offset number.

count By specifying a third parameter count greater than 1, the function will return a range of
values, one for each of the table rows up to the value of count, counting to the right from
the original cell.

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current
column segment is always equal to the entire column.

Arguments

If the pivot table has multiple horizontal dimensions, the current row segment will include only columns with
the same values as the current column in all dimension rows except for the row showing the last horizontal
dimension of the inter-field sort order.The inter-field sort order for horizontal dimensions in pivot tables is
defined simply by the order of the dimensions from top to bottom.

Examples:

first(sum(Sales))

first(sum(Sales), 2)

first(total sum(Sales)

rangeavg (first(sum(x),1,5)) returns an average of the results of the sum(x) function evaluated on
the five leftmost columns of the current row segment.

Script syntax and chart functions - Qlik Sense, May 2023 1279

5 Script and chart functions

Last - chart function
Last() returns the value of an expression evaluated with a pivot table's dimension values as they appear in the
last column of the current row segment in the pivot table. This function returns NULL in all chart types except
pivot tables.

Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this
chart function is used in any of the chart's expressions. These sort alternatives are therefore
automatically disabled. When you use this chart function in a visualization or table, the sorting of the
visualization will revert back to the sorted input to this function.

Syntax:
last([TOTAL] expr [, offset [, count]])

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

offset Specifying an offset n, greater than 1 moves the evaluation of the expression n rows further
to the left from the current row.

Specifying an offset of 0 will evaluate the expression on the current row.

Specifying a negative offset number makes the First function work like the Last function
with the corresponding positive offset number.

count By specifying a third parameter count greater than 1, the function will return a range of
values, one for each of the table rows up to the value of count, counting to the left from the
original cell.

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current
column segment is always equal to the entire column.

Arguments

If the pivot table has multiple horizontal dimensions, the current row segment will include only columns with
the same values as the current column in all dimension rows except for the row showing the last horizontal
dimension of the inter-field sort order.The inter-field sort order for horizontal dimensions in pivot tables is
defined simply by the order of the dimensions from top to bottom.

Example:

last(sum(Sales))

last(sum(Sales), 2)

last(total sum(Sales)

rangeavg (last(sum(x),1,5)) returns an average of the results of the sum(x) function evaluated on the five
rightmost columns of the current row segment.

Script syntax and chart functions - Qlik Sense, May 2023 1280

5 Script and chart functions

ColumnNo - chart function
ColumnNo() returns the number of the current column within the current row segment in a pivot table. The
first column is number 1.

Syntax:
ColumnNo([total])

Arguments:

Argument Description

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current
column segment is always equal to the entire column.

Arguments

If the pivot table has multiple horizontal dimensions, the current row segment will include only columns with
the same values as the current column in all dimension rows except for the row showing the last horizontal
dimension of the inter-field sort order.The inter-field sort order for horizontal dimensions in pivot tables is
defined simply by the order of the dimensions from top to bottom.

Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this
chart function is used in any of the chart's expressions. These sort alternatives are therefore
automatically disabled. When you use this chart function in a visualization or table, the sorting of the
visualization will revert back to the sorted input to this function.

Example:

if(ColumnNo()=1, 0, sum(Sales) / before(sum(Sales)))

NoOfColumns - chart function
NoOfColumns() returns the number of columns in the current row segment in a pivot table.

Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this
chart function is used in any of the chart's expressions. These sort alternatives are therefore
automatically disabled. When you use this chart function in a visualization or table, the sorting of the
visualization will revert back to the sorted input to this function.

Syntax:
NoOfColumns([total])

Script syntax and chart functions - Qlik Sense, May 2023 1281

5 Script and chart functions

Arguments:

Argument Description

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current
column segment is always equal to the entire column.

Arguments

If the pivot table has multiple horizontal dimensions, the current row segment will include only columns with
the same values as the current column in all dimension rows except for the row showing the last dimension in
the inter-field sort order.The inter-field sort order for horizontal dimensions in pivot tables is defined simply
by the order of the dimensions from top to bottom.

Example:

if(ColumnNo()=NoOfColumns(), 0, after(sum(Sales)))

5.17 Logical functions
This section describes functions handling logical operations. All functions can be used in both
the data load script and in chart expressions.

IsNum
Returns -1 (True) if the expression can be interpreted as a number, otherwise 0 (False).

IsNum(expr)

IsText
Returns -1 (True) if the expression has a text representation, otherwise 0 (False).

IsText(expr)

Both IsNum and IsText return 0 if the expression is NULL.

Example:

The following example loads an inline table with mixed text and numerical values, and adds two fields to
check if the value is a numerical value, respectively a text value.

Load *, IsNum(Value), IsText(Value)

Inline [

Value

23

Green

Blue

12

33Red];

Script syntax and chart functions - Qlik Sense, May 2023 1282

5 Script and chart functions

The resulting table looks like this:

Value IsNum(Value) IsText(Value)

23 -1 0

Green 0 -1

Blue 0 -1

12 -1 0

33Red 0 -1

Resulting table

5.18 Mapping functions
This section describes functions for handling mapping tables. A mapping table can be used to replace field
values or field names during script execution.

Mapping functions can only be used in the data load script.

Mapping functions overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

ApplyMap
The ApplyMap script function is used for mapping the output of an expression to a previously loaded mapping
table.

ApplyMap ('mapname', expr [, defaultexpr])

MapSubstring
The MapSubstring script function is used to map parts of any expression to a previously loaded mapping
table. The mapping is case sensitive and non-iterative, and substrings are mapped from left to right.

MapSubstring ('mapname', expr)

ApplyMap
The ApplyMap script function is used for mapping the output of an expression to a previously loaded mapping
table.

Syntax:
ApplyMap('map_name', expression [, default_mapping])

Script syntax and chart functions - Qlik Sense, May 2023 1283

5 Script and chart functions

Return data type: dual

Arguments:

Argument Description

map_name The name of a mapping table that has previously been created through the mapping load
or the mapping select statement. Its name must be enclosed by single, straight quotation
marks.

If you use this function in a macro expanded variable and refer to a mapping
table that does not exist, the function call fails and a field is not created.

expression The expression, the result of which should be mapped.

default_
mapping

If stated, this value will be used as a default value if the mapping table does not contain a
matching value for expression. If not stated, the value of expression will be returned as is.

Arguments

The output field of ApplyMap should not have the same name as one of its input fields. This may
cause unexpected results. Example not to use: ApplyMap('Map', A) as A.

Example:

In this example we load a list of salespersons with a country code representing their country of residence. We
use a table mapping a country code to a country to replace the country code with the country name. Only
three countries are defined in the mapping table, other country codes are mapped to 'Rest of the world'.

// Load mapping table of country codes:

map1:

mapping LOAD *

Inline [

CCode, Country

Sw, Sweden

Dk, Denmark

No, Norway

] ;

// Load list of salesmen, mapping country code to country

// If the country code is not in the mapping table, put Rest of the world

Salespersons:

LOAD *,

ApplyMap('map1', CCode,'Rest of the world') As Country

Inline [

CCode, Salesperson

Sw, John

Sw, Mary

Sw, Per

Script syntax and chart functions - Qlik Sense, May 2023 1284

5 Script and chart functions

Dk, Preben

Dk, Olle

No, Ole

Sf, Risttu

] ;

// We don't need the CCode anymore

Drop Field 'CCode';

The resulting table (Salespersons) looks like this:

Salesperson Country

John Sweden

Mary Sweden

Per Sweden

Preben Denmark

Olle Denmark

Ole Norway

Risttu Rest of the world

Resulting table

MapSubstring
The MapSubstring script function is used to map parts of any expression to a previously loaded
mapping table. The mapping is case sensitive and non-iterative, and substrings are mapped
from left to right.

Syntax:
MapSubstring('map_name', expression)

Return data type: string

Arguments:

Argument Description

map_name The name of a mapping table previously read by a mapping load or a mapping select
statement. The name must be enclosed by single straight quotation marks.

If you use this function in a macro expanded variable and refer to a mapping
table that does not exist, the function call fails and a field is not created.

expression The expression whose result is to be mapped by substrings.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1285

5 Script and chart functions

Example:

In this example we load a list of product models. Each model has a set of attributes that are described by a
composite code. Using the mapping table with MapSubstring, we can expand the attribute codes to a
description.

map2:

mapping LOAD *

Inline [

AttCode, Attribute

R, Red

Y, Yellow

B, Blue

C, Cotton

P, Polyester

S, Small

M, Medium

L, Large

] ;

Productmodels:

LOAD *,

MapSubString('map2', AttCode) as Description

Inline [

Model, AttCode

Twixie, R C S

Boomer, B P L

Raven, Y P M

Seedling, R C L

SeedlingPlus, R C L with hood

Younger, B C with patch

MultiStripe, R Y B C S/M/L

] ;

// We don't need the AttCode anymore

Drop Field 'AttCode';

The resulting table looks like this:

Model Description

Twixie Red Cotton Small

Boomer Blue Polyester Large

Raven Yellow Polyester Medium

Seedling Red Cotton Large

SeedlingPlus Red Cotton Large with hood

Younger Blue Cotton with patch

MultiStripe Red Yellow Blue Cotton Small/Medium/Large

Resulting table

Script syntax and chart functions - Qlik Sense, May 2023 1286

5 Script and chart functions

5.19 Mathematical functions
This section describes functions for mathematical constants and Boolean values. These functions do not have
any parameters, but the parentheses are still required.

All functions can be used in both the data load script and in chart expressions.

e
The function returns the base of the natural logarithms, e (2.71828...).

e()

false
The function returns a dual value with text value 'False' and numeric value 0, which can be used as logical
false in expressions.

false()

pi
The function returns the value of π (3.14159...).

pi()

rand
The function returns a random number between 0 and 1. This can be used to create sample data.

rand()

Example:

This example script creates a table of 1000 records with randomly selected upper case characters, that is,
characters in the range 65 to 91 (65+26).

Load

Chr(Floor(rand() * 26) + 65) as UCaseChar,

RecNo() as ID

Autogenerate 1000;

true
The function returns a dual value with text value 'True' and numeric value -1, which can be used as logical
true in expressions.

true()

5.20 NULL functions
This section describes functions for returning or detecting NULL values.

All functions can be used in both the data load script and in chart expressions.

Script syntax and chart functions - Qlik Sense, May 2023 1287

5 Script and chart functions

NULL functions overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

EmptyIsNull
The EmptyIsNull function converts empty strings to NULL. Hence, it returns NULL if the parameter is an
empty string, otherwise it returns the parameter.

EmptyIsNull (expr)

IsNull
The IsNull function tests if the value of an expression is NULL and if so, returns -1 (True), otherwise 0 (False).

IsNull (expr)

Null
The Null function returns a NULL value.

NULL()

EmptyIsNull
The EmptyIsNull function converts empty strings to NULL. Hence, it returns NULL if the
parameter is an empty string, otherwise it returns the parameter.

Syntax:
EmptyIsNull(exp)

Examples and results:

Example Result

EmptyIsNull(AdditionalComments) This expression will return as null any empty string values of the
AdditionalComments field, instead of empty strings. Non-empty
strings and numbers are returned.

EmptyIsNull(PurgeChar

(PhoneNumber, ' -()'))
This expression will strip any dashes, spaces and parentheses
from the PhoneNumber field. If there are no characters left, the
EmptyIsNull function returns the empty string as null; an empty
phone number is the same as no phone number.

Scripting examples

IsNull
The IsNull function tests if the value of an expression is NULL and if so, returns -1 (True),
otherwise 0 (False).

Syntax:
IsNull(expr)

Script syntax and chart functions - Qlik Sense, May 2023 1288

5 Script and chart functions

A string with length zero is not considered as a NULL and will cause IsNull to return False.

Example: Data load script

In this example, an inline table with four rows is loaded, where the first three lines contain either nothing, - or
'NULL' in the Value column. We convert these values to true NULL value representations with the middle
preceding LOAD using the Null function.

The first preceding LOAD adds a field checking if the value is NULL,using the IsNull function.

NullsDetectedAndConverted:

LOAD *,

If(IsNull(ValueNullConv), 'T', 'F') as IsItNull;

LOAD *,

If(len(trim(Value))= 0 or Value='NULL' or Value='-', Null(), Value) as ValueNullConv;

LOAD * Inline

[ID, Value

0,

1,NULL

2,-

3,Value];

This is the resulting table. In the ValueNullConv column, the NULL values are represented by -.

ID Value ValueNullConv IsItNull

0 - T

1 NULL - T

2 - - T

3 Value Value F

Resulting table

NULL
The Null function returns a NULL value.

Syntax:
Null()

Example: Data load script

In this example, an inline table with four rows is loaded, where the first three lines contain either nothing, - or
'NULL' in the Value column. We want to convert these values to true NULL value representations.

The middle preceding LOAD performs the conversion using the Null function.

Script syntax and chart functions - Qlik Sense, May 2023 1289

5 Script and chart functions

The first preceding LOAD adds a field checking if the value is NULL, just for illustration purposes in this
example.

NullsDetectedAndConverted:

LOAD *,

If(IsNull(ValueNullConv), 'T', 'F') as IsItNull;

LOAD *,

If(len(trim(Value))= 0 or Value='NULL' or Value='-', Null(), Value) as ValueNullConv;

LOAD * Inline

[ID, Value

0,

1,NULL

2,-

3,Value];

This is the resulting table. In the ValueNullConv column, the NULL values are represented by -.

ID Value ValueNullConv IsItNull

0 - T

1 NULL - T

2 - - T

3 Value Value F

Resulting table

5.21 Range functions
The range functions are functions that take an array of values and produce a single value as a result. All range
functions can be used in both the data load script and in chart expressions.

For example, in a visualization, a range function can calculate a single value from an inter-record array. In the
data load script, a range function can calculate a single value from an array of values in an internal table.

Range functions replace the following general numeric functions: numsum, numavg, numcount,
nummin and nummax, which should now be regarded as obsolete.

Basic range functions
RangeMax
RangeMax() returns the highest numeric values found within the expression or field.

RangeMax(first_expr[, Expression])

RangeMaxString
RangeMaxString() returns the last value in the text sort order that it finds in the expression or field.

Script syntax and chart functions - Qlik Sense, May 2023 1290

5 Script and chart functions

RangeMaxString(first_expr[, Expression])

RangeMin
RangeMin() returns the lowest numeric values found within the expression or field.

RangeMin(first_expr[, Expression])

RangeMinString
RangeMinString() returns the first value in the text sort order that it finds in the expression or field.

RangeMinString(first_expr[, Expression])

RangeMode
RangeMode() finds the most commonly occurring value (mode value) in the expression or field.

RangeMode(first_expr[, Expression])

RangeOnly
RangeOnly() is a dual function that returns a value if the expression evaluates to one unique value. If this is
not the case then NULL is returned.

RangeOnly(first_expr[, Expression])

RangeSum
RangeSum() returns the sum of a range of values. All non-numeric values are treated as 0.

RangeSum(first_expr[, Expression])

Counter range functions
RangeCount
RangeCount() returns the number of values, both text and numeric, in the expression or field.

RangeCount(first_expr[, Expression])

RangeMissingCount
RangeMissingCount() returns the number of non-numeric values (including NULL) in the expression or field.

RangeMissingCount(first_expr[, Expression])

RangeNullCount
RangeNullCount() finds the number of NULL values in the expression or field.

RangeNullCount(first_expr[, Expression])

RangeNumericCount
RangeNumericCount() finds the number of numeric values in an expression or field.

RangeNumericCount(first_expr[, Expression])

RangeTextCount
RangeTextCount() returns the number of text values in an expression or field.

Script syntax and chart functions - Qlik Sense, May 2023 1291

5 Script and chart functions

RangeTextCount(first_expr[, Expression])

Statistical range functions
RangeAvg
RangeAvg() returns the average of a range. Input to the function can be either a range of values or an
expression.

RangeAvg(first_expr[, Expression])

RangeCorrel
RangeCorrel() returns the correlation coefficient for two sets of data. The correlation coefficient is a measure
of the relationship between the data sets.

RangeCorrel(x_values , y_values[, Expression])

RangeFractile
RangeFractile() returns the value that corresponds to the n-th fractile (quantile) of a range of numbers.

RangeFractile(fractile, first_expr[,Expression])

RangeKurtosis
RangeKurtosis() returns the value that corresponds to the kurtosis of a range of numbers.

RangeKurtosis(first_expr[, Expression])

RangeSkew
RangeSkew() returns the value corresponding to the skewness of a range of numbers.

RangeSkew(first_expr[, Expression])

RangeStdev
RangeStdev() finds the standard deviation of a range of numbers.

RangeStdev(expr1[, Expression])

Financial range functions
RangeIRR
RangeIRR() returns the internal rate of return for a series of cash flows represented by the input values.

RangeIRR (value[, value][, Expression])

RangeNPV
RangeNPV() returns the net present value of an investment based on a discount rate and a series of future
periodic payments (negative values) and incomes (positive values). The result has a default number format of
money.

RangeNPV (discount_rate, value[, value][, Expression])

Script syntax and chart functions - Qlik Sense, May 2023 1292

5 Script and chart functions

RangeXIRR
RangeXIRR() returns the internal rate of return (yearly) for a schedule of cash flows that is not necessarily
periodic. To calculate the internal rate of return for a series of periodic cash flows, use the RangeIRR function.

RangeXIRR (values, dates[, Expression])

RangeXNPV
RangeXNPV() returns the net present value for a schedule of cash flows (not necessarily periodic) represented
by paired numbers in the expressions given by pmt and date. All payments are discounted based on a 365-day
year.

RangeXNPV (discount_rate, values, dates[, Expression])

See also:

p Inter-record functions (page 1232)

RangeAvg
RangeAvg() returns the average of a range. Input to the function can be either a range of values or an
expression.

Syntax:
RangeAvg(first_expr[, Expression])

Return data type: numeric

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

If no numeric value is found, NULL is returned.

Examples and results:

Examples Results

RangeAvg (1,2,4) Returns 2.33333333

Scripting examples

Script syntax and chart functions - Qlik Sense, May 2023 1293

5 Script and chart functions

Examples Results

RangeAvg (1,'xyz') Returns 1

RangeAvg (null(), 'abc') Returns NULL

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

RangeTab3:

LOAD recno() as RangeID, RangeAvg(Field1,Field2,Field3) as MyRangeAvg INLINE [

Field1, Field2, Field3

10,5,6

2,3,7

8,2,8

18,11,9

5,5,9

9,4,2

];

The resulting table shows the returned values of MyRangeAvg for each of the records in the table.

RangeID MyRangeAvg

1 7

2 4

3 6

4 12.666

5 6.333

6 5

Resulting table

Example with expression:

RangeAvg (Above(MyField),0,3))

Returns a sliding average of the result of the range of three values of MyField calculated on the current row
and two rows above the current row. By specifying the third argument as 3, the Above() function returns three
values, where there are sufficient rows above, which are taken as input to the RangeAvg() function.

Data used in examples:

Disable sorting of MyField to ensure that the example works as expected.

Script syntax and chart functions - Qlik Sense, May 2023 1294

5 Script and chart functions

MyField
RangeAvg (Above
(MyField,0,3))

Comments

10 10 Because this is the top row, the range consists of one value
only.

2 6 There is only one row above this row, so the range is: 10,2.

8 6.6666666667 The equivalent to RangeAvg(10,2,8)

18 9.333333333 -

5 10. 333333333 -

9 10.6666666667 -

Sample data

RangeTab:

LOAD * INLINE [

MyField

10

2

8

18

5

9

] ;

See also:

p Avg - chart function (page 390)
p Count - chart function (page 341)

RangeCorrel
RangeCorrel() returns the correlation coefficient for two sets of data. The correlation coefficient is a measure
of the relationship between the data sets.

Syntax:
RangeCorrel(x_value , y_value[, Expression])

Return data type: numeric

Data series should be entered as (x,y) pairs. For example, to evaluate two series of data, array 1 and array 2,
where the array 1 = 2,6,9 and array 2 = 3,8,4 you would write RangeCorrel (2,3,6,8,9,4) which returns
0.269.

Script syntax and chart functions - Qlik Sense, May 2023 1295

5 Script and chart functions

Arguments:

Argument Description

x-value, y-
value

Each value represents a single value or a range of values as returned by an inter-record
functions with a third optional parameter. Each value or range of values must correspond
to an x-value or a range of y-values.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

The function needs at least two pairs of coordinates to be calculated.

Text values, NULL values and missing values return NULL.

Examples and results:

Examples Results

RangeCorrel

(2,3,6,8,9,4,8,5)
Returns 0.2492. This function can be loaded in the script or added into a
visualization in the expression editor.

Function examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

RangeList:

Load * Inline [

ID1|x1|y1|x2|y2|x3|y3|x4|y4|x5|y5|x6|y6

01|46|60|70|13|78|20|45|65|78|12|78|22

02|65|56|22|79|12|56|45|24|32|78|55|15

03|77|68|34|91|24|68|57|36|44|90|67|27

04|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

XY:

LOAD recno() as RangeID, * Inline [

X|Y

2|3

6|8

9|4

8|5

](delimiter is '|');

In a table with ID1 as a dimension and the measure: RangeCorrel(x1,y1,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6)), the
RangeCorrel() function finds the value of Correl over the range of six x,y pairs, for each of the ID1 values.

Script syntax and chart functions - Qlik Sense, May 2023 1296

5 Script and chart functions

ID1 MyRangeCorrel

01 -0.9517

02 -0.5209

03 -0.5209

04 -0.1599

Resulting table

Example:

XY:

LOAD recno() as RangeID, * Inline [

X|Y

2|3

6|8

9|4

8|5

](delimiter is '|');

In a table with RangeID as a dimension and the measure: RangeCorrel(Below(X,0,4,BelowY,0,4)), the
RangeCorrel() function uses the results of the Below() functions, which because of the third argument (count)
set to 4, produce a range of four x-y values from the loaded table XY.

RangeID MyRangeCorrel2

01 0.2492

02 -0.9959

03 -1.0000

04 -

Resulting table

The value for RangeID 01 is the same as manually entering RangeCorrel(2,3,6,8,9,4,8,5). For the other values of
RangeID, the series produced by the Below() function are: (6,8,9,4,8,5), (9,4,8,5), and (8,5), the last of which
produces a null result.

See also:

p Correl - chart function (page 393)

RangeCount
RangeCount() returns the number of values, both text and numeric, in the expression or field.

Syntax:
RangeCount(first_expr[, Expression])

Script syntax and chart functions - Qlik Sense, May 2023 1297

5 Script and chart functions

Return data type: integer

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list of values.

Argument Description

first_expr The expression or field containing the data to be counted.

Expression Optional expressions or fields containing the range of data to be counted.

Arguments

Limitations:

NULL values are not counted.

Examples and results:

Examples Results

RangeCount (1,2,4) Returns 3

RangeCount (2,'xyz') Returns 2

RangeCount (null()) Returns 0

RangeCount (2,'xyz', null()) Returns 2

Function examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

RangeTab3:

LOAD recno() as RangeID, RangeCount(Field1,Field2,Field3) as MyRangeCount INLINE [

Field1, Field2, Field3

10,5,6

2,3,7

8,2,8

18,11,9

5,5,9

9,4,2

];

The resulting table shows the returned values of MyRangeCount for each of the records in the table.

Script syntax and chart functions - Qlik Sense, May 2023 1298

5 Script and chart functions

RangeID MyRangeCount

1 3

2 3

3 3

4 3

5 3

6 3

Results table

Example with expression:

RangeCount (Above(MyField,1,3))

Returns the number of values contained in the three results of MyField. By specifying the first argument of the
Above() function as 1 and second argument as 3, it returns the values from the first three fields above the
current row, where there are sufficient rows, which are taken as input to the RangeCount() function.

Data used in examples:

MyField RangeCount(Above(MyField,1,3))

10 0

2 1

8 2

18 3

5 3

9 3

Sample data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

2

8

18

5

9

] ;

See also:

p Count - chart function (page 341)

Script syntax and chart functions - Qlik Sense, May 2023 1299

5 Script and chart functions

RangeFractile
RangeFractile() returns the value that corresponds to the n-th fractile (quantile) of a range of numbers.

RangeFractile() uses linear interpolation between closest ranks when calculating the fractile.

Syntax:
RangeFractile(fractile, first_expr[, Expression])

Return data type: numeric

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list of values.

Argument Description

fractile A number between 0 and 1 corresponding to the fractile (quantile expressed as a fraction)
to be calculated.

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Examples and results:

Examples Results

RangeFractile (0.24,1,2,4,6) Returns 1.72

RangeFractile(0.5,1,2,3,4,6) Returns 3

RangeFractile (0.5,1,2,5,6) Returns 3.5

Function examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

RangeTab:

LOAD recno() as RangeID, RangeFractile(0.5,Field1,Field2,Field3) as MyRangeFrac INLINE [

Field1, Field2, Field3

10,5,6

2,3,7

8,2,8

18,11,9

5,5,9

9,4,2

];

Script syntax and chart functions - Qlik Sense, May 2023 1300

5 Script and chart functions

The resulting table shows the returned values of MyRangeFrac for each of the records in the table.

RangeID MyRangeFrac

1 6

2 3

3 8

4 11

5 5

6 4

Resulting table

Example with expression:

RangeFractile (0.5, Above(Sum(MyField),0,3))

In this example, the inter-record function Above() contains the optional offset and count arguments. This
produces a range of results that can be used as input to the any of the range functions. In this case, Above(Sum
(MyField),0,3) returns the values of MyField for the current row and the two rows above. These values
provide the input to the RangeFractile() function. So, for the bottom row in the table below, this is the
equivalent of RangeFractile(0.5, 3,4,6), that is, calculating the 0.5 fractile for the series 3, 4, and 6. The
first two rows in the table below, the number of values in the range is reduced accordingly, where there no
rows above the current row. Similar results are produced for other inter-record functions.

MyField RangeFractile(0.5, Above(Sum(MyField),0,3))

1 1

2 1.5

3 2

4 3

5 4

6 5

Sample data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

1

2

3

4

5

6

Script syntax and chart functions - Qlik Sense, May 2023 1301

5 Script and chart functions

] ;

See also:

p Above - chart function (page 1235)
p Fractile - chart function (page 396)

RangeIRR
RangeIRR() returns the internal rate of return for a series of cash flows represented by the input
values.

The internal rate of return is the interest rate received for an investment consisting of payments (negative
values) and income (positive values) that occur at regular periods.

This function uses a simplified version of the Newton method for calculating the internal rate of return (IRR).

Syntax:
RangeIRR(value[, value][, Expression])

Return data type: numeric

Argument Description

value A single value or a range of values as returned by an inter record function with a third
optional parameter. The function needs at least one positive and one negative value to be
calculated.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

Text values, NULL values and missing values are disregarded.

Examples Results

RangeIRR(-70000,12000,15000,18000,21000,26000) Returns 0.0866

Example table

Script syntax and chart functions - Qlik Sense, May 2023 1302

5 Script and chart functions

Examples Results

Add the example script to your app and run it. To see the result, add the
fields listed in the results column to a sheet in your app.

RangeTab3:

LOAD *,

recno() as RangeID,

RangeIRR(Field1,Field2,Field3) as RangeIRR;

LOAD * INLINE [

Field1|Field2|Field3

-10000|5000|6000

-2000|NULL|7000

-8000|'abc'|8000

-1800|11000|9000

-5000|5000|9000

-9000|4000|2000

] (delimiter is '|');

The resulting table shows
the returned values of
RangeIRR for each of the
records in the table.

RangeID RangeIRR

1 0.0639

2 0.8708

3 -

4 5.8419

5 0.9318

6 -0.2566

See also:

p Inter-record functions (page 1232)

RangeKurtosis
RangeKurtosis() returns the value that corresponds to the kurtosis of a range of numbers.

Syntax:
RangeKurtosis(first_expr[, Expression])

Return data type: numeric

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

If no numeric value is found, NULL is returned.

Script syntax and chart functions - Qlik Sense, May 2023 1303

5 Script and chart functions

Examples and results:

Examples Results

RangeKurtosis (1,2,4,7) Returns -0.28571428571429

Function examples

See also:

p Kurtosis - chart function (page 404)

RangeMax
RangeMax() returns the highest numeric values found within the expression or field.

Syntax:
RangeMax(first_expr[, Expression])

Return data type: numeric

Arguments:

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

If no numeric value is found, NULL is returned.

Examples and results:

Examples Results

RangeMax (1,2,4) Returns 4

RangeMax (1,'xyz') Returns 1

RangeMax (null(), 'abc') Returns NULL

Function examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

RangeTab3:

Script syntax and chart functions - Qlik Sense, May 2023 1304

5 Script and chart functions

LOAD recno() as RangeID, RangeMax(Field1,Field2,Field3) as MyRangeMax INLINE [

Field1, Field2, Field3

10,5,6

2,3,7

8,2,8

18,11,9

5,5,9

9,4,2

];

The resulting table shows the returned values of MyRangeMax for each of the records in the table.

RangeID MyRangeMax

1 10

2 7

3 8

4 18

5 9

6 9

Resulting table

Example with expression:

RangeMax (Above(MyField,0,3))

Returns the maximum value in the range of three values of MyField calculated on the current row and two
rows above the current row. By specifying the third argument as 3, the Above() function returns three values,
where there are sufficient rows above, which are taken as input to the RangeMax() function.

Data used in examples:

Disable sorting of MyField to ensure that the example works as expected.

MyField RangeMax (Above(Sum(MyField),1,3))

10 10

2 10

8 10

18 18

5 18

9 18

Sample data

Data used in examples:

RangeTab:

Script syntax and chart functions - Qlik Sense, May 2023 1305

5 Script and chart functions

LOAD * INLINE [

MyField

10

2

8

18

5

9

] ;

RangeMaxString
RangeMaxString() returns the last value in the text sort order that it finds in the expression or field.

Syntax:
RangeMaxString(first_expr[, Expression])

Return data type: string

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Examples and results:

Examples Results

RangeMaxString (1,2,4) Returns 4

RangeMaxString ('xyz','abc') Returns 'xyz'

RangeMaxString (5,'abc') Returns 'abc'

RangeMaxString (null()) Returns NULL

Function examples

Example with expression:

RangeMaxString (Above(MaxString(MyField),0,3))

Returns the last (in text sort order) of the three results of the MaxString(MyField) function evaluated on the
current row and two rows above the current row.

Data used in examples:

Disable sorting of MyField to ensure that the example works as expected.

Script syntax and chart functions - Qlik Sense, May 2023 1306

5 Script and chart functions

MyField RangeMaxString(Above(MaxString(MyField),0,3))

10 10

abc abc

8 abc

def def

xyz xyz

9 xyz

Sample data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

'abc'

8

'def'

'xyz'

9

] ;

See also:

p MaxString - chart function (page 517)

RangeMin
RangeMin() returns the lowest numeric values found within the expression or field.

Syntax:
RangeMin(first_expr[, Expression])

Return data type: numeric

Arguments:

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

If no numeric value is found, NULL is returned.

Script syntax and chart functions - Qlik Sense, May 2023 1307

5 Script and chart functions

Examples and results:

Examples Results

RangeMin (1,2,4) Returns 1

RangeMin (1,'xyz') Returns 1

RangeMin (null(), 'abc') Returns NULL

Function examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

RangeTab3:

LOAD recno() as RangeID, RangeMin(Field1,Field2,Field3) as MyRangeMin INLINE [

Field1, Field2, Field3

10,5,6

2,3,7

8,2,8

18,11,9

5,5,9

9,4,2

];

The resulting table shows the returned values of MyRangeMin for each of the records in the table.

RangeID MyRangeMin

1 5

2 2

3 2

4 9

5 5

6 2

Resulting table

Example with expression:

RangeMin (Above(MyField,0,3)

Returns the minimum value in the range of three values of MyField calculated on the current row and two
rows above the current row. By specifying the third argument as 3, the Above() function returns three values,
where there are sufficient rows above, which are taken as input to the RangeMin() function.

Data used in examples:

Script syntax and chart functions - Qlik Sense, May 2023 1308

5 Script and chart functions

MyField RangeMin(Above(MyField,0,3))

10 10

2 2

8 2

18 2

5 5

9 5

Sample data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

2

8

18

5

9

] ;

See also:

p Min - chart function (page 328)

RangeMinString
RangeMinString() returns the first value in the text sort order that it finds in the expression or field.

Syntax:
RangeMinString(first_expr[, Expression])

Return data type: string

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1309

5 Script and chart functions

Examples and results:

Examples Results

RangeMinString (1,2,4) Returns 1

RangeMinString ('xyz','abc') Returns 'abc'

RangeMinString (5,'abc') Returns 5

RangeMinString (null()) Returns NULL

Function examples

Example with expression:

RangeMinString (Above(MinString(MyField),0,3))

Returns the first (in text sort order) of the three results of the MinString(MyField) function evaluated on the
current row and two rows above the current row.

Data used in examples:

Disable sorting of MyField to ensure that the example works as expected.

MyField RangeMinString(Above(MinString(MyField),0,3))

10 10

abc 10

8 8

def 8

xyz 8

9 9

Sample data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

'abc'

8

'def'

'xyz'

9

] ;

Script syntax and chart functions - Qlik Sense, May 2023 1310

5 Script and chart functions

See also:

p MinString - chart function (page 520)

RangeMissingCount
RangeMissingCount() returns the number of non-numeric values (including NULL) in the expression or field.

Syntax:
RangeMissingCount(first_expr[, Expression])

Return data type: integer

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list of values.

Argument Description

first_expr The expression or field containing the data to be counted.

Expression Optional expressions or fields containing the range of data to be counted.

Arguments

Examples and results:

Examples Results

RangeMissingCount (1,2,4) Returns 0

RangeMissingCount (5,'abc') Returns 1

RangeMissingCount (null()) Returns 1

Function examples

Example with expression:

RangeMissingCount (Above(MinString(MyField),0,3))

Returns the number of non-numeric values in the three results of the MinString(MyField) function evaluated
on the current row and two rows above the current row.

Disable sorting of MyField to ensure that the example works as expected.

Script syntax and chart functions - Qlik Sense, May 2023 1311

5 Script and chart functions

MyField
RangeMissingCount
(Above(MinString
(MyField),0,3))

Explanation

10 2 Returns 2 because there are no rows above this row
so 2 of the 3 values are missing.

abc 2 Returns 2 because there is only 1 row above the
current row and the current row is non-numeric
('abc').

8 1 Returns 1 because 1 of the 3 rows includes a non-
numeric ('abc').

def 2 Returns 2 because 2 of the 3 rows include non-
numeric values ('def' and 'abc').

xyz 2 Returns 2 because 2 of the 3 rows include non-
numeric values (' xyz' and 'def').

9 2 Returns 2 because 2 of the 3 rows include non-
numeric values (' xyz' and 'def').

Sample data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

'abc'

8

'def'

'xyz'

9

] ;

See also:

p MissingCount - chart function (page 344)

RangeMode
RangeMode() finds the most commonly occurring value (mode value) in the expression or field.

Syntax:
RangeMode(first_expr {, Expression})

Return data type: numeric

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list of values.

Script syntax and chart functions - Qlik Sense, May 2023 1312

5 Script and chart functions

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

If more than one value shares the highest frequency, NULL is returned.

Examples and results:

Examples Results

RangeMode (1,2,9,2,4) Returns 2

RangeMode ('a',4,'a',4) Returns NULL

RangeMode (null()) Returns NULL

Function examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

RangeTab3:

LOAD recno() as RangeID, RangeMode(Field1,Field2,Field3) as MyRangeMode INLINE [

Field1, Field2, Field3

10,5,6

2,3,7

8,2,8

18,11,9

5,5,9

9,4,2

];

The resulting table shows the returned values of MyRangeMode for each of the records in the table.

RangeID MyRangMode

1 -

2 -

3 8

4 -

5 5

6 -

Results table

Script syntax and chart functions - Qlik Sense, May 2023 1313

5 Script and chart functions

Example with expression:

RangeMode (Above(MyField,0,3))

Returns the most commonly occurring value in the three results of MyField evaluated on the current row and
two rows above the current row. By specifying the third argument as 3, the Above() function returns three
values, where there are sufficient rows above, which are taken as input to the RangeMode() function.

Data used in example:

RangeTab:

LOAD * INLINE [

MyField

10

2

8

18

5

9

] ;

Disable sorting of MyField to ensure that the example works as expected.

MyField RangeMode(Above(MyField,0,3))

10 Returns 10 because there are no rows above so the single value is the most commonly
occurring.

2 -

8 -

18 -

5 -

9 -

Sample data

See also:

p Mode - chart function (page 331)

RangeNPV
RangeNPV() returns the net present value of an investment based on a discount rate and a
series of future periodic payments (negative values) and incomes (positive values). The result
has a default number format of money.

For cash flows that are not necessarily periodic, see RangeXNPV (page 1327).

Syntax:
RangeNPV(discount_rate, value[,value][, Expression])

Script syntax and chart functions - Qlik Sense, May 2023 1314

5 Script and chart functions

Return data type: numeric

Argument Description

discount_
rate

The interest rate per period.

value A payment or income occurring at the end of each period. Each value may be a single value
or a range of values as returned by an inter-record function with a third optional
parameter.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

Text values, NULL values and missing values are disregarded.

Examples Results

RangeNPV(0.1,-10000,3000,4200,6800) Returns 1188.44

Add the example script to your app and run it. To see the result, add the
fields listed in the results column to a sheet in your app.

RangeTab3:

LOAD *,

recno() as RangeID,

RangeNPV(Field1,Field2,Field3) as RangeNPV;

LOAD * INLINE [

Field1|Field2|Field3

10|5|-6000

2|NULL|7000

8|'abc'|8000

18|11|9000

5|5|9000

9|4|2000

] (delimiter is '|');

The resulting table shows
the returned values of
RangeNPV for each of the
records in the table.

RangeID RangeNPV

1 $-49.13

2 $777.78

3 $98.77

4 $25.51

5 $250.83

6 $20.40

See also:

p Inter-record functions (page 1232)

RangeNullCount
RangeNullCount() finds the number of NULL values in the expression or field.

Syntax:
RangeNullCount(first_expr [, Expression])

Script syntax and chart functions - Qlik Sense, May 2023 1315

5 Script and chart functions

Return data type: integer

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Examples and results:

Examples Results

RangeNullCount (1,2,4) Returns 0

RangeNullCount (5,'abc') Returns 0

RangeNullCount (null(), null()) Returns 2

Function examples

Example with expression:

RangeNullCount (Above(Sum(MyField),0,3))

Returns the number of NULL values in the three results of the Sum(MyField) function evaluated on the
current row and two rows above the current row.

Copying MyField in example below will not result in NULL value.

MyField RangeNullCount(Above(Sum(MyField),0,3))

10 Returns 2 because there are no rows above this row so 2 of the 3 values are missing (=NULL).

'abc' Returns 1 because there is only one row above the current row, so one of the three values is
missing (=NULL).

8 Returns 0 because none of the three rows is a NULL value.

Sample data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

'abc'

8

] ;

Script syntax and chart functions - Qlik Sense, May 2023 1316

5 Script and chart functions

See also:

p NullCount - chart function (page 347)

RangeNumericCount
RangeNumericCount() finds the number of numeric values in an expression or field.

Syntax:
RangeNumericCount(first_expr[, Expression])

Return data type: integer

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Examples and results:

Examples Results

RangeNumericCount (1,2,4) Returns 3

RangeNumericCount (5,'abc') Returns 1

RangeNumericCount (null()) Returns 0

Function examples

Example with expression:

RangeNumericCount (Above(MaxString(MyField),0,3))

Returns the number of numeric values in the three results of the MaxString(MyField) function evaluated on
the current row and two rows above the current row.

Disable sorting of MyField to ensure that the example works as expected.

MyField RangeNumericCount(Above(MaxString(MyField),0,3))

10 1

Sample data

Script syntax and chart functions - Qlik Sense, May 2023 1317

5 Script and chart functions

MyField RangeNumericCount(Above(MaxString(MyField),0,3))

abc 1

8 2

def 1

xyz 1

9 1

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

'abc'

8

def

xyz

9

] ;

See also:

p NumericCount - chart function (page 350)

RangeOnly
RangeOnly() is a dual function that returns a value if the expression evaluates to one unique value. If this is
not the case then NULL is returned.

Syntax:
RangeOnly(first_expr[, Expression])

Return data type: dual

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Script syntax and chart functions - Qlik Sense, May 2023 1318

5 Script and chart functions

Examples and results:

Examples Results

RangeOnly (1,2,4) Returns NULL

RangeOnly (5,'abc') Returns NULL

RangeOnly (null(), 'abc') Returns 'abc'

RangeOnly(10,10,10) Returns 10

See also:

p Only - chart function (page 334)

RangeSkew
RangeSkew() returns the value corresponding to the skewness of a range of numbers.

Syntax:
RangeSkew(first_expr[, Expression])

Return data type: numeric

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

If no numeric value is found, NULL is returned.

Examples and results:

Examples Results

rangeskew (1,2,4) Returns 0.93521952958283

rangeskew (above

(SalesValue,0,3))
Returns a sliding skewness of the range of three values returned from the above()
function calculated on the current row and the two rows above the current row.

Function examples

Data used in example:

Script syntax and chart functions - Qlik Sense, May 2023 1319

5 Script and chart functions

CustID RangeSkew(Above(SalesValue,0,3))

1-20 -, -, 0.5676, 0.8455, 1.0127, -0.8741, 1.7243, -1.7186, 1.5518, 1.4332, 0,

1.1066, 1.3458, 1.5636, 1.5439, 0.6952, -0.3766

Sample data

SalesTable:

LOAD recno() as CustID, * inline [

SalesValue

101

163

126

139

167

86

83

22

32

70

108

124

176

113

95

32

42

92

61

21

] ;

See also:

p Skew - chart function (page 433)

RangeStdev
RangeStdev() finds the standard deviation of a range of numbers.

Syntax:
RangeStdev(first_expr[, Expression])

Return data type: numeric

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list of values.

Script syntax and chart functions - Qlik Sense, May 2023 1320

5 Script and chart functions

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

If no numeric value is found, NULL is returned.

Examples and results:

Examples Results

RangeStdev (1,2,4) Returns 1.5275252316519

RangeStdev (null()) Returns NULL

RangeStdev (above

(SalesValue),0,3))
Returns a sliding standard of the range of three values returned from the above()
function calculated on the current row and the two rows above the current row.

Function examples

Data used in example:

CustID RangeStdev(SalesValue, 0,3))

1-20 -,43.841, 34.192, 18.771, 20.953, 41.138, 47.655, 36.116, 32.716, 25.325,

38,000, 27.737, 35.553, 33.650, 42.532, 33.858, 32.146, 25.239, 35.595

Sample data

SalesTable:

LOAD recno() as CustID, * inline [

SalesValue

101

163

126

139

167

86

83

22

32

70

108

124

176

113

95

32

42

92

61

21

Script syntax and chart functions - Qlik Sense, May 2023 1321

5 Script and chart functions

] ;

See also:

p Stdev - chart function (page 436)

RangeSum
RangeSum() returns the sum of a range of values. All non-numeric values are treated as 0.

Syntax:
RangeSum(first_expr[, Expression])

Return data type: numeric

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

The RangeSum function treats all non-numeric values as 0.

Examples and results:

Examples Results

RangeSum (1,2,4) Returns 7

RangeSum (5,'abc') Returns 5

RangeSum (null()) Returns 0

Examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to a
sheet in your app.

RangeTab3:

LOAD recno() as RangeID, Rangesum(Field1,Field2,Field3) as MyRangeSum INLINE [

Field1, Field2, Field3

10,5,6

2,3,7

8,2,8

18,11,9

Script syntax and chart functions - Qlik Sense, May 2023 1322

5 Script and chart functions

5,5,9

9,4,2

];

The resulting table shows the returned values of MyRangeSum for each of the records in the table.

RangeID MyRangeSum

1 21

2 12

3 18

4 38

5 19

6 15

Resulting table

Example with expression:

RangeSum (Above(MyField,0,3))

Returns the sum of the three values of MyField): from the current row and two rows above the current row. By
specifying the third argument as 3, the Above() function returns three values, where there are sufficient rows
above, which are taken as input to the RangeSum() function.

Data used in examples:

Disable sorting of MyField to ensure that the example works as expected.

MyField RangeSum(Above(MyField,0,3))

10 10

2 12

8 20

18 28

5 31

9 32

Sample data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

2

8

18

Script syntax and chart functions - Qlik Sense, May 2023 1323

5 Script and chart functions

5

9

] ;

See also:

p Sum - chart function (page 336)
p Above - chart function (page 1235)

RangeTextCount
RangeTextCount() returns the number of text values in an expression or field.

Syntax:
RangeTextCount(first_expr[, Expression])

Return data type: integer

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Argument

Examples and results:

Examples Results

RangeTextCount (1,2,4) Returns 0

RangeTextCount (5,'abc') Returns 1

RangeTextCount (null()) Returns 0

Function examples

Example with expression:

RangeTextCount (Above(MaxString(MyField),0,3))

Returns the number of text values within the three results of the MaxString(MyField) function evaluated over
the current row and two rows above the current row.

Data used in examples:

Disable sorting of MyField to ensure that the example works as expected.

Script syntax and chart functions - Qlik Sense, May 2023 1324

5 Script and chart functions

MyField MaxString(MyField) RangeTextCount(Above(Sum(MyField),0,3))

10 10 0

abc abc 1

8 8 1

def def 2

xyz xyz 2

9 9 2

Example data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

'abc'

8

null()

'xyz'

9

] ;

See also:

p TextCount - chart function (page 353)

RangeXIRR
RangeXIRR() returns the internal rate of return (yearly) for a schedule of cash flows that is not
necessarily periodic. To calculate the internal rate of return for a series of periodic cash flows,
use the RangeIRR function.

Qlik's XIRR functionality (XIRR() and RangeXIRR() functions) uses the following equation, solving for the Rate

value, to determine the correct XIRR value:

XNPV(Rate, pmt, date) = 0

The equation is solved using a simplified version of the Newton method.

Syntax:
RangeXIRR(value, date{, value, date})

Script syntax and chart functions - Qlik Sense, May 2023 1325

5 Script and chart functions

Return data type: numeric

Argument Description

value A cash flow or a series of cash flows that correspond to a schedule of payments in dates.
The series of values must contain at least one positive and one negative value.

date A payment date or a schedule of payment dates that corresponds to the cash flow
payments.

Arguments

When working with this function, the following limitations apply:

l Text values, NULL values and missing values are disregarded.
l All payments are discounted based on a 365-day year.
l This function requires at least one valid negative and at least one valid positive payment (with

corresponding valid dates). If these payments are not provided, a NULL value is returned.

The following topics might help you work with this function:

l RangeXNPV (page 1327): Use this function calculate the net present value for a schedule of cash flows
that is not necessarily periodic.

l XIRR (page 367): The XIRR() function calculates the aggregated internal rate of return (yearly) for a
schedule of cash flows (that is not necessarily periodic).

Across different versions of Qlik Sense Client-Managed, there are variations in the underlying
algorithm used by this function. For more information about recent updates to the algorithm, see
support article XIRR function Fix and Update.

Examples and results:

Examples Results

RangeXIRR(-2500,'2008-01-01',2750,'2008-09-01') Returns 0.1532

Examples and results

See also:

p RangeIRR (page 1302)
p RangeXNPV (page 1327)
p XIRR (page 367)
≤ XIRR function Fix and Update

Script syntax and chart functions - Qlik Sense, May 2023 1326

https://community.qlik.com/t5/Member-Articles/XIRR-function-Fix-and-Update/ta-p/2049021
https://community.qlik.com/t5/Member-Articles/XIRR-function-Fix-and-Update/ta-p/2049021

5 Script and chart functions

RangeXNPV
RangeXNPV() returns the net present value for a schedule of cash flows (not necessarily
periodic) represented by paired numbers in the expressions given by pmt and date. All
payments are discounted based on a 365-day year.

Syntax:
RangeXNPV(discount_rate, values, dates[, Expression])

Return data type: numeric

Argument Description

discount_rate discount_rate is the yearly rate that the payments should be discounted by.

values A cash flow or a series of cash flows that corresponds to a schedule of payments in
dates. Each value may be a single value or a range of values as returned by an inter-
record function with a third optional parameter. The series of values must contain at
least one positive and one negative value.

dates A payment date or a schedule of payment dates that corresponds to the cash flow
payments.

Arguments

When working with this function, the following limitations apply:

l Text values, NULL values and missing values are disregarded.
l All payments are discounted based on a 365-day year.

Example - script
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l Financial data contained in a table called RangeTab3.
l The use of the RangeXNPV() function to compute net present value.

Load script

RangeTab3:

LOAD *,

recno() as RangeID,

RangeXNPV(DiscountRate,Value1,Date1,Value2,Date2) as RangeXNPV;

LOAD * INLINE [

Script syntax and chart functions - Qlik Sense, May 2023 1327

5 Script and chart functions

DiscountRate|Value1|Date1|Value2|Date2

0.1|-100|2021-01-01|100|2022-01-01|

0.1|-100|2021-01-01|110|2022-01-01|

0.1|-100|2021-01-01|125|2022-01-01|

] (delimiter is '|');

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l RangeID

l RangeXNPV

RangeID RangeXNPV

1 -$9.09

2 -$0.00

3 $13.64

Results table

Example - chart expression
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l Financial data contained in a table called RangeTab3.
l The use of the RangeXNPV() function to compute net present value.

Load script

RangeTab3:

LOAD *,

recno() as RangeID,

RangeXNPV(DiscountRate,Value1,Date1,Value2,Date2) as RangeXNPV;

LOAD * INLINE [

DiscountRate|Value1|Date1|Value2|Date2

0.1|-100|2021-01-01|100|2022-01-01|

0.1|-100|2021-01-01|110|2022-01-01|

0.1|-100|2021-01-01|125|2022-01-01|

] (delimiter is '|');

Script syntax and chart functions - Qlik Sense, May 2023 1328

5 Script and chart functions

Results

Do the following:

Load the data and open a sheet. Create a new table and add the following calculation as a measure:

=RangeXNPV(0.1, -2500,'2008-01-01',2750,'2008-09-01')

=XIRR(Payments, Date)

$80.25

Results table

See also:

p XNPV (page 373)

5.22 Relational functions
This is a group of functions that calculate properties of individual dimensional values in a chart, using already
aggregated numbers.

The functions are relational in the sense that the function output depends not only on the value of the data
point itself, but also on the value’s relation to other data points. For example, a rank cannot be calculated
without a comparison with other dimensional values.

These functions can only be used in chart expressions. They cannot be used in the load script.

A dimension is needed in the chart, since this defines the other data points needed for the comparison.
Consequently, a relational function is not meaningful in a dimensionless chart (for example, a KPI object).

Ranking functions

Suppression of zero values is automatically disabled when these functions are used. NULL values are
disregarded.

Rank
Rank() evaluates the rows of the chart in the expression, and for each row, displays the relative position of the
value of the dimension evaluated in the expression. When evaluating the expression, the function compares
the result with the result of the other rows containing the current column segment and returns the ranking of
the current row within the segment.

Rank - chart function([TOTAL [<fld {, fld}>]] expr[, mode[, fmt]])

Script syntax and chart functions - Qlik Sense, May 2023 1329

5 Script and chart functions

HRank
HRank() evaluates the expression, and compares the result with the result of the other columns containing
the current row segment of a pivot table. The function then returns the ranking of the current column within
the segment.

HRank - chart function([TOTAL] expr[, mode[, fmt]])

Clustering functions
KMeans2D
The property group Site license contains properties related to the license for the Qlik Sense system. All fields
are mandatory and must not be empty.

Property name Description

Owner name The user name of the Qlik Sense product owner.

Owner organization The name of the organization that the Qlik Sense product owner is a member of.

Serial number The serial number assigned to the Qlik Sense software.

Control number The control number assigned to the Qlik Sense software.

LEF access The License Enabler File (LEF) assigned to the Qlik Sense software.

Site licence properties

KMeans2D() evaluates the rows of the chart by applying k-means clustering, and for each chart row displays
the cluster id of the cluster this data point has been assigned to. The columns that are used by the clustering
algorithm are determined by the parameters coordinate_1, and coordinate_2, respectively. These are both
aggregations. The number of clusters that are created is determined by the num_clusters parameter. Data can
be optionally normalized by the norm parameter.

KMeans2D - chart function(num_clusters, coordinate_1, coordinate_2 [, norm])

KMeansND
KMeansND() evaluates the rows of the chart by applying k-means clustering, and for each chart row displays
the cluster id of the cluster this data point has been assigned to. The columns that are used by the clustering
algorithm are determined by the parameters coordinate_1, and coordinate_2, etc., up to n columns. These are
all aggregations. The number of clusters that are created is determined by the num_clusters parameter.

KMeansND - chart function(num_clusters, num_iter, coordinate_1, coordinate_2

[,coordinate_3 [, ...]])

KMeansCentroid2D
KMeansCentroid2D() evaluates the rows of the chart by applying k-means clustering, and for each chart row
displays the desired coordinate of the cluster this data point has been assigned to. The columns that are used
by the clustering algorithm are determined by the parameters coordinate_1, and coordinate_2, respectively.
These are both aggregations. The number of clusters that are created is determined by the num_clusters
parameter. Data can be optionally normalized by the norm parameter.

Script syntax and chart functions - Qlik Sense, May 2023 1330

5 Script and chart functions

KMeansCentroid2D - chart function(num_clusters, coordinate_no, coordinate_1,

coordinate_2 [, norm])

KMeansCentroidND
KMeansCentroidND() evaluates the rows of the chart by applying k-means clustering, and for each chart row
displays the desired coordinate of the cluster this data point has been assigned to. The columns that are used
by the clustering algorithm are determined by the parameters coordinate_1, coordinate_2, etc., up to n
columns. These are all aggregations. The number of clusters that are created is determined by the num_
clusters parameter.

KMeansCentroidND - chart function(num_clusters, num_iter, coordinate_no,

coordinate_1, coordinate_2 [,coordinate_3 [, ...]])

Time series decomposition functions
STL_Trend
STL_Trend is a time series decomposition function. Along with STL_Seasonal and STL_Residual, this
function is used to decompose a time series into seasonal, trend, and residual components. In the context of
the STL algorithm, time series decomposition is used to identify both a recurring seasonal pattern and a
general trend, given an input metric and other parameters. The STL_Trend function will identify a general
trend, independent of seasonal patterns or cycles, from time series data.

STL_Trend - chart function(target_measure, period_int [,seasonal_smoother

[,trend_smoother]])

STL_Seasonal
STL_Seasonal is a time series decomposition function. Along with STL_Trend and STL_Residual, this
function is used to decompose a time series into seasonal, trend, and residual components. In the context of
the STL algorithm, time series decomposition is used to identify both a recurring seasonal pattern and a
general trend, given an input metric and other parameters. The STL_Seasonal function can identify a
seasonal pattern within a time series, separating this from the general trend displayed by the data.

STL_Seasonal - chart function(target_measure, period_int [,seasonal_smoother

[,trend_smoother]])

STL_Residual
STL_Residual is a time series decomposition function. Along with STL_Seasonal and STL_Trend, this
function is used to decompose a time series into seasonal, trend, and residual components. In the context of
the STL algorithm, time series decomposition is used to identify both a recurring seasonal pattern and a
general trend, given an input metric and other parameters. In performing this operation, part of the variation
in the input metric will neither fit within the seasonal nor the trend component, and will be defined as the
residual component. The STL_Residual chart function captures this portion of the calculation.

STL_Residual - chart function(target_measure, period_int [,seasonal_smoother

[,trend_smoother]])

Script syntax and chart functions - Qlik Sense, May 2023 1331

5 Script and chart functions

Rank - chart function
Rank() evaluates the rows of the chart in the expression, and for each row, displays the relative position of the
value of the dimension evaluated in the expression. When evaluating the expression, the function compares
the result with the result of the other rows containing the current column segment and returns the ranking of
the current row within the segment.

Column segments

For charts other than tables, the current column segment is defined as it appears in the chart's straight table
equivalent.

Syntax:
Rank([TOTAL] expr[, mode[, fmt]])

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

mode Specifies the number representation of the function result.

fmt Specifies the text representation of the function result.

TOTAL If the chart is one-dimensional, or if the expression is preceded by the TOTAL qualifier, the
function is evaluated along the entire column. If the table or table equivalent has multiple
vertical dimensions, the current column segment will include only rows with the same
values as the current row in all dimension columns except for the column showing the last
dimension in the inter-field sort order.

Arguments

The ranking is returned as a dual value, which in the case when each row has a unique ranking, is an integer
between 1 and the number of rows in the current column segment.

In the case where several rows share the same ranking, the text and number representation can be controlled
with the mode and fmt parameters.

mode
The second argument, mode, can take the following values:

Script syntax and chart functions - Qlik Sense, May 2023 1332

5 Script and chart functions

Value Description

0 (default) If all ranks within the sharing group fall on the low side of the middle value of
the entire ranking, all rows get the lowest rank within the sharing group.

If all ranks within the sharing group fall on the high side of the middle value of
the entire ranking, all rows get the highest rank within the sharing group.

If ranks within the sharing group span over the middle value of the entire
ranking, all rows get the value corresponding to the average of the top and
bottom ranking in the entire column segment.

1 Lowest rank on all rows.

2 Average rank on all rows.

3 Highest rank on all rows.

4 Lowest rank on first row, then incremented by one for each row.

mode examples

fmt
The third argument, fmt, can take the following values:

Value Description

0 (default) Low value - high value on all rows (for example 3 - 4).

1 Low value on all rows.

2 Low value on first row, blank on the following rows.

fmtexamples

The order of rows for mode 4 and fmt 2 is determined by the sort order of the chart dimensions.

Examples and results:

Create two visualizations from the dimensions Product and Sales and another from Product and UnitSales.
Add measures as shown in the following table.

Script syntax and chart functions - Qlik Sense, May 2023 1333

5 Script and chart functions

Examples Results

Example 1. Create a table with the
dimensions Customer and Sales and the
measure Rank(Sales)

The result depends on the sort order of the dimensions. If the
table is sorted on Customer, the table lists all the values of
Sales for Astrida, then Betacab, and so on. The results for Rank
(Sales) will show 10 for the Sales value 12, 9 for the Sales value
13, and so on, with the rank value of 1 returned for the Sales
value 78. The next column segment begins with Betacab, for
which the first value of Sales in the segment is 12. The rank
value of Rank(Sales) for this is given as 11.

If the table is sorted on Sales, the column segments consist of
the values of Sales and the corresponding Customer. Because
there are two Sales values of 12 (for Astrida and Betacab), the
value of Rank(Sales) for that column segment is 1-2, for each
value of Customer. This is because there are two values of
Customer for the Sales value 12. If there had been 4 values, the
result would be 1-4, for all rows. This shows what the result
looks like for the default value (0) of the argument fmt.

Example 2. Replace the dimension
Customer with Product and add the
measure Rank(Sales,1,2)

This returns 1 on the first row on each column segment and
leaves all other rows blank, because arguments mode and fmt
are set to 1 and 2 respectively.

Rank examples

Results for example 1, with table sorted on Customer:

Customer Sales Rank(Sales)

Astrida 12 10

Astrida 13 9

Astrida 20 8

Astrida 22 7

Astrida 45 6

Astrida 46 5

Astrida 60 4

Astrida 65 3

Astrida 70 2

Astrida 78 1

Betcab 12 11

Results table

Results for example 1, with table sorted on Sales:

Script syntax and chart functions - Qlik Sense, May 2023 1334

5 Script and chart functions

Customer Sales Rank(Sales)

Astrida 12 1-2

Betacab 12 1-2

Astrida 13 1

Betacab 15 1

Astrida 20 1

Astrida 22 1-2

Betacab 22 1-2

Betacab 24 1-2

Canutility 24 1-2

Results table

Data used in examples:

ProductData:

Load * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|CC|2|20

Betacab|DD|0|25

Canutility|AA|8|15

Canutility|CC|0|19

] (delimiter is '|');

Sales2013:

crosstable (Month, Sales) LOAD * inline [

Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

See also:

p Sum - chart function (page 336)

HRank - chart function
HRank() evaluates the expression, and compares the result with the result of the other columns containing
the current row segment of a pivot table. The function then returns the ranking of the current column within
the segment.

Script syntax and chart functions - Qlik Sense, May 2023 1335

5 Script and chart functions

Syntax:
HRank([TOTAL] expr [, mode [, fmt]])

Return data type: dual

This function only works in pivot tables. In all other chart types it returns NULL.

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

mode Specifies the number representation of the function result.

fmt Specifies the text representation of the function result.

TOTAL If the chart is one-dimensional, or if the expression is preceded by the TOTAL qualifier, the
function is evaluated along the entire column. If the table or table equivalent has multiple
vertical dimensions, the current column segment will include only rows with the same
values as the current row in all dimension columns except for the column showing the last
dimension in the inter-field sort order.

Arguments

If the pivot table is one-dimensional or if the expression is preceded by the total qualifier, the current row
segment is always equal to the entire row. If the pivot table has multiple horizontal dimensions, the current
row segment will include only columns with the same values as the current column in all dimension rows
except for the row showing the last horizontal dimension of the inter-field sort order.

The ranking is returned as a dual value, which in the case when each column has a unique ranking will be an
integer between 1 and the number of columns in the current row segment.

In the case where several columns share the same ranking, the text and number representation can be
controlled with the mode and format arguments.

The second argument, mode, specifies the number representation of the function result:

Script syntax and chart functions - Qlik Sense, May 2023 1336

5 Script and chart functions

Value Description

0 (default) If all ranks within the sharing group fall on the low side of the middle value of
the entire ranking, all columns get the lowest rank within the sharing group.

If all ranks within the sharing group fall on the high side of the middle value of
the entire ranking, all columns get the highest rank within the sharing group.

If ranks within the sharing group span over the middle value of the entire
ranking, all rows get the value corresponding to the average of the top and
bottom ranking in the entire column segment.

1 Lowest rank on all columns in the group.

2 Average rank on all columns in the group.

3 Highest rank on all columns in the group.

4 Lowest rank on first column, then incremented by one for each column in the
group.

mode examples

The third argument, format, specifies the text representation of the function result:

Value Description

0 (default) Low value&' - '&high value on all columns in the group (for example 3 - 4).

1 Low value on all columns in the group.

2 Low value on first column, blank on the following columns in the group.

format examples

The order of columns for mode 4 and format 2 is determined by the sort order of the chart dimensions.

Examples:

HRank(sum(Sales))

HRank(sum(Sales), 2)

HRank(sum(Sales), 0, 1)

Optimizing with k-means: A real-world example
The following example illustrates a real world use case where the KMeans clustering and Centroid functions
are applied to a dataset. The KMeans function segregates data points into clusters that share similarities. The
clusters become more compact and differentiated as the KMeans algorithm is applied over a configurable
number of iterations.

KMeans is used across many fields in a wide variety of use cases; some examples of clustering use cases
include customer segmentation, fraud detection, predicting account attrition, targeting client incentives,
cybercrime identification, and delivery route optimization. The KMeans clustering algorithm is increasingly
being used where enterprises are trying to infer patterns and optimize service offerings.

Script syntax and chart functions - Qlik Sense, May 2023 1337

5 Script and chart functions

Qlik Sense KMeans and Centroid functions
Qlik Sense provides two KMeans functions that group data points into clusters based on similarity. See
KMeans2D - chart function (page 1346) and KMeansND - chart function (page 1361). The KMeans2D function
accepts two dimensions and works well for visualizing results through a scatter plot chart. The KMeansND
function accepts more than two dimensions. As it is easy to conceptualize a 2D outcome on standard charts,
the following demonstration applies KMeans on a scatter plot chart using two dimensions. KMeans clustering
can be visualized through coloring by expression; or by dimension as described in this example.

Qlik Sense centroid functions determine the arithmetic mean position of all the data points in the cluster and
identify a central point, or centroid for that cluster. For each chart row (or record), the centroid function
displays the coordinate of the cluster this data point has been assigned to. See KMeansCentroid2D - chart
function (page 1376) and KMeansCentroidND - chart function (page 1377).

Use case and example overview
The following example stages through a simulated real world scenario. A textile company in New York state,
USA, must decrease expenses by minimizing delivery costs. One way to do that is to relocate warehouses
closer to their distributors. The company employs 118 distributors across the state of New York. The following
demonstration simulates how an operations manager could segment distributors into five clustered
geographies using the KMeans function and then identify five optimal warehouse locations central to those
clusters using the centroid function. The objective is to discover mapping coordinates that can be used to
identify five central warehouse locations.

The dataset
The dataset is based on randomly generated names and addresses in New York state with real latitude and
longitude coordinates. The dataset contains the following ten columns: id, first_name, last_name, telephone,
address, city, state, zip, latitude, longitude. The dataset is available below as a file you can download locally
and then upload to Qlik Sense or inline for data load editor. The app being created is named Distributors
KMeans and Centroid and the first sheet in the app is named Distribution cluster analysis.

Select the following link to download the sample data file: DistributorData.csv

Distributor dataset: Inline load for data load editor in Qlik Sense (page 1344)

Title: DistributorData

Total number of records: 118

Applying the KMeans2D function
In this example, configuration of a scatter plot chart is demonstrated using the DistributorData dataset, the
KMeans2D function is applied, and the chart is colored by dimension.

Note that Qlik Sense KMeans functions support auto-clustering using a method called depth difference (DeD).
When a user sets 0 for the number of clusters, the optimal number of clusters for that dataset is determined.
For this example however, a variable is created for the num_clusters argument (refer to KMeans2D - chart
function (page 1346) for syntax). Therefore, the desired number of clusters (k=5) is specified by a variable.

Script syntax and chart functions - Qlik Sense, May 2023 1338

DistributorData.csv

5 Script and chart functions

1. A scatter plot chart is dragged onto the sheet and named Distributors (by dimension).

2. A variable is created to specify the number of clusters. The variable is named vDistClusters. For the
variable Definition, 5 is entered.

3. Data configuration for the chart:

a. Under Dimensions, id field is selected for Bubble. Cluster id is entered for the Label.

b. Under Measures, Avg([latitude]) is the expression for X-axis.

c. Under Measures, Avg([longitude]) is the expression for Y-axis.

4. Appearance configuration:

a. Under Colors and legend, Custom is chosen for Colors.

b. By dimension is selected for coloring the chart.

c. The following expression is entered: =pick(aggr(KMeans2D(vDistClusters,only(latitude),only
(longitude)),id)+1, 'Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4', 'Cluster 5')

d. The checkbox for Persistent colors is selected.

Scatter plot before KMeans coloring by dimension is applied

Scatter plot after KMeans coloring by dimension is applied

Adding a table: Distributors
It can be helpful to have a table handy for quick access to relevant data. The scatter plot chart shows ids
though a table with corresponding distributor names is added for reference.

Script syntax and chart functions - Qlik Sense, May 2023 1339

5 Script and chart functions

1. A table named Distributors is dragged onto the sheet with the following Columns (Dimensions) added:
id, first_name, and last_name.

Table: Distributor names

Adding a bar chart: # observations per cluster
For the warehouse distribution scenario, it is helpful to know how many distributors will be served by each
warehouse. Therefore, a bar chart is created that measures how many distributors are assigned to each
cluster.

1. A bar chart is dragged onto the sheet. The chart is named: # observations per cluster.

2. Data configuration for the bar chart:

a. A Dimension labeled Clusters is added (the label can be added after the expression is applied).
The following expression is entered: =pick(aggr(KMeans2D(vDistClusters,only(latitude),only
(longitude)),id)+1, 'Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4', 'Cluster 5')

b. A Measure labeled # of observations is added. The following expression is entered: =count(aggr
(KMeans2D(vDistClusters,only(latitude),only(longitude)),id))

3. Appearance configuration:

a. Under Colors and legend, Custom is chosen for Colors.

b. By dimension is selected for coloring the chart.

c. The following expression is entered: =pick(aggr(KMeans2D(vDistClusters,only(latitude),only
(longitude)),id)+1, 'Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4', 'Cluster 5')

d. The checkbox for Persistent colors is selected.

e. Show legend is turned off.

f. Under Presentation, Value labels is toggled to Auto.

g. Under X-axis: Clusters, Labels only is selected.

Script syntax and chart functions - Qlik Sense, May 2023 1340

5 Script and chart functions

Bar chart: # observations per cluster

Applying the Centroid2D function
A second table is added for the Centroid2D function that will identify the coordinates for potential warehouse
locations. This table shows the central location (centroid values) for the five identified distributor groups.

1. A Table is dragged onto the sheet and named Cluster centroids with the following columns added::

a. A Dimension labeled Clusters is added. The following expression is entered:=pick(aggr
(KMeans2D(vDistClusters,only(latitude),only(longitude)),id)+1,'Warehouse 1','Warehouse
2','Warehouse 3','Warehouse 4','Warehouse 5')

b. A Measure labeled latitude (D1) is added. The following expression is entered:=only(aggr
(KMeansCentroid2D(vDistClusters,0,only(latitude),only(longitude)),id))
Note the parameter coordinate_no corresponds to the first dimension(0). In this case the
dimension latitude is plotted against the x-axis. If we were working with the CentroidND
function and there were up to six dimensions, these parameter entries could be any of six
values: 0,1,2,3,4,or 5.

c. A Measure labeled longitude (D2) is added. The following expression is entered:=only(aggr
(KMeansCentroid2D(vDistClusters,1,only(latitude),only(longitude)),id))
The parameter coordinate_no in this expression corresponds to the second dimension(1). The
dimension longitude is plotted against the y-axis.

Script syntax and chart functions - Qlik Sense, May 2023 1341

5 Script and chart functions

Table: Cluster centroid calculations

Centroid mapping
The next step is to map the centroids. It is up to the app developer if they prefer to place the visualization on
separate sheets.

1. A map named Centroid mapping is dragged onto the sheet.

2. In the Layers section. Add layer is selected, then Point layer is selected.

a. The Field id is selected and Dist ids Label is added.

b. In the Location section, the checkbox for Latitude and Longitude fields is selected.

c. For Latitude, the latitude field is selected.

d. For Longitude, the longitude field is selected.

e. In the Size & Shape section, Bubble is selected for Shape, and the Size is decreased to
preference on the slider.

f. In the Colors section, Single color is selected and blue is selected for the Color and grey for the
Outline color (these choices are also a matter of preference).

3. In the Layers section, a second Point layer is added by selecting Add layer and then selecting Point
layer.

a. The following expression is entered: =aggr(KMeans2D(vDistClusters,only(latitude),only
(longitude)),id)

b. The Label Clusters is added.

c. In the Location section, the checkbox for Latitude and Longitude fields is selected.

d. For Latitude which in this case is plotted along the x-axis, the following expression is added:
=aggr(KMeansCentroid2D(vDistClusters,0,only(latitude),only(longitude)),id)

e. For Longitude which in this case is plotted along the y-axis, the following expression is added:
=aggr(KMeansCentroid2D(vDistClusters,1,only(latitude),only(longitude)),id)

f. In the Size & Shape section, Triangle is selected for Shape, and the Size is decreased on the
slider to preference.

g. Under Colors and legend, Custom is selected for Colors.

Script syntax and chart functions - Qlik Sense, May 2023 1342

5 Script and chart functions

h. By dimension is selected for coloring the chart. The following expression is entered: =pick(aggr
(KMeans2D(vDistClusters,only(latitude),only(longitude)),id)+1,'Cluster 1','Cluster 2','Cluster
3','Cluster 4','Cluster 5')

i. The dimension is labeled Clusters.

4. In Map settings, Adaptive is selected for Projection. Metric is selected for Units of measurement.

Map: Centroids mapped by cluster

Conclusion
Using the KMeans function for this real-world scenario, distributors have been segmented into similar groups
or clusters based on similarity; in this case, proximity to one another. The Centroid function was applied to
those clusters to identify five mapping coordinates. Those coordinates provide an initial central location at
which to build or locate warehouses. The centroid function is applied to the map chart, so that app users can
visualize where the centroids are located relative to surrounding cluster data points. The resulting coordinates
represent potential warehouse locations that could minimize delivery costs to distributors in New York state.

Script syntax and chart functions - Qlik Sense, May 2023 1343

5 Script and chart functions

App: KMeans and centroid analysis example

Distributor dataset: Inline load for data load editor in Qlik Sense
DistributorData:

Load * Inline [

id,first_name,last_name,telephone,address,city,state,zip,latitude,longitude

1,Kaiya,Snow,(716) 201-1212,6231 Tonawanda Creek Rd #APT 308,Lockport,NY,14094,43.08926,-

78.69313

2,Dean,Roy,(716) 201-1588,6884 E High St,Lockport,NY,14094,43.16245,-78.65036

3,Eden,Paul,(716) 202-4596,4647 Southwestern Blvd #APT 350,Hamburg,NY,14075,42.76003,-78.83194

4,Bryanna,Higgins,(716) 203-7041,418 Park Ave,Dunkirk,NY,14048,42.48279,-79.33088

5,Elisabeth,Lee,(716) 203-7043,36 E Courtney St,Dunkirk,NY,14048,42.48299,-79.31928

6,Skylar,Robinson,(716) 203-7166,26 Greco Ln,Dunkirk,NY,14048,42.4612095,-79.3317925

7,Cody,Bailey,(716) 203-7201,114 Lincoln Ave,Dunkirk,NY,14048,42.4801269,-79.322232

8,Dario,Sims,(408) 927-1606,N Castle Dr,Armonk,NY,10504,41.11979,-73.714864

9,Deacon,Hood,(410) 244-6221,4856 44th St,Woodside,NY,11377,40.748372,-73.905445

10,Zackery,Levy,(410) 363-8874,61 Executive Blvd,Farmingdale,NY,11735,40.7197457,-73.430239

11,Rey,Hawkins,(412) 344-8687,4585 Shimerville Rd,Clarence,NY,14031,42.972075,-78.6592452

12,Phillip,Howard,(413) 269-4049,464 Main St #101,Port Washington,NY,11050,40.8273756,-

73.7009971

13,Shirley,Tyler,(434) 985-8943,114 Glann Rd,Apalachin,NY,13732,42.0482515,-76.1229725

14,Aniyah,Jarvis,(440) 244-1808,87 N Middletown Rd,Pearl River,NY,10965,41.0629,-74.0159

15,Alayna,Woodard,(478) 335-3704,70 W Red Oak Ln,West Harrison,NY,10604,41.0162722,-73.7234926

16,Jermaine,Lambert,(508) 561-9836,24 Kellogg Rd,New Hartford,NY,13413,43.0555739,-75.2793197

17,Harper,Gibbs,(239) 466-0238,Po Box 33,Cottekill,NY,12419,41.853392,-74.106082

18,Osvaldo,Graham,(252) 246-0816,6878 Sand Hill Rd,East Syracuse,NY,13057,43.073215,-76.081448

19,Roberto,Wade,(270) 469-1211,3936 Holley Rd,Moravia,NY,13118,42.713044,-76.481227

20,Kate,Mcguire,(270) 788-3080,6451 State 64 Rte #3,Naples,NY,14512,42.707366,-77.380489

21,Dale,Andersen,(281) 480-5690,205 W Service Rd,Champlain,NY,12919,44.9645392,-73.4470831

22,Lorelai,Burch,(302) 644-2133,1 Brewster St,Glen Cove,NY,11542,40.865177,-73.633019

23,Amiyah,Flowers,(303) 223-0055,46600 Us Interstate 81 Rte,Alexandria

Bay,NY,13607,44.309626,-75.988365

Script syntax and chart functions - Qlik Sense, May 2023 1344

5 Script and chart functions

24,Mckinley,Clements,(303) 918-3230,200 Summit Lake Dr,Valhalla,NY,10595,41.101145,-73.778298

25,Marc,Gibson,(607) 203-1233,25 Robinson St,Binghamton,NY,13901,42.107416,-75.901614

26,Kali,Norman,(607) 203-1400,1 Ely Park Blvd #APT 15,Binghamton,NY,13905,42.125866,-75.925026

27,Laci,Cain,(607) 203-1437,16 Zimmer Road,Kirkwood,NY,13795,42.066516,-75.792627

28,Mohammad,Perez,(607) 203-1652,71 Endicott Ave #APT 12,Johnson City,NY,13790,42.111894,-

75.952187

29,Izabelle,Pham,(607) 204-0392,434 State 369 Rte,Port Crane,NY,13833,42.185838,-75.823074

30,Kiley,Mays,(607) 204-0870,244 Ballyhack Rd #14,Port Crane,NY,13833,42.175612,-75.814917

31,Peter,Trevino,(607) 205-1374,125 Melbourne St.,Vestal,NY,13850,42.080254,-76.051124

32,Ani,Francis,(607) 208-4067,48 Caswell St,Afton,NY,13730,42.232065,-75.525674

33,Jared,Sheppard,(716) 386-3002,4709 430th Rte,Bemus Point,NY,14712,42.162175,-79.39176

34,Dulce,Atkinson,(914) 576-2266,501 Pelham Rd,New Rochelle,NY,10805,40.895449,-73.782602

35,Jayla,Beasley,(716) 526-1054,5010 474th Rte,Ashville,NY,14710,42.096859,-79.375561

36,Dane,Donovan,(718) 545-3732,5014 31st Ave,Woodside,NY,11377,40.756967,-73.909506

37,Brendon,Clay,(585) 322-7780,133 Cummings Ave,Gainesville,NY,14066,42.664309,-78.085651

38,Asia,Nunez,(718) 426-1472,2407 Gilmore ,East Elmhurst,NY,11369,40.766662,-73.869185

39,Dawson,Odonnell,(718) 342-2179,5019 H Ave,Brooklyn,NY,11234,40.633245,-73.927591

40,Kyle,Collins,(315) 733-7078,502 Rockhaven Rd,Utica,NY,13502,43.129184,-75.226726

41,Eliza,Hardin,(315) 331-8072,502 Sladen Place,West Point,NY,10996,41.3993,-73.973003

42,Kasen,Klein,(518) 298-4581,2407 Lake Shore Rd,Chazy,NY,12921,44.925561,-73.387373

43,Reuben,Bradford,(518) 298-4581,33 Lake Flats Dr,Champlain,NY,12919,44.928092,-73.387884

44,Henry,Grimes,(518) 523-3990,2407 Main St,Lake Placid,NY,12946,44.291487,-73.98474

45,Kyan,Livingston,(518) 585-7364,241 Alexandria Ave,Ticonderoga,NY,12883,43.836553,-73.43155

46,Kaitlyn,Short,(516) 678-3189,241 Chance Dr,Oceanside,NY,11572,40.638534,-73.63079

47,Damaris,Jacobs,(914) 664-5331,241 Claremont Ave,Mount Vernon,NY,10552,40.919852,-73.827848

48,Alivia,Schroeder,(315) 469-4473,241 Lafayette Rd,Syracuse,NY,13205,42.996446,-76.12957

49,Bridget,Strong,(315) 298-4355,241 Maltby Rd,Pulaski,NY,13142,43.584966,-76.136317

50,Francis,Lee,(585) 201-7021,166 Ross St,Batavia,NY,14020,43.0031502,-78.17487

51,Makaila,Phelps,(585) 201-7422,58 S Main St,Batavia,NY,14020,42.99941,-78.1939285

52,Jazlynn,Stephens,(585) 203-1087,1 Sinclair Dr,Pittsford,NY,14534,43.084157,-77.545452

53,Ryann,Randolph,(585) 203-1519,331 Eaglehead Rd,East Rochester,NY,14445,43.10785,-77.475552

54,Rosa,Baker,(585) 204-4011,42 Ossian St,Dansville,NY,14437,42.560761,-77.70088

55,Marcel,Barry,(585) 204-4013,42 Jefferson St,Dansville,NY,14437,42.557735,-77.702983

56,Dennis,Schmitt,(585) 204-4061,750 Dansville Mount Morris Rd,Dansville,NY,14437,42.584458,-

77.741648

57,Cassandra,Kim,(585) 204-4138,3 Perine Ave APT1,Dansville,NY,14437,42.562865,-77.69661

58,Kolton,Jacobson,(585) 206-5047,4925 Upper Holly Rd,Holley,NY,14470,43.175957,-78.074465

59,Nathanael,Donovan,(718) 393-3501,9604 57th Ave,Corona,NY,11373,40.736077,-73.864858

60,Robert,Frazier,(718) 271-3067,300 56th Ave,Corona,NY,11373,40.735304,-73.873997

61,Jessie,Mora,(315) 405-8991,9607 Forsyth Loop,Watertown,NY,13603,44.036466,-75.833437

62,Martha,Rollins,(347) 242-2642,22 Main St,Corona,NY,11373,40.757727,-73.829331

63,Emely,Townsend,(718) 699-0751,60 Sanford Ave,Corona,NY,11373,40.755466,-73.831029

64,Kylie,Cooley,(347) 561-7149,9608 95th Ave,Ozone Park,NY,11416,40.687564,-73.845715

65,Wendy,Cameron,(585) 571-4185,9608 Union St,Scottsville,NY,14546,43.013327,-77.7907839

66,Kayley,Peterson,(718) 654-5027,961 E 230th St,Bronx,NY,10466,40.889275,-73.850555

67,Camden,Ochoa,(718) 760-8699,59 Vark St,Yonkers,NY,10701,40.929322,-73.89957

68,Priscilla,Castillo,(910) 326-7233,9359 Elm St,Chadwicks,NY,13319,43.024902,-75.26886

69,Dana,Schultz,(913) 322-4580,99 Washington Ave,Hastings on Hudson,NY,10706,40.99265,-

73.879748

70,Blaze,Medina,(914) 207-0015,60 Elliott Ave,Yonkers,NY,10705,40.921498,-73.896682

71,Finnegan,Tucker,(914) 207-0015,90 Hillside Drive,Yonkers,NY,10705,40.922514,-73.892911

72,Pranav,Palmer,(914) 214-8376,5 Bruce Ave,Harrison,NY,10528,40.970916,-73.711493

73,Kolten,Wong,(914) 218-8268,70 Barker St,Mount Kisco,NY,10549,41.211993,-73.723202

74,Jasiah,Vazquez,(914) 231-5199,30 Broadway,Dobbs Ferry,NY,10522,41.004629,-73.879825

75,Lamar,Pierce,(914) 232-0380,68 Ridge Rd,Katonah,NY,10536,41.256662,-73.707964

76,Carla,Coffey,(914) 232-0469,197 Beaver Dam Rd,Katonah,NY,10536,41.247934,-73.664363

Script syntax and chart functions - Qlik Sense, May 2023 1345

5 Script and chart functions

77,Brooklynn,Harmon,(716) 595-3227,8084 Glasgow Rd,Cassadega,NY,14718,42.353861,-79.329558

78,Raquel,Hodges,(585) 398-8125,809 County Road ,Victor,NY,14564,43.011745,-77.398806

79,Jerimiah,Gardner,(585) 787-9127,809 Houston Rd,Webster,NY,14580,43.224204,-77.491353

80,Clarence,Hammond,(720) 746-1619,809 Pierpont Ave,Piermont,NY,10968,41.0491181,-73.918622

81,Rhys,Gill,(518) 427-7887,81 Columbia St,Albany,NY,12210,42.652824,-73.752096

82,Edith,Parrish,(845) 452-7621,81 Glenwood Ave,Poughkeepsie,NY,12603,41.691058,-73.910829

83,Kobe,Mcintosh,(845) 371-1101,81 Heitman Dr,Spring Valley,NY,10977,41.103227,-74.054396

84,Ayden,Waters,(516) 796-2722,81 Kingfisher Rd,Levittown,NY,11756,40.738939,-73.52826

85,Francis,Rogers,(631) 427-7728,81 Knollwood Ave,Huntington,NY,11743,40.864905,-73.426107

86,Jaden,Landry,(716) 496-4038,12839 39th Rte,Chaffee,NY,14030,43.527396,-73.462786

87,Giancarlo,Campos,(518) 885-5717,1284 Saratoga Rd,Ballston Spa,NY,12020,42.968594,-73.862847

88,Eduardo,Contreras,(716) 285-8987,1285 Saunders Sett Rd,Niagara Falls,NY,14305,43.122963,-

79.029274

89,Gabriela,Davidson,(716) 267-3195,1286 Mee Rd,Falconer,NY,14733,42.147339,-79.137976

90,Evangeline,Case,(518) 272-9435,1287 2nd Ave,Watervliet,NY,12189,42.723132,-73.703818

91,Tyrone,Ellison,(518) 843-4691,1287 Midline Rd,Amsterdam,NY,12010,42.9730876,-74.1700608

92,Bryce,Bass,(518) 943-9549,1288 Leeds Athens Rd,Athens,NY,12015,42.259381,-73.876897

93,Londyn,Butler,(518) 922-7095,129 Argersinger Rd,Fultonville,NY,12072,42.910969,-74.441917

94,Graham,Becker,(607) 655-1318,129 Baker Rd,Windsor,NY,13865,42.107271,-75.66408

95,Rolando,Fitzgerald,(315) 465-4166,17164 County 90 Rte,Mannsville,NY,13661,43.713443,-

76.06232

96,Grant,Hoover,(518) 692-8363,1718 County 113 Rte,Schaghticote,NY,12154,42.900648,-73.585036

97,Mark,Goodwin,(631) 584-6761,172 Cambon Ave,Saint James,NY,11780,40.871152,-73.146032

98,Deacon,Cantu,(845) 221-7940,172 Carpenter Rd,Hopewell Junction,NY,12533,41.57388,-73.77609

99,Tristian,Walsh,(516) 997-4750,172 E Cabot Ln,Westbury,NY,11590,40.7480397,-73.54819

100,Abram,Alexander,(631) 588-3817,172 Lorenzo Cir,Ronkonkoma,NY,11779,40.837123,-73.09367

101,Lesly,Bush,(516) 489-3791,172 Nassau Blvd,Garden City,NY,11530,40.71147,-73.660753

102,Pamela,Espinoza,(716) 201-1520,172 Niagara St ,Lockport,NY,14094,43.169871,-78.70093

103,Bryanna,Newton,(914) 328-4332,172 Warren Ave,White Plains,NY,10603,41.047207,-73.79572

104,Marcelo,Schmitt,(315) 393-4432,319 Mansion Ave,Ogdensburg,NY,13669,44.690246,-75.49992

105,Layton,Valenzuela,(631) 676-2113,319 Singingwood Dr,Holbrook,NY,11741,40.801391,-73.058993

106,Roderick,Rocha,(518) 671-6037,319 Warren St,Hudson,NY,12534,42.252527,-73.790629

107,Camryn,Terrell,(315) 635-1680,3192 Olive Dr,Baldinsville,NY,13027,43.136843,-76.260303

108,Summer,Callahan,(585) 394-4195,3192 Smith Road,Canandaigua,NY,14424,42.875457,-77.228039

109,Pierre,Novak,(716) 665-2524,3194 Falconer Kimball Stand Rd,Falconer,NY,14733,42.138439,-

79.211091

110,Kennedi,Fry,(315) 543-2301,32 College Rd,Selden,NY,11784,40.861624,-73.04757

111,Wyatt,Pruitt,(716) 681-4042,277 Ransom Rd,Lancaster ,NY,14086,42.87702,-78.591302

112,Lilly,Jensen,(631) 841-0859,2772 Schliegel Blvd,Amityville,NY,11701,40.708021,-73.413015

113,Tristin,Hardin,(631) 920-0927,278 Fulton Street,West Babylon,NY,11704,40.733578,-73.357321

114,Tanya,Stafford,(716) 484-0771,278 Sampson St,Jamestown,NY,14701,42.0797,-79.247805

115,Paris,Cordova,(607) 589-4857,278 Washburn Rd,Spencer,NY,14883,42.225046,-76.510257

116,Alfonso,Morse,(718) 359-5582,200 Colden St,Flushing,NY,11355,40.750403,-73.822752

117,Maurice,Hooper,(315) 595-6694,4435 Italy Hill Rd,Branchport,NY,14418,42.597957,-77.199267

118,Iris,Wolf,(607) 539-7288,444 Harford Rd,Brooktondale,NY,14817,42.392164,-76.30756

];

KMeans2D - chart function
KMeans2D() evaluates the rows of the chart by applying k-means clustering, and for each chart row displays
the cluster id of the cluster this data point has been assigned to. The columns that are used by the clustering
algorithm are determined by the parameters coordinate_1, and coordinate_2, respectively. These are both
aggregations. The number of clusters that are created is determined by the num_clusters parameter. Data can
be optionally normalized by the norm parameter.

Script syntax and chart functions - Qlik Sense, May 2023 1346

5 Script and chart functions

KMeans2D returns one value per data point. The returned value is a dual and is the integer value
corresponding to the cluster each data point has been assigned to.

Syntax:
KMeans2D(num_clusters, coordinate_1, coordinate_2 [, norm])

Return data type: dual

Arguments:

Argument Description

num_clusters Integer that specifies the number of clusters.

coordinate_1 The aggregation that calculates the first coordinate, usually the x-axis of the scatter
chart that can be made from the chart. The additional parameter, coordinate_2,
calculates the second coordinate.

norm The optional normalization method applied to datasets before KMeans clustering.

Possible values:

0 or ‘none’ for no normalization

1 or ‘zscore’ for z-score normalization

2 or ‘minmax’ for min-max normalization

If no parameter is supplied or if the supplied parameter is incorrect, no normalization
is applied.

Z-score normalizes data based on feature mean and standard deviation. Z-score does
not ensure each feature has the same scale but it is a better approach than min-max
when dealing with outliers.

Min-max normalization ensures that the features have the same scale by taking the
minimum and maximum values of each and recalculating each datapoint.

Arguments

Example: Chart expression
In this example, we create a scatter plot chart using the Iris dataset, and then use KMeans to color the data by
expression.

We also create a variable for the num_clusters argument, and then use a variable input box to change the
number of clusters.

The Iris data set is publicly available in a variety of formats. We have provided the data as an inline table to
load using the data load editor in Qlik Sense. Note that we added an Id column to the data table for this
example.

After loading the data in Qlik Sense, we do the following:

Script syntax and chart functions - Qlik Sense, May 2023 1347

5 Script and chart functions

1. Drag a Scatter plot chart onto a new sheet. Name the chart Petal (color by expression).

2. Create a variable to specify the number of clusters. For the variable Name, enter KmeansPetalClusters.
For the variable Definition, enter =2.

3. Configure Data for the chart:

i. Under Dimensions, choose id for the field for Bubble. Enter Cluster Id for the Label.

ii. Under Measures, choose Sum([petal.length]) for the expression for X-axis.

iii. Under Measures, choose Sum([petal.width]) for the expression for Y-axis.

Data settings for Petal (color by expression) chart

The data points are plotted on the chart.

Script syntax and chart functions - Qlik Sense, May 2023 1348

5 Script and chart functions

Data points on Petal (color by expression) chart

4. Configure Appearance for the chart:

i. Under Colors and legend, choose Custom for Colors.

ii. Choose to color the chart By expression.

iii. Enter the following for Expression: kmeans2d($(KmeansPetalClusters), Sum([petal.length]), Sum
([petal.width]))
Note that KmeansPetalClusters is the variable that we set to 2.
Alternatively, enter the following: kmeans2d(2, Sum([petal.length]), Sum([petal.width]))

iv. Deselect the check box for The expression is a color code.

Script syntax and chart functions - Qlik Sense, May 2023 1349

5 Script and chart functions

v. Enter the following for Label: Cluster Id

Script syntax and chart functions - Qlik Sense, May 2023 1350

5 Script and chart functions

Appearance settings for Petal (color by expression) chart

Script syntax and chart functions - Qlik Sense, May 2023 1351

5 Script and chart functions

Script syntax and chart functions - Qlik Sense, May 2023 1352

5 Script and chart functions

The two clusters on the chart are colored by the KMeans expression.
Clusters colored by expression on Petal (color by expression) chart

5. Add a Variable input box for the number of clusters.

i. Under Custom objects in the Assets panel, choose Qlik Dashboard bundle. If we did not have
access to the dashboard bundle, we could still change the number of clusters using the variable
that we created, or directly as an integer in the expression.

ii. Drag a Variable input box onto the sheet.

iii. Under Appearance, click General.

iv. Enter the following for Title: Clusters

v. Click Variable.

vi. Choose the following variable for Name: KmeansPetalClusters.

vii. Choose Slider for Show as.

Script syntax and chart functions - Qlik Sense, May 2023 1353

5 Script and chart functions

viii. Choose Values, and configure the settings as required,

Script syntax and chart functions - Qlik Sense, May 2023 1354

5 Script and chart functions

Appearance for Clusters variable input box

Script syntax and chart functions - Qlik Sense, May 2023 1355

5 Script and chart functions

Script syntax and chart functions - Qlik Sense, May 2023 1356

5 Script and chart functions

When we are done editing, we can change the number of clusters using the slider in the Clusters
variable input box.

Clusters colored by expression on Petal (color by expression) chart

Auto-clustering

KMeans functions support auto-clustering using a method called depth difference (DeD). When a user sets 0
for the number of clusters, an optimal number of clusters for that dataset is determined. Note that while an
integer for the number of clusters (k) is not explicitly returned, it is calculated within the KMeans algorithm.
For example, if 0 is specified in the function for the value of KmeansPetalClusters or set through a variable
input box, cluster assignments are automatically calculated for the dataset based on an optimal number of
clusters.

Script syntax and chart functions - Qlik Sense, May 2023 1357

5 Script and chart functions

KMeans depth difference method determines optimal number of clusters when (k) is set to 0

Iris data set: Inline load for data load editor in Qlik Sense
IrisData:

Load * Inline [

sepal.length, sepal.width, petal.length, petal.width, variety, id

5.1, 3.5, 1.4, 0.2, Setosa, 1

4.9, 3, 1.4, 0.2, Setosa, 2

4.7, 3.2, 1.3, 0.2, Setosa, 3

4.6, 3.1, 1.5, 0.2, Setosa, 4

5, 3.6, 1.4, 0.2, Setosa, 5

5.4, 3.9, 1.7, 0.4, Setosa, 6

4.6, 3.4, 1.4, 0.3, Setosa, 7

5, 3.4, 1.5, 0.2, Setosa, 8

4.4, 2.9, 1.4, 0.2, Setosa, 9

4.9, 3.1, 1.5, 0.1, Setosa, 10

5.4, 3.7, 1.5, 0.2, Setosa, 11

4.8, 3.4, 1.6, 0.2, Setosa, 12

4.8, 3, 1.4, 0.1, Setosa, 13

4.3, 3, 1.1, 0.1, Setosa, 14

5.8, 4, 1.2, 0.2, Setosa, 15

5.7, 4.4, 1.5, 0.4, Setosa, 16

5.4, 3.9, 1.3, 0.4, Setosa, 17

5.1, 3.5, 1.4, 0.3, Setosa, 18

5.7, 3.8, 1.7, 0.3, Setosa, 19

5.1, 3.8, 1.5, 0.3, Setosa, 20

5.4, 3.4, 1.7, 0.2, Setosa, 21

Script syntax and chart functions - Qlik Sense, May 2023 1358

5 Script and chart functions

5.1, 3.7, 1.5, 0.4, Setosa, 22

4.6, 3.6, 1, 0.2, Setosa, 23

5.1, 3.3, 1.7, 0.5, Setosa, 24

4.8, 3.4, 1.9, 0.2, Setosa, 25

5, 3, 1.6, 0.2, Setosa, 26

5, 3.4, 1.6, 0.4, Setosa, 27

5.2, 3.5, 1.5, 0.2, Setosa, 28

5.2, 3.4, 1.4, 0.2, Setosa, 29

4.7, 3.2, 1.6, 0.2, Setosa, 30

4.8, 3.1, 1.6, 0.2, Setosa, 31

5.4, 3.4, 1.5, 0.4, Setosa, 32

5.2, 4.1, 1.5, 0.1, Setosa, 33

5.5, 4.2, 1.4, 0.2, Setosa, 34

4.9, 3.1, 1.5, 0.1, Setosa, 35

5, 3.2, 1.2, 0.2, Setosa, 36

5.5, 3.5, 1.3, 0.2, Setosa, 37

4.9, 3.1, 1.5, 0.1, Setosa, 38

4.4, 3, 1.3, 0.2, Setosa, 39

5.1, 3.4, 1.5, 0.2, Setosa, 40

5, 3.5, 1.3, 0.3, Setosa, 41

4.5, 2.3, 1.3, 0.3, Setosa, 42

4.4, 3.2, 1.3, 0.2, Setosa, 43

5, 3.5, 1.6, 0.6, Setosa, 44

5.1, 3.8, 1.9, 0.4, Setosa, 45

4.8, 3, 1.4, 0.3, Setosa, 46

5.1, 3.8, 1.6, 0.2, Setosa, 47

4.6, 3.2, 1.4, 0.2, Setosa, 48

5.3, 3.7, 1.5, 0.2, Setosa, 49

5, 3.3, 1.4, 0.2, Setosa, 50

7, 3.2, 4.7, 1.4, Versicolor, 51

6.4, 3.2, 4.5, 1.5, Versicolor, 52

6.9, 3.1, 4.9, 1.5, Versicolor, 53

5.5, 2.3, 4, 1.3, Versicolor, 54

6.5, 2.8, 4.6, 1.5, Versicolor, 55

5.7, 2.8, 4.5, 1.3, Versicolor, 56

6.3, 3.3, 4.7, 1.6, Versicolor, 57

4.9, 2.4, 3.3, 1, Versicolor, 58

6.6, 2.9, 4.6, 1.3, Versicolor, 59

5.2, 2.7, 3.9, 1.4, Versicolor, 60

5, 2, 3.5, 1, Versicolor, 61

5.9, 3, 4.2, 1.5, Versicolor, 62

6, 2.2, 4, 1, Versicolor, 63

6.1, 2.9, 4.7, 1.4, Versicolor, 64

5.6, 2.9, 3.6, 1.3, Versicolor, 65

6.7, 3.1, 4.4, 1.4, Versicolor, 66

5.6, 3, 4.5, 1.5, Versicolor, 67

5.8, 2.7, 4.1, 1, Versicolor, 68

6.2, 2.2, 4.5, 1.5, Versicolor, 69

5.6, 2.5, 3.9, 1.1, Versicolor, 70

5.9, 3.2, 4.8, 1.8, Versicolor, 71

6.1, 2.8, 4, 1.3, Versicolor, 72

6.3, 2.5, 4.9, 1.5, Versicolor, 73

6.1, 2.8, 4.7, 1.2, Versicolor, 74

6.4, 2.9, 4.3, 1.3, Versicolor, 75

6.6, 3, 4.4, 1.4, Versicolor, 76

Script syntax and chart functions - Qlik Sense, May 2023 1359

5 Script and chart functions

6.8, 2.8, 4.8, 1.4, Versicolor, 77

6.7, 3, 5, 1.7, Versicolor, 78

6, 2.9, 4.5, 1.5, Versicolor, 79

5.7, 2.6, 3.5, 1, Versicolor, 80

5.5, 2.4, 3.8, 1.1, Versicolor, 81

5.5, 2.4, 3.7, 1, Versicolor, 82

5.8, 2.7, 3.9, 1.2, Versicolor, 83

6, 2.7, 5.1, 1.6, Versicolor, 84

5.4, 3, 4.5, 1.5, Versicolor, 85

6, 3.4, 4.5, 1.6, Versicolor, 86

6.7, 3.1, 4.7, 1.5, Versicolor, 87

6.3, 2.3, 4.4, 1.3, Versicolor, 88

5.6, 3, 4.1, 1.3, Versicolor, 89

5.5, 2.5, 4, 1.3, Versicolor, 90

5.5, 2.6, 4.4, 1.2, Versicolor, 91

6.1, 3, 4.6, 1.4, Versicolor, 92

5.8, 2.6, 4, 1.2, Versicolor, 93

5, 2.3, 3.3, 1, Versicolor, 94

5.6, 2.7, 4.2, 1.3, Versicolor, 95

5.7, 3, 4.2, 1.2, Versicolor, 96

5.7, 2.9, 4.2, 1.3, Versicolor, 97

6.2, 2.9, 4.3, 1.3, Versicolor, 98

5.1, 2.5, 3, 1.1, Versicolor, 99

5.7, 2.8, 4.1, 1.3, Versicolor, 100

6.3, 3.3, 6, 2.5, Virginica, 101

5.8, 2.7, 5.1, 1.9, Virginica, 102

7.1, 3, 5.9, 2.1, Virginica, 103

6.3, 2.9, 5.6, 1.8, Virginica, 104

6.5, 3, 5.8, 2.2, Virginica, 105

7.6, 3, 6.6, 2.1, Virginica, 106

4.9, 2.5, 4.5, 1.7, Virginica, 107

7.3, 2.9, 6.3, 1.8, Virginica, 108

6.7, 2.5, 5.8, 1.8, Virginica, 109

7.2, 3.6, 6.1, 2.5, Virginica, 110

6.5, 3.2, 5.1, 2, Virginica, 111

6.4, 2.7, 5.3, 1.9, Virginica, 112

6.8, 3, 5.5, 2.1, Virginica, 113

5.7, 2.5, 5, 2, Virginica, 114

5.8, 2.8, 5.1, 2.4, Virginica, 115

6.4, 3.2, 5.3, 2.3, Virginica, 116

6.5, 3, 5.5, 1.8, Virginica, 117

7.7, 3.8, 6.7, 2.2, Virginica, 118

7.7, 2.6, 6.9, 2.3, Virginica, 119

6, 2.2, 5, 1.5, Virginica, 120

6.9, 3.2, 5.7, 2.3, Virginica, 121

5.6, 2.8, 4.9, 2, Virginica, 122

7.7, 2.8, 6.7, 2, Virginica, 123

6.3, 2.7, 4.9, 1.8, Virginica, 124

6.7, 3.3, 5.7, 2.1, Virginica, 125

7.2, 3.2, 6, 1.8, Virginica, 126

6.2, 2.8, 4.8, 1.8, Virginica, 127

6.1, 3, 4.9, 1.8, Virginica, 128

6.4, 2.8, 5.6, 2.1, Virginica, 129

7.2, 3, 5.8, 1.6, Virginica, 130

7.4, 2.8, 6.1, 1.9, Virginica, 131

Script syntax and chart functions - Qlik Sense, May 2023 1360

5 Script and chart functions

7.9, 3.8, 6.4, 2, Virginica, 132

6.4, 2.8, 5.6, 2.2, Virginica, 133

6.3, 2.8, 5.1, 1.5, Virginica, 134

6.1, 2.6, 5.6, 1.4, Virginica, 135

7.7, 3, 6.1, 2.3, Virginica, 136

6.3, 3.4, 5.6, 2.4, Virginica, 137

6.4, 3.1, 5.5, 1.8, Virginica, 138

6, 3, 4.8, 1.8, Virginica, 139

6.9, 3.1, 5.4, 2.1, Virginica, 140

6.7, 3.1, 5.6, 2.4, Virginica, 141

6.9, 3.1, 5.1, 2.3, Virginica, 142

5.8, 2.7, 5.1, 1.9, Virginica, 143

6.8, 3.2, 5.9, 2.3, Virginica, 144

6.7, 3.3, 5.7, 2.5, Virginica, 145

6.7, 3, 5.2, 2.3, Virginica, 146

6.3, 2.5, 5, 1.9, Virginica, 147

6.5, 3, 5.2, 2, Virginica, 148

6.2, 3.4, 5.4, 2.3, Virginica, 149

5.9, 3, 5.1, 1.8, Virginica, 150

];

KMeansND - chart function
KMeansND() evaluates the rows of the chart by applying k-means clustering, and for each chart row displays
the cluster id of the cluster this data point has been assigned to. The columns that are used by the clustering
algorithm are determined by the parameters coordinate_1, and coordinate_2, etc., up to n columns. These are
all aggregations. The number of clusters that are created is determined by the num_clusters parameter.

KMeansND returns one value per data point. The returned value is a dual and is the integer value
corresponding to the cluster each data point has been assigned to.

Syntax:
KMeansND(num_clusters, num_iter, coordinate_1, coordinate_2 [,coordinate_3 [,

...]])

Return data type: dual

Arguments:

Argument Description

num_clusters Integer that specifies the number of clusters.

num_iter The number of iterations of clustering with reinitialized cluster centers.

coordinate_1 The aggregation that calculates the first coordinate, usually the x-axis (of a scatter
chart that can be made from the chart). The additional parameters calculate the
second, third, and fourth coordinates, etc.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1361

5 Script and chart functions

Example: Chart expression
In this example, we create a scatter plot chart using the Iris dataset, and then use KMeans to color the data by
expression.

We also create a variable for the num_clusters argument, and then use a variable input box to change the
number of clusters.

Additionally, we create a variable for the num_iter argument, and then use a second variable input box to
change the number of iterations.

The Iris data set is publicly available in a variety of formats. We have provided the data as an inline table to
load using the data load editor in Qlik Sense. Note that we added an Id column to the data table for this
example.

After loading the data in Qlik Sense, we do the following:

1. Drag a Scatter plot chart onto a new sheet. Name the chart Petal (color by expression).

2. Create a variable to specify the number of clusters. For the variable Name, enter KmeansPetalClusters.
For the variable Definition, enter =2.

3. Create a variable to specify the number of iterations. For the variable Name, enter
KmeansNumberIterations. For the variable Definition, enter =1.

4. Configure Data for the chart:

i. Under Dimensions, choose id for the field for Bubble. Enter Cluster Id for the Label.

ii. Under Measures, choose Sum([petal.length]) for the expression for X-axis.

iii. Under Measures, choose Sum([petal.width]) for the expression for Y-axis.

Script syntax and chart functions - Qlik Sense, May 2023 1362

5 Script and chart functions

Data settings for Petal (color by expression) chart

The data points are plotted on the chart.

Script syntax and chart functions - Qlik Sense, May 2023 1363

5 Script and chart functions

Data points on Petal (color by expression) chart

5. Configure Appearance for the chart:

i. Under Colors and legend, choose Custom for Colors.

ii. Choose to color the chart By expression.

iii. Enter the following for Expression: kmeansnd
($(KmeansPetalClusters),$(KmeansNumberIterations), Sum([petal.length]), Sum
([petal.width]),Sum([sepal.length]), Sum([sepal.width]))
Note that KmeansPetalClusters is the variable that we set to 2. KmeansNumberIterations is the
variable that we set to 1.
Alternatively, enter the following: kmeansnd(2, 2, Sum([petal.length]), Sum([petal.width]),Sum
([sepal.length]), Sum([sepal.width]))

iv. Deselect the check box for The expression is a color code.

Script syntax and chart functions - Qlik Sense, May 2023 1364

5 Script and chart functions

v. Enter the following for Label: Cluster Id

Script syntax and chart functions - Qlik Sense, May 2023 1365

5 Script and chart functions

Appearance settings for Petal (color by expression) chart

Script syntax and chart functions - Qlik Sense, May 2023 1366

5 Script and chart functions

Script syntax and chart functions - Qlik Sense, May 2023 1367

5 Script and chart functions

The two clusters on the chart are colored by the KMeans expression.
Clusters colored by expression on Petal (color by expression) chart

6. Add a Variable input box for the number of clusters.

i. Under Custom objects in the Assets panel, choose Qlik Dashboard bundle. If we did not have
access to the dashboard bundle, we could still change the number of clusters using the variable
that we created, or directly as an integer in the expression.

ii. Drag a Variable input box onto the sheet.

iii. Under Appearance, click General.

iv. Enter the following for Title: Clusters

v. Click Variable.

vi. Choose the following variable for Name: KmeansPetalClusters.

vii. Choose Slider for Show as.

Script syntax and chart functions - Qlik Sense, May 2023 1368

5 Script and chart functions

viii. Choose Values, and configure the settings as required,

Script syntax and chart functions - Qlik Sense, May 2023 1369

5 Script and chart functions

Appearance for Clusters variable input box

Script syntax and chart functions - Qlik Sense, May 2023 1370

5 Script and chart functions

Script syntax and chart functions - Qlik Sense, May 2023 1371

5 Script and chart functions

7. Add a Variable input box for the number of iterations.

i. Drag a Variable input box onto the sheet.

ii. Under Appearance, choose General.

iii. Enter the following for Title: Iterations

iv. Under Appearance, choose Variable.

v. Choose the following variable under Name: KmeansNumberIterations.

vi. Configure the additional settings as required,

We can now change the number of clusters and iterations using the sliders in the variable input boxes.

Clusters colored by expression on Petal (color by expression) chart

Auto-clustering

KMeans functions support auto-clustering using a method called depth difference (DeD). When a user sets 0
for the number of clusters, an optimal number of clusters for that dataset is determined. Note that while an
integer for the number of clusters (k) is not explicitly returned, it is calculated within the KMeans algorithm.
For example, if 0 is specified in the function for the value of KmeansPetalClusters or set through a variable
input box, cluster assignments are automatically calculated for the dataset based on an optimal number of
clusters. Given the Iris dataset, if 0 is selected for the number of clusters, the algorithm will determine (auto-
cluster) an optimal number of clusters (3) for this dataset.

Script syntax and chart functions - Qlik Sense, May 2023 1372

5 Script and chart functions

KMeans depth difference method determines optimal number of clusters when (k) is set to 0.

Iris data set: Inline load for data load editor in Qlik Sense
IrisData:

Load * Inline [

sepal.length, sepal.width, petal.length, petal.width, variety, id

5.1, 3.5, 1.4, 0.2, Setosa, 1

4.9, 3, 1.4, 0.2, Setosa, 2

4.7, 3.2, 1.3, 0.2, Setosa, 3

4.6, 3.1, 1.5, 0.2, Setosa, 4

5, 3.6, 1.4, 0.2, Setosa, 5

5.4, 3.9, 1.7, 0.4, Setosa, 6

4.6, 3.4, 1.4, 0.3, Setosa, 7

5, 3.4, 1.5, 0.2, Setosa, 8

4.4, 2.9, 1.4, 0.2, Setosa, 9

4.9, 3.1, 1.5, 0.1, Setosa, 10

5.4, 3.7, 1.5, 0.2, Setosa, 11

4.8, 3.4, 1.6, 0.2, Setosa, 12

4.8, 3, 1.4, 0.1, Setosa, 13

4.3, 3, 1.1, 0.1, Setosa, 14

5.8, 4, 1.2, 0.2, Setosa, 15

5.7, 4.4, 1.5, 0.4, Setosa, 16

5.4, 3.9, 1.3, 0.4, Setosa, 17

5.1, 3.5, 1.4, 0.3, Setosa, 18

5.7, 3.8, 1.7, 0.3, Setosa, 19

5.1, 3.8, 1.5, 0.3, Setosa, 20

5.4, 3.4, 1.7, 0.2, Setosa, 21

Script syntax and chart functions - Qlik Sense, May 2023 1373

5 Script and chart functions

5.1, 3.7, 1.5, 0.4, Setosa, 22

4.6, 3.6, 1, 0.2, Setosa, 23

5.1, 3.3, 1.7, 0.5, Setosa, 24

4.8, 3.4, 1.9, 0.2, Setosa, 25

5, 3, 1.6, 0.2, Setosa, 26

5, 3.4, 1.6, 0.4, Setosa, 27

5.2, 3.5, 1.5, 0.2, Setosa, 28

5.2, 3.4, 1.4, 0.2, Setosa, 29

4.7, 3.2, 1.6, 0.2, Setosa, 30

4.8, 3.1, 1.6, 0.2, Setosa, 31

5.4, 3.4, 1.5, 0.4, Setosa, 32

5.2, 4.1, 1.5, 0.1, Setosa, 33

5.5, 4.2, 1.4, 0.2, Setosa, 34

4.9, 3.1, 1.5, 0.1, Setosa, 35

5, 3.2, 1.2, 0.2, Setosa, 36

5.5, 3.5, 1.3, 0.2, Setosa, 37

4.9, 3.1, 1.5, 0.1, Setosa, 38

4.4, 3, 1.3, 0.2, Setosa, 39

5.1, 3.4, 1.5, 0.2, Setosa, 40

5, 3.5, 1.3, 0.3, Setosa, 41

4.5, 2.3, 1.3, 0.3, Setosa, 42

4.4, 3.2, 1.3, 0.2, Setosa, 43

5, 3.5, 1.6, 0.6, Setosa, 44

5.1, 3.8, 1.9, 0.4, Setosa, 45

4.8, 3, 1.4, 0.3, Setosa, 46

5.1, 3.8, 1.6, 0.2, Setosa, 47

4.6, 3.2, 1.4, 0.2, Setosa, 48

5.3, 3.7, 1.5, 0.2, Setosa, 49

5, 3.3, 1.4, 0.2, Setosa, 50

7, 3.2, 4.7, 1.4, Versicolor, 51

6.4, 3.2, 4.5, 1.5, Versicolor, 52

6.9, 3.1, 4.9, 1.5, Versicolor, 53

5.5, 2.3, 4, 1.3, Versicolor, 54

6.5, 2.8, 4.6, 1.5, Versicolor, 55

5.7, 2.8, 4.5, 1.3, Versicolor, 56

6.3, 3.3, 4.7, 1.6, Versicolor, 57

4.9, 2.4, 3.3, 1, Versicolor, 58

6.6, 2.9, 4.6, 1.3, Versicolor, 59

5.2, 2.7, 3.9, 1.4, Versicolor, 60

5, 2, 3.5, 1, Versicolor, 61

5.9, 3, 4.2, 1.5, Versicolor, 62

6, 2.2, 4, 1, Versicolor, 63

6.1, 2.9, 4.7, 1.4, Versicolor, 64

5.6, 2.9, 3.6, 1.3, Versicolor, 65

6.7, 3.1, 4.4, 1.4, Versicolor, 66

5.6, 3, 4.5, 1.5, Versicolor, 67

5.8, 2.7, 4.1, 1, Versicolor, 68

6.2, 2.2, 4.5, 1.5, Versicolor, 69

5.6, 2.5, 3.9, 1.1, Versicolor, 70

5.9, 3.2, 4.8, 1.8, Versicolor, 71

6.1, 2.8, 4, 1.3, Versicolor, 72

6.3, 2.5, 4.9, 1.5, Versicolor, 73

6.1, 2.8, 4.7, 1.2, Versicolor, 74

6.4, 2.9, 4.3, 1.3, Versicolor, 75

6.6, 3, 4.4, 1.4, Versicolor, 76

Script syntax and chart functions - Qlik Sense, May 2023 1374

5 Script and chart functions

6.8, 2.8, 4.8, 1.4, Versicolor, 77

6.7, 3, 5, 1.7, Versicolor, 78

6, 2.9, 4.5, 1.5, Versicolor, 79

5.7, 2.6, 3.5, 1, Versicolor, 80

5.5, 2.4, 3.8, 1.1, Versicolor, 81

5.5, 2.4, 3.7, 1, Versicolor, 82

5.8, 2.7, 3.9, 1.2, Versicolor, 83

6, 2.7, 5.1, 1.6, Versicolor, 84

5.4, 3, 4.5, 1.5, Versicolor, 85

6, 3.4, 4.5, 1.6, Versicolor, 86

6.7, 3.1, 4.7, 1.5, Versicolor, 87

6.3, 2.3, 4.4, 1.3, Versicolor, 88

5.6, 3, 4.1, 1.3, Versicolor, 89

5.5, 2.5, 4, 1.3, Versicolor, 90

5.5, 2.6, 4.4, 1.2, Versicolor, 91

6.1, 3, 4.6, 1.4, Versicolor, 92

5.8, 2.6, 4, 1.2, Versicolor, 93

5, 2.3, 3.3, 1, Versicolor, 94

5.6, 2.7, 4.2, 1.3, Versicolor, 95

5.7, 3, 4.2, 1.2, Versicolor, 96

5.7, 2.9, 4.2, 1.3, Versicolor, 97

6.2, 2.9, 4.3, 1.3, Versicolor, 98

5.1, 2.5, 3, 1.1, Versicolor, 99

5.7, 2.8, 4.1, 1.3, Versicolor, 100

6.3, 3.3, 6, 2.5, Virginica, 101

5.8, 2.7, 5.1, 1.9, Virginica, 102

7.1, 3, 5.9, 2.1, Virginica, 103

6.3, 2.9, 5.6, 1.8, Virginica, 104

6.5, 3, 5.8, 2.2, Virginica, 105

7.6, 3, 6.6, 2.1, Virginica, 106

4.9, 2.5, 4.5, 1.7, Virginica, 107

7.3, 2.9, 6.3, 1.8, Virginica, 108

6.7, 2.5, 5.8, 1.8, Virginica, 109

7.2, 3.6, 6.1, 2.5, Virginica, 110

6.5, 3.2, 5.1, 2, Virginica, 111

6.4, 2.7, 5.3, 1.9, Virginica, 112

6.8, 3, 5.5, 2.1, Virginica, 113

5.7, 2.5, 5, 2, Virginica, 114

5.8, 2.8, 5.1, 2.4, Virginica, 115

6.4, 3.2, 5.3, 2.3, Virginica, 116

6.5, 3, 5.5, 1.8, Virginica, 117

7.7, 3.8, 6.7, 2.2, Virginica, 118

7.7, 2.6, 6.9, 2.3, Virginica, 119

6, 2.2, 5, 1.5, Virginica, 120

6.9, 3.2, 5.7, 2.3, Virginica, 121

5.6, 2.8, 4.9, 2, Virginica, 122

7.7, 2.8, 6.7, 2, Virginica, 123

6.3, 2.7, 4.9, 1.8, Virginica, 124

6.7, 3.3, 5.7, 2.1, Virginica, 125

7.2, 3.2, 6, 1.8, Virginica, 126

6.2, 2.8, 4.8, 1.8, Virginica, 127

6.1, 3, 4.9, 1.8, Virginica, 128

6.4, 2.8, 5.6, 2.1, Virginica, 129

7.2, 3, 5.8, 1.6, Virginica, 130

7.4, 2.8, 6.1, 1.9, Virginica, 131

Script syntax and chart functions - Qlik Sense, May 2023 1375

5 Script and chart functions

7.9, 3.8, 6.4, 2, Virginica, 132

6.4, 2.8, 5.6, 2.2, Virginica, 133

6.3, 2.8, 5.1, 1.5, Virginica, 134

6.1, 2.6, 5.6, 1.4, Virginica, 135

7.7, 3, 6.1, 2.3, Virginica, 136

6.3, 3.4, 5.6, 2.4, Virginica, 137

6.4, 3.1, 5.5, 1.8, Virginica, 138

6, 3, 4.8, 1.8, Virginica, 139

6.9, 3.1, 5.4, 2.1, Virginica, 140

6.7, 3.1, 5.6, 2.4, Virginica, 141

6.9, 3.1, 5.1, 2.3, Virginica, 142

5.8, 2.7, 5.1, 1.9, Virginica, 143

6.8, 3.2, 5.9, 2.3, Virginica, 144

6.7, 3.3, 5.7, 2.5, Virginica, 145

6.7, 3, 5.2, 2.3, Virginica, 146

6.3, 2.5, 5, 1.9, Virginica, 147

6.5, 3, 5.2, 2, Virginica, 148

6.2, 3.4, 5.4, 2.3, Virginica, 149

5.9, 3, 5.1, 1.8, Virginica, 150

];

KMeansCentroid2D - chart function
KMeansCentroid2D() evaluates the rows of the chart by applying k-means clustering, and for each chart row
displays the desired coordinate of the cluster this data point has been assigned to. The columns that are used
by the clustering algorithm are determined by the parameters coordinate_1, and coordinate_2, respectively.
These are both aggregations. The number of clusters that are created is determined by the num_clusters
parameter. Data can be optionally normalized by the norm parameter.

KMeansCentroid2D returns one value per data point. The returned value is a dual and is one of the
coordinates of the position corresponding to the cluster center the data point has been assigned to.

Syntax:
KMeansCentroid2D(num_clusters, coordinate_no, coordinate_1, coordinate_2 [,

norm])

Return data type: dual

Arguments:

Argument Description

num_clusters Integer that specifies the number of clusters.

coordinate_no The desired coordinate number of the centroids (corresponding, for example, to the x,
y, or z axis).

coordinate_1 The aggregation that calculates the first coordinate, usually the x-axis of the scatter
chart that can be made from the chart. The additional parameter, coordinate_2,
calculates the second coordinate.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1376

5 Script and chart functions

Argument Description

norm The optional normalization method applied to datasets before KMeans clustering.

Possible values:

0 or ‘none’ for no normalization

1 or ‘zscore’ for z-score normalization

2 or ‘minmax’ for min-max normalization

If no parameter is supplied or if the supplied parameter is incorrect, no normalization
is applied.

Z-score normalizes data based on feature mean and standard deviation. Z-score does
not ensure each feature has the same scale but it is a better approach than min-max
when dealing with outliers.

Min-max normalization ensures that the features have the same scale by taking the
minimum and maximum values of each and recalculating each datapoint.

Auto-clustering
KMeans functions support auto-clustering using a method called depth difference (DeD). When a user sets 0
for the number of clusters, an optimal number of clusters for that dataset is determined. Note that while an
integer for the number of clusters (k) is not explicitly returned, it is calculated within the KMeans algorithm.
For example, if 0 is specified in the function for the value of KmeansPetalClusters or set through a variable
input box, cluster assignments are automatically calculated for the dataset based on an optimal number of
clusters.

KMeansCentroidND - chart function
KMeansCentroidND() evaluates the rows of the chart by applying k-means clustering, and for each chart row
displays the desired coordinate of the cluster this data point has been assigned to. The columns that are used
by the clustering algorithm are determined by the parameters coordinate_1, coordinate_2, etc., up to n
columns. These are all aggregations. The number of clusters that are created is determined by the num_
clusters parameter.

KMeansCentroidND returns one value per row. The returned value is a dual and is one of the coordinates of
the position corresponding to the cluster center the data point has been assigned to.

Syntax:

KMeansCentroidND((num_clusters, num_iter, coordinate_no, coordinate_1,

coordinate_2 [,coordinate_3 [, ...]])

Script syntax and chart functions - Qlik Sense, May 2023 1377

5 Script and chart functions

Return data type: dual

Arguments:

Argument Description

num_clusters Integer that specifies the number of clusters.

num_iter The number of iterations of clustering with reinitialized cluster centers.

coordinate_no The desired coordinate number of the centroids (corresponding, for example, to the x,
y, or z axis).

coordinate_1 The aggregation that calculates the first coordinate, usually the x-axis (of a scatter
chart that can be made from the chart). The additional parameters calculate the
second, third, and fourth coordinates, etc.

Arguments

Auto-clustering
KMeans functions support auto-clustering using a method called depth difference (DeD). When a user sets 0
for the number of clusters, an optimal number of clusters for that dataset is determined. Note that while an
integer for the number of clusters (k) is not explicitly returned, it is calculated within the KMeans algorithm.
For example, if 0 is specified in the function for the value of KmeansPetalClusters or set through a variable
input box, cluster assignments are automatically calculated for the dataset based on an optimal number of
clusters.

STL_Trend - chart function
STL_Trend is a time series decomposition function. Along with STL_Seasonal and STL_Residual, this
function is used to decompose a time series into seasonal, trend, and residual components. In the context of
the STL algorithm, time series decomposition is used to identify both a recurring seasonal pattern and a
general trend, given an input metric and other parameters. The STL_Trend function will identify a general
trend, independent of seasonal patterns or cycles, from time series data.

The three STL functions are related to the input metric through a simple sum:

STL_Trend + STL_Seasonal + STL_Residual = Input metric

STL (seasonal and trend decomposition using Loess) employs data smoothing techniques, and through its
input parameters, allows the user to adjust the periodicity of the calculations it performs. This periodicity
determines how the time dimension of the input metric (a measure) is segmented in the analysis.

At minimum, STL_Trend takes an input metric (target_measure) and an integer value for its period_int,
returning a floating-point value. The input metric will be in the form of an aggregation that varies along the
time dimension. Optionally, you can include values for the seasonal_smoother and trend_smoother to adjust
the smoothing algorithm.

Syntax:
STL_Trend(target_measure, period_int [,seasonal_smoother [,trend_smoother]])

Script syntax and chart functions - Qlik Sense, May 2023 1378

5 Script and chart functions

Return data type: dual

Argument Description

target_
measure

The measure to decompose into Seasonal and Trend components. This should be a
measure such as Sum(Sales) or Sum(Passengers) that varies along the time dimension.

This must not be a constant value.

period_int The periodicity of the dataset. This parameter is an integer value representing the number
of discrete steps that make up one period, or seasonal cycle, of the signal.

For instance, if the time series is segmented into one section for each quarter of the year,
you must set the period_int to a value of 4 to define the periodicity as Year.

seasonal_
smoother

Length of the seasonal smoother. This must be an odd integer. The seasonal smoother uses
data for a particular phase in the seasonal variation, over a number of periods. One discrete
step of the time dimension is used from each period. The seasonal smoother indicates the
number of periods used for smoothing.

For example, if the time dimension is segmented by month and the period is Year (12), the
seasonal component will be computed so that each particular month of each year is
calculated from data for the same month, both in that year and in adjacent years. The
seasonal_smoother value is the number of years used for smoothing.

trend_
smoother

Length of the trend smoother. This must be an odd integer. The trend smoother uses the
same time scale as the period_int parameter, and its value is the number of granules used
for smoothing.

For example, if a time series is segmented by month, the trend smoother will be the
number of months used for smoothing.

Arguments

The STL_Trend chart function is often used in combination with the following functions:

Function Interaction

STL_Seasonal - chart function (page 1380) This is the
function used to
compute the
seasonal
component of a
time series.

Related functions

Script syntax and chart functions - Qlik Sense, May 2023 1379

5 Script and chart functions

Function Interaction

STL_Residual - chart function (page 1382) When breaking
down an input
metric into
seasonal and
trend component,
part of the
measure's
variation will not
fit within either of
the two main
components. The
STL_Residual
function
computes this
portion of the
decomposition.

For a tutorial with a full example showing how to use this function, see Tutorial - Time series decomposition in
Qlik Sense (page 1384).

STL_Seasonal - chart function
STL_Seasonal is a time series decomposition function. Along with STL_Trend and STL_
Residual, this function is used to decompose a time series into seasonal, trend, and residual
components. In the context of the STL algorithm, time series decomposition is used to identify
both a recurring seasonal pattern and a general trend, given an input metric and other
parameters. The STL_Seasonal function can identify a seasonal pattern within a time series,
separating this from the general trend displayed by the data.

The three STL functions are related to the input metric through a simple sum:

STL_Trend + STL_Seasonal + STL_Residual = Input metric

STL (seasonal and trend decomposition using Loess) employs data smoothing techniques, and through its
input parameters, allows the user to adjust the periodicity of the calculations it performs. This periodicity
determines how the time dimension of the input metric (a measure) is segmented in the analysis.

At minimum, STL_Seasonal takes an input metric (target_measure) and an integer value for its period_int,
returning a floating-point value. The input metric will be in the form of an aggregation that varies along the
time dimension. Optionally, you can include values for the seasonal_smoother and trend_smoother to adjust
the smoothing algorithm.

Syntax:
STL_Seasonal(target_measure, period_int [,seasonal_smoother [,trend_

smoother]])

Script syntax and chart functions - Qlik Sense, May 2023 1380

5 Script and chart functions

Return data type: dual

Argument Description

target_
measure

The measure to decompose into Seasonal and Trend components. This should be a
measure such as Sum(Sales) or Sum(Passengers) that varies along the time dimension.

This must not be a constant value.

period_int The periodicity of the dataset. This parameter is an integer value representing the number
of discrete steps that make up one period, or seasonal cycle, of the signal.

For instance, if the time series is segmented into one section for each quarter of the year,
you must set the period_int to a value of 4 to define the periodicity as Year.

seasonal_
smoother

Length of the seasonal smoother. This must be an odd integer. The seasonal smoother uses
data for a particular phase in the seasonal variation, over a number of periods. One discrete
step of the time dimension is used from each period. The seasonal smoother indicates the
number of periods used for smoothing.

For example, if the time dimension is segmented by month and the period is Year (12), the
seasonal component will be computed so that each particular month of each year is
calculated from data for the same month, both in that year and in adjacent years. The
seasonal_smoother value is the number of years used for smoothing.

trend_
smoother

Length of the trend smoother. This must be an odd integer. The trend smoother uses the
same time scale as the period_int parameter, and its value is the number of granules used
for smoothing.

For example, if a time series is segmented by month, the trend smoother will be the
number of months used for smoothing.

Arguments

The STL_Seasonal chart function is often used in combination with the following functions:

Function Interaction

STL_Trend - chart function (page 1378) This is the
function used to
compute the
trend component
of a time series.

Related functions

Script syntax and chart functions - Qlik Sense, May 2023 1381

5 Script and chart functions

Function Interaction

STL_Residual - chart function (page 1382) When breaking
down an input
metric into
seasonal and
trend component,
part of the
measure's
variation will not
fit within either of
the two main
components. The
STL_Residual
function
computes this
portion of the
decomposition.

For a tutorial with a full example showing how to use this function, see Tutorial - Time series decomposition in
Qlik Sense (page 1384).

STL_Residual - chart function
STL_Residual is a time series decomposition function. Along with STL_Seasonal and STL_
Trend, this function is used to decompose a time series into seasonal, trend, and residual
components. In the context of the STL algorithm, time series decomposition is used to identify
both a recurring seasonal pattern and a general trend, given an input metric and other
parameters. In performing this operation, part of the variation in the input metric will neither fit
within the seasonal nor the trend component, and will be defined as the residual component.
The STL_Residual chart function captures this portion of the calculation.

The three STL functions are related to the input metric through a simple sum:

STL_Trend + STL_Seasonal + STL_Residual = Input metric

STL (seasonal and trend decomposition using Loess) employs data smoothing techniques, and through its
input parameters, allows the user to adjust the periodicity of the calculations it performs. This periodicity
determines how the time dimension of the input metric (a measure) is segmented in the analysis.

Since time series decomposition primarily looks for seasonality and general variations in data, the information
in the residual is considered the least significant of the three components. However, a skewed or periodic
residual component can help identify issues in the calculation, such as incorrect periodicity settings.

Script syntax and chart functions - Qlik Sense, May 2023 1382

5 Script and chart functions

At minimum, STL_Residual takes an input metric (target_measure) and an integer value for its period_int,
returning a floating-point value. The input metric will be in the form of an aggregation that varies along the
time dimension. Optionally, you can include values for the seasonal_smoother and trend_smoother to adjust
the smoothing algorithm.

Syntax:
STL_Residual(target_measure, period_int [,seasonal_smoother [,trend_

smoother]])

Return data type: dual

Argument Description

target_
measure

The measure to decompose into Seasonal and Trend components. This should be a
measure such as Sum(Sales) or Sum(Passengers) that varies along the time dimension.

This must not be a constant value.

period_int The periodicity of the dataset. This parameter is an integer value representing the number
of discrete steps that make up one period, or seasonal cycle, of the signal.

For instance, if the time series is segmented into one section for each quarter of the year,
you must set the period_int to a value of 4 to define the periodicity as Year.

seasonal_
smoother

Length of the seasonal smoother. This must be an odd integer. The seasonal smoother uses
data for a particular phase in the seasonal variation, over a number of periods. One discrete
step of the time dimension is used from each period. The seasonal smoother indicates the
number of periods used for smoothing.

For example, if the time dimension is segmented by month and the period is Year (12), the
seasonal component will be computed so that each particular month of each year is
calculated from data for the same month, both in that year and in adjacent years. The
seasonal_smoother value is the number of years used for smoothing.

trend_
smoother

Length of the trend smoother. This must be an odd integer. The trend smoother uses the
same time scale as the period_int parameter, and its value is the number of granules used
for smoothing.

For example, if a time series is segmented by month, the trend smoother will be the
number of months used for smoothing.

Arguments

The STL_Residual chart function is often used in combination with the following functions:

Script syntax and chart functions - Qlik Sense, May 2023 1383

5 Script and chart functions

Function Interaction

STL_Seasonal - chart function (page 1380) This is the
function used to
compute the
seasonal
component of a
time series.

STL_Trend - chart function (page 1378) This is the
function used to
compute the trend
component of a
time series.

Related functions

For a tutorial with a full example showing how to use this function, see Tutorial - Time series decomposition in
Qlik Sense (page 1384).

Tutorial - Time series decomposition in Qlik Sense
This tutorial demonstrates using three chart functions to decompose a time series using the
STL algorithm.

This tutorial uses time series data for the number of passengers using an airline per month to demonstrate the
functionality of the STL algorithm. The STL_Trend, STL_Seasonal, and STL_Residual chart functions will be
used to create the visualizations. For more information about time series decomposition in Qlik Sense, see
Time series decomposition functions (page 1331).

Create an app
Start by creating a new app and importing the dataset into it.

Download this dataset:

Tutorial - Time series decomposition

This file contains data regarding an airline's number of passengers per month.

Do the following:

1. From the hub, click Create new app.

2. Open the app and drop the Tutorial - Time series decomposition.csv file into it.

Prepare and load the data
In order for Qlik Sense to interpret the YearMonth field correctly, you might need to use Data manager to
recognize the field as a date field, not a field with string values. Typically this step is handled automatically,
but in this case the dates are presented in the slightly uncommon YYYY-MM format.

Script syntax and chart functions - Qlik Sense, May 2023 1384

https://help.qlik.com/en-US/sense/tutorials/TimeSeriesDecompositionTutorial.zip

5 Script and chart functions

1. In Data manager, select the table and click .

2. With the YearMonth field selected, click and set the Field type to Date.

3. Under Input format, enter YYYY-MM.

4. Under Display format, enter YYYY-MM and click OK.
The field should now show the calendar icon.

5. Click Load data.

Now you are ready to start using the STL functions to visually represent your data.

Create the visualizations
Next, you will create two line charts to demonstrate the functionality of the STL_Trend, STL_Seasonal, and
STL_Residual chart functions.

Open a new sheet and give it a title.

Add two line charts to the sheet. Resize and reposition the charts to match the following image.

Qlik SenseGrid outline of blank app sheet

First line chart: Trend and seasonal components

Do the following:

1. Add the title Seasonal and Trend to the first line chart.

2. Add YearMonth as a dimension, and label it Date.

3. Add the following measure and label it Passengers per month:
=Sum(Passengers)

4. Under Data, expand the Passengers per month measure and click Add trend line.

5. Set the Type to Linear.
You will compare this trend line to the smoothed output of the trend component.

Script syntax and chart functions - Qlik Sense, May 2023 1385

5 Script and chart functions

6. Add the following measure to plot the trend component and label it Trend:
=STL_Trend(SUM(Passengers), 12)

7. Next, add the following measure to plot the seasonal component and label it Seasonal:
=STL_Seasonal(SUM(Passengers), 12)

8. Under Appearance > Presentation, set Scroll bar to None.

9. Keep the default colors, or change them to fit your preferences.

Second line chart: Residual component
Next, configure the second line chart. This visualization will display the residual component of the time series.

Do the following:

1. Drag a line chart onto the sheet. Add the title Residual.

2. Add Date as a dimension.

3. Add the following measure and label it Residual:
=STL_Residual(SUM(Passengers), 12)

4. Under Appearance > Presentation, set Scroll bar to None.

Your sheet should now look like the one below.

Qlik Sense sheet for airline passenger analysis

Interpreting and explaining the data
With the STL chart functions, we can gain a number of insights from our time series data.

Trend component
The statistical information in the trend component is deseasonalized. This makes it easier to see general, non-
repeating fluctuations over time. Compared to the straight, linear trend line for Passengers per month, the STL
trend component does capture changing trends. It displays some clear deviations while still presenting the
information in a readable fashion. The smoothing behaviors in the STL algorithm helped to capture this.

Script syntax and chart functions - Qlik Sense, May 2023 1386

5 Script and chart functions

The drops in number of airline passengers that are visible in the STL trend graph can be explained as part of
the economic impact of recessions that occurred during the 1950s.

Seasonal component
The detrended seasonal component isolated recurring fluctuations throughout the time series, and removed
general trend information from that part of the analysis. We started with a dataset consisting of year-month
aggregations. With this data, it is implicit that we are segmenting the data into one-month granules. By
defining a period value of 12, we set the chart to model seasonal patterns over the course of one-year (twelve-
month) cycles.

In the data, there is a repeated seasonal pattern of surges in airline passengers in the summer months,
followed by declines for the winter months. This is aligned with the idea that summer is typically a popular
time to take vacations and travel. We also see that over the course of the time series, these seasonal cycles
increase drastically in amplitude.

Residual component
The chart for the residual component shows all the information that was not captured in the trend and
seasonal decomposition. The residual component includes statistical noise, but it can also indicate an
incorrect setting of the STL trend and seasonal function arguments. Generally, if there are periodic oscillations
in the residual component of the signal, or the information displayed is clearly not random, it is usually a sign
that there is information in the time series not currently captured in the seasonal or trend components. In this
case, you need to revisit your definitions of each function argument and possibly change the periodicity.

Smoother values
Since we did not specify any values for the trend and seasonal smoothers, the function will use the default
values for these parameters. In Qlik Sense, the default smoother values in the STL algorithm produce effective
results. As a result, in most cases, these arguments can be left out of the expressions.

Setting the seasonal or trend smoother arguments as 0 in either of the three STL functions makes the
algorithim use default values, rather than values of 0.

The trend smoother value uses the dimension that is specified in the chart. Since the YearMonth field presents
data by months, the trend smoother value will be the number of months. The seasonal smoother will reflect
the periodicity defined. In this case, since we defined one period as lasting twelve months (one year), the
seasonal smoother value is the number of years. This may sound confusing, but it really means that to find the
seasonality, we need to look across a number of seasons. This number is the seasonal smoother.

Other useful information
Given that the seasonal cycles increase in amplitude over time, a more advanced analytics approach could
make use of logarithmic functions to create a multiplicative decomposition. In practice, a simple measure of
relative amplitude can be created in Qlik Sense by dividing the seasonal by the trend component. When this is
done, we notice that over time, the summer peaks of each cycle grow larger in relative amplitude. The
amplitude of the winter low points, however, do not increase over time.

Script syntax and chart functions - Qlik Sense, May 2023 1387

5 Script and chart functions

5.23 Statistical distribution functions
Statistical distribution functions return the probabilities of occurrence of different possible
outcomes for a given input variable. You can use these functions to calculate the potential
values of your data points.

The three groups of statistical distribution functions described below are all implemented in Qlik Sense using
the Cephes function library. For references and details on algorithms used, accuracy, and so on, see:≤
Cephes library. The Cephes function library is used by permission.

l The probability functions calculate the probability at the point in the distribution given by the supplied
value.

l The Frequency functions are used for discrete distributions.
l The Density functions are used for continuous functions.

l The Dist functions calculate the accumulated probability of the distribution at the point in the
distribution given by the supplied value.

l The Inv functions calculate the inverse value, given the accumulated probability of the distribution.

All functions can be used in both the data load script and in chart expressions.

Statistical distribution functions overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

BetaDensity
BetaDensity() returns the probability of the Beta distribution.

BetaDensity (value, alpha, beta)

BetaDist
BetaDist() returns the accumulated probability of the Beta distribution.

BetaDist (value, alpha, beta)

BetaInv
BetaINV() returns the inverse of the accumulated probability of the Beta distribution.

BetaInv (prob, alpha, beta)

BinomDist
BinomDist() returns the accumulated probability of the Binomial distribution.

BinomDist (value, trials, trial_probability)

BinomFrequency
BinomFrequency() returns the Binomial probability distribution.

Script syntax and chart functions - Qlik Sense, May 2023 1388

http://www.netlib.org/cephes/
http://www.netlib.org/cephes/

5 Script and chart functions

BinomFrequency (value, trials, trial_probability)

BinomInv
BinomInv() returns the inverse of the accumulated probability of the Binomial distribution.

BinomInv (prob, trials, trial_probability)

ChiDensity
ChiDensity() returns the one-tailed probability of the chi2 distribution. The chi2 density function is associated
with a chi2 test.

ChiDensity (value, degrees_freedom)

ChiDist
ChiDist() returns the one-tailed probability of the chi2 distribution. The chi2 distribution is associated with a
chi2 test.

ChiDist (value, degrees_freedom)

ChiInv
ChiInv() returns the inverse of the one-tailed probability of the chi2 distribution.

ChiInv (prob, degrees_freedom)

FDensity
FDensity() returns the probability of the F distribution.

FDensity (value, degrees_freedom1, degrees_freedom2)

FDist
FDist() returns the accumulated probability of the F distribution.

FDist (value, degrees_freedom1, degrees_freedom2)

FInv
FInv() returns the inverse of the accumulated probability of the F distribution.

FInv (prob, degrees_freedom1, degrees_freedom2)

GammaDensity
GammaDensity() returns the probability of the Gamma distribution.

GammaDensity (value, k, θ)

GammaDist
GammaDist() returns the accumulated probability of the Gamma distribution.

GammaDist (value, k, θ)

GammaInv
GammaInv() returns the inverse of the accumulated probability of the Gamma distribution.

GammaInv (prob, k, θ)

Script syntax and chart functions - Qlik Sense, May 2023 1389

5 Script and chart functions

NormDist
NormDist() returns the cumulative normal distribution for the specified mean and standard deviation. If mean
= 0 and standard_dev = 1, the function returns the standard normal distribution.

NormDist (value, mean, standard_dev)

NormInv
NormInv() returns the inverse of the normal cumulative distribution for the specified mean and standard

deviation.

NormInv (prob, mean, standard_dev)

PoissonDist
PoissonDist() returns the accumulated probability of the Poisson distribution.

PoissonDist (value, mean)

PoissonFrequency
PoissonFrequency() returns the Poisson probability distribution.

PoissonFrequency (value, mean)

PoissonInv
PoissonInv() returns the inverse of the accumulated probability of the Poisson distribution.

PoissonInv (prob, mean)

TDensity
TDensity() returns the value for the student's t density function where a numeric value is a calculated value
of t for which the probability is to be computed.

TDensity (value, degrees_freedom, tails)

TDist
TDist() returns the probability for the student's t distribution where a numeric value is a calculated value of
t for which the probability is to be computed.

TDist (value, degrees_freedom, tails)

TInv
TInv() returns the t value of the student's t distribution as a function of the probability and the degrees of
freedom.

TInv (prob, degrees_freedom)

See also:

p Statistical aggregation functions (page 382)

Script syntax and chart functions - Qlik Sense, May 2023 1390

5 Script and chart functions

BetaDensity
BetaDensity() returns the probability of the Beta distribution.

Syntax:
BetaDensity(value, alpha, beta)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must be between 0 and
1.

alpha A positive number defining the first shape parameter. It is the exponent of the random
variable

beta A positive number defining the second shape parameter. It states the number of
denominator degrees of freedom.

Arguments

BetaDist
BetaDist() returns the accumulated probability of the Beta distribution.

Syntax:
BetaDist(value, alpha, beta)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must be between 0 and
1.

alpha A positive number defining the first shape parameter. It is the exponent of the random
variable

beta A positive number defining the second shape parameter. It is the exponent that controls the
shape of the distribution.

Arguments

This function is related to the BetaInv function in the following way:
If prob = BetaDist(value, alpha, beta), then BetaInv(prob, alpha, beta) = value

BetaInv
BetaINV() returns the inverse of the accumulated probability of the Beta distribution.

Script syntax and chart functions - Qlik Sense, May 2023 1391

5 Script and chart functions

Syntax:
BetaInv(prob, alpha, beta)

Return data type: number

Argument Description

prob A probability associated with the Beta-probability distribution. It must be a number
between 0 and 1.

alpha A positive number defining the first shape parameter. It is the exponent of the random
variable

beta A positive number defining the second shape parameter. It is the exponent that controls the
shape of the distribution.

Arguments

This function is related to the BetaDist function in the following way:
If prob = BetaDist(value, alpha, beta), then BetaInv(prob, alpha, beta) = value

BinomDist
BinomDist() returns the accumulated probability of the Binomial distribution.

Syntax:
BinomDist(value, trials, trial_probability)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must be an integer
not smaller than zero and not greater than the number of trials.

trials A positive integer that states the number of trials.

trial_

probability
The success probability for each trial. It is always a number between 0 and 1.

Arguments

This function is related to the BinomInv function in the following way:
If prob = BinomDIST(value, trials, trial_probability), then BinomInv(prob, trials, trial_

probability) = value

BinomFrequency
BinomFrequency() returns the Binomial probability distribution.

Syntax:
BinomFrequency(value, trials, trial_probability)

Script syntax and chart functions - Qlik Sense, May 2023 1392

5 Script and chart functions

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must be an integer
not smaller than zero and not greater than the number of trials.

trials A positive integer that states the number of trials

trial_

probability
The success probability for each trial. It is always a number between 0 and 1.

Arguments

BinomInv
BinomInv() returns the inverse of the accumulated probability of the Binomial distribution.

Syntax:
BinomInv(prob, trials, trial_probability)

Return data type: number

Argument Description

prob A probability associated with the Binomial-probability distribution. It must be a number
between 0 and 1.

trials A positive integer that states the number of trials.

trial_

probability
The success probability for each trial. It is always a number between 0 and 1.

Arguments

This function is related to the BinomDist function in the following way:
If prob = BinomDist(value, trials, trial_probability), then BinomInv(prob, trials, trial_

probability) = value

ChiDensity
ChiDensity() returns the one-tailed probability of the chi2 distribution. The chi2 density function
is associated with a chi2 test.

Syntax:
ChiDensity(value, degrees_freedom)

Script syntax and chart functions - Qlik Sense, May 2023 1393

5 Script and chart functions

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must not be
negative.

degrees_

freedom
A positive integer stating the number of numerator degrees of freedom.

Arguments

ChiDist
ChiDist() returns the one-tailed probability of the chi2 distribution. The chi2 distribution is
associated with a chi2 test.

Syntax:
CHIDIST(value, degrees_freedom)

Return data type: number

Arguments:

Argument Description

value The value at which you want to evaluate the distribution. The value must not be
negative.

degrees_
freedom

A positive integer stating the number of degrees of freedom.

Arguments

This function is related to the ChiInv function in the following way:
If prob = CHIDIST(value,df), then CHIINV(prob, df) = value

Limitations:

All arguments must be numeric, else NULL will be returned.

Examples and results:

Example Result

CHIDIST(8, 15) Returns 0.9238

ChiInv
ChiInv() returns the inverse of the one-tailed probability of the chi2 distribution.

Syntax:
CHIINV(prob, degrees_freedom)

Script syntax and chart functions - Qlik Sense, May 2023 1394

5 Script and chart functions

Return data type: number

Arguments:

Argument Description

prob A probability associated with the chi2 distribution. It must be a number between 0 and
1.

degrees_
freedom

An integer stating the number of degrees of freedom.

Arguments

This function is related to the ChiDist function in the following way:
If prob = CHIDIST(value,df), then CHIINV(prob, df) = value

Limitations:

All arguments must be numeric, else NULL will be returned.

Examples and results:

Example Result

CHIINV(0.9237827, 15) Returns 8.0000

FDensity
FDensity() returns the probability of the F distribution.

Syntax:
FDensity(value, degrees_freedom1, degrees_freedom2)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must not be
negative.

degrees_

freedom1
A positive integer stating the number of numerator degrees of freedom.

degrees_

freedom2
A positive integer stating the number of denominator degrees of freedom.

Arguments

FDist
FDist() returns the accumulated probability of the F distribution.

Script syntax and chart functions - Qlik Sense, May 2023 1395

5 Script and chart functions

Syntax:
FDist(value, degrees_freedom1, degrees_freedom2)

Return data type: number

Arguments:

Argument Description

value The value at which you want to evaluate the distribution. The value must not be
negative.

degrees_
freedom1

A positive integer stating the number of numerator degrees of freedom.

degrees_
freedom2

A positive integer stating the number of denominator degrees of freedom.

Arguments

This function is related to the FInv function in the following way:
If prob = FDIST(value, df1, df2), then FINV(prob, df1, df2) = value

Limitations:

All arguments must be numeric, else NULL will be returned.

Examples and results:

Example Result

FDIST(15, 8, 6) Returns 0.0019

FInv
FInv() returns the inverse of the accumulated probability of the F distribution.

Syntax:
FInv(prob, degrees_freedom1, degrees_freedom2)

Return data type: number

Arguments:

Argument Description

prob A probability associated with the F-probability distribution and must be a number
between 0 and 1.

degrees_
freedom

An integer stating the number of degrees of freedom.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1396

5 Script and chart functions

This function is related to the FDist function in the following way:
If prob = FDIST(value, df1, df2), then FINV(prob, df1, df2) = value

Limitations:

All arguments must be numeric, else NULL will be returned.

Examples and results:

Example Result

FINV(0.0019369, 8, 6) Returns 15.0000

GammaDensity
GammaDensity() returns the probability of the Gamma distribution.

Syntax:
GammaDensity(value, k, θ)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must not be negative.

k A positive number defining the shape parameter.

θ A positive number defining the scale parameter.

Arguments

GammaDist
GammaDist() returns the accumulated probability of the Gamma distribution.

Syntax:
GammaDist(value, k, θ)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must not be negative.

k A positive number defining the shape parameter.

θ A positive number defining the scale parameter.

Arguments

This function is related to the GammaINV function in the following way:
If prob = GammaDist(value, k, θ), then GammaInv(prob, k, θ) = value

Script syntax and chart functions - Qlik Sense, May 2023 1397

5 Script and chart functions

GammaInv
GammaInv() returns the inverse of the accumulated probability of the Gamma distribution.

Syntax:
GammaInv(prob, k, θ)

Return data type: number

Argument Description

prob A probability associated with the Gamma-probability distribution. It must be a number
between 0 and 1.

k A positive number defining the shape parameter.

θ A positive number defining the scale parameter.

Arguments

This function is related to the GammaDist function in the following way:
If prob = GammaDist(value, k, θ), then GammaInv(prob, k, θ) = value

NormDist
NormDist() returns the cumulative normal distribution for the specified mean and standard
deviation. If mean = 0 and standard_dev = 1, the function returns the standard normal
distribution.

Syntax:
NORMDIST(value, [mean], [standard_dev], [cumulative])

Return data type: number

Arguments:

Argument Description

value The value at which you want to evaluate the distribution.

mean Optional value stating the arithmetic mean for the distribution.

If you do not state this argument, the default value is 0.

standard_dev Optional positive value stating the standard deviation of the distribution.

If you do not state this argument, the default value is 1.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1398

5 Script and chart functions

Argument Description

cumulative You can optionally select to use a standard normal distribution or a cumulative
distribution.

0 = standard normal distribution

1 = cumulative distribution (default)

This function is related to the NormInv function in the following way:
If prob = NORMDIST(value, m, sd), then NORMINV(prob, m, sd) = value

Limitations:

All arguments must be numeric, else NULL will be returned.

Examples and results:

Example Result

NORMDIST(0.5, 0, 1) Returns 0.6915

NormInv
NormInv() returns the inverse of the normal cumulative distribution for the specified mean and
standard deviation.

Syntax:
NORMINV(prob, mean, standard_dev)

Return data type: number

Arguments:

Argument Description

prob A probability associated with the normal distribution. It must be a number between 0 and
1.

mean A value stating the arithmetic mean for the distribution.

standard_
dev

A positive value stating the standard deviation of the distribution.

Arguments

This function is related to the NormDist function in the following way:
If prob = NORMDIST(value, m, sd), then NORMINV(prob, m, sd) = value

Limitations:

All arguments must be numeric, else NULL will be returned.

Script syntax and chart functions - Qlik Sense, May 2023 1399

5 Script and chart functions

Examples and results:

Example Result

NORMINV(0.6914625, 0, 1) Returns 0.5000

PoissonDist
PoissonDist() returns the accumulated probability of the Poisson distribution.

Syntax:
PoissonDist(value, mean)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must not be negative.

mean A positive number defining the average outcome.

Arguments

This function is related to the PoissonInv function in the following way:
If prob = PoissonDist(value, mean), then PoissonInv(prob, mean) = value

PoissonFrequency
PoissonFrequency() returns the Poisson probability distribution.

Syntax:
PoissonFrequency(value, mean)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must not be negative.

mean A positive number defining the average outcome.

Arguments

PoissonInv
PoissonInv() returns the inverse of the accumulated probability of the Poisson distribution.

Syntax:
PoissonInv(prob, mean)

Script syntax and chart functions - Qlik Sense, May 2023 1400

5 Script and chart functions

Return data type: number

Argument Description

prob A probability associated with the Poisson-probability distribution. It must be a number
between 0 and 1.

mean A positive number defining the average outcome.

Arguments

This function is related to the PoissonDIST function in the following way:
If prob = PoissonDist(value, mean), then PoissonInv(prob, mean) = value

TDensity
TDensity() returns the value for the student's t density function where a numeric value is a
calculated value of t for which the probability is to be computed.

Syntax:
TDensity(value, degrees_freedom)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must not be
negative.

degrees_

freedom
A positive integer stating the number of degrees of freedom.

Arguments

TDist
TDist() returns the probability for the student's t distribution where a numeric value is a
calculated value of t for which the probability is to be computed.

Syntax:
TDist(value, degrees_freedom, tails)

Script syntax and chart functions - Qlik Sense, May 2023 1401

5 Script and chart functions

Return data type: number

Arguments:

Argument Description

value The value at which you want to evaluate the distribution. The value must not be
negative.

degrees_
freedom

A positive integer stating the number of degrees of freedom.

tails Must be either 1 (one-tailed distribution) or 2 (two-tailed distribution).

Arguments

This function is related to the TInv function in the following way:
If prob = TDIST(value, df ,2), then TINV(prob, df) = value

Limitations:

All arguments must be numeric, else NULL will be returned.

Examples and results:

Example Result

TDIST(1, 30, 2) Returns 0.3253

TInv
TInv() returns the t value of the student's t distribution as a function of the probability and the
degrees of freedom.

Syntax:
TINV(prob, degrees_freedom)

Return data type: number

Arguments:

Argument Description

prob A two-tailed probability associated with the t-distribution. It must be a number between
0 and 1.

degrees_
freedom

An integer stating the number of degrees of freedom.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1402

5 Script and chart functions

Limitations:

All arguments must be numeric, else NULL will be returned.

This function is related to the TDist function in the following way:
If prob = TDIST(value, df ,2), then TINV(prob, df) = value.

Examples and results:

Example Result

TINV(0.3253086, 30) Returns 1.0000

5.24 String functions
This section describes functions for handling and manipulating strings.

All functions can be used in both the data load script and in chart expressions, except for Evaluate which can
only be used in the data load script.

String functions overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Capitalize
Capitalize() returns the string with all words in initial uppercase letters.

Capitalize (text)

Chr
Chr() returns the Unicode character corresponding to the input integer.

Chr (int)

Evaluate
Evaluate() finds if the input text string can be evaluated as a valid Qlik Sense expression, and if so, returns the
value of the expression as a string. If the input string is not a valid expression, NULL is returned.

Evaluate (expression_text)

FindOneOf
FindOneOf() searches a string to find the position of the occurrence of any character from a set of provided
characters. The position of the first occurrence of any character from the search set is returned unless a third
argument (with a value greater than 1) is supplied. If no match is found, 0 is returned.

FindOneOf (text, char_set[, count])

Hash128
Hash128() returns a 128-bit hash of the combined input expression values. The result is a 22-character string.

Script syntax and chart functions - Qlik Sense, May 2023 1403

5 Script and chart functions

Hash128 (expr{, expression})

Hash160
Hash160() returns a 160-bit hash of the combined input expression values. The result is a 27-character string.

Hash160 (expr{, expression})

Hash256
Hash256() returns a 256-bit hash of the combined input expression values. The result is a 43-character string.

Hash256 (expr{, expression})

Index
Index() searches a string to find the starting position of the nth occurrence of a provided substring. An
optional third argument provides the value of n, which is 1 if omitted. A negative value searches from the end
of the string. The positions in the string are numbered from 1 and up.

Index (text, substring[, count])

IsJson
IsJson() tests whether a specified string contains valid JSON (JavaScript Object Notation) data. You can also
validate a specific JSON data type.

IsJson (json [, type])

JsonGet
JsonGet() returns the path of a JSON (JavaScript Object Notation) data string. The data must be valid JSON
but can contain extra spaces or newlines.

JsonGet (json, path)

JsonSet
JsonSet() modifies a string containing JSON (JavaScript Object Notation) data. It can set or insert a JSON
value with the new location specified by the path. The data must be valid JSON but can contain extra spaces
or newlines.

JsonSet(json, path, value)

KeepChar
KeepChar() returns a string consisting of the first string ,'text', less any of the characters NOT contained in the
second string, "keep_chars".

KeepChar (text, keep_chars)

Left
Left() returns a string consisting of the first (leftmost) characters of the input string, where the number of
characters is determined by the second argument.

Left (text, count)

Len
Len() returns the length of the input string.

Script syntax and chart functions - Qlik Sense, May 2023 1404

5 Script and chart functions

Len (text)

LevenshteinDist
LevenshteinDist() returns the Levenshtein distance between two strings. It is defined as the minimum

number of single-character edits (insertions, deletions, or substitutions) required to change one string into the
other. The function is useful for fuzzy string comparisons.

LevenshteinDist (text1, text2)

Lower
Lower() converts all the characters in the input string to lower case.

Lower (text)

LTrim
LTrim() returns the input string trimmed of any leading spaces.

LTrim (text)

Mid
Mid() returns the part of the input string starting at the position of the character defined by the second
argument, 'start', and returning the number of characters defined by the third argument, 'count'. If 'count' is
omitted, the rest of the input string is returned. The first character in the input string is numbered 1.

Mid (text, start[, count])

Ord
Ord() returns the Unicode code point number of the first character of the input string.

Ord (text)

PurgeChar
PurgeChar() returns a string consisting of the characters contained in the input string ('text'), excluding any
that appear in the second argument ('remove_chars').

PurgeChar (text, remove_chars)

Repeat
Repeat() forms a string consisting of the input string repeated the number of times defined by the second
argument.

Repeat (text[, repeat_count])

Replace
Replace() returns a string after replacing all occurrences of a given substring within the input string with
another substring. The function is non-recursive and works from left to right.

Replace (text, from_str, to_str)

Script syntax and chart functions - Qlik Sense, May 2023 1405

5 Script and chart functions

Right
Right() returns a string consisting of the last (rightmost) characters of the input string, where the number of
characters is determined by the second argument.

Right (text, count)

RTrim
RTrim() returns the input string trimmed of any trailing spaces.

RTrim (text)

SubField
SubField() is used to extract substring components from a parent string field, where the original record fields
consist of two or more parts separated by a delimiter.

SubField (text, delimiter[, field_no])

SubStringCount
SubStringCount() returns the number of occurrences of the specified substring in the input string text. If
there is no match, 0 is returned.

SubStringCount (text, substring)

TextBetween
TextBetween() returns the text in the input string that occurs between the characters specified as delimiters.

TextBetween (text, delimiter1, delimiter2[, n])

Trim
Trim() returns the input string trimmed of any leading and trailing spaces.

Trim (text)

Upper
Upper() converts all the characters in the input string to upper case for all text characters in the expression.
Numbers and symbols are ignored.

Upper (text)

Capitalize
Capitalize() returns the string with all words in initial uppercase letters.

Syntax:
Capitalize(text)

Script syntax and chart functions - Qlik Sense, May 2023 1406

5 Script and chart functions

Return data type: string

Example: Chart expressions

Example Result

Capitalize ('star trek') Returns 'Star Trek'

Capitalize ('AA bb cC Dd') Returns 'Aa Bb Cc Dd'

Example: Load script
Load

String,

Capitalize(String)

Inline

[String

rHode iSland

washingTon d.C.

new york];

Result

String Capitalize(String)

rHode iSland Rhode Island

washingTon d.C. Washington D.C.

new york New York

Chr
Chr() returns the Unicode character corresponding to the input integer.

Syntax:
Chr(int)

Return data type: string

Examples and results:

Example Result

Chr(65) Returns the string 'A'

Chr(163) Returns the string '£'

Chr(35) Returns the string '#'

Script syntax and chart functions - Qlik Sense, May 2023 1407

5 Script and chart functions

Evaluate
Evaluate() finds if the input text string can be evaluated as a valid Qlik Sense expression, and if
so, returns the value of the expression as a string. If the input string is not a valid expression,
NULL is returned.

Syntax:
Evaluate(expression_text)

Return data type: dual

This string function cannot be used in chart expressions.

Examples and results:

Function example Result

Evaluate (5 * 8) Returns '40'

Load script example

Load

Evaluate(String) as Evaluated,

String

Inline

[String

4

5+3

0123456789012345678

Today()

];

Result

String Evaluated

4 4

5+3 8

0123456789012345678 0123456789012345678

Today() 2022-02-02

FindOneOf
FindOneOf() searches a string to find the position of the occurrence of any character from a set
of provided characters. The position of the first occurrence of any character from the search set
is returned unless a third argument (with a value greater than 1) is supplied. If no match is

Script syntax and chart functions - Qlik Sense, May 2023 1408

5 Script and chart functions

found, 0 is returned.

Syntax:
FindOneOf(text, char_set[, count])

Return data type: integer

Arguments:

Argument Description

text The original string.

char_set A set of characters to search for in text.

count Defines which occurrence of any of the character to search for. For example, a value of 2
searches for the second occurrence.

Arguments

Example: Chart expressions

Example Result

FindOneOf('my example

text string', 'et%s')
Returns '4' because ‘e’ is the fourth character in the example string.

FindOneOf('my example

text string', 'et%s', 3)
Returns '12' because the search is for any of the characters e, t, % or s, and
"t" is the third occurrence in position 12 of the example string.

FindOneOf('my example

text string', '¤%&')
Returns '0' because none of the characters ¤, %, or & exist in the example
string.

Example: Load script
Load *

Inline

[SearchFor, Occurrence

et%s,1

et%s,3

¤%&,1]

Result

SearchFor Occurrence
FindOneOf('my example text string',
SearchFor, Occurrence)

et%s 1 4

et%s 3 12

¤%& 1 0

Script syntax and chart functions - Qlik Sense, May 2023 1409

5 Script and chart functions

Hash128
Hash128() returns a 128-bit hash of the combined input expression values. The result is a 22-
character string.

Syntax:
Hash128(expr{, expression})

Return data type: string

Example: Chart expressions

Example Result

Hash128 ('abc', 'xyz', '123') Returns 'MA&5]6+3=:>:>G%S<U*S2+'.

Hash128 (Region, Year, Month)

Note: Region, Year, and Month are table fields.

Returns 'G7*=6GKPJ(Z+)^KM?<$'A+'.

Example: Load script
Hash_128:

Load *,

Hash128(Region, Year, Month) as Hash128;

Load * inline [

Region, Year, Month

abc, xyz, 123

EU, 2022, 01

UK, 2022, 02

US, 2022, 02];

Result

Region Year Month Hash128

abc xyz 123 MA&5]6+3=:>;>G%S<U*S2+

EU 2022 01 B40^K&[T@!;VB'XR]<5=/$

UK 2022 02 O5T;+1?[B&"F&1//MA[MN!

US 2022 02 C6@#]4#_G-(]J7EQY#KRW0

Hash160
Hash160() returns a 160-bit hash of the combined input expression values. The result is a 27-
character string.

Syntax:
Hash160(expr{, expression})

Script syntax and chart functions - Qlik Sense, May 2023 1410

5 Script and chart functions

Return data type: string

Example: Chart expressions

Example Result

Hash160 ('abc', 'xyz', '123') Returns
'MA&5]6+3=:>;>G%S<U*S2I:`=X*'.

Hash160 (Region, Year, Month)

Note: Region, Year, and Month are table fields.

Returns 'G7*=6GKPJ
(Z+)^KM?<$'AI.)?U$'.

Example: Load script
Hash_160:

Load *,

Hash160(Region, Year, Month) as Hash160;

Load * inline [

Region, Year, Month

abc, xyz, 123

EU, 2022, 01

UK, 2022, 02

US, 2022, 02];

Result

Region Year Month Hash160

abc xyz 123 MA&5]6+3=:>;>G%S<U*S2I:`=X*

EU 2022 01 B40^K&[T@!;VB'XR]<5=//_F853

UK 2022 02 O5T;+1?[B&"F&1//MA[MN!T"FWZ

US 2022 02 C6@#]4#_G-(]J7EQY#KRW`@KF+W

Hash256
Hash256() returns a 256-bit hash of the combined input expression values. The result is a 43-
character string.

Syntax:
Hash256(expr{, expression})

Script syntax and chart functions - Qlik Sense, May 2023 1411

5 Script and chart functions

Return data type: string

Example: Chart expressions

Example Result

Hash256 ('abc', 'xyz', '123') Returns
'MA&5]6+3=:>;>G%S<U*S2I:`=X*A.IO*8N\%Y7Q;YEJ'.

Hash256 (Region, Year, Month)

Note: Region, Year, and Month are table fields.

Returns 'G7*=6GKPJ(Z+)^KM?<$'AI.)?U$#X2RB
[:0ZP=+Z`F:'.

Example: Load script
Hash_256:

Load *,

Hash256(Region, Year, Month) as Hash256;

Load * inline [

Region, Year, Month

abc, xyz, 123

EU, 2022, 01

UK, 2022, 02

US, 2022, 02];

Result

Region Year Month Hash256

abc xyz 123 MA&5]6+3=:>;>G%S<U*S2I:`=X*A.IO*8N\%Y7Q;YEJ

EU 2022 01 B40^K&[T@!;VB'XR]<5=//_F853?BE6'G&,YH*T'MF)

UK 2022 02 O5T;+1?[B&"F&1//MA[MN!T"FWZT=4\#V`M%6_\0C>4

US 2022 02 C6@#]4#_G-(]J7EQY#KRW`@KF+W-0]`[Z8R+#'")=+0

Index
Index() searches a string to find the starting position of the nth occurrence of a provided
substring. An optional third argument provides the value of n, which is 1 if omitted. A negative
value searches from the end of the string. The positions in the string are numbered from 1 and
up.

Syntax:
Index(text, substring[, count])

Script syntax and chart functions - Qlik Sense, May 2023 1412

5 Script and chart functions

Return data type: integer

Arguments:

Argument Description

text The original string.

substring A string of characters to search for in text.

count Defines which occurrence of substring to search for. For example, a value of 2 searches for
the second occurrence.

Arguments

Examples and results:

Example Result

Index('abcdefg', 'cd') Returns 3

Index('abcdabcd', 'b', 2) Returns 6 (the second occurrence of 'b')

Index('abcdabcd', 'b',-2) Returns 2 (the second occurrence of 'b' starting
from the end)

Left(Date, Index(Date,'-') -1) where Date =
1997-07-14

Returns 1997

Mid(Date, Index(Date, '-', 2) -2, 2) where
Date = 1997-07-14

Returns 07

Example: Script

T1:

Load

*,

index(String, 'cd') as Index_CD, // returns 3 in Index_CD

index(String, 'b') as Index_B, // returns 2 in Index_B

index(String, 'b', -1) as Index_B2; // returns 2 or 6 in Index_B2

Load * inline [

String

abcdefg

abcdabcd];

IsJson
IsJson() tests whether a specified string contains valid JSON (JavaScript Object Notation) data.
You can also validate a specific JSON data type.

Syntax:
value IsJson(json [, type])

Script syntax and chart functions - Qlik Sense, May 2023 1413

5 Script and chart functions

Return data type: dual

Argument Description

json String to test. It can contain extra spaces or newlines.

type Optional argument that specifies the JSON data type to test for.

l 'value' (default)
l 'object'
l 'array'
l 'string'
l 'number'
l 'Boolean'
l 'null'

Arguments

Example: Valid JSON and type

Example Result

IsJson('null') Returns -1 (true)

IsJson('"abc"', 'value') Returns -1 (true)

IsJson('"abc"', 'string') Returns -1 (true)

IsJson(123, 'number') Returns -1 (true)

Example: Invalid JSON or type

Example Result Description

IsJson('text') Returns 0 (false) 'text' is not a valid JSON value

IsJson('"text"', 'number') Returns 0 (false) '"text"' is not a valid JSON number

IsJson('"text"', 'text') Returns 0 (false) 'text' is not a valid JSON type

JsonGet
JsonGet() returns the path of a JSON (JavaScript Object Notation) data string. The data must be
valid JSON but can contain extra spaces or newlines.

Syntax:
value JsonGet(json, path)

Script syntax and chart functions - Qlik Sense, May 2023 1414

5 Script and chart functions

Return data type: dual

Argument Description

json String containing JSON data.

path The path must be specified according to≤ RFC 6901. This will allow lookup of properties
inside JSON data without using complex substring or index functions.

Arguments

Example: Valid JSON and path

Example Result

JsonGet('{"a":{"foo":"bar"},"b":[123,"abc","ABC"]}',

'')
Returns '{"a":{"foo":"bar"},"b":
[123,"abc","ABC"]}'

JsonGet('{"a":{"foo":"bar"},"b":[123,"abc","ABC"]}',

'/a')
Returns '{"foo":"bar"}'

JsonGet('{"a":{"foo":"bar"},"b":[123,"abc","ABC"]}',

'/a/foo')
Returns '"bar"'

JsonGet('{"a":{"foo":"bar"},"b":[123,"abc","ABC"]}',

'/b')
Returns '[123,"abc","ABC"]'

JsonGet('{"a":{"foo":"bar"},"b":[123,"abc","ABC"]}',

'/b/0')
Returns '123'

JsonGet('{"a":{"foo":"bar"},"b":[123,"abc","ABC"]}',

'/b/1')
Returns '"abc"'

JsonGet('{"a":{"foo":"bar"},"b":[123,"abc","ABC"]}',

'/b/2')
Returns '"ABC"'

Example: Invalid JSON or path

Example Result Description

JsonGet('

{"a":"b"}','/b')
Returns
null

The path does not point to a valid part of the JSON data.

JsonGet('{"a"}','/a') Returns
null

The JSON data is not valid JSON (member "a" does not have a
value).

JsonSet
JsonSet() modifies a string containing JSON (JavaScript Object Notation) data. It can set or
insert a JSON value with the new location specified by the path. The data must be valid JSON
but can contain extra spaces or newlines.

Syntax:
value JsonSet(json, path, value)

Script syntax and chart functions - Qlik Sense, May 2023 1415

https://datatracker.ietf.org/doc/html/rfc6901

5 Script and chart functions

Return data type: dual

Argument Description

json String containing JSON data.

path The path must be specified according to≤ RFC 6901. This allows buildup of properties
inside JSON data without using complex substring or index functions and concatenation.

value The new string value in JSON format.

Arguments

Example: Valid JSON, path, and value

Example Result

JsonSet('{}','/a','"b"') Returns '{"a":"b"}'

JsonSet('[]','/0','"x"') Returns '["x"]'

JsonSet('"abc"','','123') Returns 123

Example: Invalid JSON, path, or value

Example Result Description

JsonSet('"abc"','/x','123') Returns
null

The path does not point to a valid part of the JSON
data.

JsonSet('{"a":

{"b":"c"}}','a/b','"x"')
Returns
null

The path is invalid.

JsonSet('{"a":"b"}','/a','abc') Returns
null

The value is not valid JSON. A string must be enclosed
in quotes.

KeepChar
KeepChar() returns a string consisting of the first string ,'text', less any of the characters NOT
contained in the second string, "keep_chars".

Syntax:
KeepChar(text, keep_chars)

Script syntax and chart functions - Qlik Sense, May 2023 1416

https://datatracker.ietf.org/doc/html/rfc6901

5 Script and chart functions

Return data type: string

Arguments:

Argument Description

text The original string.

keep_chars A string containing the characters in text to be kept.

Arguments

Example: Chart expressions

Example Result

KeepChar ('a1b2c3','123') Returns '123'.

KeepChar ('a1b2c3','1234') Returns '123'.

KeepChar ('a1b22c3','1234') Returns '1223'.

KeepChar ('a1b2c3','312') Returns '123'.

Example: Load script
T1:

Load

*,

keepchar(String1, String2) as KeepChar;

Load * inline [

String1, String2

'a1b2c3', '123'

];

Results

String1 String2 KeepChar

a1b2c3 123 123

Qlik Sense table showing the output from using the KeepChar function in the load script.

See also:

p PurgeChar (page 1425)

Left
Left() returns a string consisting of the first (leftmost) characters of the input string, where the
number of characters is determined by the second argument.

Syntax:
Left(text, count)

Script syntax and chart functions - Qlik Sense, May 2023 1417

5 Script and chart functions

Return data type: string

Arguments:

Argument Description

text The original string.

count Defines the number of characters to included from the left-hand part of the string text.

Example: Chart expression

Example Result

Left('abcdef', 3) Returns 'abc'

Example: Load script
T1:

Load

*,

left(Text,Start) as Left;

Load * inline [

Text, Start

'abcdef', 3

'2021-07-14', 4

'2021-07-14', 2

];

Result

Text Start Left

abcdef 3 abc

2021-07-14 4 2021

2021-07-14 2 20

Qlik Sense table showing the output from using the Left function in the load script.

p See also Index (page 1412), which allows more complex string analysis.

Len
Len() returns the length of the input string.

Syntax:
Len(text)

Return data type: integer

Script syntax and chart functions - Qlik Sense, May 2023 1418

5 Script and chart functions

Example: Chart expression

Example Result

Len('Peter') Returns '5'

Example: Load script
T1:

Load String, First&Second as NewString;

Load *, mid(String,len(First)+1) as Second;

Load *, upper(left(String,1)) as First;

Load * inline [

String

this is a sample text string

capitalize first letter only];

Result

String NewString

this is a sample text string This is a sample text string

capitalize first letter only Capitalize first letter only

LevenshteinDist
LevenshteinDist() returns the Levenshtein distance between two strings. It is defined as the

minimum number of single-character edits (insertions, deletions, or substitutions) required to
change one string into the other. The function is useful for fuzzy string comparisons.

Syntax:
LevenshteinDist(text1, text2)

Return data type: integer

Example: Chart expression

Example Result

LevenshteinDist('Kitten','Sitting') Returns '3'

Example: Load script

Load script

T1:

Load *, recno() as ID;

Load 'Silver' as String_1,* inline [

String_2

Script syntax and chart functions - Qlik Sense, May 2023 1419

5 Script and chart functions

Sliver

SSiver

SSiveer];

T1:

Load *, recno()+3 as ID;

Load 'Gold' as String_1,* inline [

String_2

Bold

Bool

Bond];

T1:

Load *, recno()+6 as ID;

Load 'Ove' as String_1,* inline [

String_2

Ove

Uve

Üve];

T1:

Load *, recno()+9 as ID;

Load 'ABC' as String_1,* inline [

String_2

DEFG

abc

ビビビ];

set nullinterpret = '<NULL>';

T1:

Load *, recno()+12 as ID;

Load 'X' as String_1,* inline [

String_2

''

<NULL>

1];

R1:

Load

ID,

String_1,

String_2,

LevenshteinDist(String_1, String_2) as LevenshteinDistance

resident T1;

Drop table T1;

Result

ID String_1 String_2 LevenshteinDistance

1 Silver Sliver 2

Script syntax and chart functions - Qlik Sense, May 2023 1420

5 Script and chart functions

ID String_1 String_2 LevenshteinDistance

2 Silver SSiver 2

3 Silver SSiveer 3

4 Gold Bold 1

5 Gold Bool 3

6 Gold Bond 2

7 Ove Ove 0

8 Ove Uve 1

9 Ove Üve 1

10 ABC DEFG 4

11 ABC abc 3

12 ABC ビビビ 3

13 X 1

14 X - 1

15 X 1 1

Lower
Lower() converts all the characters in the input string to lower case.

Syntax:
Lower(text)

Return data type: string

Example: Chart expression

Example Result

Lower('abcD') Returns 'abcd'

Example: Load script
Load

String,

Lower(String)

Inline

[String

rHode iSland

washingTon d.C.

new york];

Script syntax and chart functions - Qlik Sense, May 2023 1421

5 Script and chart functions

Result

String Lower(String)

rHode iSland rhode island

washingTon d.C. washington d.c.

new york new york

LTrim
LTrim() returns the input string trimmed of any leading spaces.

Syntax:
LTrim(text)

Return data type: string

Example: Chart expressions

Example Result

LTrim(' abc') Returns 'abc'

LTrim('abc ') Returns 'abc '

Example: Load script
Set verbatim=1;

T1:

Load *,

len(LtrimString) as LtrimStringLength;

Load *,

ltrim(String) as LtrimString;

Load *,

len(String) as StringLength;

Load * Inline [

String

' abc '

' def '];

The "Set verbatim=1" statement is included in the example to ensure that the spaces are not
automatically trimmed before the demonstration of the ltrim function. See Verbatim (page 197) for
more information.

Script syntax and chart functions - Qlik Sense, May 2023 1422

5 Script and chart functions

Result

String StringLength LtrimStringLength

def 6 5

abc 10 7

See also:

p RTrim (page 1428)

Mid
Mid() returns the part of the input string starting at the position of the character defined by the
second argument, 'start', and returning the number of characters defined by the third argument,
'count'. If 'count' is omitted, the rest of the input string is returned. The first character in the
input string is numbered 1.

Syntax:
Mid(text, start[, count])

Return data type: string

Arguments:

Argument Description

text The original string.

start Integer defining the position of the first character in text to include.

count Defines the string length of the output string. If omitted, all characters from the position
defined by start are included.

Arguments

Example: Chart expressions

Example Result

Mid('abcdef',3) Returns 'cdef'

Mid('abcdef',3, 2) Returns 'cd'

Example: Load script
T1:

Load *,

mid(Text,Start) as Mid1,

mid(Text,Start,Count) as Mid2;

Load * inline [

Script syntax and chart functions - Qlik Sense, May 2023 1423

5 Script and chart functions

Text, Start, Count

'abcdef', 3, 2

'abcdef', 2, 3

'210714', 3, 2

'210714', 2, 3

];

Result

Text Start Mid1 Count Mid2

abcdef 2 bcdef 3 bcd

abcdef 3 cdef 2 cd

210714 2 10714 3 107

210714 3 0714 2 07

Qlik Sense table showing the output from using the Mid function in the load script.

See also:

p Index (page 1412)

Ord
Ord() returns the Unicode code point number of the first character of the input string.

Syntax:
Ord(text)

Return data type: integer

Examples and results:

Example: Chart expression

Example Result

Ord('A') Returns the integer 65.

Ord('Ab') Returns the integer 65.

Example: Load script

//Guqin (Chinese: 古琴) – 7-stringed zithers

T2:

Load *,

ord(Chinese) as OrdUnicode,

ord(Western) as OrdASCII;

Load * inline [

Chinese, Western

Script syntax and chart functions - Qlik Sense, May 2023 1424

5 Script and chart functions

古琴, Guqin];

Result:

Chinese Western OrdASCII OrdUnicode

古琴 Guqin 71 21476

PurgeChar
PurgeChar() returns a string consisting of the characters contained in the input string ('text'),
excluding any that appear in the second argument ('remove_chars').

Syntax:
PurgeChar(text, remove_chars)

Return data type: string

Arguments:

Argument Description

text The original string.

remove_chars A string containing the characters in text to be removed.

Arguments

Return data type: string

Example: Chart expressions

Example Result

PurgeChar ('a1b2c3','123') Returns 'abc'.

PurgeChar ('a1b2c3','312') Returns 'abc'.

Example: Load script
T1:

Load

*,

purgechar(String1, String2) as PurgeChar;

Load * inline [

String1, String2

'a1b2c3', '123'

];

Script syntax and chart functions - Qlik Sense, May 2023 1425

5 Script and chart functions

Results

String1 String2 PurgeChar

a1b2c3 123 abc

Qlik Sense table showing the output from using the PurgeChar function in the load script.

See also:

p KeepChar (page 1416)

Repeat
Repeat() forms a string consisting of the input string repeated the number of times defined by
the second argument.

Syntax:
Repeat(text[, repeat_count])

Return data type: string

Arguments:

Argument Description

text The original string.

repeat_
count

Defines the number of times the characters in the string text are to be repeated in the
output string.

Arguments

Example: Chart expression

Example Result

Repeat(' * ', rating) when rating = 4 Returns '****'

Example: Load script
T1:

Load *,

repeat(String,2) as Repeat;

Load * inline [

String

hello world!

hOw aRe you?];

Script syntax and chart functions - Qlik Sense, May 2023 1426

5 Script and chart functions

Result

String Repeat

hello world! hello world!hello world!

hOw aRe you? hOw aRe you?hOw aRe you?

Replace
Replace() returns a string after replacing all occurrences of a given substring within the input
string with another substring. The function is non-recursive and works from left to right.

Syntax:
Replace(text, from_str, to_str)

Return data type: string

Arguments:

Argument Description

text The original string.

from_str A string that may occur one or more times within the input string text.

to_str The string that will replace all occurrences of from_str within the string text.

Arguments

Examples and results:

Example Result

Replace('abccde','cc','xyz') Returns 'abxyzde'

See also:

Right
Right() returns a string consisting of the last (rightmost) characters of the input string, where
the number of characters is determined by the second argument.

Syntax:
Right(text, count)

Script syntax and chart functions - Qlik Sense, May 2023 1427

5 Script and chart functions

Return data type: string

Arguments:

Argument Description

text The original string.

count Defines the number of characters to be included from the rightmost part of the string text.

Arguments

Example: Chart expression

Example Result

Right('abcdef', 3) Returns 'def'

Example: Load script
T1:

Load

*,

right(Text,Start) as Right;

Load * inline [

Text, Start

'abcdef', 3

'2021-07-14', 4

'2021-07-14', 2

];

Result

Text Start Right

abcdef 3 def

2021-07-14 4 7-14

2021-07-14 2 14

Qlik Sense table showing the output from using the Right function in the load script.

RTrim
RTrim() returns the input string trimmed of any trailing spaces.

Syntax:
RTrim(text)

Script syntax and chart functions - Qlik Sense, May 2023 1428

5 Script and chart functions

Return data type: string

Example: Chart expressions

Example Result

RTrim(' abc') Returns ' abc'

RTrim('abc ') Returns 'abc'

Example: Load script
Set verbatim=1;

T1:

Load *, len(RtrimString) as RtrimStringLength;

Load *, rtrim(String) as RtrimString;

Load *, len(String) as StringLength;

Load * Inline [

String

' abc '

' def '];

The "Set verbatim=1" statement is included in the example to ensure that the spaces are not
automatically trimmed before the demonstration of the rtrim function. See Verbatim (page 197) for
more information.

Result

String StringLength RtrimStringLength

def 6 4

abc 10 6

See also:

p LTrim (page 1422)

SubField

SubField() is used to extract substring components from a parent string field, where the original
record fields consist of two or more parts separated by a delimiter.

Script syntax and chart functions - Qlik Sense, May 2023 1429

5 Script and chart functions

The Subfield() function can be used, for example, to extract first name and surname from a list of records
consisting of full names, the component parts of a path name, or for extracting data from comma-separated
tables.

If you use the Subfield() function in a LOAD statement with the optional field_no parameter left out, one full
record will be generated for each substring. If several fields are loaded using Subfield() the Cartesian products
of all combinations are created.

Syntax:
SubField(text, delimiter[, field_no])

Return data type: string

Arguments:

Argument Description

text The original string. This can be a hard-coded text, a variable, a dollar-sign expansion, or
another expression.

delimiter A character within the input text that divides the string into component parts.

field_no The optional third argument is an integer that specifies which of the substrings of the
parent string text is to be returned. Use the value 1 to return the first substring, 2 to return
the second substring, and so on.

l If field_no is a positive value, substrings are extracted from left to right.
l If field_no is a negative value, substrings are extracted from right to left.

Arguments

SubField() can be used instead of using complex combinations of functions such as Len(), Right(), Left
(), Mid(), and other string functions.

Examples: Script and chart expressions using SubField
Examples - script and chart expressions

Basic examples

Example Result

SubField(S, ';' ,2) Returns 'cde' if S is 'abc;cde;efg'.

SubField(S, ';' ,1) Returns an empty string if S is an empty string.

SubField(S, ';' ,1) Returns an empty string if S is ';'.

Script syntax and chart functions - Qlik Sense, May 2023 1430

5 Script and chart functions

Example Result

Suppose you have a variable that
holds a path name vMyPath,

Set vMyPath=\Users\ext_

jrb\Documents\Qlik\Sense\Apps;.

In a text & image chart, you can add a measure such as:
SubField(vMyPath, '\',-3), which results in 'Qlik', because it is the
substring third from the right-hand end of the variable vMyPath.

Script example 1

Load script
Load the following script expressions and data in the data load editor.

FullName:

LOAD * inline [

Name

'Dave Owen'

'Joe Tem'

];

SepNames:

Load Name,

SubField(Name, ' ',1) as FirstName,

SubField(Name, ' ',-1) as Surname

Resident FullName;

Drop Table FullName;

Create a visualization
Create a table visualization in a Qlik Sense sheet with Name, FirstName, and SurName as dimensions.

Result

Name FirstName SurName

Dave Owen Dave Owen

Joe Tem Joe Tem

Explanation
The SubField() function extracts the first substring of Name by setting the field_no argument to 1. Since the
value of field_no is positive, a left to right order is followed for extracting the subtring. A second function call
extracts the second substring by setting the field _no argument to -1, which extracts the substring following a
right to left order.

Script example 2

Load script
Load the following script expressions and data in the data load editor.

Script syntax and chart functions - Qlik Sense, May 2023 1431

5 Script and chart functions

LOAD DISTINCT

Instrument,

SubField(Player,',') as Player,

SubField(Project,',') as Project;

Load * inline [

Instrument|Player|Project

Guitar|Neil,Mike|Music,Video

Guitar|Neil|Music,OST

Synth|Neil,Jen|Music,Video,OST

Synth|Jo|Music

Guitar|Neil,Mike|Music,OST

] (delimiter is '|');

Create a visualization
Create a table visualization in a Qlik Sense sheet with Instrument, Player, and Project as dimensions.

Result

Instrument Player Project

Guitar Mike Music

Guitar Mike Video

Guitar Mike OST

Guitar Neil Music

Guitar Neil Video

Guitar Neil OST

Synth Jen Music

Synth Jen Video

Synth Jen OST

Synth Jo Music

Synth Neil Music

Synth Neil Video

Synth Neil OST

Explanation
This example shows how using multiple instances of the Subfield() function, each with the field_no parameter
left out, from within the same LOAD statement creates Cartesian products of all combinations. The DISTINCT
option is used to avoid creating duplicate records.

Script syntax and chart functions - Qlik Sense, May 2023 1432

5 Script and chart functions

SubStringCount
SubStringCount() returns the number of occurrences of the specified substring in the input string text. If
there is no match, 0 is returned.

Syntax:
SubStringCount(text, sub_string)

Return data type: integer

Arguments:

Argument Description

text The original string.

sub_string A string which may occur one or more times within the input string text.

Example: Chart expressions

Example Result

SubStringCount ('abcdefgcdxyz', 'cd') Returns '2'

SubStringCount ('abcdefgcdxyz', 'dc') Returns '0'

Example: Load script
T1:

Load *,

substringcount(upper(Strings),'AB') as SubStringCount_AB;

Load * inline [

Strings

ABC:DEF:GHI:AB:CD:EF:GH

aB/cd/ef/gh/Abc/abandoned];

Result

Strings SubStringCount_AB

aB/cd/ef/gh/Abc/abandoned 3

ABC:DEF:GHI:AB:CD:EF:GH 2

TextBetween
TextBetween() returns the text in the input string that occurs between the characters specified as delimiters.

Syntax:
TextBetween(text, delimiter1, delimiter2[, n])

Script syntax and chart functions - Qlik Sense, May 2023 1433

5 Script and chart functions

Return data type: string

Arguments:

Argument Description

text The original string.

delimiter1 Specifies the first delimiting character (or string) to search for in text.

delimiter2 Specifies the second delimiting character (or string) to search for in text.

n Defines which occurrence of the delimiter pair to search between. For example, a value of 2
returns the characters between the second occurrence of delimiter1 and the second
occurrence of delimiter2.

Example: Chart expressions

Example Result

TextBetween('<abc>', '<', '>') Returns 'abc'

TextBetween('<abc><de>', '<',

'>',2)
Returns 'de'

TextBetween('abc', '<', '>')

TextBetween('<a<b', '<', '>')
Both examples return NULL.

If any of the delimiter is not found in the string, NULL is returned.

TextBetween('<>', '<', '>') Returns a zero-length string.

TextBetween('<abc>', '<', '>',

2)
Returns NULL, as n is greater than the number of occurrences of the
delimiters.

Example: Load script
Load *,

textbetween(Text,'<','>') as TextBetween,

textbetween(Text,'<','>',2) as SecondTextBetween;

Load * inline [

Text

<abc><de>

<def><ghi><jkl>];

Result

Text TextBetween SecondTextBetween

<abc><de> abc de

<def><ghi><jkl> def ghi

Trim
Trim() returns the input string trimmed of any leading and trailing spaces.

Script syntax and chart functions - Qlik Sense, May 2023 1434

5 Script and chart functions

Syntax:
Trim(text)

Return data type: string

Examples and results:

Example: Chart expression

Example Result

Trim(' abc') Returns 'abc'

Trim('abc ') Returns 'abc'

Trim(' abc ') Returns 'abc'

Example: Load script

Set verbatim=1;

T1:

Load *, len(TrimString) as TrimStringLength;

Load *, trim(String) as TrimString;

Load *, len(String) as StringLength;

Load * inline [

String

' abc '

' def '](delimiter is '\t');

The "Set verbatim=1" statement is included in the example to ensure that the spaces are not
automatically trimmed before the demonstration of the trim function. See Verbatim (page 197) for
more information.

Result:

String StringLength TrimStringLength

def 6 3

abc 10 3

Upper
Upper() converts all the characters in the input string to upper case for all text characters in the expression.
Numbers and symbols are ignored.

Syntax:
Upper(text)

Script syntax and chart functions - Qlik Sense, May 2023 1435

5 Script and chart functions

Return data type: string

Example: Chart expression

Example Result

Upper(' abcD') Returns 'ABCD'

Example: Load script
Load

String,Upper(String)

Inline

[String

rHode iSland

washingTon d.C.

new york];

Result

String Upper(String)

rHode iSland RHODE ISLAND

washingTon d.C. WASHINGTON D.C.

new york NEW YORK

5.25 System functions
System functions provide functions for accessing system, device and Qlik Sense app properties.

System functions overview
Some of the functions are described further after the overview. For those functions, you can click the function
name in the syntax to immediately access the details for that specific function.

Author()
This function returns a string containing the author property of the current app. It can be used in both the
data load script and in a chart expression.

Author property can not be set in the current version of Qlik Sense. If you migrate a QlikView
document, the author property will be retained.

ClientPlatform()
This function returns the user agent string of the client browser. It can be used in both the data load script
and in a chart expression.

Script syntax and chart functions - Qlik Sense, May 2023 1436

5 Script and chart functions

Example:

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/35.0.1916.114 Safari/537.36

ComputerName
This function returns a string containing the name of the computer as returned by the operating system. It
can be used in both the data load script and in a chart expression.

If the name of the computer has more than 15 characters, the string will only contain the first 15
characters.

ComputerName()

DocumentName
This function returns a string containing the name of the current Qlik Sense app, without path but with
extension. It can be used in both the data load script and in a chart expression.

DocumentName()

DocumentPath
This function returns a string containing the full path to the current Qlik Sense app. It can be used in both the
data load script and in a chart expression.

DocumentPath()

This function is not supported in standard mode. .

DocumentTitle
This function returns a string containing the title of the current Qlik Sense app. It can be used in both the data
load script and in a chart expression.

DocumentTitle()

EngineVersion
This function returns the full Qlik Sense engine version as a string.

EngineVersion ()

GetCollationLocale
This script function returns the culture name of the collation locale that is used. If the variable CollationLocale
has not been set, the actual user machine locale is returned.

GetCollationLocale()

Script syntax and chart functions - Qlik Sense, May 2023 1437

5 Script and chart functions

GetObjectField
GetObjectField() returns the name of the dimension. Index is an optional integer denoting the dimension
that should be returned.

GetObjectField - chart function([index])

GetRegistryString
This function returns the value of a key in the Windows registry. It can be used in both the data load script and
in a chart expression.

GetRegistryString(path, key)

This function is not supported in standard mode. .

IsPartialReload
This function returns - 1 (True) if the current reload is partial, otherwise 0 (False).

IsPartialReload ()

InObject
The InObject() chart function evaluates whether or not the current object is contained inside another object
with the ID specified in the function argument. The object can be a sheet or a visualization.

InObject - chart function(id_str)

ObjectId
The ObjectId() chart function returns the ID of the object in which the expression is evaluated. The function
takes an optional argument specifying which type of object the function concerns. The object can be a sheet
or a visualization. This function is only available in chart expressions.

ObjectId - chart function([object_type_str])

OSUser
This function returns a string containing the name of the user that is currently connected. It can be used in
both the data load script and in a chart expression.

OSUser()

In Qlik Sense Desktop and Qlik Sense Mobile Client Managed, this function always returns
'Personal\Me'.

ProductVersion
This function returns the full Qlik Sense version and build number as a string.

This function is deprecated and replaced by EngineVersion().

ProductVersion ()

ReloadTime

Script syntax and chart functions - Qlik Sense, May 2023 1438

5 Script and chart functions

This function returns a timestamp for when the last data load finished. It can be used in both the data load
script and in a chart expression.

ReloadTime()

StateName
StateName() returns the name of the alternate state of the visualization in which it is used. StateName can be
used, for example, to create visualizations with dynamic text and colors to reflect when the state of a
visualization is changed. This function can be used in chart expressions, but cannot be used to determine the
state that the expression refers to.

StateName - chart function()

EngineVersion
This function returns the full Qlik Sense engine version as a string.

Syntax:
EngineVersion()

InObject - chart function
The InObject() chart function evaluates whether or not the current object is contained inside
another object with the ID specified in the function argument. The object can be a sheet or a
visualization.

This function can be used to show the hierarchy of objects in a sheet, from the top-level sheet object to
visualizations nested within other visualizations. This function can be used alongside the if and ObjectId
functions to create custom navigation in your apps.

Syntax:
InObject(id_str)

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Argument Description

id_str A string value representing the ID of the object being evaluated.

Arguments

The sheet ID can be obtained from the app URL. For visualizations, use the Developer options to identify the
object ID and the text string of the object type.

Do the following:

1. In analysis mode, add the following text to your URL:
/options/developer

Script syntax and chart functions - Qlik Sense, May 2023 1439

5 Script and chart functions

2. Right-click a visualization and click Developer.

3. Under Properties, obtain the object ID from the dialog header, and the object type from the "qType"
property.

Limitations:

This function can give unexpected results when invoked in an object (for example, a button) inside a container
which is a master item. This limitation also applies to filter pane master items, which are containers for a
number of listboxes. This is because of how master items use the object hierarchy.

InObject() is often used in combination with the following functions:

Function Interaction

if (page 542) The if and
ObjectId
functions can
be used
together to
create
conditional
expressions. For
example,
visualizations
might achieve
conditional
coloring
through
expressions
using these
functions.

ObjectId - chart function (page 1443) Similar to if,
ObjectId is also
used with
InObject to
create
conditional
expressions.

Related functions

Script syntax and chart functions - Qlik Sense, May 2023 1440

5 Script and chart functions

Example 1 – Basic functionality
Chart expression and results
The following basic example demonstrates how to determine whether an object is contained inside another
object. In this case, we will be checking if a Text & image object resides in a sheet object using the ID of the
sheet as an argument.

Do the following:

1. Open a new sheet and drag a Text & image chart onto the sheet.

2. In the properties panel, click Add measure.

3. Click to open the expression editor.

4. Paste the following expression into the dialog:
=InObject()

5. Modify the expression to include the ID of your sheet as a string between the parentheses.
For example, for a sheet with ID 1234-5678, you would use the following:

6. =InObject('1234-5678')

7. Click Apply.

The value -1 is displayed in the chart, indicating that the expression was evaluated to be true.

Example 2 – Objects with conditional colors
Chart expression and results

Overview

The following example demonstrates how to create custom navigation buttons showing different coloring to
indicate the sheet that is currently open.

Start by creating a new app and opening the Data load editor. Paste the following load script into a new tab.
Note that the data itself is a placeholder and will not be used in the example content.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'4/7/2022',40.39

Script syntax and chart functions - Qlik Sense, May 2023 1441

5 Script and chart functions

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'7/26/2022',45.89

8198,'8/9/2022',36.23

8199,'9/22/2022',25.66

8200,'11/23/2022',82.77

8201,'12/27/2022',69.98

8202,'1/1/2023',76.11

8203,'2/8/2022',25.12

8204,'3/19/2022',46.23

8205,'6/26/2022',84.21

8206,'9/14/2022',96.24

8207,'11/29/2022',67.67

];

Creating the visualizations

Load the data and create two new sheets. Title them Sales 2022 and Sales 2023 respectively.

Next, build two button objects that will be used to navigate between the two sheets.

Do the following:

1. Add two Button objects to the sheet.

2. Under Appearance > General, set the Label of each button to Sales 2022 and Sales 2023, respectively.

3. Arrange the buttons to match the following image.
Sales 2022 sheet arrangement with two navigation buttons

4. Select the Sales 2022 button, and expand Actions and navigation in the properties panel.

5. Click Add action and under Navigation, select Go to a sheet.

6. Under Sheet, select Sales 2022.

Script syntax and chart functions - Qlik Sense, May 2023 1442

5 Script and chart functions

7. Repeat this button action setup to link the Sales 2023 button to the Sales 2023 sheet.

8. Convert the buttons to master items by right-clicking them and selecting Add to master items.

You can now copy each button and paste it in the Sales 2023 sheet, using the same size and arrangement on
the sheet.

Creating conditional colors

Next, configure the buttons so that they will be blue if they are linked to the currently open sheet, and light
gray if linked to the sheet that is not open.

Do the following:

1. Open the Sales 2022 sheet and obtain the sheet ID from the URL. Keep the Sales 2022 sheet open.

2. Click the Sales 2022 button master item and select Edit in the properties panel.

3. Under Appearance > Background, select to color the button By expression.

4. In Expression, paste the following text:
=if(InObject(''), Blue(), LightGray())

5. Between the parentheses in the above expression, paste the sheet ID for the Sales 2022 sheet.

The button is now configured to turn blue when the Sales 2022 sheet is open, and light gray when it is not
open.

Repeat the above instructions for the Sales 2023 sheet, linking the Sales 2023 button master item to the Sales
2023 sheet ID.

Each sheet should now have two buttons indicating the currently open sheet with the color blue.

Sales 2022 sheet with blue coloring to indicate that Sales 2022 is currently displayed

IsPartialReload
This function returns - 1 (True) if the current reload is partial, otherwise 0 (False).

Syntax:
IsPartialReload()

ObjectId - chart function
The ObjectId() chart function returns the ID of the object in which the expression is evaluated. The function
takes an optional argument specifying which type of object the function concerns. The object can be a sheet
or a visualization. This function is only available in chart expressions.

Script syntax and chart functions - Qlik Sense, May 2023 1443

5 Script and chart functions

Syntax:
ObjectId([object_type_str])

Return data type: string

The function's only argument, object_type_str, is optional and refers to a string value representing the type
of the object.

Argument Description

object_type_str A string value representing the type of the object being evaluated.

Arguments

If no argument is specified in the function expression, ObjectId() returns the ID of the object in which the
expression is used. To return the ID of the sheet object within which the visualization appears, use ObjectId
('sheet').

In the case of visualization objects nested within other visualization objects, specify the desired object type in
the function argument for different results. For example, for a Text & image chart within a container, use
'text-image' to return the Text & image object and 'container' to return the ID of the container.

Do the following:

1. In analysis mode, add the following text to your URL:
/options/developer

2. Right-click a visualization and click Developer.

3. Under Properties, obtain the object ID from the dialog header, and the object type from the "qType"
property.

Limitations:

This function can give unexpected results when invoked in an object (for example, a button) inside a container
which is a master item. This limitation also applies to filter pane master items, which are containers for a
number of listboxes. This is because of how master items use the object hierarchy.

The chart expression ObjectId('sheet') will return an empty string in those cases, whereas ObjectId
('masterobject') will show the identifier of the owning master item.

ObjectId() is often used in combination with the following functions:

Script syntax and chart functions - Qlik Sense, May 2023 1444

5 Script and chart functions

Function Interaction

if (page 542) The if and
ObjectId
functions can
be used
together to
create
conditional
expressions. For
example,
visualizations
might achieve
conditional
coloring
through
expressions
using these
functions.

InObject - chart function (page 1439) Similar to if,
InObject is also
used with
ObjectId to
create
conditional
expressions.

Related functions

Example 1 – Return chart object ID
Chart expression and results
The following basic example demonstrates how to return the ID of a visualization.

Do the following:

1. Open a new sheet and drag a Text & image chart onto the sheet.

2. In the properties panel, click Add measure.

3. Click to open the expression editor.

4. Paste the following expression into the dialog:
=ObjectId()

5. Click Apply.

The ID of the Text & image object is displayed in the visualization.

The same result can be achieved with the following expression:

Script syntax and chart functions - Qlik Sense, May 2023 1445

5 Script and chart functions

=ObjectId('text-image')

Example 2 – Return sheet ID
Chart expression and results
The following basic example demonstrates how to return the ID of the sheet in which a visualization appears.

Do the following:

1. Open a new sheet and drag a Text & image chart onto the sheet.

2. In the properties panel, click Add measure.

3. Click to open the expression editor.

4. Paste the following expression into the dialog:
=ObjectId('sheet')

5. Click Apply.

The ID of the sheet is displayed in the visualization.

Example 3 – Nested expression
Chart expression and results
The following example shows how the ObjectId() function can be nested inside other expressions.

Do the following:

1. Open a new sheet and drag a Text & image chart onto the sheet.

2. In the properties panel, click Add measure.

3. Click to open the expression editor.

4. Paste the following expression into the dialog:
=if(InObject(ObjectId('text-image')), 'In Text & image', 'Not in Text & image')

5. Click Apply.

The text In Text & image appears in the chart, indicating that the object referenced in the expression is a Text
& image chart.

For a more detailed example using conditional coloring, see the example on InObject - chart function (page
1439).

ProductVersion
This function returns the full Qlik Sense version and build number as a string. This function is
deprecated and replaced by EngineVersion().

Syntax:
ProductVersion()

Script syntax and chart functions - Qlik Sense, May 2023 1446

5 Script and chart functions

StateName - chart function
StateName() returns the name of the alternate state of the visualization in which it is used.
StateName can be used, for example, to create visualizations with dynamic text and colors to
reflect when the state of a visualization is changed. This function can be used in chart
expressions, but cannot be used to determine the state that the expression refers to.

Syntax:
StateName ()

Example 1:

Dynamic Text
='Region - ' & if(StateName() = '$', 'Default', StateName())

Example 2:

Dynamic Colors
if(StateName() = 'Group 1', rgb(152, 171, 206),

if(StateName() = 'Group 2', rgb(187, 200, 179),

rgb(210, 210, 210)

)

)

5.26 Table functions
The table functions return information about the data table which is currently being read. If no
table name is specified and the function is used within a LOAD statement, the current table is
assumed.

All functions can be used in the data load script, while only NoOfRows can be used in a chart expression.

Table functions overview
Some of the functions are described further after the overview. For those functions, you can click the function
name in the syntax to immediately access the details for that specific function.

FieldName
The FieldName script function returns the name of the field with the specified number within a previously
loaded table. If the function is used within a LOAD statement, it must not reference the table currently being
loaded.

FieldName (field_number ,table_name)

Script syntax and chart functions - Qlik Sense, May 2023 1447

5 Script and chart functions

FieldNumber
The FieldNumber script function returns the number of a specified field within a previously loaded table. If
the function is used within a LOAD statement, it must not reference the table currently being loaded.

FieldNumber (field_name ,table_name)

NoOfFields
The NoOfFields script function returns the number of fields in a previously loaded table. If the function is used
within a LOAD statement, it must not reference the table currently being loaded.

NoOfFields (table_name)

NoOfRows
The NoOfRows function returns the number of rows (records) in a previously loaded table. If the function is
used within a LOAD statement, it must not reference the table currently being loaded.

NoOfRows (table_name)

NoOfTables
This script function returns the number of tables previously loaded.

NoOfTables()

TableName
This script function returns the name of the table with the specified number.

TableName(table_number)

TableNumber
This script function returns the number of the specified table. The first table has number 0.

If table_name does not exist, NULL is returned.

TableNumber(table_name)

Example:

In this example, we want to create a table with information about the tables and fields that have been loaded.

First we load some sample data. This creates the two tables that will be used to illustrate the table functions
described in this section.

Characters:

Load Chr(RecNo()+Ord('A')-1) as Alpha, RecNo() as Num autogenerate 26;

ASCII:

Load

if(RecNo()>=65 and RecNo()<=90,RecNo()-64) as Num,

Chr(RecNo()) as AsciiAlpha,

RecNo() as AsciiNum

autogenerate 255

Where (RecNo()>=32 and RecNo()<=126) or RecNo()>=160 ;

Script syntax and chart functions - Qlik Sense, May 2023 1448

5 Script and chart functions

Next, we iterate through the tables that have been loaded, using the NoOfTables function, and then through
the fields of each table, using the NoOfFields function, and load information using the table functions.

//Iterate through the loaded tables

For t = 0 to NoOfTables() - 1

//Iterate through the fields of table

For f = 1 to NoOfFields(TableName($(t)))

Tables:

Load

TableName($(t)) as Table,

TableNumber(TableName($(t))) as TableNo,

NoOfRows(TableName($(t))) as TableRows,

FieldName($(f),TableName($(t))) as Field,

FieldNumber(FieldName($(f),TableName($(t))),TableName($(t))) as FieldNo

Autogenerate 1;

Next f

Next t;

The resulting table Tables will look like this:

Table TableNo TableRows Field FieldNo

Characters 0 26 Alpha 1

Characters 0 26 Num 2

ASCII 1 191 Num 1

ASCII 1 191 AsciiAlpha 2

ASCII 1 191 AsciiNum 3

Load table

FieldName
The FieldName script function returns the name of the field with the specified number within a previously
loaded table. If the function is used within a LOAD statement, it must not reference the table currently being
loaded.

Syntax:
FieldName(field_number ,table_name)

Arguments:

Argument Description

field_number The field number of the field you want to reference.

table_name The table containing the field you want to reference.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1449

5 Script and chart functions

Example:

LET a = FieldName(4,'tab1');

FieldNumber
The FieldNumber script function returns the number of a specified field within a previously
loaded table. If the function is used within a LOAD statement, it must not reference the table
currently being loaded.

Syntax:
FieldNumber(field_name ,table_name)

Arguments:

Argument Description

field_name The name of the field.

table_name The name of the table containing the field.

Arguments

If the field field_name does not exist in table_name, or table_name does not exist, the function returns 0.

Example:

LET a = FieldNumber('Customer','tab1');

NoOfFields
The NoOfFields script function returns the number of fields in a previously loaded table. If the
function is used within a LOAD statement, it must not reference the table currently being
loaded.

Syntax:
NoOfFields(table_name)

Arguments:

Argument Description

table_name The name of the table.

Arguments

Example:

LET a = NoOfFields('tab1');

Script syntax and chart functions - Qlik Sense, May 2023 1450

5 Script and chart functions

NoOfRows
The NoOfRows function returns the number of rows (records) in a previously loaded table. If the
function is used within a LOAD statement, it must not reference the table currently being
loaded.

Syntax:
NoOfRows(table_name)

Arguments:

Argument Description

table_name The name of the table.

Arguments

Example:

LET a = NoOfRows('tab1');

5.27 Trigonometric and hyperbolic functions
This section describes functions for performing trigonometric and hyperbolic operations. In all
of the functions, the arguments are expressions resolving to angles measured in radians, where
x should be interpreted as a real number.

All angles are measured in radians.

All functions can be used in both the data load script and in chart expressions.

cos
Cosine of x. The result is a number between -1 and 1.

cos(x)

acos
Inverse cosine of x. The function is only defined if -1≤x≤1. The result is a number between 0 and π.

acos(x)

sin
Sine of x. The result is a number between -1 and 1.

sin(x)

asin
Inverse sine of x. The function is only defined if -1≤x≤1. The result is a number between - π/2 and π/2.

asin(x)

Script syntax and chart functions - Qlik Sense, May 2023 1451

5 Script and chart functions

tan
Tangent of x. The result is a real number.

tan(x)

atan
Inverse tangent of x. The result is a number between - π/2 and π/2.

atan(x)

atan2
Two-dimensional generalization of the inverse tangent function. Returns the angle between the origin and the
point represented by the coordinates x and y. The result is a number between - π and + π.

atan2(y,x)

cosh
Hyperbolic cosine of x. The result is a positive real number.

cosh(x)

sinh
Hyperbolic sine of x. The result is a real number.

sinh(x)

tanh
Hyperbolic tangent of x. The result is a real number.

tanh(x)

acosh
Inverse hyperbolic cosine of x. The result is a positive real number.

acosh(x)

asinh
Inverse hyperbolic sine of x. The result is a real number.

asinh(x)

atanh
Inverse hyperbolic tangent of x. The result is a real number.

atanh(x)

Examples:

The following script code loads a sample table, and then loads a table containing the calculated trigonometric
and hyperbolic operations on the values.

SampleData:

LOAD * Inline

[Value

Script syntax and chart functions - Qlik Sense, May 2023 1452

5 Script and chart functions

-1

0

1];

Results:

Load *,

cos(Value),

acos(Value),

sin(Value),

asin(Value),

tan(Value),

atan(Value),

atan2(Value, Value),

cosh(Value),

sinh(Value),

tanh(Value)

RESIDENT SampleData;

Drop Table SampleData;

Script syntax and chart functions - Qlik Sense, May 2023 1453

6 File system access restriction

6 File system access restriction
For security reasons, Qlik Sense in standard mode does not support paths in the data load script
or functions and variables that expose the file system.

However, since file system paths were supported in QlikView, it is possible to disable standard mode and use
legacy mode in order to reuse QlikView load scripts.

Disabling standard mode can create a security risk by exposing the file system.

Disabling standard mode (page 1459)

6.1 Security aspects when connecting to file based ODBC and
OLE DB data connections

ODBC and OLE DB data connections using file-based drivers will expose the path to the connected data file in
the connection string. The path can be exposed when the connection is edited, in the data selection dialog, or
in certain SQL queries. This is the case both in standard mode and legacy mode.

If exposing the path to the data file is a concern, it is recommended to connect to the data file using
a folder data connection if it is possible.

6.2 Limitations in standard mode
Several statements, variables and functions cannot be used or have limitations in standard mode. Using
unsupported statements in the data load script produces an error when the load script runs. Error messages
can be found in the script log file. Using unsupported variables and functions does not produce error
messages or log file entries. Instead, the function returns NULL.

There is no indication that a variable, statement or function is unsupported when you are editing the data
load script.

System variables

Variable Standard mode Legacy mode Definition

Floppy Not supported Supported Returns the drive letter
of the first floppy drive
found, normally a:.

System variables

Script syntax and chart functions - Qlik Sense, May 2023 1454

6 File system access restriction

Variable Standard mode Legacy mode Definition

CD Not supported Supported Returns the drive letter
of the first CD-ROM drive
found. If no CD-ROM is
found, then c: is
returned.

QvPath Not supported Supported Returns the browse
string to the Qlik Sense
executable.

QvRoot Not supported Supported Returns the root
directory of the Qlik
Sense executable.

QvWorkPath Not supported Supported Returns the browse
string to the current Qlik
Sense app.

QvWorkRoot Not supported Supported Returns the root
directory of the current
Qlik Sense app.

WinPath Not supported Supported Returns the browse
string to Windows.

WinRoot Not supported Supported Returns the root
directory of Windows.

$(include=...) Supported input: Path
using library connection

Supported input: Path
using library connection
or file system

The Include/Must_
Include variable
specifies a file that
contains text that
should be included in
the script and evaluated
as script code. It is not
used to add data. You
can store parts of your
script code in a separate
text file and reuse it in
several apps. This is a
user-defined variable.

Script syntax and chart functions - Qlik Sense, May 2023 1455

6 File system access restriction

Regular script statements

Statement Standard mode Legacy mode Definition

Binary Supported input: Path
using library connection

Supported input: Path
using library connection
or file system

The binary statement is
used for loading data
from another app.

Connect Supported input: Path
using library connection

Supported input: Path
using library connection
or file system

The CONNECT
statement is used to
define Qlik Sense access
to a general database
through the OLE
DB/ODBC interface. For
ODBC, the data source
first needs to be
specified using the
ODBC administrator.

Directory Supported input: Path
using library connection

Supported input: Path
using library connection
or file system

The Directory
statement defines which
directory to look in for
data files in subsequent
LOAD statements, until
a new Directory
statement is made.

Execute Not supported Supported input: Path
using library connection
or file system

The Execute statement
is used to run other
programs while Qlik
Sense is loading data.
For example, to make
conversions that are
necessary.

LOAD from ... Supported input: Path
using library connection

Supported input: Path
using library connection
or file system

The LOAD statement
loads fields from a file,
from data defined in the
script, from a previously
loaded table, from a
web page, from the
result of a subsequent
SELECT statement or by
generating data
automatically.

Regular script statements

Script syntax and chart functions - Qlik Sense, May 2023 1456

6 File system access restriction

Statement Standard mode Legacy mode Definition

Store into ... Supported input: Path
using library connection

Supported input: Path
using library connection
or file system

The Store statement
creates a QVD, or text
file.

Script control statements

Statement Standard mode Legacy mode Definition

For each...

filelist mask/dirlist mask

Supported input: Path
using library connection

Returned output: Library
connection

Supported input: Path
using library connection
or file system

Returned output: Library
connection or file
system path, depending
on input

The filelist mask syntax
produces a comma
separated list of all files
in the current directory
matching the filelist
mask. The dirlist mask
syntax produces a
comma separated list of
all directories in the
current directory
matching the directory
name mask.

Script control statements

File functions

Function Standard mode Legacy mode Definition

Attribute() Supported input: Path
using library connection

Supported input: Path
using library connection
or file system

Returns the value of the
meta tags of different
media files as text.

ConnectString() Returned output: Library
connection name

Library connection
name or actual
connection, depending
on input

Returns the active
connect string for ODBC
or OLE DB connections.

FileDir() Returned output: Library
connection

Returned output: Library
connection or file
system path, depending
on input

The FileDir function
returns a string
containing the path to
the directory of the
table file currently being
read.

File functions

Script syntax and chart functions - Qlik Sense, May 2023 1457

6 File system access restriction

Function Standard mode Legacy mode Definition

FilePath() Returned output: Library
connection

Returned output: Library
connection or file
system path, depending
on input

The FilePath function
returns a string
containing the full path
to the table file
currently being read.

FileSize() Supported input: Path
using library connection

Supported input: Path
using library connection
or file system

The FileSize function
returns an integer
containing the size in
bytes of the file
filename or, if no
filename is specified, of
the table file currently
being read.

FileTime() Supported input: Path
using library connection

Supported input: Path
using library connection
or file system

The FileTime function
returns a timestamp in
UTC format of the last
modification of a
specified file. If a file is
not specified, the
function returns a
timestamp in UTC of the
last modification of the
currently read table file.

GetFolderPath() Not supported Returned output:
Absolute path

The GetFolderPath
function returns the
value of the Microsoft
Windows
SHGetFolderPath
function. This function
takes as input the name
of a Microsoft Windows
folder and returns the
full path of the folder.

QvdCreateTime() Supported input: Path
using library connection

Supported input: Path
using library connection
or file system

This script function
returns the XML-header
timestamp from a QVD
file, if any is present,
otherwise it returns
NULL. In the timestamp,
time is provided in UTC.

Script syntax and chart functions - Qlik Sense, May 2023 1458

6 File system access restriction

Function Standard mode Legacy mode Definition

QvdFieldName() Supported input: Path
using library connection

Supported input: Path
using library connection
or file system

This script function
returns the name of
field number fieldno in
a QVD file. If the field
does not exist NULL is
returned.

QvdNoOfFields() Supported input: Path
using library connection

Supported input: Path
using library connection
or file system

This script function
returns the number of
fields in a QVD file.

QvdNoOfRecords() Supported input: Path
using library connection

Supported input: Path
using library connection
or file system

This script function
returns the number of
records currently in a
QVD file.

QvdTableName() Supported input: Path
using library connection

Supported input: Path
using library connection
or file system

This script function
returns the name of the
table stored in a QVD
file.

System functions

Function Standard mode Legacy mode Definition

DocumentPath() Not supported Returned output:
Absolute path

This function returns a
string containing the full
path to the current Qlik
Sense app.

GetRegistryString() Not supported Supported Returns the value of a
named registry key with
a given registry path.
This function can be
used in chart and script
alike.

System functions

6.3 Disabling standard mode
You can disable standard mode, or in other words, set legacy mode, in order to reuse QlikView
load scripts that refer to absolute or relative file paths as well as library connections.

Disabling standard mode can create a security risk by exposing the file system.

Script syntax and chart functions - Qlik Sense, May 2023 1459

6 File system access restriction

Qlik Sense
For Qlik Sense, standard mode can be disabled in QMC using the Standard mode property.

Qlik Sense Desktop
In Qlik Sense Desktop, you can set standard/legacy mode in Settings.ini.

If you installed Qlik Sense Desktop using the default installation location, Settings.ini is located in C:\Users\
{user}\Documents\Qlik\Sense\Settings.ini. If you installed Qlik Sense Desktop to a folder that you selected,
Settings.ini is located in the Engine folder of the installation path.

Do the following:

1. Open Settings.ini in a text editor.

2. Change StandardReload=1 to StandardReload=0.

3. Save the file and start Qlik Sense Desktop.

Qlik Sense Desktop now runs in legacy mode.

Settings
The available settings for StandardReload are:

l 1 (standard mode)
l 0 (legacy mode)

Script syntax and chart functions - Qlik Sense, May 2023 1460

6 Chart level scripting

6 Chart level scripting
When modifying chart data, you use a sub-set of the Qlik Sense script which consists of a number of
statements. A statement can be either a regular script statement or a script control statement. Certain
statements can be preceded by prefixes.

Regular statements are typically used for manipulating data in one way or another. These statements may be
written over any number of lines in the script and must always be terminated by a semicolon, ";".

Control statements are typically used for controlling the flow of the script execution. Each clause of a control
statement must be kept inside one script line and may be terminated by a semicolon or the end-of-line.

Prefixes may be applied to applicable regular statements but never to control statements.

All script keywords can be typed with any combination of lower case and upper case characters. Field and
variable names used in the statements are however case sensitive.

In this section you can find an alphabetical listing of all script statements, control statements and prefixes
available in the sub-set of the script used when modifying chart data.

6.4 Control statements
When modifying chart data, you use a sub-set of the Qlik Sense script which consists of a number of
statements. A statement can be either a regular script statement or a script control statement.

Control statements are typically used for controlling the flow of the script execution. Each clause of a control
statement must be kept inside one script line and may be terminated by semicolon or end-of-line.

Prefixes are never applied to control statements.

All script keywords can be typed with any combination of lower case and upper case characters.

Chart modifier control statements overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Call
The call control statement calls a subroutine which must be defined by a previous sub statement.

Call name ([paramlist])

Do..loop
The do..loop control statement is a script iteration construct which executes one or several statements until a
logical condition is met.

Do..loop [(while | until) condition] [statements]

[exit do [(when | unless) condition] [statements]

loop [(while | until) condition]

Script syntax and chart functions - Qlik Sense, May 2023 1461

6 Chart level scripting

End
The End script keyword is used to close If, Sub and Switch clauses.

Exit
The Exit script keyword is part of the Exit Script statement, but can also be used to exit Do, For or Sub
clauses.

Exit script
This control statement stops script execution. It may be inserted anywhere in the script.

Exit script[(when | unless) condition]

For..next
The for..next control statement is a script iteration construct with a counter. The statements inside the loop
enclosed by for and next will be executed for each value of the counter variable between specified low and
high limits.

For..next counter = expr1 to expr2 [stepexpr3]
[statements]
[exit for [(when | unless) condition]
[statements]
Next [counter]

For each ..next
The for each..next control statement is a script iteration construct which executes one or several statements
for each value in a comma separated list. The statements inside the loop enclosed by for and next will be
executed for each value of the list.

For each..next var in list
[statements]
[exit for [(when | unless) condition]
[statements]
next [var]

If..then
The if..then control statement is a script selection construct forcing the script execution to follow different
paths depending on one or several logical conditions.

Since the if..then statement is a control statement and as such is ended with either a semicolon or
end-of-line, each of its four possible clauses (if..then, elseif..then, else and end if) must not cross a
line boundary.

If..then..elseif..else..end if condition then
[statements]

{ elseif condition then
[statements] }

[else
[statements]]

end if

Script syntax and chart functions - Qlik Sense, May 2023 1462

6 Chart level scripting

Next
The Next script keyword is used to close For loops.

Sub
The sub..end sub control statement defines a subroutine which can be called upon from a call statement.

Sub..end sub name [(paramlist)] statements end sub

Switch
The switch control statement is a script selection construct forcing the script execution to follow different
paths, depending on the value of an expression.

Switch..case..default..end switch expression {case valuelist [statements]}

[default statements] end switch

To
The To script keyword is used in several script statements.

Call
The call control statement calls a subroutine which must be defined by a previous sub
statement.

Syntax:
Call name ([paramlist])

Arguments:

Argument Description

name The name of the subroutine.

paramlist A comma separated list of the actual parameters to be sent to the
subroutine. Each item in the list may be a field name, a variable or an
arbitrary expression.

Arguments

The subroutine called by a call statement must be defined by a sub encountered earlier during script
execution.

Parameters are copied into the subroutine and, if the parameter in the call statement is a variable and not an
expression, copied back out again upon exiting the subroutine.

Limitations:

l Since the call statement is a control statement and as such is ended with either a semicolon or end-of-
line, it must not cross a line boundary.

l When you define a subroutine with Sub..end sub inside a control statement, for example if..then,
you can only call the subroutine from within the same control statement.

Script syntax and chart functions - Qlik Sense, May 2023 1463

6 Chart level scripting

Do..loop
The do..loop control statement is a script iteration construct which executes one or several
statements until a logical condition is met.

Syntax:
Do [(while | until) condition] [statements]

[exit do [(when | unless) condition] [statements]

loop[(while | until) condition]

Since the do..loop statement is a control statement and as such is ended with either a semicolon or
end-of-line, each of its three possible clauses (do, exit do and loop) must not cross a line boundary.

Arguments:

Argument Description

condition A logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

while / until The while or until conditional clause must only appear once in any do..loop statement,
i.e. either after do or after loop. Each condition is interpreted only the first time it is
encountered but is evaluated for every time it encountered in the loop.

exit do If an exit do clause is encountered inside the loop, the execution of the script will be
transferred to the first statement after the loop clause denoting the end of the loop. An
exit do clause can be made conditional by the optional use of a when or unless suffix.

Arguments

End
The End script keyword is used to close If, Sub and Switch clauses.

Exit
The Exit script keyword is part of the Exit Script statement, but can also be used to exit Do, For
or Sub clauses.

Exit script
This control statement stops script execution. It may be inserted anywhere in the script.

Syntax:
Exit Script [(when | unless) condition]

Script syntax and chart functions - Qlik Sense, May 2023 1464

6 Chart level scripting

Since the exit script statement is a control statement and as such is ended with either a semicolon or end-of-
line, it must not cross a line boundary.

Arguments:

Argument Description

condition A logical expression evaluating to True or False.

when
/ unless

An exit script statement can be made conditional by the optional use of
when or unless clause.

Arguments

Examples:

//Exit script

Exit Script;

//Exit script when a condition is fulfilled

Exit Script when a=1

For..next
The for..next control statement is a script iteration construct with a counter. The statements
inside the loop enclosed by for and next will be executed for each value of the counter variable
between specified low and high limits.

Syntax:
For counter = expr1 to expr2 [step expr3]
[statements]
[exit for [(when | unless) condition]
[statements]
Next [counter]

The expressions expr1, expr2 and expr3 are only evaluated the first time the loop is entered. The value of the
counter variable may be changed by statements inside the loop, but this is not good programming practice.

If an exit for clause is encountered inside the loop, the execution of the script will be transferred to the first
statement after the next clause denoting the end of the loop. An exit for clause can be made conditional by
the optional use of a when or unless suffix.

Since the for..next statement is a control statement and as such is ended with either a semicolon or
end-of-line, each of its three possible clauses (for..to..step, exit for and next) must not cross a line
boundary.

Script syntax and chart functions - Qlik Sense, May 2023 1465

6 Chart level scripting

Arguments:

Argument Description

counter A variable name. If counter is specified after next it must be the same variable name as the
one found after the corresponding for.

expr1 An expression which determines the first value of the counter variable for which the loop
should be executed.

expr2 An expression which determines the last value of the counter variable for which the loop
should be executed.

expr3 An expression which determines the value indicating the increment of the counter variable
each time the loop has been executed.

condition a logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

Arguments

For each..next
The for each..next control statement is a script iteration construct which executes one or
several statements for each value in a comma separated list. The statements inside the loop
enclosed by for and next will be executed for each value of the list.

Syntax:
Special syntax makes it possible to generate lists with file and directory names in the current directory.

for each var in list
[statements]
[exit for [(when | unless) condition]
[statements]
next [var]

Arguments:

Argument Description

var A script variable name which will acquire a new value from list for each loop execution. If
var is specified after next it must be the same variable name as the one found after the
corresponding for each.

Arguments

The value of the var variable may be changed by statements inside the loop, but this is not good
programming practice.

Script syntax and chart functions - Qlik Sense, May 2023 1466

6 Chart level scripting

If an exit for clause is encountered inside the loop, the execution of the script will be transferred to the first
statement after the next clause denoting the end of the loop. An exit for clause can be made conditional by
the optional use of a when or unless suffix.

Since the for each..next statement is a control statement and as such is ended with either a
semicolon or end-of-line, each of its three possible clauses (for each, exit for and next) must not
cross a line boundary.

Syntax:
list := item { , item }
item := constant | (expression) | filelist mask | dirlist mask |

fieldvaluelist mask

Argument Description

constant Any number or string. Note that a string written directly in the script must be enclosed by
single quotes. A string without single quotes will be interpreted as a variable, and the
value of the variable will be used. Numbers do not need to be enclosed by single quotes.

expression An arbitrary expression.

mask A filename or folder name mask which may include any valid filename characters as well
as the standard wildcard characters, * and ?.

You can use absolute file paths or lib:// paths.

condition A logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

filelist mask This syntax produces a comma separated list of all files in the current directory matching
the filename mask.

This argument supports only library connections in standard mode.

dirlist mask This syntax produces a comma separated list of all folders in the current folder matching
the folder name mask.

This argument supports only library connections in standard mode.

fieldvaluelist
mask

This syntax iterates through the values of a field already loaded into Qlik Sense.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1467

6 Chart level scripting

The Qlik Web Storage Provider Connectors and other DataFiles connections do not support filter
masks that use wildcard (* and ?) characters.

Example 1: Loading a list of files

// LOAD the files 1.csv, 3.csv, 7.csv and xyz.csv

for each a in 1,3,7,'xyz'

LOAD * from file$(a).csv;

next

Example 2: Creating a list of files on disk

This example loads a list of all Qlik Sense related files in a folder.

sub DoDir (Root)

for each Ext in 'qvw', 'qva', 'qvo', 'qvs', 'qvc', 'qvf', 'qvd'

for each File in filelist (Root&'/*.' &Ext)

LOAD

'$(File)' as Name,

FileSize('$(File)') as Size,

FileTime('$(File)') as FileTime

autogenerate 1;

next File

next Ext

for each Dir in dirlist (Root&'/*')

call DoDir (Dir)

next Dir

end sub

call DoDir ('lib://DataFiles')

Example 3: Iterating through a the values of a field

This example iterates through the list of loaded values of FIELD and generates a new field, NEWFIELD. For
each value of FIELD, two NEWFIELD records will be created.

load * inline [

FIELD

one

two

three

];

FOR Each a in FieldValueList('FIELD')

Script syntax and chart functions - Qlik Sense, May 2023 1468

6 Chart level scripting

LOAD '$(a)' &'-'&RecNo() as NEWFIELD AutoGenerate 2;

NEXT a

The resulting table looks like this:

NEWFIELD

one-1

one-2

two-1

two-2

three-1

three-2

Example table

If..then..elseif..else..end if
The if..then control statement is a script selection construct forcing the script execution to
follow different paths depending on one or several logical conditions.

Control statements are typically used to control the flow of the script execution. In a chart expression, use the
if conditional function instead.

Syntax:
If condition then
[statements]

{ elseif condition then
[statements] }

[else
[statements]]

end if

Since the if..then statement is a control statement and as such is ended with either a semicolon or end-of-
line, each of its four possible clauses (if..then, elseif..then, else and end if) must not cross a line boundary.

Arguments:

Argument Description

condition A logical expression which can be evaluated as True or False.

statements Any group of one or more Qlik Sense script statements.

Arguments

Example 1:

if a=1 then

Script syntax and chart functions - Qlik Sense, May 2023 1469

6 Chart level scripting

LOAD * from abc.csv;

SQL SELECT e, f, g from tab1;

end if

Example 2:

if a=1 then; drop table xyz; end if;

Example 3:

if x>0 then

LOAD * from pos.csv;

elseif x<0 then

LOAD * from neg.csv;

else

LOAD * from zero.txt;

end if

Next
The Next script keyword is used to close For loops.

Sub..end sub
The sub..end sub control statement defines a subroutine which can be called upon from a call
statement.

Syntax:
Sub name [(paramlist)] statements end sub

Arguments are copied into the subroutine and, if the corresponding actual parameter in the call statement is
a variable name, copied back out again upon exiting the subroutine.

If a subroutine has more formal parameters than actual parameters passed by a call statement, the extra
parameters will be initialized to NULL and can be used as local variables within the subroutine.

Arguments:

Argument Description

name The name of the subroutine.

paramlist A comma separated list of variable names for the formal parameters of the
subroutine. These can be used as any variable inside the subroutine.

statements Any group of one or more Qlik Sense script statements.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1470

6 Chart level scripting

Limitations:

l Since the sub statement is a control statement and as such is ended with either a semicolon or end-of-
line, each of its two clauses (sub and end sub) must not cross a line boundary.

l When you define a subroutine with Sub..end sub inside a control statement, for example if..then,
you can only call the subroutine from within the same control statement.

Example 1:

Sub INCR (I,J)

I = I + 1

Exit Sub when I < 10

J = J + 1

End Sub

Call INCR (X,Y)

Example 2: - parameter transfer

Sub ParTrans (A,B,C)

A=A+1

B=B+1

C=C+1

End Sub

A=1

X=1

C=1

Call ParTrans (A, (X+1)*2)

The result of the above will be that locally, inside the subroutine, A will be initialized to 1, B will be initialized
to 4 and C will be initialized to NULL.

When exiting the subroutine, the global variable A will get 2 as value (copied back from subroutine). The
second actual parameter “(X+1)*2” will not be copied back since it is not a variable. Finally, the global variable
C will not be affected by the subroutine call.

Switch..case..default..end switch
The switch control statement is a script selection construct forcing the script execution to
follow different paths, depending on the value of an expression.

Syntax:
Switch expression {case valuelist [statements]} [default statements] end
switch

Since the switch statement is a control statement and as such is ended with either a semicolon or
end-of-line, each of its four possible clauses (switch, case, default and end switch) must not cross a
line boundary.

Script syntax and chart functions - Qlik Sense, May 2023 1471

6 Chart level scripting

Arguments:

Argument Description

expression An arbitrary expression.

valuelist A comma separated list of values with which the value of expression will be compared.
Execution of the script will continue with the statements in the first group encountered
with a value in valuelist equal to the value in expression. Each value in valuelist may be an
arbitrary expression. If no match is found in any case clause, the statements under the
default clause, if specified, will be executed.

statements Any group of one or more Qlik Sense script statements.

Arguments

Example:

Switch I

Case 1

LOAD '$(I): CASE 1' as case autogenerate 1;

Case 2

LOAD '$(I): CASE 2' as case autogenerate 1;

Default

LOAD '$(I): DEFAULT' as case autogenerate 1;

End Switch

To
The To script keyword is used in several script statements.

6.5 Prefixes
Prefixes may be applied to applicable regular statements but never to control statements.

All script keywords can be typed with any combination of lower case and upper case characters. Field and
variable names used in the statements are however case sensitive.

Chart modifier prefixes overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Add
The Add prefix can be added to any LOAD or SELECT statement in the script to specify that it should add
records to another table. It also specifies that this statement should be run in a partial reload. The Add prefix
can also be used in a Map statement.

Add [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)
Add [Only] mapstatement

Script syntax and chart functions - Qlik Sense, May 2023 1472

6 Chart level scripting

Replace
The Replace prefix can be added to any LOAD or SELECT statement in the script to specify that the loaded
table should replace another table. It also specifies that this statement should be run in a partial reload. The
Replace prefix can also be used in a Map statement.

Replace [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)
Replace [only] mapstatement

Add
In a chart modifying context, the Add prefix is used with LOAD to append values to the HC1 table, representing
the hypercube computed by the Qlik associative engine. You can specify one or several columns. Missing
values are automatically filled by the Qlik associative engine.

Syntax:
Add loadstatement

Example:

This example adds two rows to the columns Dates and Sales from the inline statement

Add Load

x as Dates,

y as Sales

Inline

[

Dates,Sales

2001/09/1,1000

2001/09/10,-300

]

Replace
In a chart modifying context, the Replace prefix changes all values of the HC1 table with a computed value
defined by the script.

Syntax:
Replace loadstatement

Example:

This example overwrites all values in column z with the sum of x and y.

Replace Load

x+y as z

Resident HC1;

6.6 Regular statements
Regular statements are typically used for manipulating data in one way or another. These statements may be
written over any number of lines in the script and must always be terminated by a semicolon, ";".

Script syntax and chart functions - Qlik Sense, May 2023 1473

6 Chart level scripting

All script keywords can be typed with any combination of lower case and upper case characters. Field and
variable names used in the statements are however case sensitive.

Chart modifier regular statements overview
Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

LOAD
In a chart modifying context, the LOAD statement loads additional data to the hypercube from data defined in
the script, or from a previously loaded table. It is also possible to load data from analytic connections.

The LOAD statement must have either Replace or Add prefix, or it will be rejected.

Add | Replace Load [distinct] fieldlist
(
inline data [format-spec] |
resident table-label
) | extension pluginname.functionname([script] tabledescription)]
[where criterion | while criterion]
[group by groupbyfieldlist]
[order by orderbyfieldlist]

Let
The let statement is a complement to the set statement, used for defining script variables. The let statement,
in opposition to the set statement, evaluates the expression on the right side of the ' =' at script run time
before it is assigned to the variable.

Let variablename=expression

Set
The set statement is used for defining script variables. These can be used for substituting strings, paths,
drives, and so on.

Set variablename=string

Put
The Put statement is used to set some numeric value in the hypercube.

HCValue
The HCValue statement is used to retrieve values in a row of a specified column.

Load
In a chart modifying context, the LOAD statement loads additional data to the hypercube from
data defined in the script, or from a previously loaded table. It is also possible to load data from
analytic connections.

Script syntax and chart functions - Qlik Sense, May 2023 1474

6 Chart level scripting

The LOAD statement must have either Replace or Add prefix, or it will be rejected.

Syntax:
Add | Replace LOAD fieldlist
(
inline data [format-spec] |
resident table-label
) | extension pluginname.functionname([script] tabledescription)]
[where criterion | while criterion]
[group by groupbyfieldlist]
[order by orderbyfieldlist]

Script syntax and chart functions - Qlik Sense, May 2023 1475

6 Chart level scripting

Arguments:

Argument Description

fieldlist fieldlist ::= (* | field {, * | field })
A list of the fields to be loaded. Using * as a field list indicates all fields in the
table.
field ::= (fieldref | expression) [as aliasname]

The field definition must always contain a literal, a reference to an existing
field, or an expression.

fieldref ::= (fieldname |@fieldnumber |@startpos:endpos [I | U | R | B | T])
fieldname is a text that is identical to a field name in the table. Note that the field
name must be enclosed by straight double quotation marks or square brackets if
it contains e.g. spaces. Sometimes field names are not explicitly available. Then a
different notation is used:

@fieldnumber represents the field number in a delimited table file. It must be a
positive integer preceded by "@". The numbering is always made from 1 and up to
the number of fields.

@startpos:endpos represents the start and end positions of a field in a file with
fixed length records. The positions must both be positive integers. The two
numbers must be preceded by "@" and separated by a colon. The numbering is
always made from 1 and up to the number of positions. In the last field, n is used
as end position.

l If @startpos:endpos is immediately followed by the characters I or U, the
bytes read will be interpreted as a binary signed (I) or unsigned (U) integer
(Intel byte order). The number of positions read must be 1, 2 or 4.

l If @startpos:endpos is immediately followed by the character R, the bytes
read will be interpreted as a binary real number (IEEE 32-bit or 64 bit
floating point). The number of positions read must be 4 or 8.

l If @startpos:endpos is immediately followed by the character B, the bytes
read will be interpreted as a BCD (Binary Coded Decimal) numbers
according to the COMP-3 standard. Any number of bytes may be specified.

expression can be a numeric function or a string function based on one or several
other fields in the same table. For further information, see the syntax of
expressions.

as is used for assigning a new name to the field.

Arguments

Script syntax and chart functions - Qlik Sense, May 2023 1476

6 Chart level scripting

Argument Description

inline inline is used if data should be typed within the script, and not loaded from a file.
data ::= [text]

Data entered through an inline clause must be enclosed by double quotation
marks or by square brackets. The text between these is interpreted in the same
way as the content of a file. Hence, where you would insert a new line in a text file,
you should also do it in the text of an inline clause, i.e. by pressing the Enter key
when typing the script. The number of columns are defined by the first line.
format-spec ::= (fspec-item {, fspec-item })
The format specification consists of a list of several format specification items,
within brackets.

resident resident is used if data should be loaded from a previously loaded table.
table label is a label preceding the LOAD statement that created the original table.
The label should be given with a colon at the end.

extension You can load data from analytic connections. You need to use the extension
clause to call a function defined in the server-side extension (SSE) plugin, or
evaluate a script.

You can send a single table to the SSE plugin, and a single data table is returned.
If the plugin does not specify the names of the fields that are returned, the fields
will be named Field1, Field2, and so on.

Extension pluginname.functionname(tabledescription);

l Loading data using a function in an SSE plugin
tabledescription ::= (table { ,tablefield})
If you do not state table fields, the fields will be used in load order.

l Loading data by evaluating a script in an SSE plugin
tabledescription ::= (script, table { ,tablefield})

Data type handling in the table field definition

Data types are automatically detected in analytic connections. If the data has no
numeric values and at least one non-NULL text string, the field is considered as
text. In any other case it is considered as numeric.

You can force the data type by wrapping a field name with String() or Mixed().

l String() forces the field to be text. If the field is numeric, the text part of
the dual value is extracted, there is no conversion performed.

l Mixed() forces the field to be dual.

String() or Mixed() cannot be used outside extension table field definitions, and
you cannot use other Qlik Sense functions in a table field definition.

Script syntax and chart functions - Qlik Sense, May 2023 1477

6 Chart level scripting

Argument Description

where where is a clause used for stating whether a record should be included in the
selection or not. The selection is included if criterion is True.
criterion is a logical expression.

while while is a clause used for stating whether a record should be repeatedly read. The
same record is read as long as criterion is True. In order to be useful, a while
clause must typically include the IterNo() function.

criterion is a logical expression.

group by group by is a clause used for defining over which fields the data should be
aggregated (grouped). The aggregation fields should be included in some way in
the expressions loaded. No other fields than the aggregation fields may be used
outside aggregation functions in the loaded expressions.

groupbyfieldlist ::= (fieldname { ,fieldname })

order by order by is a clause used for sorting the records of a resident table before they are
processed by the load statement. The resident table can be sorted by one or more
fields in ascending or descending order. The sorting is made primarily by numeric
value and secondarily by national collation order. This clause may only be used
when the data source is a resident table.
The ordering fields specify which field the resident table is sorted by. The field can
be specified by its name or by its number in the resident table (the first field is
number 1).

orderbyfieldlist ::= fieldname [sortorder] { , fieldname [sortorder] }

sortorder is either asc for ascending or desc for descending. If no sortorder is
specified, asc is assumed.

fieldname, path, filename and aliasname are text strings representing what the
respective names imply. Any field in the source table can be used as fieldname.
However, fields created through the as clause (aliasname) are out of scope and
cannot be used inside the same load statement.

Let
The let statement is a complement to the set statement, used for defining script variables. The
let statement, in opposition to the set statement, evaluates the expression on the right side of
the ' =' at script run time before it is assigned to the variable.

Syntax:
Let variablename=expression

Script syntax and chart functions - Qlik Sense, May 2023 1478

6 Chart level scripting

Examples and results:

Example Result

Set x=3+4;

Let y=3+4;

z=$(y)+1;

$(x) will be evaluated as ' 3+4 '

$(y) will be evaluated as ' 7 '

$(z) will be evaluated as ' 8 '

Note the difference between the Set and Let statements. The Set statement
assigns the string '3+4' to the variable, whereas the Let statement evaluates
the string and assigns 7 to the variable.

Let T=now(); $(T) will be given the value of the current time.

Set
The set statement is used for defining script variables. These can be used for substituting strings, paths,
drives, and so on.

Syntax:
Set variablename=string

Example 1:

Set FileToUse=Data1.csv;

Example 2:

Set Constant="My string";

Example 3:

Set BudgetYear=2012;

Put
The put statement is used to set some numeric value in the hypercube.

Access to the columns can be done by labels. You can also access columns and rows by declaration order. See
the examples below for more details.

Syntax:
put column(position)=value

Example 1:

Access to the columns can be done by labels.

This example will set a value of 1 in the first position of the column labeled Sales.

Put Sales(1) = 1;

Script syntax and chart functions - Qlik Sense, May 2023 1479

6 Chart level scripting

Example 2:

You can access measure columns by declaration order using the #hc1.measure format for measures.

This example will set the value 1000 in the tenth position of the final sorted hypercube.

Put #hc1.measure.2(10) = 1000;

Example 3:

You can access the dimension rows by declaration order using the #hc1.dimension format for dimensions.

This example puts the value of the constant Pi in the fifth row of the third declared dimension.

Put #hc1.dimension.3(5) = Pi();

If there are no such dimensions or expressions, in value or labels, an error is returned indicating that
the column was not found. If the index for the column is out of bounds, no error is displayed.

HCValue
The HCValue function it is used to retrieve values in a row of a specified column.

Syntax:
HCValue(column,position)

Example 1:

This example returns the value at the first position of the column with label ‘Sales’.

HCValue(Sales,1)

Example 2:

This example returns the value at the tenth position of the sorted hypercube.

HCValue(#hc1.measure.2,10)

Example 3:

This example returns the value at the fifth row in the third dimension.

HCValue(#hc1.dimension.3,5)

If there are no such dimensions or expressions, in value or labels, an error is returned indicating that
the column was not found. If the index for the column is out of bounds, NULL is returned.

Script syntax and chart functions - Qlik Sense, May 2023 1480

7 QlikView functions and statements not supported in Qlik Sense

7 QlikView functions and statements not
supported in Qlik Sense

Most functions and statements that can be used in QlikView load scripts and chart expressions
are also supported in Qlik Sense, but there are some exceptions, as described here.

7.1 Script statements not supported in Qlik Sense

Statement Comments

Command Use SQL instead.

InputField

QlikView script statements that are not supported in Qlik Sense

7.2 Functions not supported in Qlik Sense
This list describes QlikView script and chart functions that are not supported in Qlik Sense.

l GetCurrentField
l GetExtendedProperty
l Input
l InputAvg
l InputSum
l MsgBox
l NoOfReports
l ReportComment
l ReportId
l ReportName
l ReportNumber

7.3 Prefixes not supported in Qlik Sense
This list describes QlikView prefixes that are not supported in Qlik Sense.

l Bundle
l Image_Size
l Info

Script syntax and chart functions - Qlik Sense, May 2023 1481

8 Functions and statements not recommended in Qlik Sense

8 Functions and statements not recommended in
Qlik Sense

Most functions and statements that can be used in QlikView load scripts and chart expressions
are also supported in Qlik Sense, but some of them are not recommended for use in Qlik Sense.
There are also functions and statements available in previous versions of Qlik Sense that have
been deprecated.

For compatibility reasons they will still work as intended, but it is advisable to update the code according to
the recommendations in this section, as they may be removed in coming versions.

8.1 Script statements not recommended in Qlik Sense
This table contains script statements that are not recommended for use in Qlik Sense.

Statement Recommendation

Command Use SQL instead.

CustomConnect Use Custom Connect instead.

Script statements that are not recommended

8.2 Script statement parameters not recommended in Qlik
Sense

This table describes script statement parameters that are not recommended for use in Qlik Sense.

Statement Parameters

Buffer Use Incremental instead of:

l Inc (not recommended)
l Incr (not recommended)

Script statement parameters that are not recommended

Script syntax and chart functions - Qlik Sense, May 2023 1482

8 Functions and statements not recommended in Qlik Sense

Statement Parameters

LOAD The following parameter keywords are generated by QlikView file transformation wizards.
Functionality is retained when data is reloaded, but Qlik Sense does not provide guided
support/wizards for generating the statement with these parameters:

l Bottom
l Cellvalue
l Col
l Colmatch
l Colsplit
l Colxtr
l Compound
l Contain
l Equal
l Every
l Expand
l Filters
l Intarray
l Interpret
l Length
l Longer
l Numerical
l Pos
l Remove
l Rotate
l Row
l Rowcnd
l Shorter
l Start
l Strcnd
l Top
l Transpose
l Unwrap
l XML: XMLSAX and Pattern is Path

8.3 Functions not recommended in Qlik Sense
This table describes script and chart functions that are not recommended for use in Qlik Sense.

Script syntax and chart functions - Qlik Sense, May 2023 1483

8 Functions and statements not recommended in Qlik Sense

Function Recommendation

NumAvg

NumCount

NumMax

NumMin

NumSum

Use Range functions instead.

Range functions (page 1290)

Color()

QliktechBlue

QliktechGray

Use other color functions instead. QliktechBlue() can be replaced by RGB(8, 18, 90)
and QliktechGray can be replaced by RGB(158, 148, 137) to get the same colors.

Color functions (page 531)

QlikViewVersion Use EngineVersion instead.

EngineVersion (page 1439)

ProductVersion Use EngineVersion instead.

EngineVersion (page 1439)

QVUser

Year2Date Use YearToDate instead.

Vrank Use Rank instead.

WildMatch5 Use WildMatch instead.

Functions that are not recommended

ALL qualifier
In QlikView, the ALL qualifier may occur before an expression. This is equivalent to using {1} TOTAL. In such a
case the calculation will be made over all the values of the field in the document, disregarding the chart
dimensions and current selections. The same value is always returned regardless of the logical state in the
document. If the ALL qualifier is used, a set expression cannot be used, since the ALL qualifier defines a set by
itself. For legacy reasons, the ALL qualifier will still work in this version of Qlik Sense, but may be removed in
coming versions.

Script syntax and chart functions - Qlik Sense, May 2023 1484

	1 What is Qlik Sense?
	1.1 What can you do in Qlik Sense?
	1.2 How does Qlik Sense work?
	The app model
	The associative experience
	Collaboration and mobility

	1.3 How can you deploy Qlik Sense?
	Qlik Sense Desktop
	Qlik Sense Enterprise

	1.4 How to administer and manage a Qlik Sense site
	1.5 Extend Qlik Sense and adapt it for your own purposes
	Building extensions and mashups
	Building clients
	Building server tools
	Connecting to other data sources

	2 Script syntax overview
	2.1 Introduction to script syntax
	2.2 What is Backus-Naur formalism?

	2 Script statements and keywords
	2.3 Script control statements
	Script control statements overview
	Call
	Do..loop
	End
	Exit
	Exit script
	For..next
	For each..next
	If..then..elseif..else..end if
	Next
	Sub..end sub
	Switch..case..default..end switch
	To

	2.4 Script prefixes
	Script prefixes overview
	Add
	Buffer
	Concatenate
	Crosstable
	First
	Generic
	Hierarchy
	HierarchyBelongsTo
	Inner
	IntervalMatch
	Join
	Keep
	Left
	Mapping
	Merge
	NoConcatenate
	Only
	Outer
	Partial reload
	Replace
	Right
	Sample
	Semantic
	Unless
	When

	2.5 Script regular statements
	Script regular statements overview
	Alias
	AutoNumber
	Binary
	Comment field
	Comment table
	Connect
	Declare
	Derive
	Direct Query
	Directory
	Disconnect
	Drop
	Drop table
	Execute
	Field/Fields
	FlushLog
	Force
	From
	Load
	Let
	Loosen Table
	Map
	NullAsNull
	NullAsValue
	Qualify
	Rem
	Rename
	Search
	Section
	Select
	Set
	Sleep
	SQL
	SQLColumns
	SQLTables
	SQLTypes
	Star
	Store
	Table/Tables
	Tag
	Trace
	Unmap
	Unqualify
	Untag

	2.6 Working directory
	Qlik Sense Desktop working directory
	Qlik Sense working directory

	2 Working with variables in the data load editor
	2.7 Overview
	2.8 Defining a variable
	2.9 Deleting a variable
	2.10 Loading a variable value as a field value
	2.11 Variable calculation
	2.12 System variables
	System variables overview
	CreateSearchIndexOnReload
	HidePrefix
	HideSuffix
	Include
	OpenUrlTimeout
	StripComments
	Verbatim

	2.13 Value handling variables
	Value handling variables overview
	NullDisplay
	NullInterpret
	NullValue
	OtherSymbol

	2.14 Number interpretation variables
	Currency formatting
	Number formatting
	Time formatting
	BrokenWeeks
	DateFormat
	DayNames
	DecimalSep
	FirstWeekDay
	LongDayNames
	LongMonthNames
	MoneyDecimalSep
	MoneyFormat
	MoneyThousandSep
	MonthNames
	NumericalAbbreviation
	ReferenceDay
	ThousandSep
	TimeFormat
	TimestampFormat

	2.15 Direct Discovery variables
	Direct Discovery system variables
	Teradata query banding variables
	Direct Discovery character variables
	Direct Discovery number interpretation variables

	2.16 Error variables
	Error variables overview
	ErrorMode
	ScriptError
	ScriptErrorCount
	ScriptErrorList

	2 Script expressions
	3 Chart expressions
	3.1 Defining the aggregation scope
	3.2 Set analysis
	Set expressions
	Examples
	Natural sets
	Set identifiers
	Set operators
	Set modifiers
	Inner and outer set expressions
	Tutorial - Creating a set expression
	Syntax for set expressions

	3.3 General syntax for chart expressions
	3.4 General syntax for aggregations

	4 Operators
	4.1 Bit operators
	4.2 Logical operators
	4.3 Numeric operators
	4.4 Relational operators
	4.5 String operators
	&
	like

	5 Script and chart functions
	5.1 Analytic connections for server-side extensions (SSE)
	5.2 Aggregation functions
	Using aggregation functions in a data load script
	Using aggregation functions in chart expressions
	How aggregations are calculated
	Aggregation of key fields
	Basic aggregation functions
	Counter aggregation functions
	Financial aggregation functions
	Statistical aggregation functions
	Statistical test functions
	String aggregation functions
	Synthetic dimension functions
	Nested aggregations

	5.3 Aggr - chart function
	Examples: Chart expressions using Aggr

	5.4 Color functions
	Pre-defined color functions
	ARGB
	RGB
	HSL

	5.5 Conditional functions
	Conditional functions overview
	alt
	class
	coalesce
	if
	match
	mixmatch
	pick
	wildmatch

	5.6 Counter functions
	Counter functions overview
	autonumber
	autonumberhash128
	autonumberhash256
	IterNo
	RecNo
	RowNo
	RowNo - chart function

	5.7 Date and time functions
	Date and time functions overview
	addmonths
	addyears
	age
	converttolocaltime
	day
	dayend
	daylightsaving
	dayname
	daynumberofquarter
	daynumberofyear
	daystart
	firstworkdate
	GMT
	hour
	inday
	indaytotime
	inlunarweek
	inlunarweektodate
	inmonth
	inmonths
	inmonthstodate
	inmonthtodate
	inquarter
	inquartertodate
	inweek
	inweektodate
	inyear
	inyeartodate
	lastworkdate
	localtime
	lunarweekend
	lunarweekname
	lunarweekstart
	makedate
	maketime
	makeweekdate
	minute
	month
	monthend
	monthname
	monthsend
	monthsname
	monthsstart
	monthstart
	networkdays
	now
	quarterend
	quartername
	quarterstart
	second
	setdateyear
	setdateyearmonth
	timezone
	today
	UTC
	week
	weekday
	weekend
	weekname
	weekstart
	weekyear
	year
	yearend
	yearname
	yearstart
	yeartodate

	5.8 Exponential and logarithmic functions
	5.9 Field functions
	Count functions
	Field and selection functions
	GetAlternativeCount - chart function
	GetCurrentSelections - chart function
	GetExcludedCount - chart function
	GetFieldSelections - chart function
	GetNotSelectedCount - chart function
	GetObjectDimension - chart function
	GetObjectField - chart function
	GetObjectMeasure - chart function
	GetPossibleCount - chart function
	GetSelectedCount - chart function

	5.10 File functions
	File functions overview
	Attribute
	ConnectString
	FileBaseName
	FileDir
	FileExtension
	FileName
	FilePath
	FileSize
	FileTime
	GetFolderPath
	QvdCreateTime
	QvdFieldName
	QvdNoOfFields
	QvdNoOfRecords
	QvdTableName

	5.11 Financial functions
	Financial functions overview
	BlackAndSchole
	FV
	nPer
	Pmt
	PV
	Rate

	5.12 Formatting functions
	Formatting functions overview
	ApplyCodepage
	Date
	Dual
	Interval
	Money
	Num
	Time
	Timestamp

	5.13 General numeric functions
	General numeric functions overview
	Combination and permutation functions
	Modulo functions
	Parity functions
	Rounding functions
	BitCount
	Ceil
	Combin
	Div
	Even
	Fabs
	Fact
	Floor
	Fmod
	Frac
	Mod
	Odd
	Permut
	Round
	Sign

	5.14 Geospatial functions
	Geospatial functions overview
	GeoAggrGeometry
	GeoBoundingBox
	GeoCountVertex
	GeoGetBoundingBox
	GeoGetPolygonCenter
	GeoInvProjectGeometry
	GeoMakePoint
	GeoProject
	GeoProjectGeometry
	GeoReduceGeometry

	5.15 Interpretation functions
	Interpretation functions overview
	Date#
	Interval#
	Money#
	Num#
	Text
	Time#
	Timestamp#

	5.16 Inter-record functions
	Row functions
	Column functions
	Field functions
	Pivot table functions
	Inter-record functions in the data load script
	Above - chart function
	Below - chart function
	Bottom - chart function
	Column - chart function
	Dimensionality - chart function
	Exists
	FieldIndex
	FieldValue
	FieldValueCount
	LookUp
	NoOfRows - chart function
	Peek
	Previous
	Top - chart function
	SecondaryDimensionality - chart function
	After - chart function
	Before - chart function
	First - chart function
	Last - chart function
	ColumnNo - chart function
	NoOfColumns - chart function

	5.17 Logical functions
	5.18 Mapping functions
	Mapping functions overview
	ApplyMap
	MapSubstring

	5.19 Mathematical functions
	5.20 NULL functions
	NULL functions overview
	EmptyIsNull
	IsNull
	NULL

	5.21 Range functions
	Basic range functions
	Counter range functions
	Statistical range functions
	Financial range functions
	RangeAvg
	RangeCorrel
	RangeCount
	RangeFractile
	RangeIRR
	RangeKurtosis
	RangeMax
	RangeMaxString
	RangeMin
	RangeMinString
	RangeMissingCount
	RangeMode
	RangeNPV
	RangeNullCount
	RangeNumericCount
	RangeOnly
	RangeSkew
	RangeStdev
	RangeSum
	RangeTextCount
	RangeXIRR
	RangeXNPV

	5.22 Relational functions
	Ranking functions
	Clustering functions
	Time series decomposition functions
	Rank - chart function
	HRank - chart function
	Optimizing with k-means: A real-world example
	KMeans2D - chart function
	KMeansND - chart function
	KMeansCentroid2D - chart function
	KMeansCentroidND - chart function
	STL_Trend - chart function
	STL_Seasonal - chart function
	STL_Residual - chart function
	Tutorial - Time series decomposition in Qlik Sense

	5.23 Statistical distribution functions
	Statistical distribution functions overview
	BetaDensity
	BetaDist
	BetaInv
	BinomDist
	BinomFrequency
	BinomInv
	ChiDensity
	ChiDist
	ChiInv
	FDensity
	FDist
	FInv
	GammaDensity
	GammaDist
	GammaInv
	NormDist
	NormInv
	PoissonDist
	PoissonFrequency
	PoissonInv
	TDensity
	TDist
	TInv

	5.24 String functions
	String functions overview
	Capitalize
	Chr
	Evaluate
	FindOneOf
	Hash128
	Hash160
	Hash256
	Index
	IsJson
	JsonGet
	JsonSet
	KeepChar
	Left
	Len
	LevenshteinDist
	Lower
	LTrim
	Mid
	Ord
	PurgeChar
	Repeat
	Replace
	Right
	RTrim
	SubField
	SubStringCount
	TextBetween
	Trim
	Upper

	5.25 System functions
	System functions overview
	EngineVersion
	InObject - chart function
	IsPartialReload
	ObjectId - chart function
	ProductVersion
	StateName - chart function

	5.26 Table functions
	Table functions overview
	FieldName
	FieldNumber
	NoOfFields
	NoOfRows

	5.27 Trigonometric and hyperbolic functions

	6 File system access restriction
	6.1 Security aspects when connecting to file based ODBC and OLE DB data connections
	6.2 Limitations in standard mode
	System variables
	Regular script statements
	Script control statements
	File functions
	System functions

	6.3 Disabling standard mode
	Qlik Sense
	Qlik Sense Desktop

	6 Chart level scripting
	6.4 Control statements
	Chart modifier control statements overview
	Call
	Do..loop
	End
	Exit
	Exit script
	For..next
	For each..next
	If..then..elseif..else..end if
	Next
	Sub..end sub
	Switch..case..default..end switch
	To

	6.5 Prefixes
	Chart modifier prefixes overview
	Add
	Replace

	6.6 Regular statements
	Chart modifier regular statements overview
	Load
	Let
	Set
	Put
	HCValue

	7 QlikView functions and statements not supported in Qlik Sense
	7.1 Script statements not supported in Qlik Sense
	7.2 Functions not supported in Qlik Sense
	7.3 Prefixes not supported in Qlik Sense

	8 Functions and statements not recommended in Qlik Sense
	8.1 Script statements not recommended in Qlik Sense
	8.2 Script statement parameters not recommended in Qlik Sense
	8.3 Functions not recommended in Qlik Sense
	ALL qualifier

