Script syntax and chart functions

Qlik Sense®
August 2022
Copyright © 1993-2023 QlikTech International AB. All rights reserved.

o0

HELP.QLIK.COM Qlik @

© 2023 QlikTech International AB. All rights reserved. All company and/or product names may be trade
names, trademarks and/or registered trademarks of the respective owners with which they are associated.

Contents

1 Whatis QlIK SeNSe? 15
1.1 Whatcanyoudoin Qlik Sense? 15
1.2 How does QIik SENse WOrK? 15

The app model .. 15
The associative eXperiencCe 15
Collaboration and mobility 15
1.3 How canyoudeploy Qlik Sense? 15
Qlik Sense DeskIOp 16
QIIK SeNSE ENErpriSe ... 16
1.4 How to administer and manage a Qlik Sense Siteoooi i 16
1.5 Extend Qlik Sense and adapt it for yourown purposes ... 16
Building extensions and mashups ... 16
BUIlding Clients ... 16
Building servertools 16
Connecting to otherdata sourCes 16

2 Script Syntax OVerVIeW 17
2.1 Introduction to SCript SYNtaX 17
2.2 Whatis Backus-Naur formalism? 17

2 Scriptstatements and Keywords ... 19
2.3 Script control StatemMeNts 19

Script control statements overview ... 19
Call 21
D0, 00D . 22
BN 23
B Xt 23
EXIt STt L 23
F O Xt 24
Foreach..nexXt ... 25
If.then..elseif..else..end if 28
N Xt 29
Sub..end sUb 29
Switch..case..default..end switch 30
O 31
2 4 SCriPt PrefiXeS 31
Script prefixes OVerview ... 31
A 35
BUI O 37
CONCAtENAte 38
Crosstable ... 39
ISt 49
GBNEIIC ..o 50
HiErarCnY 56
HierarchyBelongsT O 58
BT 60
IntervalMatCh 61
JOIN 64
KD 73

Script syntax and chart functions - Qlik Sense, August 2022 3

Contents

LTt 74
I aDDING 76
BTG 77
NOCONCateNate .. 82
ONlY 82
U 82
Partial reload 83
R aCE o 86
RGNt 87
M 89
SeMANYIC . 89
UNISS o 93
VN 94
2.5 Scriptregular Statements 94
Script regular statements overview ... 94
Al 101
AULONUMID T 101
BN AN 104
Commentfield 106
Commenttable 106
CONNE Lt 107
D EClare 109
DIV . 111
DIl O ONY 112
IS CONNEC 113
D O 114
DO tablE . 115
EXECULE . 116
Fleld/Fields .. 117
FIUSHL OG o 117
FOrCe 117
oM 119
L0ad . 119
Lt 136
Loosen Table ... 136
Va0 137
NUIASNUIL 138
NUILASVaAIUE 138
QALY 139
R M 140
ReNaME 141
ST 142
SOt ON . 143
SlECt 143
SO 146
S OO 146
SO 147
SQLCOIUMNS 147

Script syntax and chart functions - Qlik Sense, August 2022 4

Contents

SQLTaAbIES .. 148
SO T Y P S o 149

S A 150

S O T 151
Table/Tables ... 153
A 153
TRAC 154
UMD o 154
UNQUAliTY 155

U a0 155
2.6 WoOrKing direC Oy .. 156
Qlik Sense Desktop working directory ... 156
Qlik Sense working direCtOrY 156

2 Working with variables inthe dataload editor 157
2.7 OV IV W 157
2.8 Defining avariable 157
2.9 Deletingavariable ... 158
2.10 Loading avariable valueas afieldvalue ... 158
2.171 Variable calculation 158
212 Systemvariables 159
System variables OVervieW 159
CreateSearchindexOnReload 162
HIdePrefiX 162
HIdeSUMiX L. 163
INCIUAE 163
OpPeNUI TIMEOUL . 164
StiPC OMM NS 164

N erDatim 165
2.13 Value handling variables ... 165
Value handling variables overview 165
NUI DI SPlaY ... 166
NUIIN O POt 166
NUIV IUE 166
OtherSyY MOl 167
2.14 Number interpretation variables 167
CurrenCy formatting 167
NUmMber formatting ... 168
TImMe fOrmMIattiNg .. 168
BrokenWeeks 169
DateF OrmMat 170
DAY NS 176
DECIMaAl S D .. 181
First WK aY ... 183
LongDayNamMIES . 187
LongMoONthNamMES .. 190
MoNEYDECIMaAlS D .. 194
MONEYF OrmMat 194

Script syntax and chart functions - Qlik Sense, August 2022 5

Contents

MONEY ThOUSANASED ... 194
MoNnthNaMEs . 194
NumericalAbbreviation 200
RefereNCEDaY ... o 200
TROUSANA S D ..o 205
TIMEF OrMIat 205
TimestampFormat 205
2.15 Direct Discovery variables ... 209
Direct Discovery system variables 209
Teradata query banding variables 210
Direct Discovery character variables ... 210
Direct Discovery number interpretation variables ... 211
216 Errorvaniables ... 212
Error variables Overview 212
ErrorMOde 213
SO D I O 213
S ETOrC OUNT 214
SO I O LISt 215

2 SCHIPt EXPIrESSIONS 216
3 CNaMt EXPIESSIONS ... 217
3.1 Defining the aggregation SCOPEo 217
3.2 St analy SIS .. 219
Sl O PSS S ONS .. 220
EXaMIDIES 221
Natural Sets ... 221
Setidentifiers 223
St O A O S . 224
Setmodifiers 225
Inner and outer Set EXPreSSIONS 247
Tutorial - Creating @ Set eXPreSSiON 248
Syntax for St @XPreSSIONS ... 258
3.3 General syntax for chart eXpressions 258
3.4 General syntax foraggregations 259
A OO At OrS .. o 260
4 Bit OPEIAtOrS . . 260
4.2 Logical OperatOrS .. 261
4.3 NUMEBHIC OPEIatONS ... 261
4.4 Relational Operators 262
4.5 SHriNG OPOIatOrS . 263
B 264
K 264

5 Scriptand chart functions ... 265
5.1 Analytic connections for server-side extensions (SSE)cccc. 265
5.2 Aggregation fUNCHONS 265
Using aggregation functionsinadataload script 266
Using aggregation functions in chartexpressions .. 266

Script syntax and chart functions - Qlik Sense, August 2022 6

Contents

How aggregations are calculated ... 266
Aggregation of Key flelds 266
Basic aggregation funClioNs 267
Counter aggregation funCtioNS 290
Financial aggregation fUNCtiONS 306
Statistical aggregation fUNCHIONS 318
Statistical test functions ... 382
String aggregation fuNCHiONS 446
Synthetic dimension fUNCIONS 458
Nested aggregations 461
5.3 Aggr-chart funCtion 462
Examples: Chart expressions USING AQQr ... 464
5.4 Color funCtioNs 468
Pre-defined color functions 470
ARG B 471
R G 472
H L 473
5.5 Conditional functions 474
Conditional funCtions OVEIVIEW ... 474
Al 475
ClaSS 476
COAIES e . 478
1 SRR P RS PREUPRRPPR 479
M O 482
MIXMAYCN L 485
DICK 488
WIldMatCR 489
5.6 Counter funCtions 492
Counter funNCliONS OVEIVIEW 492
AUIONUMID T 493
autonumberhashl 28 . 496
autonumberhash256 .. 498
RErNO 500
RECNO Ll 501
ROWNO 502
RowNo - chart function 503
5.7 Date and time fuNCHiONS 505
Date and time functions OVervieW 506
addmonths 514
AAAY CAIS 515
A0 515
converttolocaltime 517
JaY 520
Y N 526
daylightsaving 534
JaYNAME 534
daynumberofqQUamEr 536
AaynNUMbErOfY ar . 543

Script syntax and chart functions - Qlik Sense, August 2022 7

Contents

Ay S At 549
AP StWOTKAATE . . 551
GV T 5583
O 553
Y 556
INAY O M 565
INTUN AWK 575
INUNAIWEEKIOate .. . 577
INMIONEN 579
INMONINS 587
INMmonthstodate 590
inmonthtodate 592
N QUAI BT 594
INQUAN e OAAte . 596
WK . 609
INnweektodate 611
Y QAT 625
YA Ot e 627
lastworkdate 639
lOCaltime . 641
lunarweekend 642
UnarweeKkname . 643
lunarweekstar . 645
MaKedate . .. 647
MAaKEtIME 649
MakeweeKdate 650
U 658
MONYN 659
MONtheNd . 665
MONthNamMe 666
MONtSENd . 674
MONthSNAME 676
MONTNS S At 689
MO NS At 691
e WO KAAY S . 693
DO 695
QUAREIENA 696
QUANEINAMIE . 698
QUAN TS AN 700
SECONA .. 702
SO A Y Car . 702
setdateyearmonth 704
HMEZONE 706
B0 o 706
UT C 707
WK 707
WEEKAAY . 709
WEEKEN L. 712

Script syntax and chart functions - Qlik Sense, August 2022 8

Contents

WEEKNAMIE 714
WK At 728
WK Al .. 730
YA 731
YEATENA . 731
YEAIMAIMIE ... i 743
YA AT 756
yeartodate | 767
5.8 Exponential and logarithmic functions 769
5.9 Field fUNCHiONS 770
CoUuNnt fUNCHIONS ... 770
Field and selection funCtioNs 771
GetAlternativeCount - chart function ... 771
GetCurrentSelections - chart function ... 772
GetExcludedCount - chartfunction 774
GetFieldSelections - chart function 775
GetNotSelectedCount - chart function 777
GetObjectDimension - chartfunction ... 778
GetObjectField - chart funCtion 778
GetObjectMeasure - chart funCtion 779
GetPossibleCount - chart function ... 780
GetSelectedCount - chartfunction ... 781
5.10 File fUNCHiONS 782
File functions overview 782
AN DU 784
CONNEC S NG .. 792
FileBaseName ... 792
FIle i 792
FileEXtensioN . 793
FileName 793
FilePath 793
FileSizZe 794
FileTime 795
GetFolderPath 796
QudCreateTime . 797
QAR ldNaME . 797
QVANOOSFIeIdS ... 798
QVANOOTRECOIAS 799
QudTableName ... 800
5.11 Financial functions 801
Financial funCtioNS OVeIVIEW 801
BlackAndSchole 802
N 803
NPT 804
PNt 805
PN 806
Rt 806
5.12 Formatting funCliONS 807

Script syntax and chart functions - Qlik Sense, August 2022 9

Contents

Formatting funNCtioNs OVerVIEW 808
APPIY COdEPaGE ..o 809
DAt 810
DUAl L 811
I ErVal 813
ION Y 814
NUM 815
T 818
T S M . 819
5.13 General numeric fUNCLONS 820
General numeric funCtions OVEIVIEW 820
Combination and permutation functions ... 821
Modulo fUNCHiONS . . 821
Parity FUNCHONS 822
Rounding fUNCHONS ... 822
BitC OUNE 822
Gl 823
COMDIN 824
DIV 824
BV N 825
FabS 825
FaCt 826
Bl 826
oA 827
A 828
MOd 829
Odd 830
P erMUL Ll 830
ROUNG 831
SN 832
5.14 Geospatial fuNClioNS 833
Geospatial fuNCtioNS OVEIVIEW 833
GEOAGAIrGEOM Y . 835
GEeOBOUNAINGBOX 836
GeOCOUNIV X ... 836
GeoGetBoUuNdINGBOX ... 837
GeoGetPolygoONC N T 837
GeOoINVPIOJECtGEOMETY .. 838
GeoMakePoiNt 839
GO O O 839
GEOPIOJEC G EOM Y . 840
GEeOREdUCEGEOMEITY .. 840
5.15 Interpretation funCtioNs 841
Interpretation funCtions OVeIrVIEW 842
DAt 843
IterVall 844
O Y 845
NUE 846

Script syntax and chart functions - Qlik Sense, August 2022 10

Contents

T Xt 847
TN 847
TS aAMIDE 848
5.16 Inter-record fUNCHIONS 849
ROW fUNCHONS 849
Column fUNCHIONS .. . 850
Field funCtions 851
Pivottable functions 851
Inter-record functions inthe dataload script ... 852
Above - chartfunction 853
Below - chartfunction 857
Bottom - chartfunction 860
Column - chart function 865
Dimensionality - chart function 867
XISt 868
Fieldindex ...l 872
FieldValue . 873
FieldValueCount 875
LOOKU D 876
NOOfRoOWS - chart fUNCtioN 879
PO 880
Pl EVIOUS . 887
Top - Chart fUNCHON L. 889
SecondaryDimensionality - chartfunction 893
After - chart fUNCHON L. 893
Before - chartfunction 894
First-chartfunction 895
Last-chartfunction 896
ColumnNo - chartfunction 897
NoOfColumns - chart funCtion 897
5.17 Logical fuNCliONS 898
5.18 Mapping fUNCHONS 899
Mapping fUNCLIONS OVEIVIEW 899
AP YV aD 899
Map S UD S NG . 901
5.19 Mathematical functions 903
5.20 NULL fuNCtiONS 904
NULL funCtionS OVEIVIEW i 904
EmMpPtyISNUIl L 904
ISNUIL 905
NUL L 906
5,21 Range fUNCHiONS .. . 907
Basic range fuNCHiONS 907
Counter range fUNCHIONS 908
Statistical range fuNCliONS 908
Financial range fUNCHiONS ... 909
RaANGEAVG 909
RaNGE O el . 912

Script syntax and chart functions - Qlik Sense, August 2022 11

Contents

RanNgeCOUNt .. 914
RangeFractile 916
RaNGeIR R 918
RanNgeKUOSIS 919
RaNgEeMaX .. 920
RangeMaxSting 922
RaNGEeMIN 924
RangeMinString 926
RangeMissingCount 927
RangeMoOde .. 929
RaNGEN PV 931
RangeNullCouNnt .. . 932
RangeNumericCOUNt 933
RaNgeONIY 935
RaANGE S K OW 936
RaNge S eV .. 937
RaNge S UM 938
RangeTextCouUNt ... 941
RanNgeXIR R 942
RanNgeXN P 943
5.22 Ranking and clustering funCtions ... 944
Ranking functions in chamts 944
Clustering functions in Charts 945
Rank - chartfunction 946
HRank - chart function 949
Optimizing with k-means: Areal-world example 951
KMeans2D - chart funCtion 960
KMeansND - chart fUNCtiON 975
KMeansCentroid2D - chart function 990
KMeansCentroidND - chartfunction 991
5.23 Statistical distribution functions 992
Statistical distribution functions overview ... 992
CHID ST 994
CHIINV 994
D ST 995
FIN 996
NORM I ST 996
NORMINV 997
T ST 998
TINV 999
5,24 String fUNCHIONS .. 999
String fUNCHONS OVEIVIEW 1000
Capitalize .. 1003
CNr 1004
Evaluate .l 1004
FINdONeOS . 1005
Hash 28 1006
Hash 00 1007

Script syntax and chart functions - Qlik Sense, August 2022 12

Contents

Hash256 1008
X 1009
LSS ON 1010
JSON Gt 1011
JSON S Ot 1012
KB Al 1013
Lt 1014
LN 1015
LevenshteinDist 1016
O T 1017
LT M 1018
M 1019
O 1020
PUIrGE Al 1021
REDEaAt 1022
REDIaCE o 1023
RGNt 1024
R 1025
SUDF I . 1026
SUDSINGC OUNT 1029
TexXtBetWE N 1030
TN 1031

U DD 1032
5.25 System fUNCHONS ... 1033
System fUNCHONS OVEIVIEW 1033
ENgiNeV OISO 1035
IsPartialReloadl 1035
ProductV ersioN ... 1035
StateName - chartfunction 1035
5.26 Table funCtions L 1036
Table functions Overview 1036
FleldName 1038
FleldNUM DT 1038
NOOTFI IAS .. 1039
NOOTROWS . 1039
5.27 Trigonometric and hyperbolic functions 1040
6 File system accessrestriction 1043
6.1 Security aspects when connecting to file based ODBC and OLE DB data connections . 1043
6.2 Limitations instandard mode 1043
System variables 1043
Regular script statements 1045
Script control statements 1046
File fUNCHONS . .. 1046
SYSteM fUNCHONS . . 1049
6.3 Disabling standard mode 1049
QUK SENSE .. 1049
QUK SENSE DESKIODo 1049

Script syntax and chart functions - Qlik Sense, August 2022 13

Contents

6 Chartlevel scripting ... 1051
6.4 Control statements 1051
Chart modifier control statements overview ... 1051
Call 1053
0. 00D 1054
BN 1054
it 1054
Xt S Dt 1054

F O Xt 1055
Foreach..next 1056
If.then..elseif..else..end if 1059

N Xt 1060
Sub..end sUb 1060
Switch..case..default..end switch ... 1061
O 1062
6.5 PrefiXes .l 1062
Chart modifier prefixes OVervieW 1062
A 1063
REDIACE ... 1063
6.6 Regular statements 1063
Chart modifier regular statements overview ... 1064
L0ad . 1064
Lt 1068
St 1069
UL 1069
HOValUe 1070

7 QlikView functions and statements not supportedin Qlik Sense 1071
7.1 Script statements not supported in Qlik Sense ... 1071
7.2 Functions not supported in Qlik Sense 1071
7.3 Prefixes not supported in Qlik Sense ... 1071
8 Functions and statements not recommendedin QlikSense 1072
8.1 Script statements not recommended in Qlik Sense ... 1072
8.2 Script statement parameters not recommended in Qlik Sense 1072
8.3 Functions not recommended in Qlik Sense ... 1073
ALL QUi 1074

Script syntax and chart functions - Qlik Sense, August 2022 14

1 Whatis Qlik Sense?

1 What is Qlik Sense?

Qlik Sense is a platform for data analysis. With Qlik Sense you can analyze data and make data
discoveries on your own. You can share knowledge and analyze data in groups and across organizations.
Qlik Sense lets you ask and answer your own questions and follow your own paths to insight. Qlik Sense
enables you and your colleagues to reach decisions collaboratively.

1.1 What can you do in Qlik Sense?

Most Business Intelligence (BI) products can help you answer questions that are understood in advance.
But what about your follow-up questions? The ones that come after someone reads your report or sees
your visualization? With the Qlik Sense associative experience, you can answer question after question
after question, moving along your own path to insight. With Qlik Sense you can explore your data freely,
with just clicks, learning at each step along the way and coming up with next steps based on earlier
findings.

1.2 How does Qlik Sense work?

Qlik Sense generates views of information on the fly for you. Qlik Sense does not require predefined and
static reports or you being dependent on other users - you just click and learn. Every time you click, Qlik
Sense instantly responds, updating every Qlik Sense visualization and view in the app with a newly
calculated set of data and visualizations specific to your selections.

The app model

Instead of deploying and managing huge business applications, you can create your own Qlik Sense apps
that you can reuse, modify and share with others. The app model helps you ask and answer the next
question on your own, without having to go back to an expert for a new report or visualization.

The associative experience

Qlik Sense automatically manages all the relationships in the data and presents information to you using a
green/white/gray metaphor. Selections are highlighted in green, associated data is represented in white,
and excluded (unassociated) data appears in gray. This instant feedback enables you to think of new
questions and continue to explore and discover.

Collaboration and mobility

Qlik Sense further enables you to collaborate with colleagues no matter when and where they are located.
All Qlik Sense capabilities, including the associative experience and collaboration, are available on mobile
devices. With Qlik Sense, you can ask and answer your questions and follow-up questions, with your
colleagues, wherever you are.

1.3 How can you deploy Qlik Sense?

There are two versions of Qlik Sense to deploy, Qlik Sense Desktop and Qlik Sense Enterprise.

Script syntax and chart functions - Qlik Sense, August 2022 15

1 Whatis Qlik Sense?

Qlik Sense Desktop

This is an easy-to-install single user version that is typically installed on a local computer.

Qlik Sense Enterprise

This version is used to deploy Qlik Sense sites. A site is a collection of one or more server machines
connected to a common logical repository or central node.

1.4 How to administer and manage a Qlik Sense site

With the Qlik Management Console you can configure, manage and monitor Qlik Sense sites in an easy
and intuitive way. You can manage licenses, access and security rules, configure nodes and data source
connections and synchronize content and users among many other activities and resources.

1.5 Extend Qlik Sense and adapt it for your own purposes
Qlik Sense provides you with flexible APIs and SDKSs to develop your own extensions and adapt and

integrate Qlik Sense for different purposes, such as:

Building extensions and mashups

Here you can do web development using JavaScript to build extensions that are custom visualization in
Qlik Sense apps, or you use a mashups APlIs to build websites with Qlik Sense content.

Building clients

You can build clients in .NET and embed Qlik Sense objects in your own applications. You can also build
native clients in any programming language that can handle WebSocket communication by using the Qlik
Sense client protocol.

Building server tools

With service and user directory APIs you can build your own tool to administer and manage Qlik Sense
sites.

Connecting to other data sources

Create Qlik Sense connectors to retrieve data from custom data sources.

Script syntax and chart functions - Qlik Sense, August 2022 16

2 Script syntax overview

2 Script syntax overview

2.1 Introduction to script syntax

In a script, the name of the data source, the names of the tables, and the names of the fields included in the
logic are defined. Furthermore, the fields in the access rights definition are defined in the script. A script
consists of a number of statements that are executed consecutively.

The Qlik Sense command line syntax and script syntax are described in a notation called Backus-Naur
Formalism, or BNF code.

The first lines of code are already generated when a new Qlik Sense file is created. The default values of
these number interpretation variables are derived from the regional settings of the OS.

The script consists of a number of script statements and keywords that are executed consecutively. All
script statements must end with a semicolon, ";".

You can use expressions and functions in the LOAD-statements to transform the data that has been
loaded.

For a table file with commas, tabs or semicolons as delimiters, a LOAD-statement may be used. By default
a LOAD-statement will load all fields of the file.

General databases can be accessed through ODBC or OLE DBdatabase connectors. . Here standard SQL
statements are used. The SQL syntax accepted differs between different ODBC drivers.

Additionally, you can access other data sources using custom connectors.

2.2 What is Backus-Naur formalism?

The Qlik Sense command line syntax and script syntax are described in a notation called
Backus-Naur formalism, also known as BNF code.

The following table provides a list of symbols used in BNF code, with a description of how they are
interpreted:

Symbols

Symbol Description

| Logical OR: the symbol on either side can be used.

) Parentheses defining precedence: used for structuring the BNF syntax.

[1 Square brackets: enclosed items are optional.

{} Braces: enclosed items may be repeated zero or more times.

Symbol A non-terminal syntactic category, that: can be divided further into other symbols. For

example, compounds of the above, other non-terminal symbols, text strings, and so on.

Script syntax and chart functions - Qlik Sense, August 2022 17

2 Script syntax overview

Symbol Description
n= Marks the beginning of a block that defines a symbol.

LOAD A terminal symbol consisting of a text string. Should be written as it is into the script.

All terminal symbols are printed in a bold face font. For example, "(" should be interpreted as a parenthesis
defining precedence, whereas "(" should be interpreted as a character to be printed in the script.

Example:

The description of the alias statement is:
alias fieldname asaliasname { , fieldname asaliasname}

This should be interpreted as the text string "alias", followed by an arbitrary field name, followed by the text
string "as", followed by an arbitrary alias name. Any number of additional combinations of "fieldname as
alias" may be given, separated by commas.

The following statements are correct:

alias a as first;
alias a as first, b as second;
alias a as first, b as second, c as third;

The following statements are not correct:

alias a as first b as second;
alias a as first { , b as second };

Script syntax and chart functions - Qlik Sense, August 2022 18

2 Script statements and keywords

2 Script statements and keywords

The Qlik Sense script consists of a number of statements. A statement can be either a regular script
statement or a script control statement. Certain statements can be preceded by prefixes.

Regular statements are typically used for manipulating data in one way or another. These statements may
be written over any number of lines in the script and must always be terminated by a semicolon, ";".

Control statements are typically used for controlling the flow of the script execution. Each clause of a
control statement must be kept inside one script line and may be terminated by a semicolon or the end-of-
line.

Prefixes may be applied to applicable regular statements but never to control statements. The when and
unless prefixes can however be used as suffixes to a few specific control statement clauses.

In the next subchapter, an alphabetical listing of all script statements, control statements and prefixes, are
found.

All script keywords can be typed with any combination of lower case and upper case characters. Field and
variable names used in the statements are however case sensitive.

2.3 Script control statements

The Qlik Sense script consists of a number of statements. A statement can be either a regular script
statement or a script control statement.

Control statements are typically used for controlling the flow of the script execution. Each clause of a
control statement must be kept inside one script line and may be terminated by semicolon or end-of-line.

Prefixes are never applied to control statements, with the exceptions of the prefixes when and unless
which may be used with a few specific control statements.

All script keywords can be typed with any combination of lower case and upper case characters.

Script control statements overview

Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Call
The call control statement calls a subroutine which must be defined by a previous sub statement.

Call name ([paramlist 1)

Do..loop
The do..loop control statement is a script iteration construct which executes one or several statements
until a logical condition is met.

Script syntax and chart functions - Qlik Sense, August 2022 19

2 Script statements and keywords

Do..loop [(while | until) condition] [statements]
[exit do [(when | unless) condition] [statements]
loop [(while | until) condition]

Exit script
This control statement stops script execution. It may be inserted anywhere in the script.

Exit script|[(when | unless) condition]

For each ..next

The for each..next control statement is a script iteration construct which executes one or several
statements for each value in a comma separated list. The statements inside the loop enclosed by for and
next will be executed for each value of the list.

For each. .next var in list

[statements]

[exit for [(when | unless) condition]
[statements]

next [var]

For..next

The for..next control statement is a script iteration construct with a counter. The statements inside the loop
enclosed by for and next will be executed for each value of the counter variable between specified low and
high limits.

For..next counter = exprl to expr2 [stepexpr3]
[statements]

[exit for [(when | unless) condition]
[statements]

Next [counter]

If..then

The if..then control statement is a script selection construct forcing the script execution to follow different
paths depending on one or several logical conditions.

Since the if..then statement is a control statement and as such is ended with either a semicolon

or end-of-line, each of its four possible clauses (if..then, elseif..then, else and end if) must not
cross a line boundary.

If..then..elseif..else..end if condition then
[statements]

{ elseif condition then
[statements] }

[else
[statements]]

end if

Sub
The sub..end sub control statement defines a subroutine which can be called upon from a call statement.

Script syntax and chart functions - Qlik Sense, August 2022 20

2 Script statements and keywords

Sub. .end sub name [(paramlist)] statements end sub

Switch
The switch control statement is a script selection construct forcing the script execution to follow different
paths, depending on the value of an expression.

Switch. .case..default. .end switch expression {case valuelist [statements]}

[default statements] end switch

Call

The call control statement calls a subroutine which must be defined by a previous sub
statement.

Syntax:
Call name ([paramlist 1)

Arguments:
Arguments
Argument Description
name The name of the subroutine.
paramlist A comma separated list of the actual parameters to be sent to the

subroutine. Each item in the list may be a field name, a variable or an
arbitrary expression.

The subroutine called by a call statement must be defined by a sub encountered earlier during script
execution.

Parameters are copied into the subroutine and, if the parameter in the call statement is a variable and not
an expression, copied back out again upon exiting the subroutine.

Limitations:

¢ Since the call statement is a control statement and as such is ended with either a semicolon or end-
of-line, it must not cross a line boundary.

* When you define a subroutine with sub. .end sub inside a control statement, for example if. . then,
you can only call the subroutine from within the same control statement.

Example:

This example lists all Qlik related files in a folder and its subfolders, and stores file information in a table. It
is assumed that you have created a data connection named Apps to the folder .

The DoDir subroutine is called with the reference to the folder, 'lib://Apps', as parameter. Inside the
subroutine, there is a recursive call, call pobir (pir), that makes the function look for files recursively in
subfolders.

Script syntax and chart functions - Qlik Sense, August 2022 21

2 Script statements and keywords

sub DoDir (Root)

For Each Ext in 'qww', 'gqvo', 'qvs', 'qvt', 'qvd', 'qvc', 'qvf'
For Each File in filelist (Root&'*.' &Ext)
LOAD

'$(File)' as Name,
FileSize('"$(File)') as Size,
FileTime('"$(File)') as FileTime
autogenerate 1;
Next File
Next EXt
For Each Dir in dirlist (Root&'*')
call pobir (Dir)
Next Dir
End Sub

call pobir ('Tib://Apps')

Do..loop

The do..loop control statement is a script iteration construct which executes one or several
statements until a logical condition is met.

Syntax:
Do [(while | until) condition] [statements]
[exit do [(when | unless) condition] [statements]

loop[(while | until) condition]

Since the do..loop statement is a control statement and as such is ended with either a
semicolon or end-of-line, each of its three possible clauses (do, exit do and loop) must not

cross a line boundary.
Arguments:
Arguments
Argument Description
condition A logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

while / until The while or until conditional clause must only appear once in any do..loop statement,
i.e. either after do or after loop. Each condition is interpreted only the first time it is
encountered but is evaluated for every time it encountered in the loop.

exitdo If an exit do clause is encountered inside the loop, the execution of the script will be
transferred to the first statement after the loop clause denoting the end of the loop. An
exit do clause can be made conditional by the optional use of a when or unless suffix.

Script syntax and chart functions - Qlik Sense, August 2022 22

2 Script statements and keywords

Example:

// LOAD files filel.csv..file9.csv
Set a=1;

Do while a<10

LOAD * from file$(a).csv;

Let a=a+l;

Loop

End

The End script keyword is used to close If, Sub and Switch clauses.
Exit

The EXxit script keyword is part of the Exit Script statement, but can also be used to exit Do,
For or Sub clauses.

Exit script

This control statement stops script execution. It may be inserted anywhere in the script.
Syntax:

Exit Script [(when | unless) condition]

Since the exit script statement is a control statement and as such is ended with either a semicolon or end-
of-line, it must not cross a line boundary.

Arguments:
Arguments
Argument Description
condition A logical expression evaluating to True or False.
when An exit script statement can be made conditional by the optional use of
/unless when or unless clause.
Examples:

//EXit script
Exit Script;

//Exit script when a condition is fulfilled
Exit Script when a=1

Script syntax and chart functions - Qlik Sense, August 2022 23

2 Script statements and keywords

For..next

The for..next control statement is a script iteration construct with a counter. The statements
inside the loop enclosed by for and next will be executed for each value of the counter
variable between specified low and high limits.

Syntax:

For counter = exprl to expr2 [step expr3]
[statements]

[exit for [(when | unless) condition]
[statements]

Next [counter]

The expressions expr1, expr2 and expr3 are only evaluated the first time the loop is entered. The value of
the counter variable may be changed by statements inside the loop, but this is not good programming
practice.

If an exit for clause is encountered inside the loop, the execution of the script will be transferred to the first
statement after the next clause denoting the end of the loop. An exit for clause can be made conditional by
the optional use of a when or unless suffix.

Since the for..next statement is a control statement and as such is ended with either a
semicolon or end-of-line, each of its three possible clauses (for..to..step, exit for and next)
must not cross a line boundary.

Arguments:
Arguments

Argument Description

counter A variable name. If counteris specified after next it must be the same variable name as
the one found after the corresponding for.

expri An expression which determines the first value of the counter variable for which the loop
should be executed.

expr2 An expression which determines the last value of the counter variable for which the loop
should be executed.

expr3 An expression which determines the value indicating the increment of the counter
variable each time the loop has been executed.

condition a logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

Script syntax and chart functions - Qlik Sense, August 2022 24

2 Script statements and keywords

Example 1: Loading a sequence of files
// LOAD files filel.csv..file9.csv
for a=1 to 9

LOAD * from file$(a).csv;

next

Example 2: Loading a random number of files

In this example, we assume there are data files x7.csv, x3.csv, x5.csv, x7.csvand x9.csv. Loading is
stopped at a random point using the if rand()<0.5 then condition.

for counter=1 to 9 step 2

set filename=x$(counter).csv;
if rand()<0.5 then

exit for unless counter=1

end if
LOAD a,b from $(filename);

next

For each..next

The for each..next control statement is a script iteration construct which executes one or
several statements for each value in a comma separated list. The statements inside the loop
enclosed by for and next will be executed for each value of the list.

Syntax:
Special syntax makes it possible to generate lists with file and directory names in the current directory.

for each var in list

[statements]

[exit for [(when | unless) condition]
[statements]

next [var]

Arguments:
Arguments
Argument Description
var A script variable name which will acquire a new value from list for each loop execution. If

var is specified after next it must be the same variable name as the one found after the
corresponding for each.

The value of the var variable may be changed by statements inside the loop, but this is not good
programming practice.

Script syntax and chart functions - Qlik Sense, August 2022 25

2 Script statements and keywords

If an exit for clause is encountered inside the loop, the execution of the script will be transferred to the first
statement after the next clause denoting the end of the loop. An exit for clause can be made conditional by
the optional use of a when or unless suffix.

Since the for each..next statement is a control statement and as such is ended with either a
semicolon or end-of-line, each of its three possible clauses (for each, exit for and next) must
not cross a line boundary.

Syntax:
list := item { , item }
item := constant | (expression) | filelist mask | dirlist mask |

fieldvaluelist mask

Arguments
Argument Description
constant Any number or string. Note that a string written directly in the script must be enclosed

by single quotes. A string without single quotes will be interpreted as a variable, and
the value of the variable will be used. Numbers do not need to be enclosed by single

quotes.
expression An arbitrary expression.
mask A filename or folder name mask which may include any valid filename characters as

well as the standard wildcard characters, * and ?.

You can use absolute file paths or lib:// paths.

condition A logical expression evaluating to True or False.
statements Any group of one or more Qlik Sense script statements.
filelist mask This syntax produces a comma separated list of all files in the current directory

matching the filename mask.

This argument supports only library connections in standard mode.

dirlist mask This syntax produces a comma separated list of all folders in the current folder
matching the folder name mask.

This argument supports only library connections in standard mode.

fieldvaluelist This syntax iterates through the values of a field already loaded into Qlik Sense.
mask

Script syntax and chart functions - Qlik Sense, August 2022 26

2 Script statements and keywords

The Qlik Web Storage Provider Connectors and other DataFiles connections do not support
filter masks that use wildcard (* and ?) characters.

Example 1: Loading a list of files

// LOAD the files 1l.csv, 3.csv, 7.csv and Xyz.csv
for each a in 1,3,7, 'xyz'

LOAD * from file$(a).csv;
next

Example 2: Creating a list of files on disk

This example loads a list of all Qlik Sense related files in a folder.

sub DoDir (Root)
for each Ext in 'qww', 'qva', 'gqvo', 'qvs', 'qvc', 'qvf', 'qvd'

for each File in filelist (Root&'/*.' &Ext)
LOAD
'$(File)' as Name,
Filesize('$(File)') as Size,
FileTime('$(File)') as FileTime
autogenerate 1;

next File

next Ext
for each Dir in dirlist (Root&'/*')

call poDir (Dir)
next Dir
end sub
call pobir ('Tib://DataFiles"')

Example 3: Iterating through a the values of a field

This example iterates through the list of loaded values of FIELD and generates a new field, NEWFIELD.
For each value of FIELD, two NEWFIELD records will be created.

Toad * inTine [
FIELD

one

two

three

1;

FOR Each a in FieldvalueList('FIELD')

Script syntax and chart functions - Qlik Sense, August 2022 27

2 Script statements and keywords

LOAD '$(a)' &'-'&RecNo() as NEWFIELD AutoGenerate 2;
NEXT a
The resulting table looks like this:

Example table
NEWFIELD
one-1
one-2
two-1
two-2
three-1

three-2

If..then..elseif..else..end if

The if..then control statement is a script selection construct forcing the script execution to
follow different paths depending on one or several logical conditions.

Control statements are typically used to control the flow of the script execution. In a chart expression, use
the if conditional function instead.

Syntax:

If condition then
[statements]

{ elseif condition then
[statements] }

[else
[statements]]

end if

Since the if..then statement is a control statement and as such is ended with either a semicolon or end-of-
line, each of its four possible clauses (if..then, elseif..then, else and end if) must not cross a line boundary.

Arguments:
Arguments
Argument Description
condition A logical expression which can be evaluated as True or False.

statements Any group of one or more Qlik Sense script statements.

Example 1:

if a=1 then

Script syntax and chart functions - Qlik Sense, August 2022 28

2 Script statements and keywords

LOAD * from abc.csv;
SQL SELECT e, f, g from tabl;

end if

Example 2:

if a=1 then; drop table xyz; end if;
Example 3:

if x>0 then

LOAD * from pos.csv;
elseif x<0 then

LOAD * from neg.csv;
else

LOAD * from zero.txt;

end if

Next

The Next script keyword is used to close For loops.

Sub..end sub

The sub..end sub control statement defines a subroutine which can be called upon from a
call statement.

Syntax:
Sub name [(paramlist)] statements end sub

Arguments are copied into the subroutine and, if the corresponding actual parameter in the call statement
is a variable name, copied back out again upon exiting the subroutine.

If a subroutine has more formal parameters than actual parameters passed by a call statement, the extra
parameters will be initialized to NULL and can be used as local variables within the subroutine.

Arguments:
Arguments
Argument Description
name The name of the subroutine.
paramlist A comma separated list of variable names for the formal parameters of

the subroutine. These can be used as any variable inside the subroutine.

statements Any group of one or more Qlik Sense script statements.

Script syntax and chart functions - Qlik Sense, August 2022 29

2 Script statements and keywords

Limitations:

* Since the sub statement is a control statement and as such is ended with either a semicolon or end-
of-line, each of its two clauses (sub and end sub) must not cross a line boundary.

¢ When you define a subroutine with sub. .end sub inside a control statement, for example if. . then,
you can only call the subroutine from within the same control statement.

Example 1:

Sub INCR (I,3)
I=1I+1

Exit Sub when I < 10
J=31+1

End Sub

call INCR (X,Y)

Example 2: - parameter transfer

Sub ParTrans (A,B,C)

A=A+1

B=B+1

Cc=C+1

End Sub

A=1

X=1

c=1

call parTrans (A, (X+1)*2)

The result of the above will be that locally, inside the subroutine, A will be initialized to 1, B will be initialized

to 4 and C will be initialized to NULL.

When exiting the subroutine, the global variable A will get 2 as value (copied back from subroutine). The
second actual parameter “(X+1)*2” will not be copied back since it is not a variable. Finally, the global
variable C will not be affected by the subroutine call.

Switch..case..default..end switch

The switch control statement is a script selection construct forcing the script execution to
follow different paths, depending on the value of an expression.

Syntax:
Switch expression {case valuelist [statements]} [default statements] end
switch

Since the switch statement is a control statement and as such is ended with either a semicolon
or end-of-line, each of its four possible clauses (switch, case, default and end switch) must not
cross a line boundary.

Script syntax and chart functions - Qlik Sense, August 2022 30

2 Script statements and keywords

Arguments:
Arguments
Argument Description
expression An arbitrary expression.
valuelist A comma separated list of values with which the value of expression will be compared.

Execution of the script will continue with the statements in the first group encountered
with a value in valuelist equal to the value in expression. Each value in valuelist may be
an arbitrary expression. If no match is found in any case clause, the statements under
the default clause, if specified, will be executed.

statements Any group of one or more Qlik Sense script statements.

Example:

Switch I

Case 1

LOAD '$(I): CASE 1' as case autogenerate 1;

Case 2

LOAD '$(I): CASE 2' as case autogenerate 1;

Default

LOAD '$(I): DEFAULT' as case autogenerate 1;
End Switch

To

The To script keyword is used in several script statements.

2.4 Script prefixes

Prefixes may be applied to applicable regular statements but never to control statements. The when and
unless prefixes can however be used as suffixes to a few specific control statement clauses.

All script keywords can be typed with any combination of lower case and upper case characters. Field and
variable names used in the statements are however case sensitive.

Script prefixes overview

Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Add

The Add prefix can be added to any LOAD or SELECT statement in the script to specify that it should add
records to another table. It also specifies that this statement should be run in a partial reload. The Add
prefix can also be used in a Map statement.

Add [only] [Concatenate|[(tablename)]] (loadstatement | selectstatement)
Add [Only] mapstatement

Script syntax and chart functions - Qlik Sense, August 2022 31

2 Script statements and keywords

Buffer

QVD files can be created and maintained automatically via the buffer prefix. This prefix can be used on
most LOAD and SELECT statements in script. It indicates that QVD files are used to cache/buffer the
result of the statement.

Buffer| (option [, option])] (loadstatement | selectstatement)
option::= incremental | stale [after] amount [(days | hours)]
Concatenate

If two tables that are to be concatenated have different sets of fields, concatenation of two tables can still
be forced with the Concatenate prefix.

Concatenate|[(tablename)] (loadstatement | selectstatement)

Crosstable

The crosstable load prefix is used to transpose “cross table” or “pivot table” structured data. Data
structured this way is commonly encountered when working with spreadsheet sources. The output and aim
of the crosstable load prefix is to transpose such structures into a regular column-oriented table
equivalent, as this structure is generally better suited for analysis in Qlik Sense.

Crosstable (attribute field name, data field name [, n]) (loadstatement |

selectstatement)

First
The First prefix to a LOAD or SELECT (SQL) statement is used for loading a set maximum number of
records from a data source table.

First n(loadstatement | selectstatement)

Generic

The Generic load prefix allows for conversion of entity-attribute-value modeled data (EAV) into a
traditional, normalized relational table structure. EAV modeling is alternatively referred to as "generic data
modeling" or "open schema".

Generic (loadstatement | selectstatement)

Hierarchy

The hierarchy prefix is used to transform a parent-child hierarchy table to a table that is useful in a Qlik
Sense data model. It can be put in front of a LOAD or a SELECT statement and will use the result of the
loading statement as input for a table transformation.

Hierarchy (NodeID, ParentID, NodeName, [ParentName], [PathSource],
[PathName], [PathDelimiter], [Depth]) (loadstatement | selectstatement)

HierarchBelongsTo

This prefix is used to transform a parent-child hierarchy table to a table that is useful in a Qlik Sense data
model. It can be put in front of a LOAD or a SELECT statement and will use the result of the loading
statement as input for a table transformation.

Script syntax and chart functions - Qlik Sense, August 2022 32

2 Script statements and keywords

HierarchyBelongsTo (NodeID, ParentID, NodeName, AncestorID, AncestorName,
[DepthDiff]) (loadstatement | selectstatement)

Inner
The join and keep prefixes can be preceded by the prefix inner.

If used before join it specifies that an inner join should be used. The resulting table will thus only contain
combinations of field values from the raw data tables where the linking field values are represented in both
tables. If used before keep, it specifies that both raw data tables should be reduced to their common
intersection before being stored in Qlik Sense.

Inner (Join | Keep) [(tablename)] (loadstatement |selectstatement)

IntervalMatch
The IntervalMatch prefix is used to create a table matching discrete numeric values to one or more
numeric intervals, and optionally matching the values of one or several additional keys.

IntervalMatch (matchfield) (loadstatement | selectstatement)
IntervalMatch (matchfield, keyfieldl [, keyfield2, ... keyfield5])

(loadstatement | selectstatement)

Join
The join prefix joins the loaded table with an existing named table or the last previously created data table.

[Inner | Outer | Left | Right] Join [(tablename)] (loadstatement |
selectstatement)
Keep

The keep prefix is similar to the join prefix. Just as the join prefix, it compares the loaded table with an
existing named table or the last previously created data table, but instead of joining the loaded table with
an existing table, it has the effect of reducing one or both of the two tables before they are stored in Qlik
Sense, based on the intersection of table data. The comparison made is equivalent to a natural join made
over all the common fields, i.e. the same way as in a corresponding join. However, the two tables are not
joined and will be kept in Qlik Sense as two separately named tables.

(Inner | Left | Right) Keep [(tablename)] (loadstatement | selectstatement
)

Left
The Join and Keep prefixes can be preceded by the prefix left.

If used before join it specifies that a left join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented in the
first table. If used before keep, it specifies that the second raw data table should be reduced to its common
intersection with the first table, before being stored in Qlik Sense.

Left (Join | Keep) [(tablename)] (loadstatement |selectstatement)

Script syntax and chart functions - Qlik Sense, August 2022 33

2 Script statements and keywords

Mapping
The mapping prefix is used to create a mapping table that can be used to, for example, replacing field
values and field names during script execution.

Mapping (loadstatement | selectstatement)

Merge

The Merge prefix can be added to any LOAD or SELECT statement in the script to specify that the loaded
table should be merged into another table. It also specifies that this statement should be run in a partial
reload.

Merge [only] [(SequenceNoField [, SequenceNoVar])] On ListOfKeys [Concatenate
[(TableName)]] (loadstatement | selectstatement)
NoConcatenate

The NoConcatenate prefix forces two loaded tables with identical field sets to be treated as two separate
internal tables, when they would otherwise be automatically concatenated.

NoConcatenate (loadstatement | selectstatement)

Outer

The explicit Join prefix can be preceded by the prefix Outer to specify an outer join. In an outer join, all
combinations between the two tables are generated. The resulting table will thus contain combinations of
field values from the raw data tables where the linking field values are represented in one or both tables.
The Outer keyword is optional and is the default join type used when a join prefix is not specified.

Outer Join [(tablename)] (loadstatement |selectstatement)

Partial reload
A full reload always starts by deleting all tables in the existing data model, and then runs the load script.

A Partial reload (page 83) will not do this. Instead it keeps all tables in the data model and then executes
only Load and Select statements preceded by an Add, Merge, or Replace prefix. Other data tables are not
affected by the command. The only argument denotes that the statement should be executed only during
partial reloads, and should be disregarded during full reloads. The following table summarizes statement
execution for partial and full reloads.

Replace

The Replace prefix can be added to any LOAD or SELECT statement in the script to specify that the
loaded table should replace another table. It also specifies that this statement should be run in a partial
reload. The Replace prefix can also be used in a Map statement.

Replace [only] [Concatenate| (tablename)]] (loadstatement | selectstatement)
Replace [only] mapstatement

Right
The Join and Keep prefixes can be preceded by the prefix right.

Script syntax and chart functions - Qlik Sense, August 2022 34

2 Script statements and keywords

If used before join it specifies that a right join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented in the
second table. If used before keep, it specifies that the first raw data table should be reduced to its common
intersection with the second table, before being stored in Qlik Sense.

Right (Join | Keep) [(tablename)] (loadstatement |selectstatement)

Sample
The sample prefix to a LOAD or SELECT statement is used for loading a random sample of records from
the data source.

Sample p (loadstatement | selectstatement)

Semantic

Tables containing relations between records can be loaded through a semantic prefix. This can for
example be self-references within a table, where one record points to another, such as parent, belongs to,
or predecessor.

Semantic (loadstatement | selectstatement)

Unless

The unless prefix and suffix is used for creating a conditional clause which determines whether a
statement or exit clause should be evaluated or not. It may be seen as a compact alternative to the full
if..end if statement.

(Unless condition statement | exitstatement Unless condition)

When

The when prefix and suffix is used for creating a conditional clause which determines whether a statement
or exit clause should be executed or not. It may be seen as a compact alternative to the full if..end if
statement.

(When condition statement | exitstatement when condition)

Add

The Add prefix can be added to any LOAD or SELECT statement in the script to specify that it should add
records to another table. It also specifies that this statement should be run in a partial reload. The Add
prefix can also be used in a Map statement.

For partial reload to work properly, the app must be opened with data before a partial reload is
triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Syntax:
Add [only] [Concatenate|[(tablename)]] (loadstatement | selectstatement)

Add [only] mapstatement

Script syntax and chart functions - Qlik Sense, August 2022 35

2 Script statements and keywords

During a normal (non-partial) reload, the Add LOAD construction will work as a normal LOAD statement.
Records will be generated and stored in a table.

If the Concatenate prefix is used, or if there exists a table with the same set of fields, the records will be
appended to the relevant existing table. Otherwise, the Add LOAD construction will create a new table.

A partial reload will do the same. The only difference is that the Add LOAD construction will never create a
new table. There always exists a relevant table from the previous script execution to which the records
should be appended.

No check for duplicates is performed. Therefore, a statement using the Add prefix will often include either a
distinct qualifier or a where clause guarding duplicates.

The Add Map...Using statement causes mapping to take place also during partial script execution.

Arguments:
Arguments
Argument Description
only An optional qualifier denoting that the statement should be executed only

during partial reloads. It should be disregarded during normal (non-partial)

reloads.

Examples and results:
Example

Tabl:

LOAD Name, Number FROM
Persons.csv;

Add LOAD Name, Number
FROM newPersons.csv;

Tabl:

SQL SELECT Name, Number
FROM Persons.csv;

Add LOAD Name, Number
FROM NewPersons.csv
where not exists(Name);

Result

During normal reload, data is loaded from Persons.csv and stored in the
Qlik Sense table Tab1. Data from NewPersons.csv is then concatenated
to the same Qlik Sense table.

During partial reload, data is loaded from NewPersons.csv and appended
to the Qlik Sense table Tab1. No check for duplicates is made.

A check for duplicates is made by means of looking if Name exists in the
previously loaded table data.

During normal reload, data is loaded from Persons.csv and stored in the
Qlik Sense table Tab1. Data from NewPersons.csv is then concatenated
to the same Qlik Sense table.

During partial reload, data is loaded from NewPersons.csv which is
appended to the Qlik Sense table Tab1. A check for duplicates is made by
means of seeing if Name exists in the previously loaded table data.

Script syntax and chart functions - Qlik Sense, August 2022 36

2 Script statements and keywords

Example Result
Tabl: During normal reload, data is loaded from Persons.csv and stored in the
LOAD Name, Number FROM Qlik Sense table Tab1. The statement loading NewPersons.csv is
Persons.csv;)

disregarded.

Add oOnly LOAD Name,

Number FROM . . . L
NewPersons.csv where not During partial reload, data is loaded from NewPersons.csv which is

exists(Name); appended to the Qlik Sense table Tab1. A check for duplicates is made by
means of seeing if Name exists in the previously loaded table data.

Buffer

QVD files can be created and maintained automatically via the buffer prefix. This prefix can
be used on most LOAD and SELECT statements in script. It indicates that QVD files are used
to cache/buffer the result of the statement.

Syntax:
Buffer [(option [, option])] (loadstatement | selectstatement)
option::= incremental | stale [after] amount [(days | hours)]

If no option is used, the QVD buffer created by the first execution of the script will be used indefinitely.

The buffer file is stored in the Buffers sub-folder, typically C:\ProgramData\Qlik\Sensel\Engine\Buffers
(server installation) or C:\Users\{user}\Documents\Qlik\Sense\Buffers (Qlik Sense Desktop).

The name of the QVD file is a calculated name, a 160-bit hexadecimal hash of the entire following LOAD or
SELECT statement and other discriminating info. This means that the QVD buffer will be rendered invalid
by any change in the following LOAD or SELECT statement.

QVD buffers will normally be removed when no longer referenced anywhere throughout a complete script
execution in the app that created it or when the app that created it no longer exists.

Arguments:
Arguments
Argument Description
incremental The incremental option enables the ability to read only part of an

underlying file. Previous size of the file is stored in the XML header in the
QVD file. This is particularly useful with log files. All records loaded at a
previous occasion are read from the QVD file whereas the following new
records are read from the original source and finally an updated QVD-file
is created.

The incremental option can only be used with LOAD statements and text
files. Incremental load cannot be used where old data is changed or
deleted.

Script syntax and chart functions - Qlik Sense, August 2022 37

2 Script statements and keywords

Argument Description

stale [after] amount is a number specifying the time period. Decimals may be used.
amount [(days The unitis assumed to be days if omitted.

| hours)] The stale after option is typically used with DB sources where there is no

simple timestamp on the original data. Instead you specify how old the
QVD snapshot can be to be used. A stale after clause simply states a
time period from the creation time of the QVD buffer after which it will no
longer be considered valid. Before that time the QVD buffer will be used
as source for data and after that the original data source will be used.
The QVD buffer file will then automatically be updated and a new period
starts.

Limitations:

Numerous limitations exist, most notable is that there must be either a file LOAD or a SELECT statement
at the core of any complex statement.

Example 1:

Buffer SELECT * from MyTable;

Example 2:

Buffer (stale after 7 days) SELECT * from MyTable;
Example 3:

Buffer (incremental) LOAD * from MyLog.log;

Concatenate

If two tables that are to be concatenated have different sets of fields, concatenation of two
tables can still be forced with the Concatenate prefix. This statement forces concatenation
with an existing named table or the latest previously created logical table.

A concatenation is in principle the same as the SQL UNION statement, but with two differences:

e The Concatenate prefix can be used no matter if the tables have identical field names or not.

« lIdentical records are not removed with the Concatenate prefix.

Arguments:
Arguments
Argument Description
tablename The name of the existing table.

Script syntax and chart functions - Qlik Sense, August 2022 38

2 Script statements and keywords

Example:

Concatenate
Concatenate
tabl:
LOAD * From
tab2:
LOAD * From

Concatenate

LOAD * From file2.csv;
SELECT * From table3;

filel.csv;
file2.csv;

(tabl) LOAD * From file3.csv;

Crosstable

The crosstable load prefix is used to transpose “cross table” or “pivot table” structured data.
Data structured this way is commonly encountered when working with spreadsheet sources.
The output and aim of the crosstable load prefix is to transpose such structures into a regular
column-oriented table equivalent, as this structure is generally better suited for analysis in

Qlik Sense.

Example of data structured as a crosstable and its equivalent structure after a crosstable transformation

DATASETS OPERATION OuUTPUT
Source Table CROSSTABLE Output Table
§ —
Area Lisa lames Sharon e Sales Person Target
APAC 1500 1750 1830 APAC Lisa 1500
EMEA 1350 950 2050 APAC e 1750
APAC Sharon 1850
MNA 1800 1200 1350
EMEA Lisa 1350
EMEA James 950
EMEA Sharon 2050
MA Lisa 1800
Key
Unchanged dimensions NA James 1200
Dimension attributes
Dimension data MNA Sharon 1350
Syntax:
crosstable (attribute field name, data field name [, n]) (loadstatement |
selectstatement)

Script syntax and chart functions - Qlik Sense, August 2022

39

2 Script statements and keywords

Arguments
Argument Description
attribute The desired output field name describing the horizontally oriented dimension that is to be
field name transposed (the header row).
data field The desired output field name which describes the horizontally oriented data of the
name dimension that is to be transposed (the matrix of data values beneath the header row).
n The number of qualifier fields, or unchanged dimensions, preceding the table to be

transformed to generic form. The default value is 1.

This scripting function is related to the following functions:

Related functions

Function Interaction

Generic A transformation load prefix which takes an entity-attribute-value structured data set and
(page 50) transforms it into a regular relational table structure, separating each attribute
encountered into a new field or column of data.

Example 1 - Transforming pivoted sales data (simple)

Load scripts and results

Overview

Open the Data load editor and add the first load script below to a new tab.

The first load script contains a dataset to which the crosstable script prefix will be applied later, with the
section applying crosstable commented out. This means that comment syntax was used to disable this
section in the load script.

The second load script is the same as the first, but with the application of crosstable uncommented
(enabled by removing the comment syntax). The scripts are shown this way to highlight the value of this
scripting function in transforming data.

First load script (function not applied)

tmpData:

//Crosstable (MonthText, Sales)

Load * inTline [

Product, Jan 2021, Feb 2021, Mar 2021, Apr 2021, May 2021, Jun 2021
A, 100, 98, 103, 63, 108, 82

B, 284, 279, 297, 305, 294, 292

c, 50, 53, 50, 54, 49, 51];

//Final:

//Load Product,

//Date(Date#(MonthText, '"MMM YYYY'), 'MMM YYYY') as Month,
//Sales

Script syntax and chart functions - Qlik Sense, August 2022 40

2 Script statements and keywords

//Resident tmpData;
//Drop Table tmpData;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Product

e Jan 2021

e Feb 2021

e Mar 2021

e Apr 2021

e May 2021

e Jun 2021

Results table
J
Product Jan 2021 Feb 2021 Mar 2021 Apr 2021 May 2021 2:;1
A 100 98 103 63 108 82
284 279 297 305 294 292

C 50 53 50 54 49 51

This script allows the creation of a crosstable with one column for each month and one row per product. In
its current format, this data is not easy to analyze. It would be much better to have all numbers in one field
and all months in another, in a three-column table. The next section explains how to do this transformation
to the crosstable.

Second load script (function applied)

Uncomment the script by removing the //. The load script should look like this:

tmpData:

Crosstable (MonthText, Sales)

Load * inTline [

Product, Jan 2021, Feb 2021, Mar 2021, Apr 2021, May 2021, Jun 2021
A, 100, 98, 103, 63, 108, 82

B, 284, 279, 297, 305, 294, 292

c, 50, 53, 50, 54, 49, 51];

Final:

Load Product,

Date(Date#(MonthText, 'MMM YYYY'), 'MMM YYYY') as Month,
Sales

Resident tmpData;

Script syntax and chart functions - Qlik Sense, August 2022 41

2 Script statements and keywords

Drop Table tmpData;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Product

o Month

e Sales

Results table

Product Month Sales
A Jan 2021 100
A Feb 2021 98
A Mar 2021 103
A Apr 2021 63
A May 2021 108
A Jun 2021 82
B Jan 2021 284
B Feb 2021 279
B Mar 2021 297
B Apr 2021 305
B May 2021 294
B Jun 2021 292
C Jan 2021 50
C Feb 2021 53
C Mar 2021 50
C Apr 2021 54
C May 2021 49
C Jun 2021 51

Once the script prefix has been applied, the crosstable is transformed into a straight table with one column
for month and another for sales. This improves the readability of the data.

Script syntax and chart functions - Qlik Sense, August 2022 42

2 Script statements and keywords

Example 2 - Transforming pivoted sales target data into a vertical table structure
(intermediate)

Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset which is loaded into a table named Targets.

¢ The crosstable load prefix, which transposes the pivoted sales person names into a field of its own,
labeled sales Person.

¢ The associated sales target data, which is structured into a field called Target.
Load script

SalesTargets:
CROSSTABLE([Sales Person],Target,1)
LOAD

INLINE [

Area, Lisa, James, Sharon
APAC, 1500, 1750, 1850
EMEA, 1350, 950, 2050

NA, 1800, 1200, 1350

1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Area

e Sales Person

Add this measure:

=sum(Target)
Results table
Area Sales Person =Sum(Target)
APAC James 1750
APAC Lisa 1500
APAC Sharon 1850
EMEA James 950

Script syntax and chart functions - Qlik Sense, August 2022 43

2 Script statements and keywords

Area
EMEA
EMEA
NA
NA
NA

Sales Person
Lisa

Sharon
James

Lisa

Sharon

=Sum(Target)
1350
2050
1200
1800
1350

If you want to replicate the display of data as the pivoted input table, you can create an equivalent pivot
table in a sheet.

Do the following:

. Copy and paste the table you have just created into the sheet.

1
2. Drag the Pivot table chart object on top of the newly created table copy. Select Convert.
3. Click ¥ Done editing.
4

Drag the sales Pperson field from the vertical column shelf to the horizontal column shelf.

The following table shows the data in its initial table form, as it is displayed in Qlik Sense:

Original results table, as shown in Qlik Sense

Area
Totals
APAC
APAC
APAC
EMEA
EMEA
EMEA
NA
NA
NA

Sales Person
James

Lisa

Sharon
James

Lisa

Sharon
James

Lisa

Sharon

=Sum(Target)
13800
1750
1500
1850
950
1350
2050
1200
1800
1350

The equivalent pivot table looks similar to the following, with the column for each sales person's name
being contained within the larger row for sales person:

Script syntax and chart functions - Qlik Sense, August 2022 44

2 Script statements and keywords

Equivalent pivot table with the sales person
field pivoted horizontally

Area James Lisa Sharon
APAC 1750 1500 1850
EMEA 950 1350 2050
NA 1350 1350 1350

Example of data displayed as a table and an equivalent pivot table with the Sales Person field pivoted horizontally

Table Pivot table
rea Q. >ales Person Q sum/ Target

& - - - Area Sales Person Ol
Totals 13500

Example 3 - Transforming pivoted sales and target data into a vertical table
structure (advanced)

Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

« A dataset representing sales and targets data, organized by area and month of the year. This is
loaded into a table called salesandTargets.

e The crosstable load prefix. This is used to unpivot the month vear dimension into a dedicated field,
as well as to transpose the matrix of sales and target amounts into a dedicated field called Amount.

¢ A conversion of the month year field from text to a proper date, using the text-to-date conversion
function date#. This date-converted Mmonth Yvear field is joined back onto the salesandTarget table
via a Join load prefix.

Script syntax and chart functions - Qlik Sense, August 2022 45

2 Script statements and keywords

Load script
SalesAndTargets:
CROSSTABLE(MonthYyearAsText,Amount,2)
LOAD
%
INLINE [
Area Type Jan-22 Feb-22 Mar-22 Apr-22 May-22 Jun-22 Jul-22 Aug-22 Sep-22 Oct-22
APAC Target 425 425 425 425 425 425 425 425 425 425
APAC Actual 435 434 397 404 458 447 413 458 385 421
EMEA Target 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5
EMEA Actual 363.5 359.5 337.5 361.5 341.5 337.5 379.5 352.5 327.5 337.5
NA Target 375 375 375 375 375 375 375 375 375 375
NA Actual 378 415 363 356 403 343 401 365 393 340
] (delimiter is '\t');
tmp:
LOAD DISTINCT MonthYearAsText,date#(MonthyearAsText, 'MMM-YY') AS [Month Year]
RESIDENT SalesAndTargets;
JOIN (SalesAndTargets)
LOAD * RESIDENT tmp;
DROP TABLE tmp;
DROP FIELD MonthYearAsText;
Results
Load the data and open a sheet. Create a new table and add these fields as dimensions:
e Area
e Month Year
Create the following measure, with the label Actual:
=sum({<Type={'Actual'}>} Amount)
Also create this measure, with the label Target:
=sum({<Type={'Target'}>} Amount)
Results table (cropped)

Area Month Year Actual Target

APAC Jan-22 435 425

APAC Feb-22 434 425

APAC Mar-22 397 425

APAC Apr-22 404 425

APAC May-22 458 425

Script syntax and chart functions - Qlik Sense, August 2022 46

Nov-22
425
448
362.5
360.5
375
360

Dec-22
425
397
362.5
334.5
375
405

2 Script statements and keywords

Area Month Year Actual Target
APAC Jun-22 447 425
APAC Jul-22 413 425
APAC Aug-22 458 425
APAC Sep-22 385 425
APAC Oct-22 421 425
APAC Nov-22 448 425
APAC Dec-22 397 425
EMEA Jan-22 363.5 362.5
EMEA Feb-22 359.5 362.5

If you wish to replicate the display of data as the pivoted input table, you can create an equivalent pivot
table in a sheet.

Do the following:

Copy and paste the table you have just created into the sheet.

Drag the Pivot table chart object on top of the newly created table copy. Select Convert.
Click ¥ Done editing.

Drag the month vear field from the vertical column shelf to the horizontal column shelf.

o~ 0N =

Drag the values item from the horizontal column shelf to the vertical column shelf.
The following table shows the data in its initial table form, as it is displayed in Qlik Sense:

Original results table (cropped), as shown in Qlik

Sense
Area Month Year Actual Target
Totals - 13812 13950
APAC Jan-22 435 425
APAC Feb-22 434 425
APAC Mar-22 397 425
APAC Apr-22 404 425
APAC May-22 458 425
APAC Jun-22 447 425
APAC Jul-22 413 425
APAC Aug-22 458 425

Script syntax and chart functions - Qlik Sense, August 2022 47

2 Script statements and keywords

Area

APAC
APAC
APAC
APAC
EMEA
EMEA

Month Year

Sep-22

Oct-22

Nov-22

Dec-22

Ja

n-22

Feb-22

Actual
385
421
448
397
363.5
359.5

Target
425
425
425
425
362.5
362.5

The equivalent pivot table looks similar to the following, with the column for each individual month of the

year being contained within the larger row for Mmonth vear:

Area
(Value
s)

APAC -
Actual

APAC -
Target

EMEA
- Actual

EMEA

Target

NA -
Actual

NA -
Target

Equivalent pivot table (cropped) with the Mmonth Yvear field pivoted horizontally

Jan
22

435

425

363.

362.

378

375

- Feb-
22

434

425

359.

362.

415

375

Mar-
22

397

425

337.

362.

363

375

Apr-

22

404

425

361.

5

362.

5

356

375

22

458

425

5

5

403

375

May-

341.

362.

Jun-
22

447

425

337.

362.

343

375

Jul-
22

413

425

379.

362.

401

375

Aug-
22

458

425

352.

362.

365

375

Sep-
22

385

425

327.

362.

393

375

Oct-
22

421

425

337.

362.

340

375

Nov-
22

448

425

360.

362.

360

375

Dec-
22

397

425

334.

362.

405

375

Example of data displayed as a table and an equivalent pivot table with the Month Year field pivoted horizontally

Jan22

Mar22

Pivot table

Area Q

““““

Script syntax and chart functions - Qlik Sense, August 2022

48

2 Script statements and keywords

First

The First prefix to a Loap or seLect (SQL) statement is used for loading a set maximum number
of records from a data source table. A typical use case for using the rirst prefix is when you
want to retrieve a small subset of records from a large and/or slow data load step. As soon as
the defined “n” number of records has been loaded, the load step terminates prematurely, and
the rest of the script execution continues as normal.

Syntax:
First n (loadstatement | selectstatement)

Arguments

Argument Description

n An arbitrary expression that evaluates to an integer indicating the maximum
number of records to be read. n can also be enclosed in parentheses: (n).

loadstatement | The Toad statement/select statement that follows the n argument will define the
selectstatement specified table that must be loaded with the set maximum number of records.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The
date format is specified in the seT bateFormat statement in your data load script. The default date
formatting may be different in your system, due to your regional settings and other factors. You can change
the formats in the examples below to suit your requirements. Or you can change the formats in your load
script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or server
where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load
editor will use Swedish regional settings for dates, time, and currency. These regional format settings are
not related to the language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the
same language as the browser you are using.

Function examples

Example Result

FIRST 10 LOAD * from abc.csv; This example will retrieve the first ten lines from an excel file.
FIRST (1) SQL SELECT * from This example will retrieve the first selected line from the orders
orders; dataset.

Example - Load the first five rows

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, August 2022 49

2 Script statements and keywords

The load script contains:

* A dataset of dates from the first two weeks of 2020.

* The First variable that instructs the application to only load the first five records.
Load script

Sales:
FIRST 5
LOAD

Inline [
date,sales
01/01/2020,6000
01/02/2020,3000
01/03/2020,6000
01/04/2020,8000
01/05/2020, 5000
01/06/2020,7000
01/07/2020, 3000
01/08/2020,5000
01/09/2020,9000
01/10/2020, 5000
01/11/2020,7000
01/12/2020,7000
01/13/2020,7000
01/14/2020,7000
1;

Results

Load the data and open a sheet. Create a new table and add pate as a field and sum(sales) as a measure.
Results table
Date sum(sales)
01/01/2020 6000
01/02/2020 3000
01/03/2020 6000
01/04/2020 8000
01/05/2020 5000

The script only loads the first five records of the sales table.

Generic

The Generic load prefix allows for conversion of entity-attribute-value modeled data (EAV)
into a traditional, normalized relational table structure. EAV modeling is alternatively referred
to as "generic data modeling" or "open schema".

Script syntax and chart functions - Qlik Sense, August 2022 50

2 Script statements and keywords

Example of EAV modeled data and an equivalent denormalized relational table

productiD | Anroute | value
13 Status Discontinued
[Product ID_| status | Colour |Size |

13 Colour Brown
) 13 Discontinued Brown 13-15

20 Colour White
. 20 White 16-18

13 Size 13-15

20 Size 16-18

Example of EAV modeled data and an equivalent set of normalized relational tables

rroduct 0 | sttus

Status Discontinued /

13 Colour Brown Product ID m

20 Colour White — 13 Brown

13 Size 13-15 \ 20 White

20 Size 16-18
ProductiD |Size |
13 13-15
20 16-18

While it is technically possible to load and analyze EAV modeled data in Qlik, it is often easier to work with
an equivalent traditional relational data structure.

Syntax:
Generic(loadstatement | selectstatement)
These topics may help you work with this function:

Related topics

Topic Description

Crosstable The crosstable load prefix transforms data that is horizontally-oriented into vertically-

(page 39) oriented data. From a purely functional perspective, it performs the opposite
transformation to the Generic load prefix, although the prefixes typically serve entirely
different use cases.

Generic EAV structured data models are further described here.
databases in
Manage data

Script syntax and chart functions - Qlik Sense, August 2022 51

2 Script statements and keywords

Example 1 - Transforming EAV structured data with the Generic load prefix

Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains a dataset which is loaded into a table named Transactions. The dataset includes a
date field. The default monthNames definition is used.

Load script

Products:

Generic

Load * inTline [

Product ID, Attribute, value
13, Status, Discontinued
13, color, Brown

20, color, White

13, size, 13-15

20, size, 16-18

2, Status, Discontinued
5, Ccolor, Brown

2, Color, White

44, color, Brown

45, size, 16-18

45, color, Brown

1;

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: color.

Add this measure:

=Count([Product 1ID])
Now you can inspect the number of products by color.

Results table

Color =Count([Product ID])
Brown 4
White 2

Note the shape of the data model, where each attribute has been broken out into a separate table named
according to the original target table tag product.Each table has the attribute as a suffix. One example of
this is product.color. The resulting Product Attribute output records are associated by the product 1D.

Script syntax and chart functions - Qlik Sense, August 2022 52

2 Script statements and keywords

Data model viewer representation of the results

Preducts.Sire
Products. Status

Products.Calour

o 4

Resulting table of
records: Products.Status

ProductID Status
13 Discontinued

2 Discontinued

Resulting table of
records: Products.Size

ProductID Size

13 13-15
20 16-18
45 16-18

Resulting table of
records: Products.Color

ProductID Color

13 Brown
5 Brown
44 Brown
45 Brown
20 White
2 White

Script syntax and chart functions - Qlik Sense, August 2022 53

2 Script statements and keywords

Example 2 - Analyzing EAV structured data without the Generic load prefix

Load script and chart expression

Overview

This example shows how to analyze EAV structured data in its original form.
Open the Data load editor and add the load script below to a new tab.
The load script contains a dataset which is loaded into a table named products in an EAV structure.

In this example, we are still counting products by color attribute. In order to analyze data structured in this
way, you will need to apply expression-level filtering of products carrying the Attribute value color.

Furthermore, individual attributes are not available to select as dimensions or fields, making it harder to
determine how to build effective visualizations.

Load script

Products:

Load * InTine

[

Product ID, Attribute, value
13, Status, Discontinued
13, color, Brown

20, color, White

13, size, 13-15

20, size, 16-18

2, Status, Discontinued
5, color, Brown

2, Color, White

44, color, Brown

45, size, 16-18

45, color, Brown

1;

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: value.

Create the following measure:

=Count({<Attribute={'Color'}>} [Product ID])
Now you can inspect the number of products by color.

Resulting table of records: Products.Status

Value =Count({<Attribute={'Color"}>} [Product ID])
Brown 4
White 2

Script syntax and chart functions - Qlik Sense, August 2022 54

2 Script statements and keywords

Example 3 - Denormalizing the resulting output tables from a Generic load
(advanced)

Load script and chart expression

Overview

In this example, we show how the normalised data structure produced by the Generic load prefix can be
denormalised back into a consolidated product dimension table. This is an advanced modeling technique
which can be employed as part of data model performance tuning.

Open the Data load editor and add the load script below to a new tab.
Load script
Products:

Generic

Load * inTline [

Product ID, Attribute, value
13, status, Discontinued
13, color, Brown

20, color, white

13, size, 13-15

20, size, 16-18

2, Status, Discontinued
5, Color, Brown

2, color, white

44, color, Brown

45, Size, 16-18

45, color, Brown

1;
RENAME TABLE Products.Color TO Products;

OUTER JOIN (Products)
LOAD * RESIDENT Products.Size;

OUTER JOIN (Products)
LOAD * RESIDENT Products.Status;
DROP TABLES Products.Size,Products.Status;

Results

Open the Data model viewer and note the shape of the resulting data model. Only one denormalized table
is present. It is a combination of the three intermediary output tables: products.size, Products.status, and

Products.Color.

Script syntax and chart functions - Qlik Sense, August 2022 55

2 Script statements and keywords

Resulting
internal data
model

Products
Product ID
Status
Color

Size

Resulting table of records: Products

ProductID Status Color Size
13 Discontinued Brown 13-15
20 - White 16-18
2 Discontinued White -

5 - Brown -

44 - Brown -

45 - Brown 16-18

Load the data and open a sheet. Create a new table and add this field as a dimension: color.

Add this measure:

=Count([Product ID])

Results table

Color =Count([Product ID])
Brown 4
White 2

Hierarchy

The hierarchy prefix is used to transform a parent-child hierarchy table to a table that is useful
in a Qlik Sense data model. It can be put in front of a LOAD or a SELECT statement and will
use the result of the loading statement as input for a table transformation.

The prefix creates an expanded nodes table, which normally has the same number of records as the input
table, but in addition each level in the hierarchy is stored in a separate field. The path field can be used in a
tree structure.

Syntax:
Hierarchy (NodeID, ParentID, NodeName, [ParentName, [PathSource, [PathName,
[PathDelimiter, Depth]]]]) (loadstatement | selectstatement)

Script syntax and chart functions - Qlik Sense, August 2022 56

2 Script statements and keywords

The input table must be an adjacent nodes table. Adjacent nodes tables are tables where each record
corresponds to a node and has a field that contains a reference to the parent node. In such a table the node
is stored on one record only but the node can still have any number of children. The table may of course
contain additional fields describing attributes for the nodes.

The prefix creates an expanded nodes table, which normally has the same number of records as the input
table, but in addition each level in the hierarchy is stored in a separate field. The path field can be used in a
tree structure.

Usually the input table has exactly one record per node and in such a case the output table will contain the
same number of records. However, sometimes there are nodes with multiple parents, i.e. one node is
represented by several records in the input table. If so, the output table may have more records than the
input table.

All nodes with a parent id not found in the node id column (including nodes with missing parent id) will be
considered as roots. Also, only nodes with a connection to a root node - direct or indirect - will be loaded,
thus avoiding circular references.

Additional fields containing the name of the parent node, the path of the node and the depth of the node
can be created.

Arguments:
Arguments

Argument Description

NodelD The name of the field that contains the node id. This field must exist in the input table.

ParentID The name of the field that contains the node id of the parent node. This field must
existin the input table.

NodeName The name of the field that contains the name of the node. This field must exist in the
input table.

ParentName A string used to name the new ParentName field. If omitted, this field will not be
created.

ParentSource The name of the field that contains the name of the node used to build the node path.
Optional parameter. If omitted, NodeName will be used.

PathName A string used to name the new Path field, which contains the path from the root to the
node. Optional parameter. If omitted, this field will not be created.

PathDelimiter A string used as delimiter in the new Path field. Optional parameter. If omitted, /' will
be used.

Depth A string used to name the new Depth field, which contains the depth of the node in

the hierarchy. Optional parameter. If omitted, this field will not be created.

Script syntax and chart functions - Qlik Sense, August 2022 57

2 Script statements and keywords

Example:

Hierarchy(NodeID, ParentID, NodeName, ParentName, NodeName, PathName, '\', Depth) LOAD *
inline [

NodeID, ParentID, NodeName

1, 4, London

2, 3, Munich

3, 5, Germany

4, 5, UK
5, , Europe
1;
Node Paren NodeNa NodeNa NodeNa NodeNa ParentN PathName Dep
ID tID me me1 me2 me3 ame th
1 4 London Europe UK London UK Europe\UK\Lond 3
on
2 3 Munich Europe Germany Munich Germany Europe\Germany 3
\Munich
3 5 German Europe Germany - Europe Europe\Germany 2
y
4 5 UK Europe UK - Europe Europe\UK 2
5 Europe Europe - - - Europe 1

HierarchyBelongsTo

This prefix is used to transform a parent-child hierarchy table to a table that is useful in a Qlik
Sense data model. It can be put in front of a LOAD or a SELECT statement and will use the
result of the loading statement as input for a table transformation.

The prefix creates a table containing all ancestor-child relations of the hierarchy. The ancestor fields can
then be used to select entire trees in the hierarchy. The output table in most cases contains several records
per node.

Syntax:
HierarchyBelongsTo (NodeID, ParentID, NodeName, AncestorID, AncestorName,
[DepthDiff]) (loadstatement | selectstatement)

The input table must be an adjacent nodes table. Adjacent nodes tables are tables where each record
corresponds to a node and has a field that contains a reference to the parent node. In such a table the node
is stored on one record only but the node can still have any number of children. The table may of course
contain additional fields describing attributes for the nodes.

The prefix creates a table containing all ancestor-child relations of the hierarchy. The ancestor fields can
then be used to select entire trees in the hierarchy. The output table in most cases contains several records
per node.

Script syntax and chart functions - Qlik Sense, August 2022 58

2 Script statements and keywords

An additional field containing the depth difference of the nodes can be created.

Arguments:

Argument

NodelD

ParentID

NodeName

AncestorlD

AncestorName

DepthDiff

Example:

Arguments
Description

The name of the field that contains the node id. This field must exist in the input
table.

The name of the field that contains the node id of the parent node. This field must
exist in the input table.

The name of the field that contains the name of the node. This field must exist in the
input table.

A string used to name the new ancestor id field, which contains the id of the
ancestor node.

A string used to name the new ancestor field, which contains the name of the
ancestor node.

A string used to name the new DepthDiff field, which contains the depth of the node
in the hierarchy relative the ancestor node. Optional parameter. If omitted, this field
will not be created.

HierarchyBelongsTo (NodeID, AncestorID, NodeName, AncestorID, AncestorName, DepthDiff) LOAD *

inline [

NodeID, AncestorID, NodeName

1, 4, London
2, 3, Munich

3, 5, Germany
4, 5, UK

5, , Europe

]

NodelD
1

w N NN

Results
AncestorID NodeName AncestorName DepthDiff
1 London London 0
4 London UK 1
5 London Europe 2
2 Munich Munich 0
3 Munich Germany 1
5 Munich Europe 2
3 Germany Germany 0

Script syntax and chart functions - Qlik Sense, August 2022

59

2 Script statements and keywords

NodelD AncestorlD NodeName AncestorName DepthDiff
3 5 Germany Europe 1
4 4 UK UK 0
4 5 UK Europe 1
5 5 Europe Europe 0
Inner

The join and keep prefixes can be preceded by the prefix inner. If used before join it specifies
that an inner join should be used. The resulting table will thus only contain combinations of
field values from the raw data tables where the linking field values are represented in both
tables. If used before keep, it specifies that both raw data tables should be reduced to their
common intersection before being stored in Qlik Sense.

Syntax:
Inner (Join | Keep) [(tablename)] (loadstatement |selectstatement)
Arguments:
Arguments

Argument Description

tablename The named table to be compared to the loaded table.

loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.
Example
Load script

Add the example script to your app and run it. To see the result, add the fields listed in the results column to
a sheet in your app.

Tablel:

Load * inTline [
columnl, Column2
A, B

1, aa

2, cc
3, ee];

Table2:

Inner Join Load * inline [
columnl, Column3

A, C

1, xx

4, yy 1;

Script syntax and chart functions - Qlik Sense, August 2022 60

2 Script statements and keywords

Result
Resulting table
Column1 Column2 Column3
A B C
1 aa XX
Explanation

This example demonstrates the Inner Join output where only values present in both the first (left) and the
second (right) tables are joined.
IntervalMatch

The IntervalMatch prefix is used to create a table matching discrete numeric values to one or
more numeric intervals, and optionally matching the values of one or several additional keys.

Syntax:
IntervalMatch (matchfield) (loadstatement | selectstatement)
IntervalMatch (matchfield,keyfieldl [, keyfield2, ... keyfield5])

(loadstatement | selectstatement)

The IntervalMatch prefix must be placed before a LOAD or a SELECT statement that loads the intervals.
The field containing the discrete data points (Time in the example below) and additional keys must already
have been loaded into Qlik Sense before the statement with the IntervalMatch prefix. The prefix does not
by itself read this field from the database table. The prefix transforms the loaded table of intervals and keys
to a table that contains an additional column: the discrete numeric data points. It also expands the number
of records so that the new table has one record per possible combination of discrete data point, interval
and value of the key field(s).

The intervals may be overlapping and the discrete values will be linked to all matching intervals.

When the IntervalMatch prefix is extended with key fields, it is used to create a table matching discrete
numeric values to one or more numeric intervals, while at the same time matching the values of one or
several additional keys.

In order to avoid undefined interval limits being disregarded, it may be necessary to allow NULL values to
map to other fields that constitute the lower or upper limits to the interval. This can be handled by the
NullAsValue statement or by an explicit test that replaces NULL values with a numeric value well before or
after any of the discrete numeric data points.

Script syntax and chart functions - Qlik Sense, August 2022 61

2 Script statements and keywords

Arguments:

Argument
matchfield

keyfield

loadstatement
orselectstatement

Example 1:

Arguments

Description
The field containing the discrete numeric values to be linked to intervals.

Fields that contain the additional attributes that are to be matched in the
transformation.

Must result in a table, where the first field contains the lower limit of each interval,
the second field contains the upper limit of each interval, and in the case of using
key matching, the third and any subsequent fields contain the keyfield(s) present in
the IntervalMatch statement. The intervals are always closed, i.e. the end points
are included in the interval. Non-numeric limits render the interval to be
disregarded (undefined).

In the two tables below, the first one lists a number of discrete events and the second one defines the start
and end times for the production of different orders. By means of the IntervalMatch prefix it is possible to
logically connect the two tables in order to find out e.g. which orders were affected by disturbances and
which orders were processed by which shifts.

EventLog:
LOAD * Inline [

Time, Event, Comment

00:00, 0, start of shift 1

01:18, 1, Line stop
2, Line restart 50%
3, Line speed 100%
08:00, 4, start of shift 2
5, End of production

02:23,
04:15,

11:43,
1;

orderLog:

LOAD * INLINE [
Start, End, Order
01:00, 03:35, A
02:30, 07:58, B
03:04, 10:27, C
07:23, 11:43, D
1;

//Link the field Time to the time intervals defined by the fields start and End.
Inner Join IntervalMatch (Time)

LOAD Start, End
Resident oOrderLog;

The table OrderLog contains now an additional column: Time. The number of records is also expanded.

Script syntax and chart functions - Qlik Sense, August 2022 62

2 Script statements and keywords

Table with additional column

Time Start End Order
00:00 - - -
01:18 01:00 03:35 A
02:23 01:00 03:35 A
04:15 02:30 07:58 B
04:15 03:04 10:27 C
08:00 03:04 10:27 C
08:00 07:23 11:43 D
11:43 07:23 11:43 D

Example 2: (using keyfield)

Same example than above, adding ProductionLine as a key field.

EventLog:

LOAD * InTine [

Time, Event, Comment, ProductionLine
00:00, 0, start of shift 1, Pl

01:00, 0, start of shift 1, P2
01:18, 1, Line stop, Pl

02:23, 2, Line restart 50%, Pl
04:15, 3, Line speed 100%, Pl
08:00, 4, start of shift 2, Pl
09:00, 4, start of shift 2, P2
11:43, 5, End of production, Pl
11:43, 5, End of production, P2
1;

orderLog:

LOAD * INLINE [

Start, End, Order, ProductionLine
01:00, 03:35, A, P1

02:30, 07:58, B, P1

03:04, 10:27, c, P1

07:23, 11:43, b, P2

1;

//Link the field Time to the time intervals defined by the fields start and End and match the
values

// to the key ProductionLine.

Inner Join

IntervalMatch (Time, ProductionLine)

LOAD Start, End, ProductionLine

Resident OrderLog;

A table box could now be created as below:

Script syntax and chart functions - Qlik Sense, August 2022 63

2 Script statements and keywords

Tablebox example

ProductionLine Time Event Comment Order Start End
P1 00:00 0 Start of shift 1 - - -

P2 01:00 0 Start of shift 1 - - -

P1 01:18 1 Line stop A 01:00 03:35
P1 02:23 2 Linerestart50% A 01:00 03:35
P1 04:15 3 Line speed 100% B 02:30 07:58
P1 04:15 3 Line speed 100% C 03:04 10:27
P1 08:00 4 Start of shift 2 C 03:04 10:27
P2 09:00 4 Start of shift 2 D 07:23 11:43
P1 11:43 5 End of production = - - -

P2 11:43 5 End of production D 07:23 11:43

Join

The join prefix joins the loaded table with an existing named table or the last previously
created data table.

The effect of joining data is to extend the target table by an additional set of fields or attributes, namely
ones not already present in the target table. Any common field names between the source data set and the
target table are used to work out how to associate the new incoming records. This is commonly referred to
as a “natural join”. A Qlik join operation can lead to the resulting target table having more or fewer records
than it started with, depending on the uniqueness of the join association and the type of join employed.

There are four types of joins:

Left join

Left joins are the most common join type. For example, if you have a transaction data set and would like to
combine it with a reference data set, you would typically use a Left Join. You would load the transaction
table first, then load the reference data set while joining it via a Left 3Join prefix onto the already loaded
transaction table. A Left Join would keep all transactions as-is and add on the supplementary reference
data fields where a match is found.

Inner join

When you have two data sets where you only care about any results where there is a matching
association, consider using an Inner 3Join. This will eliminate all records from both the source data loaded
and the target table if no match is found. As a result, this may leave your target table with fewer records
than before the join operation took place.

Script syntax and chart functions - Qlik Sense, August 2022 64

2 Script statements and keywords

Outer join

When you need to keep both the target records and all of the incoming records, use an outer Join. Where
no match is found, each set of records is still kept while the fields from the opposite side of the join will
remain unpopulated (null).

If the type keyword is omitted, the default join type is an outer join.
Right join

This join type keeps all the records about to be loaded, while reducing the records in the table targeted by
the join to only those records where there is an association match in the incoming records. This is a niche
join type that is sometimes used as a means of trimming down an already pre-loaded table of records to a
required subset.

Example results sets from different types of join operations

DATASETS OPERATION OUTPUT

Trade ID AssetClass | — 101533 Fixed Income LSE

101533 Fixed Income 606601 Commodities

606601 Commaodities
LUCPCUN TradeD |Assetclass | |
— 101533 Fixed Income LSE

Incoming Dataset mm-

OUTER JOIN

101533 Fixed Income LSE
m — 606601 Commodities
101533 LSE 79052 Hong Kong
79052 Hong Kong
LRSI Trede D [Assetclass | |
— 101533 Fixed Income LSE
79052 Hong Kong

If there are no field names in common between the source and target of a join operation, the
join will result in a cartesian product of all rows - this is called a “cross join”.

Script syntax and chart functions - Qlik Sense, August 2022 65

2 Script statements and keywords

Example result set from a "cross join" operation

DATASETS OPERATION QUTPUT

Target Table

el e -
101533 EUR

606601 EUR 1650 101533 1250
101533 EUR 1250 GEP 0.84
606601 EUR 1650 UsD 1.08
Incoming Dataset 606601 EUR 1650 GBP 0.84
Target Currency |Rate |
usD 1.08
GBP 0.84
Syntax:
[inner | outer | left | right]Join [(tablename)] (loadstatement |
selectstatement)
Arguments
Argument Description
tablename The named table to be compared to the loaded table.
loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

These topics may help you work with this function:
Related topics
Topic Description

Combining tables This topic provides further explanation of the concepts of “joining” and “keeping”
with Join and Jeep data sets.
in Manage data

Keep (page 73) The keep load prefix is similar to the Join prefix, but it does not combine the
source and target datasets. Instead, it trims each dataset according to the type
of operation adopted (inner, outer, left, or right).

Example 1 - Left join: Enriching a target table with a reference data set

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, August 2022 66

2 Script statements and keywords

The load script contains:

* A dataset representing change records, which is loaded into a table named changes. Itincludes a

Status ID key field.

¢ A second dataset representing change statuses, which is loaded and combined with the original

change records by joining it with a left J0in load prefix.

This left join ensures that the change records remain intact while adding on status attributes where a match
in the incoming status records is found based on a common Status ID.

Load script

Changes:

Load * inline [

Change ID Status ID Scheduled Sstart Date Scheduled End Date Business Impact
10030 4 19/01/2022 23/02/2022 None
10015 3 04/01/2022 15/02/2022 Low
10103 1 02/04/2022 29/05/2022 Medium
10185 2 23/06/2022 08/09/2022 None
10323 1 08/11/2022 26/11/2022 High
10326 2 11/11/2022 05/12/2022 None
10138 2 07/05/2022 03/08/2022 None
10031 3 20/01/2022 25/03/2022 Low
10040 1 29/01/2022 22/04/2022 None
10134 1 03/05/2022 08/07/2022 Low
10334 2 19/11/2022 06/02/2023 Low
10220 2 28/07/2022 06/09/2022 None
10264 1 10/09/2022 17/10/2022 Medium
10116 1 15/04/2022 24/04/2022 None
10187 2 25/06/2022 24/08/2022 Low

1 (delimiter is '\t');

Status:

Left Join (Changes)

Load *
Status

1
2
3
4
5
]

Results

inTine [

D Status Sub Status
open Not Started

Open Started

Closed Complete

Closed cancelled

Closed oObsolete

(delimiter is '\t');

Open the Data model viewer and note the shape of the data model. Only one denormalized table is
present. It is a combination of all the original change records, with the matching status attributes joined
onto each change record.

Script syntax and chart functions - Qlik Sense, August 2022 67

2 Script statements and keywords

Resulting internal data
model

Changes

Change ID

Status ID

Scheduled Start Date
Scheduled End Date
Business Impact
Status

Sub Status

If you expand the preview window in the Data model viewer, you will see a portion of this full result set

organized into a table:

Change Status
ID ID
10015 3
10030 4
10031 3
10040 1
10103 1
10116 1
10134 1
10138 2
10185 2
10187 2
10220 2
10264 1
10323 1
10326 2
10334 2

Preview of Changes table in the Data model viewer

Scheduled
Start Date

04/01/2022
19/01/2022
20/01/2022
29/01/2022
02/04/2022
15/04/2022
03/05/2022
07/05/2022
23/06/2022
25/06/2022
28/07/2022
10/09/2022
08/11/2022
11/11/2022
19/11/2022

Scheduled End Business

Date

15/02/2022
23/02/2022
25/03/2022
22/04/2022
29/05/2022
24/04/2022
08/07/2022
03/08/2022
08/09/2022
24/08/2022
06/09/2022
17/10/2022
26/11/2022
05/12/2022
06/02/2023

Impact
Low
None
Low
None
Medium
None
Low
None
None
Low
None
Medium
High
None

Low

Status

Closed
Closed
Closed
Open
Open
Open
Open
Open
Open
Open
Open
Open
Open
Open
Open

Sub Status

Complete
Cancelled
Complete
Not Started
Not Started
Not Started
Not Started
Started
Started
Started
Started

Not Started
Not Started
Started

Started

Since the fifth row in the Status table (Status ID: '5', Status: 'Closed’, Sub Status: 'Obsolete’) does not
correspond to any of the records in the Changes table, the information in this row does not appear in the

result set above.

Script syntax and chart functions - Qlik Sense, August 2022

68

2 Script statements and keywords

Return to the Data load editor. Load the data and open a sheet. Create a new table and add this field as a
dimension: status.

Add this measure:

=Count([Change ID])
Now you can inspect the number of Changes by Status.

Results table

Status =Count([Change ID])
Open 12
Closed 3

Example 2 - Inner join: Combining matching records only

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset representing change records, which is loaded into a table named changes.

¢ A second dataset representing change records originating from the source system 11rA.This is
loaded and combined with the original records by joining it with an Inner 3Join load prefix.

This 1nner 31o01in ensures that only the five change records which are found in both datasets are kept.

Load script

Changes:

Load * inline [

Change ID Status ID Scheduled Start Date Scheduled End Date Business Impact
10030 4 19/01/2022 23/02/2022 None
10015 3 04/01/2022 15/02/2022 Low
10103 1 02/04/2022 29/05/2022 Medium
10185 2 23/06/2022 08/09/2022 None
10323 1 08/11/2022 26/11/2022 High
10326 2 11/11/2022 05/12/2022 None
10138 2 07/05/2022 03/08/2022 None
10031 3 20/01/2022 25/03/2022 Low
10040 1 29/01/2022 22/04/2022 None
10134 1 03/05/2022 08/07/2022 Low
10334 2 19/11/2022 06/02/2023 Low
10220 2 28/07/2022 06/09/2022 None
10264 1 10/09/2022 17/10/2022 Medium
10116 1 15/04/2022 24/04/2022 None
10187 2 25/06/2022 24/08/2022 Low

1 (delimiter is '\t');

Script syntax and chart functions - Qlik Sense, August 2022 69

2 Script statements and keywords

JIRA_changes:

Inner Join (Changes)

Load

[Ticket ID] AS [Change ID],
[Source System]

inTline

[

Ticket ID Source System
10000 3JIRA

10030 JIRA

10323 JIRA

10134 JIRA

10334 JIRA

10220 3JIRA

20000 TFS

] (deTimiter is '"\t');

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Source System
e Change ID

e Business Impact

Now you can inspect the five resulting records. The resultant table from an Inner 3Join will only include
records with matching information in both datasets.

Results table

Source System Change ID Business Impact

JIRA 10030 None
JIRA 10134 Low
JIRA 10220 None
JIRA 10323 High
JIRA 10334 Low

Example 3 - Outer join: Combining overlapping record sets

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, August 2022 70

2 Script statements and keywords

¢ A dataset representing change records, which is loaded into a table named changes.

¢ A second dataset representing change records originating from the source system 11rA, which is
loaded and combined with the original records by joining it with an outer Join load prefix.

This ensures that all the overlapping change records from both datasets are kept.

Load script

// 8 Change records

Changes:

Load * inTline [

Change 1ID Status ID
10030 4 19/01/2022
10015 3 04/01/2022
10138 2 07/05/2022
10031 3 20/01/2022
10040 1 29/01/2022
10134 1 03/05/2022
10334 2 19/11/2022
10220 2 28/07/2022

] (delimiter is '\t');
// 6 Change records

JIRA_changes:

outer Join (Changes)

Load
[Ticket ID] AS [Change ID],
[Source System]

inTline

[

Ticket ID Source System

10030 IJIRA

10323 JIRA

10134 JIRA

10334 JIRA

10220 3JIRA

10597 J1IRA

] (deTimiter is '\t');

Results

Scheduled Start Date

23/02/2022
15/02/2022
03/08/2022
25/03/2022
22/04/2022
08/07/2022
06/02/2023
06/09/2022

None
Low
None
Low
None
Low
Low
None

Scheduled End Date Business Impact

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Source System
e Change ID

e Business Impact

Now you can inspect the 10 resulting records.

Script syntax and chart functions - Qlik Sense, August 2022

71

2 Script statements and keywords

Results table

Source System Change ID Business Impact

JIRA 10030 None
JIRA 10134 Low
JIRA 10220 None
JIRA 10323 -
JIRA 10334 Low
JIRA 10597 -

- 10015 Low
- 10031 Low
- 10040 None
- 10138 None

Example 4 - Right join: Trimming down a target table by a secondary master
dataset

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset representing change records, which is loaded into a table named changes.

¢ A second dataset representing change records originating from the source system Teamwork.This is
loaded and combined with the original records by joining it with a Right Jo1in load prefix.

This ensures that only Teamwork change records are kept, while not losing any Teamwork records if the
target table does not have a matching change 1D.

Load script
Changes:

Load * inline [

Change ID Status ID Scheduled Start Date Scheduled End Date Business Impact
10030 4 19/01/2022 23/02/2022 None

10015 3 04/01/2022 15/02/2022 Low

10103 1 02/04/2022 29/05/2022 Medium

10185 2 23/06/2022 08/09/2022 None

10323 1 08/11/2022 26/11/2022 High

10326 2 11/11/2022 05/12/2022 None

10138 2 07/05/2022 03/08/2022 None

Script syntax and chart functions - Qlik Sense, August 2022 72

2 Script statements and keywords

10031 3 20/01/2022 25/03/2022 Low
10040 1 29/01/2022 22/04/2022 None
10134 1 03/05/2022 08/07/2022 Low
10334 2 19/11/2022 06/02/2023 Low
10220 2 28/07/2022 06/09/2022 None
10264 1 10/09/2022 17/10/2022 Med1ium
10116 1 15/04/2022 24/04/2022 None
10187 2 25/06/2022 24/08/2022 Low

] (delimiter is '\t');

Teamwork_changes:

Right Join (Changes)

Load
[Ticket ID] AS [Change ID],
[Source System]

inTline

[

Ticket ID Source System

10040 Teamwork

10015 Teamwork

10103 Teamwork

10031 Teamwork

50231 Teamwork

] (deTimiter is '"\t');

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Source System
e Change ID

e Business Impact

Now you can inspect the five resulting records.

Results table

Source System Change ID Business Impact

Teamwork 10015 Low

Teamwork 10031 Low

Teamwork 10040 None

Teamwork 10103 Medium

Teamwork 50231 -
Keep

The keep prefix is similar to the join prefix. Just as the join prefix, it compares the loaded table with an
existing named table or the last previously created data table, but instead of joining the loaded table with
an existing table, it has the effect of reducing one or both of the two tables before they are stored in Qlik

Script syntax and chart functions - Qlik Sense, August 2022 73

2 Script statements and keywords

Sense, based on the intersection of table data. The comparison made is equivalent to a natural join made
over all the common fields, i.e. the same way as in a corresponding join. However, the two tables are not
joined and will be kept in Qlik Sense as two separately named tables.

Syntax:
(inner | left | right) keep [(tablename)] (loadstatement | selectstatement

)

The keep prefix must be preceded by one of the prefixes inner, left or right.

The explicit join prefix in Qlik Sense script language performs a full join of the two tables. The result is one
table. In many cases such joins will result in very large tables. One of the main features of Qlik Sense is its
ability to make associations between multiple tables instead of joining them, which greatly reduces
memory usage, increases processing speed and offers enormous flexibility. Explicit joins should therefore
generally be avoided in Qlik Sense scripts. The keep functionality was designed to reduce the number of
cases where explicit joins needs to be used.

Arguments:
Arguments
Argument Description
tablename The named table to be compared to the loaded table.
loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.
Example:

Inner Keep LOAD * from abc.csv;
Left Keep SELECT * from tablel;
tabl:

LOAD * from filel.csv;

tab2:

LOAD * from file2.csv;

Left Keep (tabl) LOAD * from file3.csv;

Left

The Join and Keep prefixes can be preceded by the prefix left.

If used before join it specifies that a left join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented in the
first table. If used before keep, it specifies that the second raw data table should be reduced to its common
intersection with the first table, before being stored in Qlik Sense.

Were you looking for the string function by the same name? See: Left (page 1014)

Script syntax and chart functions - Qlik Sense, August 2022 74

2 Script statements and keywords

Syntax:
Left (Join | Keep) [(tablename)] (loadstatement | selectstatement)
Arguments:
Arguments

Argument Description

tablename The named table to be compared to the loaded table.

loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.
Example
Load script

Add the example script to your app and run it. To see the result, add the fields listed in the results column to
a sheet in your app.

Tablel:

Load * inTline [
columnl, Column2
A, B

1, aa

2, cc
3, ee];
Table2:

Left Join Load * inline [
columnl, Column3

A, C
1, xx
4, yy 15
Result
Resulting table
Column1 Column2 Column3
A B C
1 aa XX
2 cc -
3 ee -
Explanation

This example demonstrates the Left Join output where only values present in the first (left) table are joined.

Script syntax and chart functions - Qlik Sense, August 2022 75

2 Script statements and keywords

Mapping
The mapping prefix is used to create a mapping table that can be used to, for example,
replacing field values and field names during script execution.

Syntax:
Mapping (loadstatement | selectstatement)

The mapping prefix can be put in front of a LOAD or a SELECT statement and will store the result of the
loading statement as a mapping table. Mapping provides an efficient way to substituting field values during
script execution, e.g. replacing US, U.S. or America with USA. A mapping table consists of two columns,
the first containing comparison values and the second containing the desired mapping values. Mapping
tables are stored temporarily in memory and dropped automatically after script execution.

The content of the mapping table can be accessed using e.g. the Map ... Using statement, the Rename
Field statement, the Applymap() function or the Mapsubstring() function.

Example:

In this example we load a list of salespersons with a country code representing their country of residence.
We use a table mapping a country code to a country to replace the country code with the country name.
Only three countries are defined in the mapping table, other country codes are mapped to 'Rest of the
world'.

// Load mapping table of country codes:

mapl:

mapping LOAD *

Inline [

CCode, Country

Sw, Sweden

Dk, Denmark

No, Norway

15

// Load 1ist of salesmen, mapping country code to country
// If the country code is not in the mapping table, put Rest of the world
Salespersons:

LOAD *,

ApplyMap('mapl', CCode, 'Rest of the world') As Country
Inline [

CCode, Salesperson

Sw, John

Sw, Mary

Sw, Per

Dk, Preben

Dk, 0l1le

No, Ole

sf, Risttu] ;

// We don't need the CCode anymore

Drop Field 'CCode';

The resulting table looks like this:

Script syntax and chart functions - Qlik Sense, August 2022 76

2 Script statements and keywords

Mapping table

Salesperson Country

John Sweden

Mary Sweden

Per Sweden

Preben Denmark

Olle Denmark

Ole Norway

Risttu Rest of the world

Merge

The Merge prefix can be added to any LOAD or SELECT statement in the script to specify
that the loaded table should be merged into another table. It also specifies that this statement
should be run in a partial reload.

The typical use case is when you load a change log and want to use this to apply inserts, updates, and
deletes to an existing table.

For partial reload to work properly, the app must be opened with data before a partial reload is
triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Syntax:
Merge [only] [(SequenceNoField [, SequenceNoVar])] On ListOfKeys [Concatenate
[(TableName)]] (loadstatement | selectstatement)
Arguments:
Arguments
Argument Description
only An optional qualifier denoting that the statement should be executed
only during partial reloads. The statement is disregarded during
normal (non-partial) reloads.
SequenceNoField The name of the field containing a timestamp or a sequence number
that defines the order of the operations.
SequenceNoVar The name of the variable that gets assigned the maximum value for

SequenceNoField of the table being merged.

Script syntax and chart functions - Qlik Sense, August 2022 77

2 Script statements and keywords

Argument Description

ListOfKeys A comma separated list of field names specifying the primary key.

Operation The first field of the load statement must contain the operation as a
text string: 'Insert’, 'Update’, or 'Delete’. ‘7', ‘v’ and ‘d’ are also
accepted.

General functionality

During a normal (non-partial) reload, the Merge LOAD construction works as a normal Load statement but
with the additional functionality of removing older obsolete records and records marked for deletion. The
first field of the Load statement must hold information about the operation: Insert, Update, or Delete.

For each loaded record, the record identifier is compared with previously loaded records, and only the
latest record (according to the sequence number) will be kept. If the latest record is marked with Delete,
none will be kept.

Target table

Which table to modify is determined by the set of fields. If a table with the same set of fields (except the first
field; the operation) already exists, this will be the relevant table to modify. Alternatively, a Concatenate
prefix can be used to specify the table. If the target table is not determined, the result of the Merge LOAD
construction is stored in a new table.

If the Concatenate prefix is used, the resulting table has a set of fields corresponding to the union of the
existing table and the input to the merge. Hence, the target table may get more fields than the change log
that is used as input to the merge.

A partial reload does the same as a full reload. One difference is that a partial reload rarely creates a new
table. Unless you have used the Only clause, a target table with the same set of fields from the previous
script execution always exists.

Sequence number

If the loaded change log is an accumulated log, that is, it contains changes that already have been loaded,
the parameter SequenceNoVar can be used in a Where clause to limit the amount of input data. The
Merge LOAD could then be made to only load records where the field SequenceNoField is greater than
SequenceNoVar. Upon completion, the Merge LOAD assigns a new value to the SequenceNoVar with the
maximum value seen in the SequenceNoField field.

Operations

The Merge LOAD can have fewer fields than the target table. The different operations treat missing fields
differently:

Insert: Fields missing in the Merge LOAD, but existing in the target table, get a NULL in the target table.
Delete: Missing fields do not affect the result. The relevant records are deleted anyway.

Update: Fields listed in the Merge LOAD are updated in the target table. Missing fields are not changed.
This means that the two following statements are not identical:

Script syntax and chart functions - Qlik Sense, August 2022 78

2 Script statements and keywords

¢ Merge on Key Concatenate Load 'U' as Operation, Key, F1, Null() as F2 From ...;

¢ Merge on Key Concatenate Load 'U' as Operation, Key, F1 From ...;

The first statement updates the listed records and changes F2 to NULL. The second does not change F2,
butinstead, leaves the values in the target table.

Examples

Example 1: Simple merge with specified table

In this example, an inline table named Persons is loaded with three rows. Merge then changes the table as
follows:

¢ Adds the row, Mary, 4 .
e Deletes the row, Steven, 3.
¢ Assigns the number 5to Jake .

The LastChangeDate variable is set to the maximum value in the ChangeDate column after Merge is
executed.

Load script

Add the example script to your app and run it. To see the result, add the fields listed in the results column to
a sheet in your app.

Set DateFormat='D/M/YYYY';
Persons:

load * inTline [

Name, Number

Jake, 3

Ji11, 2

Steven, 3

1;

Merge (ChangeDate, LastChangeDate) on Name Concatenate(Persons)
LOAD * inTline [

Operation, ChangeDate, Name, Number
Insert, 1/1/2021, Mary, 4
Delete, 1/1/2021, Steven,

Update, 2/1/2021, Jake, 5

1;

Result

Prior to the Merge Load, the resulting table appears as follows:

Resulting table

Name Number
Jake 3
Jill 2
Steven 3

Script syntax and chart functions - Qlik Sense, August 2022 79

2 Script statements and keywords

Following the Merge Load, the table appears as follows:

Resulting table

ChangeDate Name
2/1/2021 Jake
- Jill
1/1/2021 Mary

When the data is loaded, the Data load progress dialog box shows the operations that are performed:

Data load progress dialog box

Data losd progress

Data load is complete

Example 2: Data load script with missing fields

In this example, the same data as above is loaded, but now with an ID for each person.

Merge changes the table as follows:

¢ Adds the row, Mary, 4.

* Deletes the row, Steven, 3.

» Assigns the number 5to Jake.
» Assigns the number 6to Jill.

Script syntax and chart functions - Qlik Sense, August 2022

80

2 Script statements and keywords

Load script

Here we use two Merge Load statements, one for ‘Insert’ and ‘Delete’, and a second one for the ‘Update’.

Add the example script to your app and run it. To see the result, add the fields listed in the results column to
a sheet in your app.

Set DateFormat='D/M/YYYY';
Persons:

Load * Inline [

PersonID, Name, Number

1, Jake, 3

2, Jil1, 2

3, Steven, 3

1;

Merge (ChangeDate, LastChangeDate) on PersonID Concatenate(Persons)
Load * InTline [

Operation, ChangeDate, PersonID, Name, Number
Insert, 1/1/2021, 4, Mary, 4
Delete, 1/1/2021, 3, Steven,

1;

Merge (ChangeDate, LastChangeDate) on PersonID Concatenate(Persons)
Load * InTline [

Operation, ChangeDate, PersonID, Number
Update, 2/1/2021, 1, 5
Update, 3/1/2021, 2, 6

1;

Result

Following the Merge Load statements, the table appears as follows:

Resulting table

PersonID ChangeDate Name Number
1 2/1/2021 Jake 5
2 3/1/2021 Jill 6
4 1/1/2021 Mary 4

Note that the second Merge statement does not include the field Name, and as a consequence, the names
have not been changed.

Example 3: Data load script - Partial reload using a Where-clause with
ChangeDate

In the following example, the Only argument specifies that the Merge command is only executed during a
partial reload. Updates are filtered based on the previously captured LastChangeDate. After Merge is
finished, LastChangeDate variable is assigned the maximum value of the ChangeDate column processed
during the merge.

Script syntax and chart functions - Qlik Sense, August 2022 81

2 Script statements and keywords

Load script

Merge Only (ChangeDate, LastChangeDate) on Name Concatenate(Persons)
LOAD Operation, ChangeDate, Name, Number

from [1ib://ChangeFilesFolder/BulkChangesInPersonsTable.csv] (txt)
where ChangeDate >= $(LastChangeDate);

NoConcatenate

The NoConcatenate prefix forces two loaded tables with identical field sets to be treated as
two separate internal tables, when they would otherwise be automatically concatenated.

Syntax:
NoConcatenate (loadstatement | selectstatement)

Example:

LOAD A,B from filel.csv;
NoConcatenate LOAD A,B from file2.csv;

Only

The Only script keyword is used as an aggregation function, or as part of the syntax in partial reload
prefixes Add, Replace, and Merge.

Outer

The explicit Join prefix can be preceded by the prefix Outer to specify an outer join. In an outer join, all
combinations between the two tables are generated. The resulting table will thus contain combinations of
field values from the raw data tables where the linking field values are represented in one or both tables.
The Outer keyword is optional and is the default join type used when a join prefix is not specified.

Syntax:
Outer Join [(tablename)] (loadstatement |selectstatement)
Arguments:
Arguments
Argument Description
tablename The named table to be compared to the loaded table.
loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.
Example
Load script

Add the example script to your app and run it. To see the result, add the fields listed in the results column to
a sheet in your app.

Script syntax and chart functions - Qlik Sense, August 2022 82

2 Script statements and keywords

Tablel:

Load * inTline [
columnl, Column2
A, B

1, aa

2, cc
3, ee];
Table2:

outer Join Load * inline [
columnl, Column3

A, C
1, xx
4, yy 1;
Resulting table
Column1 Column2 Column3
A B C
1 aa XX
2 cc -
3 ee -
4 - yy
Explanation

In this example, the two tables, Table1 and Table2, are merged into a single table labeled Table1. In cases
like this, the outer prefix is often used to join several tables into a single table to perform aggregations over
the values of a single table.

Partial reload

A full reload always starts by deleting all tables in the existing data model, and then runs the load script.

A partial reload will not do this. Instead it keeps all tables in the data model and then executes only Load
and Select statements preceded by an Add, Merge, or Replace prefix. Other data tables are not affected
by the command. The only argument denotes that the statement should be executed only during partial
reloads, and should be disregarded during full reloads. The following table summarizes statement
execution for partial and full reloads.

Partial
Statement Full reload

reload
Load ... Statement will run Statement

will not run
Add/Replace/Merge Load ... Statement will run Statement

will run
Add/Replace/Merge Only Load ... Statement will not run Statement

will run

Script syntax and chart functions - Qlik Sense, August 2022 83

2 Script statements and keywords

Partial reloads have several benefits compared to full reloads:

« Faster, because only data recently changed needs to be loaded. With large data sets the difference
is significant.

¢ Less memory is consumed, because less data is loaded.

« More reliable, because queries to source data run faster, reducing the risk of network problems.

For partial reload to work properly, the app must be opened with data before a partial reload is
triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Limitation

A partial reload can remove values from the data. However, this will not be reflected in the list of distinct
values, which is a table maintained internally. So, after a partial reload, the list will contain all distinct values
that have existed in the field since the last full reload, which may be more than what currently exists after
the partial reload. This affects the output of the FieldValueCount() and the FieldValue() functions. The
FieldValueCount() could potentially return a number greater than the current number of field values.

Example
Example 1

Load script
Add the example script to your app and do a partial reload. To see the result, add the fields listed in the
results column to a sheet in your app.

T1:
Add only Load distinct recno()+10 as Num autogenerate 10;

Result
Resulting table

Num Count(Num)
11 1

12 1

13 1

14 1

15 1

16 1

17 1

18 1

Script syntax and chart functions - Qlik Sense, August 2022 84

2 Script statements and keywords

Num Count(Num)
19 1

20 1
Explanation

The statement is only executed during a partial reload. If the "distinct" prefix is omitted, the count of the
Num field will increase with each subsequent partial reload.

Example 2

Load script
Add the example script to your app. Do a full reload and view the result. Next, do a partial reload and view
the result. To see the results, add the fields listed in the results column to a sheet in your app.

T1:
Load recno() as ID, recno() as Value autogenerate 10;

T1:
Replace only Load recno() as ID, repeat(recno(),3) as value autogenerate 10;

Result
Output table after full reload
ID Value
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
Output table after partial reload
ID Value
1 111

Script syntax and chart functions - Qlik Sense, August 2022 85

2 Script statements and keywords

o

Value
222
333
444
555
666
777
888

© 00 N O 0o b~ W DN

999

—_
o

101010

Explanation

The first table is loaded during a full reload and the second table simply replaces the first table during a
partial reload.

Replace

The Replace script keyword is used as a string function, or as a prefix in partial reload.

Replace

The Replace prefix can be added to any LOAD or SELECT statement in the script to specify that the
loaded table should replace another table. It also specifies that this statement should be run in a partial
reload. The Replace prefix can also be used in a Map statement.

For partial reload to work properly, the app must be opened with data before a partial reload is
triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Syntax:
Replace [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)

Replace [only] mapstatement

During a normal (non-partial) reload, the Replace LOAD construction will work as a normal LOAD
statement but be preceded by a Drop Table. First the old table will be dropped, then records will be
generated and stored as a new table.

If the Concatenate prefix is used, or if there exists a table with the same set of fields, this will be the
relevant table to drop. Otherwise, there is no table to drop and the Replace LOAD construction will be
identical to a normal LOAD.

Script syntax and chart functions - Qlik Sense, August 2022 86

2 Script statements and keywords

A partial reload will do the same. The only difference is that there is always a table from the previous script
execution to drop. The Replace LOAD construction will always first drop the old table, then create a new

one.

The Replace Map...Using statement causes mapping to take place also during partial script execution.

Arguments:

Argument

only

Arguments

Description

An optional qualifier denoting that the statement should be executed only during partial

reloads. It should be disregarded during normal (non-partial) reloads.

Examples and results:

Example

Tabl:
Replace LOAD *
from Filel.csv;

Tabl:
Replace only
LOAD * from
Filel.csv;

Tabl:

LOAD a,b,c from
Filel.csv;
Replace LOAD
a,b,c from
File2.csv;

Tabl:

LOAD a,b,c from
Filel.csv;
Replace only
LOAD a,b,c from
File2.csv;

Right

Result

During both normal and partial reload, the Qlik Sense table Tab1 is initially
dropped. Thereafter new data is loaded from File1.csv and stored in Tab1.

During normal reload, this statement is disregarded.

During partial reload, any Qlik Sense table previously named Tab1 is initially
dropped. Thereafter new data is loaded from File1.csv and stored in Tab1.

During normal reload, the file File1.csv is first read into the Qlik Sense table Tab1,
but then immediately dropped and replaced by new data loaded from File2.csv. All
data from File1.csv is lost.

During partial reload, the entire Qlik Sense table Tab1 is initially dropped.
Thereafter it is replaced by new data loaded from File2.csv.

During normal reload, data is loaded from File1.csv and stored in the Qlik Sense
table Tab1. File2.csv is disregarded.

During partial reload, the entire Qlik Sense table Tab1 is initially dropped.
Thereafter it is replaced by new data loaded from File2.csv. All data from File1.csv
is lost.

The Join and Keep prefixes can be preceded by the prefix right.

If used before join it specifies that a right join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented in the
second table. If used before keep, it specifies that the first raw data table should be reduced to its common
intersection with the second table, before being stored in Qlik Sense.

Were you looking for the string function by the same name? See: Right (page 1024)

Script syntax and chart functions - Qlik Sense, August 2022 87

2 Script statements and keywords

Syntax:
Right (Join | Keep) [(tablename)] (loadstatement |selectstatement)

Arguments:
Arguments
Argument Description
tablename The named table to be compared to the loaded table.
loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.
Example
Load script

Add the example script to your app and run it. To see the result, add the fields listed in the results column to
a sheet in your app.

Tablel:

Load * inTline [
columnl, Column2
A, B

1, aa

2, cc
3, ee];
Table2:

Right Join Load * inline [
columnl, Column3

A, C
1, xx
4, yy 1;
Result

Resulting table
Column1 Column2 Column3
A B C
1 aa XX
4 - yy
Explanation

This example demonstrates the Right Join output where only values present in the second (right) table are
joined.

Script syntax and chart functions - Qlik Sense, August 2022 88

2 Script statements and keywords

Sample
The sample prefix to a LOAD or SELECT statement is used for loading a random sample of

records from the data source.

Syntax:
Sample p (loadstatement | selectstatement)

Arguments:
Arguments
Argument Description
p An arbitrary expression which valuates to a number larger than 0 and lower or equal to 1.

The number indicates the probability for a given record to be read.

All records will be read but only some of them will be loaded into Qlik Sense.

Example:

SampTle 0.15 SQL SELECT * from Longtable;
SampTle(0.15) LOAD * from Longtab.csv;

The parentheses are allowed but not required.

Semantic

The semantic load prefix creates a special type of field that can be used in Qlik Sense to
connect and manage relational data, such as tree structures, self-referencing parent-child
structured data and/or data that can be described as a graph.

Note that the semantic load can function similarly to the Hierarchy (page 56) and
HierarchyBelongsTo (page 58) prefixes. All three prefixes can be used as building blocks in
effective front-end solutions for traversing relational data.

Syntax:

Semantic (loadstatement | selectstatement)

A semantic load expects an input that is exactly three or four fields wide with a strict definition of what each
ordered field represents, as shown in the table below:

Semantic load fields

Field
Field description
nam
1st This tag is a representation of the first of two objects between which there is a relationship.
Field:

Script syntax and chart functions - Qlik Sense, August 2022 89

2 Script statements and keywords

Field
Field description

name

2nd This tag will be used to describe the “forward” relationship between the first and second

Field: object. If the first object is a child and the second object is a parent, you can create a
relationship tab that states “parent” or “parent of” as if you are following the relationship from
child to parent.

3rd This tag is a representation of the second of two objects between which there is a

Field: relationship.

4th This field is optional. This tag describes the “backward” or “inverse” relationship between the

Field: first and second object. If the first object is a child and the second object is a parent, a

relationship tab could state “child” or “child of” as if you are following the relationship from
parent to child. If you do not add a fourth field, then the second field tag will be used to
describe the relationship in either direction. In that case, an arrow symbol is automatically
added as part of the tag.

The following code is an example of the semanti c prefix.

Semantic

Load

Object,

‘Parent’ AS Relationship,
Neighbouringobject AS Object,
‘Child’ AS Relationship

from graphdata.csv;

It is allowed and typical practice to label the third field the same as the first field. This creates a
self-referencing lookup, so that you can follow object(s) to the related object(s) one relationship
step away at a time. If the 3rd field does not carry the same name, then the end result will be a
simple lookup from an object(s) to its direct relational neighbor(s) one step away only, which is
an output of little practical use.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The
date format is specified in the seT pateFormat statement in your data load script. The default date
formatting may be different in your system, due to your regional settings and other factors. You can change
the formats in the examples below to suit your requirements. Or you can change the formats in your load
script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or server
where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load
editor will use Swedish regional settings for dates, time, and currency. These regional format settings are
not related to the language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the
same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, August 2022 90

2 Script statements and keywords

Related functions

Functions Interaction

Hierarchy (page 56) The Hierarchy load prefix is used to divide and organize nodes in parent-child

and other graph-like data structures and transform them into tables.

HierarchyBelongsTo The HierarchyBelongsTo load prefix is used to locate and organize the

(page 58) ancestors of parent-child and other graph-like data structures and transform

them into tables.

Example - Creating a special field for connecting relationships using the semantic

prefix

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

» A dataset representing geography relation records which is loaded into a table named

GeographyTree.

e Each entry has an ID at the beginning of the line and a ParentID at the end of the line.

e The semanti c prefix which will add one special behavior field labeled, reTation.

Load script

GeographyTree:
LOAD
D,
Geography,
if(ParentID="",nul1(),ParentID) AS ParentID

INLINE [
ID,Geography,ParentID
1,world
2,Europe,1
3,Asia,l

4,North America,l
5,South America,l
6,UK,2
7,Germany, 2
8,Sweden, 2
9,South Korea,3
10,North Korea,3
11,china,3
12,London, 6
13,Birmingham, 6
1;

SemanticTable:

Script syntax and chart functions - Qlik Sense, August 2022

91

2 Script statements and keywords

Semantic Load
ID as ID,
'Parent' as Relation,
ParentID as ID,
'Child"' as Relation
resident GeographyTree;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Id

e Geography
Then, create a filter pane with relation as a dimension. Click Done editing.

Results table

Id Geography

1 World

2 Europe

3 Asia

4 North America

5 South America

6 UK

7 Germany

8 Sweden

9 South Korea

10 North Korea

11 China

12 London

13 Birmingham
Filter pane

Relation

Child

Parent

Click Europe from the Geography dimension in the table and click Child from the relation dimension in the
filter pane. Note the expected result in the table:

Script syntax and chart functions - Qlik Sense, August 2022 92

2 Script statements and keywords

Results table showing
"children" of Europe

Id Geography

6 UK
7 Germany
8 Sweden

Clicking Child again will show places that are "children" of the UK, one step further down.

Results table showing
"children" of UK

Id Geography
12 London
13 Birmingham

Unless

The unless prefix and suffix is used for creating a conditional clause which determines
whether a statement or exit clause should be evaluated or not. It may be seen as a compact
alternative to the full if..end if statement.

Syntax:

(Unless condition statement | exitstatement Unless condition)

The statement or the exitstatement will only be executed if condition is evaluated to False.

The unless prefix may be used on statements which already have one or several other statements,
including additional when or unless prefixes.

Arguments:
Arguments
Argument Description
condition A logical expression evaluating to True or False.
statement Any Qlik Sense script statement except control statements.

exitstatement An exit for, exit do or exit sub clause or an exit script statement.

Examples:

exit script unless A=1;
unless A=1 LOAD * from myfile.csv;
unless A=1 when B=2 drop table Tabl;

Script syntax and chart functions - Qlik Sense, August 2022 93

2 Script statements and keywords

When

The when prefix and suffix is used for creating a conditional clause which determines whether
a statement or exit clause should be executed or not. It may be seen as a compact alternative
to the full if..end if statement.

Syntax:
(when condition statement | exitstatement when condition)
The statement or the exitstatement will only be executed if condition is evaluated to True.

The when prefix may be used on statements which already have one or several other statements,
including additional when or unless prefixes.

Arguments
Argument Description
condition A logical expression evaluating to True or False.
statement Any Qlik Sense script statement except control statements.

exitstatement An exit for, exit do or exit sub clause or an exit script statement.

Example 1:

exit script when A=1;

Example 2:

when A=1 LOAD * from myfile.csv;
Example 3:

when A=1 unless B=2 drop table Tabl;

2.5 Script regular statements

Regular statements are typically used for manipulating data in one way or another. These statements may

be written over any number of lines in the script and must always be terminated by a semicolon, ";".

All script keywords can be typed with any combination of lower case and upper case characters. Field and
variable names used in the statements are however case sensitive.

Script regular statements overview

Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Script syntax and chart functions - Qlik Sense, August 2022 94

2 Script statements and keywords

Alias
The alias statement is used for setting an alias according to which a field will be renamed whenever it
occurs in the script that follows.

Alias fieldname as aliasname {,fieldname as aliasname}

Autonumber
This statement creates a unique integer value for each distinct evaluated value in a field encountered
during the script execution.

AutoNumber fields [Using namespace]]

Binary
The binary statement is used for loading the data from another QlikView document, including section
access data.

Binary [path] filename

comment

Provides a way of displaying the field comments (metadata) from databases and spreadsheets. Field
names not present in the app will be ignored. If multiple occurrences of a field name are found, the last
value is used.

Comment field *fieldlist using mapname
Comment field fieldname with comment

comment table
Provides a way of displaying the table comments (metadata) from databases or spreadsheets.

Comment table tablelist using mapname
Comment table tablename with comment

Connect

This functionality is not available in Qlik Sense SaaS.

The CONNECT statement is used to define Qlik Sense access to a general database through the OLE
DB/ODBC interface. For ODBC, the data source first needs to be specified using the ODBC administrator.

ODBC Connect TO connect-string [(access_info)]
OLEDB CONNECT TO connect-string [(access info)]
CUSTOM CONNECT TO connect-string [(access info)]
LIB CONNECT TO connection

Declare

The Declare statement is used to create field definitions, where you can define relations between fields or
functions. A set of field definitions can be used to automatically generate derived fields, which can be used
as dimensions. For example, you can create a calendar definition, and use that to generate related
dimensions, such as year, month, week and day, from a date field.

Script syntax and chart functions - Qlik Sense, August 2022 95

2 Script statements and keywords

definition name:

Declare [Field[s]] Definition [Tagged tag list]
[Parameters parameter list]

Fields field list

[Groups group list]

<definition name>:

Declare [Field][s] Definition
Using <existing definition>
[With <parameter assignment>]

Derive

The Derive statement is used to generate derived fields based on a field definition created with a Declare
statement. You can either specify which data fields to derive fields for, or derive them explicitly or implicitly
based on field tags.

Derive [Field[s]] From [Field[s]] field list Using definition
Derive [Field[s]] From Explicit [Tag[s]] (tag list) Using definition
Derive [Field[s]] From Implicit [Tag[s]] Using definition

Directory
The Directory statement defines which directory to look in for data files in subsequent LOAD statements,
until a new Directory statement is made.

Directory [path]

Disconnect
The Disconnect statement terminates the current ODBC/OLE DB/Custom connection. This statement is
optional.

Disconnect

drop field
One or several Qlik Sense fields can be dropped from the data model, and thus from memory, at any time
during script execution, by means of a drop field statement.

Both drop field and drop fields are allowed forms with no difference in effect. If no table is
specified, the field will be dropped from all tables where it occurs.

Drop field fieldname [, fieldname2 ...] [from tablenamel [, tablename2
.11

drop fields fieldname [, fieldname2 ...] [from tablenamel [, tablename2
.11

drop table

One or several Qlik Sense internal tables can be dropped from the data model, and thus from memory, at
any time during script execution, by means of a drop table statement.

Script syntax and chart functions - Qlik Sense, August 2022 96

2 Script statements and keywords

The forms drop table and drop tables are both accepted.

Drop table tablename [, tablename2 ...]
drop tables|[tablename [, tablename2 ...]

Execute
The Execute statement is used to run other programs while Qlik Sense is loading data. For example, to
make conversions that are necessary.

Execute commandline

FlushLog
The FlushLog statement forces Qlik Sense to write the content of the script buffer to the script log file.

FlushlLog

Force

The force statement forces Qlik Sense to interpret field names and field values of subsequent LOAD and
SELECT statements as written with only upper case letters, with only lower case letters, as always
capitalized or as they appear (mixed). This statement makes it possible to associate field values from
tables made according to different conventions.

Force (capitalization | case upper | case lower | case mixed)

LOAD

The LOAD statement loads fields from a file, from data defined in the script, from a previously loaded table,
from a web page, from the result of a subsequent SELECT statement or by generating data

automatically. It is also possible to load data from analytic connections.

Load [distinct] *fieldlist

[(from file [format-spec] |

from field fieldassource [format-spec]

inline data [format-spec] |

resident table-label |

autogenerate size)]

[where criterion | while criterion]

[group by groupbyfieldlist]

[order by orderbyfieldlist]

[extension pluginname.functionname (tabledescription)]

Let

The let statement is a complement to the set statement, used for defining script variables. The let
statement, in opposition to the set statement, evaluates the expression on the right side of the ' =" at script
run time before it is assigned to the variable.

Let variablename=expression

Script syntax and chart functions - Qlik Sense, August 2022 97

2 Script statements and keywords

Loosen Table

One or more Qlik Sense internal data tables can be explicitly declared loosely coupled during script
execution by using a Loosen Table statement. When a table is loosely coupled, all associations between
field values in the table are removed. A similar effect could be achieved by loading each field of the loosely
coupled table as independent, unconnected tables. Loosely coupled can be useful during testing to
temporarily isolate different parts of the data structure. A loosely coupled table can be identified in the table
viewer by the dotted lines. The use of one or more Loosen Table statements in the script will make Qlik
Sense disregard any setting of tables as loosely coupled made before the script execution.

tablename [, tablename2 ...]
Loosen Tables tablename [, tablename2 ...]
Map ... using

The map ... using statement is used for mapping a certain field value or expression to the values of a
specific mapping table. The mapping table is created through the Mapping statement.

Map *fieldlist Using mapname

NullAsNull
The NullAsNull statement turns off the conversion of NULL values to string values previously set by a
NullAsValue statement.

NullAsNull *fieldlist

NullAsValue
The NullAsValue statement specifies for which fields that NULL should be converted to a value.

NullAsValue *fieldlist

Qualify
The Qualify statement is used for switching on the qualification of field names, i.e. field names will get the
table name as a prefix.

Qualify *fieldlist

Rem
The rem statement is used for inserting remarks, or comments, into the script, or to temporarily deactivate
script statements without removing them.

Rem string

Rename Field
This script function renames one or more existing Qlik Sense field(s) after they have been loaded.

Rename field (usingmapname |oldname tonewname{ , oldname to newname H
Rename Fields (using mapname | oldname to newname{ , oldname to newname })

Rename Table
This script function renames one or more existing Qlik Sense internal table(s) after they have been loaded.

Script syntax and chart functions - Qlik Sense, August 2022 98

2 Script statements and keywords

Rename table (using mapname | oldname to newname{ , oldname to newname })
Rename Tables (using mapname | oldname to newname{ , oldname to newname })

Section

With the section statement, it is possible to define whether the subsequent LOAD and SELECT
statements should be considered as data or as a definition of the access rights.

Section (access | application)

Select

The selection of fields from an ODBC data source or OLE DB provider is made through standard SQL
SELECT statements. However, whether the SELECT statements are accepted depends on the ODBC
driver or OLE DB provider used.

Select [all | distinct | distinctrow | top n [percent]] *fieldlist
From tablelist

[Where criterion]

[Group by fieldlist [having criterion]]

[Order by fieldlist [asc | desc]]

[(Inner | Left | Right | Full)Join tablename on fieldref = fieldref]

Set

The set statement is used for defining script variables. These can be used for substituting strings, paths,
drives, and so on.

Set variablename=string

Sleep
The sleep statement pauses script execution for a specified time.

Sleep n

SQL

The SQL statement allows you to send an arbitrary SQL command through an ODBC or OLE DB
connection.

SQL sgl command

SQLColumns

The sqlcolumns statement returns a set of fields describing the columns of an ODBC or OLE DB data
source, to which a connect has been made.

SQLColumns

SQLTables

The sqltables statement returns a set of fields describing the tables of an ODBC or OLE DB data source, to
which a connect has been made.

Script syntax and chart functions - Qlik Sense, August 2022 99

2 Script statements and keywords

SQLTables

SQLTypes
The sqltypes statement returns a set of fields describing the types of an ODBC or OLE DB data source, to
which a connect has been made.

SQLTypes

Star
The string used for representing the set of all the values of a field in the database can be set through the
star statement. It affects the subsequent LOAD and SELECT statements.

Star is [string]

Store
The Store statement creates a QVD, CSV, or text file.

Store [*fieldlist from] table into filename [format-spec];

Tag

This script statement provides a way to assign tags to one or more fields or tables. If an attempt to tag a
field or table not present in the app is made, the tagging will be ignored. If conflicting occurrences of a field
or tag name are found, the last value is used.

Tag[field|fields] fieldlist with tagname
Tag [field|fields] fieldlist using mapname
Tag table tablelist with tagname

Trace

The trace statement writes a string to the Script Execution Progress window and to the script log file,
when used. It is very useful for debugging purposes. Using $-expansions of variables that are calculated
prior to the trace statement, you can customize the message.

Trace string

Unmap
The Unmap statement disables field value mapping specified by a previous Map ... Using statement for
subsequently loaded fields.

Unmap *fieldlist

Unqualify
The Unqualify statement is used for switching off the qualification of field names that has been previously
switched on by the Qualify statement.

Unqualify *fieldlist

Untag
This script statement provides a way to remove tags from fields or tables. If an attempt to untag a field or
table not present in the app is made, the untagging will be ignored.

Untag[field|fields] fieldlist with tagname

Script syntax and chart functions - Qlik Sense, August 2022 100

2 Script statements and keywords

Tag [field|fields] fieldlist using mapname
Tag table tablelist with tagname

Alias

The alias statement is used for setting an alias according to which a field will be renamed
whenever it occurs in the script that follows.

Syntax:

alias fieldname as aliasname {,fieldname as aliasname}

Arguments:
Arguments
Argument Description
fieldname The name of the field in your source data

aliasname An alias name you want to use instead

Examples and results:

Example Result

Alias ID_N as

NamelID;

Alias A as The name changes defined through this statement are used on all subsequent

Name, B as
Number, C as
Date;

SELECT and LOAD statements. A new alias can be defined for a field name by a
new alias statement at any subsequent position in the script.

AutoNumber

This statement creates a unique integer value for each distinct evaluated value in a field encountered
during the script execution.

You can also use the autonumber (page 493) function inside a LOAD statement, but this has some
limitations when you want to use an optimized load. You can create an optimized load by loading the data
from a QVD file first, and then using the AutoNumber statement to convert values to symbol keys.

Syntax:
AutoNumber *fieldlist [Using namespace]]

Script syntax and chart functions - Qlik Sense, August 2022 101

2 Script statements and keywords

Arguments:
Arguments
Argument Description
*fieldlist A comma-separated list of the fields where the values should be replaced by a unique
integer value.
You can use wildcard characters ? and * in the field names to include all fields with
matching names. You can also use * to include all fields. You need to quote field
names when wildcards are used.
namespace Using namespace is optional. You can use this option if you want to create a
namespace, where identical values in different fields share the same key.
If you do not use this option, all fields will have a separate key index.
Limitations:

When you have several LOAD statements in the script, you need to place the AutoNumber statement after
the final LOAD statement.

Example - script with AutoNumber

Script example
In this example, the data is first loaded without the AutoNumber statement. The AutoNumber statement is

then added to show the effect.

Data used in the example

Load the following data as an inline load in the data load editor to create the script example below. Leave
the AutoNumber statement commented out for now.

RegionSales:

LOAD *,

Region &'|'& Year &'|'& Month as KeyToOtherTable
INLINE

[Region, Year, Month, Sales

North, 2014, may, 245

North, 2014, may, 347

North, 2014, June, 127
South, 2014, June, 645

South, 2013, May, 367
South, 2013, May, 221
1;

Budget:

LOAD Budget,

Region &'|'& Year &'|'& Month as KeyToOtherTable
INLINE

[Region, Year, Month, Budget

Script syntax and chart functions - Qlik Sense, August 2022 102

2 Script statements and keywords

North, 2014, May, 200
North, 2014, May, 350
North, 2014, June, 150
South, 2014, June, 500
South, 2013, May, 300
South, 2013, May, 200
1;

//AutoNumber KeyToOtherTable;

Create visualizations

Create two table visualizations in a Qlik Sense sheet. Add KeyToOtherTable, Region, Year, Month, and
Sales as dimensions to the first table. Add KeyToOtherTable, Region, Year, Month, and Budget as
dimensions to the second table.

Result
RegionSales table
KeyToOtherTable Region Year Month Sales
North[2014|June North 2014 June 127
North|2014|May North 2014 May 245
North|2014|May North 2014 May 347
South|2013|May South 2013 May 221
South|2013|May South 2013 May 367
South|2014|June South 2014 June 645
Budget table
KeyToOtherTable Region Year Month Budget
North[2014|June North 2014 June 150
North|2014|May North 2014 May 200
North|2014|May North 2014 May 350
South|2013|May South 2013 May 200
South|2013|May South 2013 May 300
South|2014|June South 2014 June 500
Explanation

The example shows a composite field KeyToOtherTable that links the two tables. AutoNumber is not
used. Note the length of the KeyToOtherTable values.

Script syntax and chart functions - Qlik Sense, August 2022 103

2 Script statements and keywords

Add AutoNumber statement

Uncomment the AutoNumber statement in the load script.

AutoNumber KeyToOtherTable;

Result
RegionSales table
KeyToOtherTable Region Year Month Sales
1 North 2014 June 127
1 North 2014 May 245
2 North 2014 May 347
3 South 2013 May 221
4 South 2013 May 367
4 South 2014 June 645
Budget table
KeyToOtherTable Region Year Month Budget
1 North 2014 June 150
1 North 2014 May 200
2 North 2014 May 350
3 South 2013 May 200
4 South 2013 May 300
4 South 2014 June 500
Explanation

The KeyToOtherTable field values have been replaced with unique integer values and, as a result, the
length of the field values has been reduced, thus conserving memory. The key fields in both tables are
affected by AutoNumber and the tables remain linked. The example is brief for demonstration purposes,
but would be meaningful with a table containing a large number of rows.

Binary

The binary statement is used for loading the data from another Qlik Sense app or QlikView
document, including section access data. Other elements of the app are not included, for
example, sheets, stories, visualizations, master items or variables.

Only one binary statement is allowed in the script. The binary statement must be the first statement of the
script, even before the SET statements usually located at the beginning of the script.

Script syntax and chart functions - Qlik Sense, August 2022 104

2 Script statements and keywords

Syntax:
binary [path] filename

Arguments:
Arguments
Argument Description
path The path to the file which should be a reference to a folder data connection. This is

required if the file is not located in the Qlik Sense working directory.

Example: lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:
¢ absolute

Example: c:\datal

« relative to the app containing this script line.

Example: datal

filename The name of the file, including the file extension .qvw or .qvf.

Limitations:

You cannot use binary to load data from an app on the same Qlik Sense Enterprise deployment by
referring to the app ID. You can only load from a .qvffile.

Examples

String Description

Binary 1ib://DataFolder/customer.qww; |n this example, the file must be in located in the Folder
data connection. This may be, for example, a folder that
your administrator creates on the Qlik Sense server. Click
Create new connection in the data load editor and then
select Folder under File locations.

Binary customer.qvf; In this example, the file must be in located in the Qlik
Sense working directory.

Binary c:\qv\customer.qvw; This example using an absolute file path will only work in

legacy scripting mode.

Script syntax and chart functions - Qlik Sense, August 2022 105

2 Script statements and keywords

Comment field

Provides a way of displaying the field comments (metadata) from databases and
spreadsheets. Field names not present in the app will be ignored. If multiple occurrences of a
field name are found, the last value is used.

Syntax:
comment [fields] *fieldlist using mapname
comment [field] fieldname with comment

The map table used should have two columns, the first containing field names and the second the
comments.

Arguments:
Arguments
Argument Description
*fieldlist A comma separated list of the fields to be commented. Using * as field list indicates all

fields. The wildcard characters * and ? are allowed in field names. Quoting of field names
may be necessary when wildcards are used.

mapname The name of a mapping table previously read in a mapping LOAD or mapping SELECT

statement.
fieldname The name of the field that should be commented.
comment The comment that should be added to the field.
Example 1:
commentmap:
mapping LOAD * inline [
a,b

Alpha,This field contains text values
Num,This field contains numeric values
1;

comment fields using commentmap;

Example 2:

comment field Alpha with AFieldContainingCharacters;
comment field Num with '*A field containing numbers';
comment Gamma with 'Mickey Mouse field';

Comment table

Provides a way of displaying the table comments (metadata) from databases or
spreadsheets.

Script syntax and chart functions - Qlik Sense, August 2022 106

2 Script statements and keywords

Table names not present in the app are ignored. If multiple occurrences of a table name are found, the last
value is used. The keyword can be used to read comments from a data source.

Syntax:
comment [tables] tablelist using mapname
comment [table] tablename with comment

Arguments:
Arguments
Argument Description
tablelist (table{,table})

mapname The name of a mapping table previously read in a mapping LOAD or mapping SELECT
statement.

tablename The name of the table that should be commented.

comment The comment that should be added to the table.
Example 1:
Ccommentmap:
mapping LOAD * inline [
a,b

Main,This is the fact table
Currencies, Currency helper table

1;

comment tables using Commentmap;
Example 2:
comment table Main with 'Main fact table';

Connect

The CONNECT statement is used to define Qlik Sense access to a general database through
the OLE DB/ODBC interface. For ODBC, the data source first needs to be specified using the
ODBC administrator.

This functionality is not available in Qlik Sense SaaS.

This statement supports only folder data connections in standard mode.

Syntax:

ODBC CONNECT TO connect-string
OLEDB CONNECT TO connect-string
CUSTOM CONNECT TO connect-string

Script syntax and chart functions - Qlik Sense, August 2022 107

2 Script statements and keywords

LIB CONNECT TO connection

Arguments:

Arguments
Argument Description

connect- connect-string ::= datasourcename { ; conn-spec-item }

string The connection string is the data source name and an optional list of one
or more connection specification items. If the data source name contains
blanks, or if any connection specification items are listed, the connection
string must be enclosed by quotation marks.

datasourcename must be a defined ODBC data source or a string that
defines an OLE DB provider.

conn-spec-item ::=DBQ=database_specifier |DriverID=driver_

specifier |UID=userid |PWD=password

The possible connection specification items may differ between different
databases. For some databases, also other items than the above are
possible. For OLE DB, some of the connection specific items are
mandatory and not optional.

connection The name of a data connection stored in the data load editor.

If the ODBC is placed before CONNECT, the ODBC interface will be used; else, OLE DB will be used.

Using LIB CONNECT TO connects to a database using a stored data connection that was created in the
data load editor.

Example 1:

ODBC CONNECT TO 'Sales
DBQ=C:\Program Files\Access\Samples\Sales.mdb';

The data source defined through this statement is used by subsequent Select (SQL) statements, until a
new CONNECT statement is made.

Example 2:

LIB CONNECT TO 'DataConnection';

Connect32

This statement is used the same way as the CONNECT statement, but forces a 64-bit system to use a 32-
bit ODBC/OLE DB provider. Not applicable for custom connect.

Connect64

This statement is used the same way as the as the CONNECT statement, but forces use of a 64-bit
provider. Not applicable for custom connect.

Script syntax and chart functions - Qlik Sense, August 2022 108

2 Script statements and keywords

Declare

The Declare statement is used to create field definitions, where you can define relations between fields or
functions. A set of field definitions can be used to automatically generate derived fields, which can be used
as dimensions. For example, you can create a calendar definition, and use that to generate related
dimensions, such as year, month, week and day, from a date field.

You can use Declare to either set up a new field definition, or to create a field definition based on an
already existing definition.

Setting up a new field definition

Syntax:

definition name:

Declare [Field[s]] Definition [Tagged tag list]
[Parameters parameter list]

Fields field list

Arguments:
Argument Description
definition_ Name of the field definition, ended with a colon.
name
Do not use autoCalendar as name for field definitions, as this name is
reserved for auto-generated calendar templates.
Example:
Calendar:
tag_list A comma separated list of tags to apply to fields derived from the field definition.

Applying tags is optional, but if you do not apply tags that are used to specify sort order,
such as $date, $numeric or $text, the derived field will be sorted by load order as
default.

Example:

'$date'Thank you for bringing this to our attention, and apologies for the
inconvenience.

Script syntax and chart functions - Qlik Sense, August 2022 109

2 Script statements and keywords

Argument Description
parameter_ A comma separated list of parameters. A parameter is defined in the form name=value
list and is assigned a start value, which can be overridden when a field definition is re-

used. Optional.
Example:

first_month_of_year = 1

field_list A comma separated list of fields to generate when the field definition is used. A field is
defined in the form <expression> As field name tagged tag.Use $1 to reference the
data field from which the derived fields should be generated.

Example:

Year($1l) As Year tagged ('$numeric')

Example:

Calendar:
DECLARE FIELD DEFINITION TAGGED '$date’
Parameters
first_month_of_year = 1
Fields
Year($1) As Year Tagged ('$numeric'),
mMonth($1) as Month Tagged ('$numeric'),
Date($1) as Date Tagged ('$date'),
week($1) as week Tagged ('$numeric'),
weekday($1) as weekday Tagged ('$numeric'),
DayNumberofyvear($1l, first_month_of_year) as DayNumberofyear Tagged ('$numeric')

The calendar is now defined, and you can apply it to the date fields that have been loaded, in this case
OrderDate and ShippingDate, using a Derive clause.

Re-using an existing field definition

Syntax:

<definition name>:

Declare [Field][s] Definition
Using <existing definition>
[With <parameter assignment>]

Script syntax and chart functions - Qlik Sense, August 2022 110

2 Script statements and keywords

Arguments:
Argument Description
definition_ Name of the field definition, ended with a colon.
name
Example:
MyCalendar:
existing_ The field definition to re-use when creating the new field definition. The new field
definition definition will function the same way as the definition it is based on, with the exception if
you use parameter_assignment to change a value used in the field expressions.
Example:
Using Calendar
parameter_ A comma separated list of parameter assignments. A parameter assignment is defined
assignment in the form name=value and overrides the parameter value that is set in the base field
definition. Optional.
Example:
first_month_of_year = 4
Example:

In this example we re-use the calendar definition that was created in the previous example. In this case we
want to use a fiscal year that starts in April. This is achieved by assigning the value 4 to the first_month_of
year parameter, which will affect the DayNumberOfYear field that is defined.

The example assumes that you use the sample data and field definition from the previous example.

MyCalendar:
DECLARE FIELD DEFINITION USING Calendar WITH first_month_of_year=4;

DERIVE FIELDS FROM FIELDS OrderDate,ShippingDate USING MyCalendar;

When you have reloaded the data script, the generated fields are available in the sheet editor, with names
OrderDate.MyCalendar.* and ShippingDate.MyCalendar.*.

Derive

The Derive statement is used to generate derived fields based on a field definition created with a Declare
statement. You can either specify which data fields to derive fields for, or derive them explicitly or implicitly
based on field tags.

Syntax:
Derive [Field[s]] From [Field[s]] field list Using definition
Derive [Field[s]] From Explicit [Tag[s]] tag list Using definition

Script syntax and chart functions - Qlik Sense, August 2022 111

2 Script statements and keywords

Derive [Field[s]] From Implicit [Tag[s]] Using definition

Arguments:
Arguments
Argument Description
definition Name of the field definition to use when deriving fields.
Example: calendar
field_list A comma separated list of data fields from which the derived fields should be generated,
based on the field definition. The data fields should be fields you have already loaded in

the script.

Example: orderpate, shippingbDate

tag_list A comma separated list of tags. Derived fields will be generated for all data fields with
any of the listed tags. The list of tags should be enclosed by round brackets.

Example: (' $date', '$timestamp’)

Examples:

¢ Derive fields for specific data fields.

In this case we specify the OrderDate and ShippingDate fields.
DERIVE FIELDS FROM FIELDS OrderDate,ShippingDate USING Calendar;

¢ Derive fields for all fields with a specific tag.

In this case we derive fields based on Calendar for all fields with a $date tag.
DERIVE FIELDS FROM EXPLICIT TAGS ('$date') USING Calendar;

¢ Derive fields for all fields with the field definition tag.
In this case we derive fields for all data fields with the same tag as the Calendar field definition,

which in this case is $date.
DERIVE FIELDS FROM IMPLICIT TAG USING Calendar;

Directory
The Directory statement defines which directory to look in for data files in subsequent LOAD

statements, until a new Directory statement is made.

Syntax:
Directory[path]

If the Directory statement is issued without a path or left out, Qlik Sense will look in the Qlik Sense working
directory.

Script syntax and chart functions - Qlik Sense, August 2022 112

2 Script statements and keywords

Arguments:
Arguments
Argument Description
path A text that can be interpreted as the path to the data file.

The path is the path to the file, either:

¢ absolute

Example: c:\datal

« relative to the Qlik Sense app working directory.

Example: datal

e URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.

Example: http://www.qlik.com

Examples:

DIRECTORY C:\userfiles\data; // OR -> DIRECTORY data\

LOAD * FROM

[datal.csv] // ONLY THE FILE NAME CAN BE SPECIFIED HERE (WITHOUT THE FULL PATH)
(ansi, txt, delimiter is ',', embedded labels);

LOAD * FROM

[data2.txt] // ONLY THE FILE NAME CAN BE SPECIFIED HERE UNTIL A NEW DIRECTORY STATEMENT IS
MADE
(ansi, txt, delimiter is '\t', embedded Tlabels);

Disconnect

The Disconnect statement terminates the current ODBC/OLE DB/Custom connection. This statement is
optional.

Syntax:

Disconnect

The connection will be automatically terminated when a new connect statement is executed or when the
script execution is finished.

Example:

Disconnect;

Script syntax and chart functions - Qlik Sense, August 2022 113

2 Script statements and keywords

Drop

The Drop script keyword can be used to drop tables or fields from the database.

Drop field

One or several Qlik Sense fields can be dropped from the data model, and thus from memory, at any time
during script execution, by means of a drop field statement.

Both drop field and drop fields are allowed forms with no difference in effect. If no table is
specified, the field will be dropped from all tables where it occurs.

Syntax:

Drop field fieldname { , fieldname2 ...} [from tablenamel { , tablename2
S

Drop fields fieldname { , fieldname2 ...} [from tablenamel { , tablename2
co 3]

Examples:

Drop field A;

Drop fields A,B;

Drop field A from X;

Drop fields A,B from X,Y;

Drop table

One or several Qlik Sense internal tables can be dropped from the data model, and thus from
memory, at any time during script execution, by means of a drop table statement.

Syntax:
drop table tablename {, tablename2 ...}
drop tables tablename {, tablename2 ...}

The forms drop table and drop tables are both accepted.

The following items will be lost as a result of this:

¢ The actual table(s).
« Allfields which are not part of remaining tables.

 Field values in remaining fields, which came exclusively from the dropped table(s).

Script syntax and chart functions - Qlik Sense, August 2022 114

2 Script statements and keywords

Examples and results:
Example Result

drop table Orders, Salesmen, T456a; This line results in three tables being dropped
from memory.

Tabl: Once the table Tab2is created, the table Tab1
Load * Inline [

.) is dropped.
Customer, Items, UnitPrice
Bob, 5, 1.50
1;
Tab2:

LOAD Customer, Sum(Items * UnitPrice) as Sales
resident Tabl
group by Customer;

drop table Tabl;

Drop table

One or several Qlik Sense internal tables can be dropped from the data model, and thus from
memory, at any time during script execution, by means of a drop table statement.

Syntax:
drop table tablename {, tablename2 ...}
drop tables tablename {, tablename2 ...}

The forms drop table and drop tables are both accepted.

The following items will be lost as a result of this:

¢ The actual table(s).
 Allfields which are not part of remaining tables.
« Field values in remaining fields, which came exclusively from the dropped table(s).

Examples and results:
Example Result

drop table Orders, Salesmen, T456a; This line results in three tables being dropped
from memory.

Script syntax and chart functions - Qlik Sense, August 2022 115

Script statements and keywords

Example

Tabl:

Load * Inline [

Customer, Items, UnitPrice
Bob, 5, 1.50

1;

Tab2:

LOAD Customer, Sum(Items * UnitPrice) as Sales

resident Tabl
group by Customer;

drop table Tabl;

Execute

Result

Once the table Tab2is created, the table Tab1
is dropped.

The Execute statement is used to run other programs while Qlik Sense is loading data. For

example, to make conversions that are necessary.

This functionality is not available in Qlik Sense SaaS.

This statement is not supported in standard mode.

Syntax:
execute commandline

Arguments:

Arguments
Argument Description

commandline

A text that can be interpreted by the operating system as a command

line. You can refer to an absolute file path or a lib:// folder path.

If you want to use Execute the following conditions need to be met:

¢ You must run in legacy mode (applicable for Qlik Sense and Qlik Sense Desktop).

¢ You need to set OverrideScriptSecurity to 1 in Settings.ini (applicable for Qlik Sense).
Settings.iniis located in C:\ProgramData\Qlik\Sense\Engine\ and is generally an empty file.

If you set OverrideScriptSecurity to enable Execute, any user can execute files on the server.
For example, a user can attach an executable file to an app, and then execute the file in the

data load script.

Script syntax and chart functions - Qlik Sense, August 2022

116

2 Script statements and keywords

Do the following:

Make a copy of Settings.iniand open it in a text editor.
Check that the file includes [Settings 7]in the first line.
Insert a new line and type OverrideScriptSecurity=1.
Insert an empty line at the end of the file.

Save the file.

Substitute Settings.ini with your edited file.

Restart Qlik Sense Engine Service (QES).

N o o bk~ w2

If Qlik Sense is running as a service, some commands may not behave as expected.

Example:

Execute C:\Program Files\officel2\Excel.exe;
Execute Tib://win\notepad.exe // win is a folder connection referring to c:\windows

Field/Fields

The Field and Fields script keywords are used in Declare, Derive, Drop, Comment, Rename and
Tag/Untag statements.

FlushLog
The FlushLog statement forces Qlik Sense to write the content of the script buffer to the script log file.

Syntax:
FlushlLog

The content of the buffer is written to the log file. This command can be useful for debugging purposes, as
you will receive data that otherwise may have been lost in a failed script execution.

Example:

FlushLog;

Force

The force statement forces Qlik Sense to interpret field names and field values of subsequent
LOAD and SELECT statements as written with only upper case letters, with only lower case
letters, as always capitalized or as they appear (mixed). This statement makes it possible to
associate field values from tables made according to different conventions.

Syntax:
Force (capitalization | case upper | case lower | case mixed)

Script syntax and chart functions - Qlik Sense, August 2022 117

2 Script statements and keywords

If nothing is specified, force case mixed is assumed. The force statement is valid until a new force

statement is made.

The force statement has no effect in the access section: all field values loaded are case insensitive.

Example

This example shows how to force
capitalization.

FORCE Capitalization;
Capitalization:

LOAD * Inline [

ab

cd

eF

GH

1;

This example shows how to force case
upper.

FORCE Case Upper;
CaseUpper:

LOAD * InTline [
ab

cd

eF

GH

1;

This example shows how to force case
lower.

FORCE Case Lower;
CaseLower:

LOAD * Inline [
ab

cd

eF

GH

1;

This example shows how to force case
mixed.

FORCE Case Mixed;
CaseMixed:

LOAD * Inline [
ab

cd

eF

GH

1;

Examples and results

Result
The Capitalization table contains the following values:

Ab
cd
Ef
Gh

All values are capitalized.

The CaseUpper table contains the following values:

AB
(@)
EF
GH

All values are upper case.

The CaseLower table contains the following values:

ab
cd
ef
gh
All values are lower case.

The CaseMixed table contains the following values:

ab
cd
eF
GH

All values are as they appear in the script.

Script syntax and chart functions - Qlik Sense, August 2022 118

2 Script statements and keywords

See also:

From

The From script keyword is used in Load statements to refer to a file, and in Select statements to referto a
database table or view.

Load

The LOAD statement loads fields from a file, from data defined in the script, from a previously
loaded table, from a web page, from the result of a subsequent SELECT statement or by
generating data automatically. It is also possible to load data from analytic connections.

Syntax:

LOAD [distinct] fieldlist

[(from file [format-spec] |

from field fieldassource [format-spec]|
inline data [format-spec] |

resident table-label |

autogenerate size) |extension pluginname.functionname ([script]
tabledescription)]

[where criterion | while criterion]

[group by groupbyfieldlist]

[order by orderbyfieldlist]

Arguments:
Arguments
Argument Description
distinct You can use distinct as a predicate if you only want to load unique records. If

there are duplicate records, the first instance will be loaded.

If you are using preceding loads, you need to place distinct in the first load
statement, as distinct only affects the destination table.

Script syntax and chart functions - Qlik Sense, August 2022 119

2 Script statements and keywords

Argument

fieldlist

Description

fieldlist ::= (* | field {, * | field })
A list of the fields to be loaded. Using * as a field list indicates all fields in the
table.
field ::= (fieldref| expression) [as aliasname |
The field definition must always contain a literal, a reference to an
existing field, or an expression.
fieldref ::= (fieldname |@fieldnumber |@startpos:endpos [I[U|R |B|T])
fieldname is a text that is identical to a field name in the table. Note that the field
name must be enclosed by straight double quotation marks or square brackets
if it contains e.g. spaces. Sometimes field names are not explicitly available.
Then a different notation is used:

@fieldnumber represents the field number in a delimited table file. It must be a
positive integer preceded by "@". The numbering is always made from 1 and up
to the number of fields.

@startpos:endpos represents the start and end positions of a field in a file with
fixed length records. The positions must both be positive integers. The two
numbers must be preceded by "@" and separated by a colon. The numbering is
always made from 1 and up to the number of positions. In the last field, n is used
as end position.

o If @startpos:endpos is immediately followed by the characters | or U, the
bytes read will be interpreted as a binary signed (I) or unsigned (U)
integer (Intel byte order). The number of positions read mustbe 1, 2 or 4.

o |If @startpos:endpos is immediately followed by the character R, the
bytes read will be interpreted as a binary real number (IEEE 32-bit or 64
bit floating point). The nhumber of positions read must be 4 or 8.

o If @startpos:endpos is immediately followed by the character B, the
bytes read will be interpreted as a BCD (Binary Coded Decimal)
numbers according to the COMP-3 standard. Any number of bytes may
be specified.

expression can be a numeric function or a string function based on one or
several other fields in the same table. For further information, see the syntax of
expressions.

as is used for assigning a new name to the field.

Script syntax and chart functions - Qlik Sense, August 2022 120

2 Script statements and keywords

Argument Description
from from is used if data should be loaded from a file using a folder or a web file data
connection.

file ::= [path] filename

Example: 'lib://Table Files/"

If the path is omitted, Qlik Sense searches for the file in the directory specified
by the Directory statement. If there is no Directory statement, Qlik Sense
searches in the working directory, C:1Users|
{user}\Documents\Qlik\Sense\Apps.

In a Qlik Sense server installation, the working directory is specified
in Qlik Sense Repository Service, by default it is
C:\ProgramData\Qlik\Sense\Apps.

The filename may contain the standard DOS wildcard characters (* and ?).
This will cause all the matching files in the specified directory to be loaded.
format-spec ::= (fspec-item {, fspec-item })

The format specification consists of a list of several format specification items,
within brackets.

Legacy scripting mode
In legacy scripting mode, the following path formats are also supported:
» absolute

Example: c:ldata\

« relative to the Qlik Sense app working directory.

Example: datal

¢ URL address (HTTP or FTP), pointing to a location on the Internet or an
intranet.

Example: http://www.qlik.com

from_field from_field is used if data should be loaded from a previously loaded field.
fieldassource::=(tablename, fieldname)

The field is the name of the previously loaded tablename and fieldname.
format-spec ::= (fspec-item {, fspec-item })

The format specification consists of a list of several format specification items,
within brackets.

Script syntax and chart functions - Qlik Sense, August 2022 121

2 Script statements and keywords

Argument

inline

resident

autogenerate

Description

inline is used if data should be typed within the script, and not loaded from a file.
data ::=[text]

Data entered through an inline clause must be enclosed by double quotation
marks or by square brackets. The text between these is interpreted in the same
way as the content of a file. Hence, where you would insert a new line in a text
file, you should also do it in the text of an inline clause, i.e. by pressing the Enter
key when typing the script. The number of columns are defined by the first line.
format-spec ::= (fspec-item {, fspec-item })

The format specification consists of a list of several format specification items,
within brackets.

resident is used if data should be loaded from a previously loaded table.
table labelis a label preceding the LOAD or SELECT statement(s) that created
the original table. The label should be given with a colon at the end.

autogenerate is used if data should be automatically generated by Qlik Sense.
size ::= number

Numberis an integer indicating the number of records to be generated.

The field list must not contain expressions which require data from an external
data source or a previously loaded table, unless you refer to a single field value
in a previously loaded table with the Peek function.

Script syntax and chart functions - Qlik Sense, August 2022 122

2 Script statements and keywords

Argument

extension

where

while

Description

You can load data from analytic connections. You need to use the extension
clause to call a function defined in the server-side extension (SSE) plugin, or
evaluate a script.

You can send a single table to the SSE plugin, and a single data table is
returned. If the plugin does not specify the names of the fields that are returned,
the fields will be named Field1, Field2, and so on.

Extension pluginname.functionname (tabledescription);

¢ Loading data using a function in an SSE plugin
tabledescription ::= (table { ,tablefield})
If you do not state table fields, the fields will be used in load order.

¢ Loading data by evaluating a script in an SSE plugin
tabledescription ::= (script, table { ,tablefield})

Data type handling in the table field definition

Data types are automatically detected in analytic connections. If the data has no
numeric values and at least one non-NULL text string, the field is considered as
text. In any other case it is considered as numeric.

You can force the data type by wrapping a field name with String() or Mixed().

« String() forces the field to be text. If the field is numeric, the text part of
the dual value is extracted, there is no conversion performed.

« Mixed() forces the field to be dual.

String() or Mixed() cannot be used outside extension table field definitions, and
you cannot use other Qlik Sense functions in a table field definition.

More about analytic connections

You need to configure analytic connections before you can use them.

where is a clause used for stating whether a record should be included in the
selection or not. The selection is included if criterionis True.
criterion is a logical expression.

while is a clause used for stating whether a record should be repeatedly read.
The same record is read as long as criterion is True. In order to be useful, a
while clause must typically include the IterNo() function.

criterion is a logical expression.

Script syntax and chart functions - Qlik Sense, August 2022 123

2 Script statements and keywords

Argument Description

group by group by is a clause used for defining over which fields the data should be
aggregated (grouped). The aggregation fields should be included in some way
in the expressions loaded. No other fields than the aggregation fields may be
used outside aggregation functions in the loaded expressions.

groupbyfieldlist ::= (fieldname { ,fieldname })

order by order by is a clause used for sorting the records of a resident table before they
are processed by the load statement. The resident table can be sorted by one
or more fields in ascending or descending order. The sorting is made primarily
by numeric value and secondarily by national collation order. This clause may
only be used when the data source is a resident table.
The ordering fields specify which field the resident table is sorted by. The field
can be specified by its name or by its number in the resident table (the first field
is number 1).

orderbyfieldlist ::= fieldname [sortorder] {, fieldname [sortorder] }

sortorderis either asc for ascending or desc for descending. If no sortorderis
specified, ascis assumed.

fieldname, path, filename and aliasname are text strings representing what the
respective names imply. Any field in the source table can be used as fieldname.
However, fields created through the as clause (aliasname) are out of scope and
cannot be used inside the same load statement.

If no source of data is given by means of a from, inline, resident, from_field, extension or autogenerate
clause, data will be loaded from the result of the immediately succeeding SELECT or LOAD statement.
The succeeding statement should not have a prefix.

Examples:

Loading different file formats
Load a delimited data file with default options:

LOAD * from datal.csv;

Load a delimited data file from a library connection (DataFiles):

LOAD * from 'lib://DataFiles/datal.csv';

Load all delimited data files from a library connection (DataFiles):

LOAD * from 'lib://DataFiles/*.csv';

Load a delimited file, specifying comma as delimiter and with embedded labels:

LOAD * from 'c:\userfiles\datal.csv' (ansi, txt, delimiter is ',', embedded Tlabels);

Load a delimited file specifying tab as delimiter and with embedded labels:

Script syntax and chart functions - Qlik Sense, August 2022 124

2 Script statements and keywords

LOAD * from 'c:\userfiles\data2.txt' (ansi, txt, delimiter is '\t', embedded Tabels);

Load a dif file with embedded headers:

LOAD * from file2.dif (ansi, dif, embedded labels);

Load three fields from a fixed record file without headers:

LOAD @1:2 as ID, @3:25 as Name, @57:80 as City from data4.fix (ansi, fix, no Tabels, header is
0, record is 80);

Load a QVX file, specifying an absolute path:

LOAD * from C:\qdssamples\xyz.qvx (qvx);

Loading web files
Load from the default URL set in the web file data connection:

LOAD * from [1ib://MywebFile];

Load from a specific URL, and override the URL set in the web file data connection:

LOAD * from [1ib://MywebFile] (URL is 'http://localhost:8000/foo.bar');

Load from a specific URL set in a variable using dollar-sign expansion:

SET dynamicURL = 'http://localhost/foo.bar’;
LOAD * from [1ib://MywebFile] (URL is '$(dynamicURL)"');

Selecting certain fields, renaming and calculating fields
Load only three specific fields from a delimited file:

LOAD FirstName, LastName, Number from datal.csv;

Rename first field as A and second field as B when loading a file without labels:
LOAD @1 as A, @ as B from data3.txt (ansi, txt, delimiter is '\t', no labels);

Load Name as a concatenation of FirstName, a space character, and LastName:

LOAD FirstName&' '&LastName as Name from datal.csv;
Load Quantity, Price and Value (the product of Quantity and Price):
LOAD Quantity, Price, Quantity*Price as value from datal.csv;

Selecting certain records
Load only unique records, duplicate records will be discarded:

LOAD distinct FirstName, LastName, Number from datal.csv;

Load only records where the field Litres has a value above zero:

LOAD * from Consumption.csv where Litres>0;

Script syntax and chart functions - Qlik Sense, August 2022 125

2 Script statements and keywords

Loading data not on file and auto-generated data

Load a table with inline data, two fields named CatID and Category:
LOAD * Inline

[catID, category

0,Regular

1,0ccasional
2,Permanent];

Load a table with inline data, three fields named UserID, Password and Access:
LOAD * Inline [UserID, Password, Access

A, ABC456, User
B, VIP789, Admin];

Load a table with 10 000 rows. Field A will contain the number of the read record (1,2,3,4,5...) and field B
will contain a random number between 0 and 1:

LOAD RecNo() as A, rand() as B autogenerate(10000);

The parenthesis after autogenerate is allowed but not required.

Loading data from a previously loaded table
First we load a delimited table file and name it tab1:

tabl:
SELECT A,B,C,D from 'Tlib://DataFiles/datal.csv';

Load fields from the already loaded tab1 table as tab2:

tab2:
LOAD A,B,month(C),A*B+D as E resident tabl;

Load fields from already loaded table tab1 but only records where A is larger than B:

tab3:
LOAD A,A+B+C resident tabl where A>B;

Load fields from already loaded table tab1 ordered by A:

LOAD A,B*C as E resident tabl order by A;

Load fields from already loaded table tab1, ordered by the first field, then the second field:

LOAD A,B*C as E resident tabl order by 1,2;

Load fields from already loaded table tab1 ordered by C descending, then B in ascending order, and then
the first field in descending order:

LOAD A,B*C as E resident tabl order by C desc, B asc, 1 desc;

Loading data from previously loaded fields
Load field Types from previously loaded table Characters as A:

Script syntax and chart functions - Qlik Sense, August 2022 126

2 Script statements and keywords

LOAD A from_field (Characters, Types);

Loading data from a succeeding table (preceding load)
Load A, B and calculated fields X and Y from Table1 that is loaded in succeeding SELECT statement:

LOAD A, B, if(C>0,'positive', 'negative') as X, weekday(D) as Y;
SELECT A,B,C,D from Tablel;

Grouping data
Load fields grouped (aggregated) by ArtNo:

LOAD ArtNo, round(sum(TransAmount),0.05) as ArtNoTotal from table.csv group by ArtNo;

Load fields grouped (aggregated) by Week and ArtNo:

LOAD Week, ArtNo, round(Avg(TransAmount),0.05) as weekArtNoAverages from table.csv group by
week, ArtNo;

Reading one record repeatedly
In this example we have a input file Grades.csv containing the grades for each student condensed in one
field:

Student,Grades
Mike, 5234
John, 3345
Pete,1234
Paul, 3352

The grades, in a 1-5 scale, represent subjects Math, English, Science and History. We can separate the
grades into separate values by reading each record several times with a while clause, using the IterNo()
function as a counter. In each read, the grade is extracted with the Mid function and stored in Grade, and
the subject is selected using the pick function and stored in Subject. The final while clause contains the
test to check if all grades have been read (four per student in this case), which means next student record
should be read.

MyTab:

LOAD Student,

mid(Grades,IterNo(),1) as Grade,

pick(IterNo(), 'Math', 'English', 'Science', 'History') as Subject from Grades.csv
while IsNum(mid(Grades,IterNo(),1));

The result is a table containing this data:

Script syntax and chart functions - Qlik Sense, August 2022 127

2 Script statements and keywords

Student Subject Grade

John English 3
John History 5
John Math 3
John Scence 4
Mike English 2
Mike History 4
Mike Math 5
Mike Scence 3
Paul English 3
Paul History 2
Paul Math 3
Paul Scence 5§
Pete English 2
Pete History 4
Pete Math 1
Pete Sdence 3

Loading from analytic connections
The following sample data is used.

values:

Load
Rand() as A,
Rand() as B,
Rand() as C

AutoGenerate(50);

Loading data using a function

In these examples, we assume that we have an analytic connection plugin named P that contains a custom
function Calculate(Parameter1, Parameter2). The function returns the table Results that contains the fields
Field1and Field2.

Load * Extension P.Calculate(values{A, C});
Load all fields that are returned when sending the fields A and C to the function.

Load Fieldl Extension P.Calculate(values{A, C});
Load only the Field1 field when sending the fields A and C to the function.

Load * Extension P.Calculate(values);
Load all fields that are returned when sending the fields A and B to the function. As fields are not specified,
A and B are used as they are the first in order in the table.

Load * Extension P.Calculate(values {C, C});
Load all fields that are returned when sending the field C to both parameters of the function.

Load * Extension P.Calculate(values {String(A), Mixed(B)});
Load all fields that are returned when sending the field A forced as a string and B forced as a numeric to the
function.

Script syntax and chart functions - Qlik Sense, August 2022 128

2 Script statements and keywords

Loading data by evaluating a script

Load A as A_echo, B as B_echo Extension R.ScripteEval('q;', values{A, B});
Load the table returned by the script g when sending the values of A and B.

Load * Extension R.ScriptEval('$(My_R_Script)', values{A, B});
Load the table returned by the script stored in the My_R_ Script variable when sending the values of A and
B.

Load * Extension R.ScriptEval('$(My_R_Script)', values{B as D, *});
Load the table returned by the script stored in the My_R_ Script variable when sending the values of B
renamed to D, A and C. Using * sends the remaining unreferenced fields.

The file extension of DataFiles connections is case sensitive. For example: .qvd.

Format specification items

Each format specification item defines a certain property of the table file:

fspec-item ::=[ansi|oem | mac|UTF-8 | Unicode | txt | fix | dif | biff | ooxml | html | xml | kmlI | qvd
| gvx | delimiter is char | no eof | embedded labels | explicit labels | no labels | table is [tablename] |

header is n | header is 1ine | headeris n lines | commentis string | record is n | record is 1ine |
record is n lines | no quotes |[msq | URL is string | userAgent is string]

Character set
Character set is a file specifier for the LOAD statement that defines the character set used in
the file.

The ansi, oem and mac specifiers were used in QlikView and will still work. However, they will not be
generated when creating the LOAD statement with Qlik Sense.

Syntax:
utf8 | unicode | ansi | oem | mac | codepage is

Arguments:
Arguments
Argument Description
utf8 UTF-8 character set
unicode Unicode character set
ansi Windows, codepage 1252
oem DOS, 0S/2, AS400 and others
mac Codepage 10000

codepage is With the codepage specifier, it is possible to use any Windows codepage as N.

Script syntax and chart functions - Qlik Sense, August 2022 129

2 Script statements and keywords

Limitations:

Conversion from the oem character set is not implemented for MacOS. If nothing is specified, codepage
1252 is assumed under Windows.

Example:

LOAD * from a.txt (utf8, txt, delimiter is ',' , embedded Tabels)

LOAD * from a.txt (unicode, txt, delimiter is ',' , embedded Tlabels)
LOAD * from a.txt (codepage is 10000, txt, delimiter is ',' , no labels)
See also:

p Load (page 119)

Table format
The table format is a file specifier for the LOAD statement that defines the file type. If nothing
is specified, a .txtfile is assumed.

Table format types

Type Description

txt In a delimited text file the columns in the table are separated by a delimiter
character.
fix In a fixed record file, each field is exactly a certain number of characters.

Typically, many fixed record length files contains records separated by a linefeed,
but there are more advanced options to specify record size in bytes or to span over
more than one line with Record is.

If the data contains multi-byte characters, field breaks can become
misaligned as the format is based on a fixed length in bytes.

dif In a .diffile, (Data Interchange Format) a special format for defining the table is
used.
biff Qlik Sense can also interpret data in standard Excel files by means of the biffformat

(Binary Interchange File Format).

ooxml Excel 2007 and later versions use the ooxml .xslx format.
html If the table is part of an html page or file, html should be used.
xml xml (Extensible Markup Language) is a common markup language that is used to

represent data structures in a textual format.
qvd The format qvd s the proprietary QVD files format, exported from a Qlik Sense app.

qvx gvxis a file/stream format for high performance output to Qlik Sense.

Script syntax and chart functions - Qlik Sense, August 2022 130

2 Script statements and keywords

Delimiter is

For delimited table files, an arbitrary delimiter can be specified through the delimiter is
specifier. This specifier is relevant only for delimited .txt files.

Syntax:
delimiter is char

Arguments:
Arguments
Argument Description
char Specifies a single character from the 127 ASCII characters.

Additionally, the following values can be used:

Optional values

Value Description

\t' representing a tab sign, with or without quotation marks.

\ representing a backslash (\) character.

'spaces’ representing all combinations of one or more spaces. Non-printable

characters with an ASCIl-value below 32, with the exception of CR
and LF, will be interpreted as spaces.

If nothing is specified, delimiter is '," is assumed.
Example:

LOAD * from a.txt (utf8, txt, delimiter is ',' , embedded labels);

See also:
p Load (page 119)

No eof

The no eof specifier is used to disregard end-of-file character when loading delimited .txt files.

Syntax:
no eof

If the no eof specifier is used, characters with code point 26, which otherwise denotes end-of-file, are
disregarded and can be part of a field value.

Itis relevant only for delimited text files.

Script syntax and chart functions - Qlik Sense, August 2022 131

2 Script statements and keywords

Example:

LOAD * from a.txt (txt, utf8, embedded 1abels, delimiter is ' ', no eof);

See also:

p Load (page 119)

Labels

Labels is a file specifier for the LOAD statement that defines where in a file the field names can be found.

Syntax:
embedded labels|explicit labels|no labels

The field names can be found in different places of the file. If the first record contains the field names,
embedded labels should be used. If there are no field names to be found, no labels should be used. In dif
files, a separate header section with explicit field names is sometimes used. In such a case, explicit labels
should be used. If nothing is specified, embedded labels is assumed, also for diffiles.

Example 1:

LOAD * from a.txt (unicode, txt, delimiter is ',' , embedded labels
Example 2:

LOAD * from a.txt (codePage is 1252, txt, delimiter is ',' , no labels)
See also:

p Load (page 119)

Header is

Specifies the header size in table files. An arbitrary header length can be specified through the header is
specifier. A header is a text section not used by Qlik Sense.

Syntax:

header is n
header is line
header is n lines

The header length can be given in bytes (header is n), or in lines (header is line or header is n lines). n
must be a positive integer, representing the header length. If not specified, header is 0 is assumed. The
header is specifier is only relevant for table files.

Example:

This is an example of a data source table containing a header text line that should not be interpreted as
data by Qlik Sense.

Script syntax and chart functions - Qlik Sense, August 2022 132

2 Script statements and keywords

*Header Tine
Ccoll,col2
a,B

c,D

Using the header is 1 lines specifier, the first line will not be loaded as data. In the example, the
embedded labels specifier tells Qlik Sense to interpret the first non-excluded line as containing field labels.

LOAD Coll, Col2
FROM 'Tib://files/header.txt'
(txt, embedded Tabels, delimiter is ',', msq, header is 1 Tines);

The result is a table with two fields, Col1 and Col2.

See also:

p Load (page 119)

Record is

For fixed record length files, the record length must be specified through the record is
specifier.

Syntax:

Record is n
Record is line
Record is n lines

Arguments:
Arguments
Argument Description
n Specifies the record length in bytes.
line Specifies the record length as one line.
nlines Specifies the record length in lines where n is a positive integer representing the record

length.

Limitations:

The record is specifier is only relevant for fix files.

See also:

p Load (page 119)

Script syntax and chart functions - Qlik Sense, August 2022 133

2 Script statements and keywords

Quotes

Quotes is a file specifier for the LOAD statement that defines whether quotes can be used and the
precedence between quotes and separators. For text files only.

Syntax:

no quotes

msq

If the specifier is omitted, standard quoting is used, that is, the quotes
are the first and last non blank character of a field value.

or''can be used, but only if they

Arguments:
Arguments
Argument Description
no quotes Used if quotation marks are not to be accepted in a text file.
msq Used to specify modern style quoting, allowing multi-line content in fields. Fields

containing end-of-line characters must be enclosed within double quotes.

One limitation of the msq option is that single double-quote (") characters appearing as
first or last character in field content will be interpreted as start or end of multi-line
content, which may lead to unpredicted results in the data set loaded. In this case you
should use standard quoting instead, omitting the specifier.

XML

This script specifier is used when loading xml files. Valid options for the XML specifier are
listed in syntax.

You cannot load DTD files in Qlik Sense.

Syntax:

xmlsimple

See also:
p Load (page 119)

KML

This script specifier is used when loading KML files to use in a map visualization.

Syntax:
kml

Script syntax and chart functions - Qlik Sense, August 2022 134

2 Script statements and keywords

The KML file can represent either area data (for example, countries or regions) represented by polygons,
line data (for example tracks or roads), or point data (for example, cities or places) represented by points in
the form [long, lat].

URL is
This script specifier is used to set the URL of a web file data connection when loading a web

file.

Syntax:
URL is string

Arguments:
Arguments
Argument Description
string Specifies the URL of the file to load. This will override the URL set in the web file

connection that is used.

Limitations:

The URL is specifier is only relevant for web files. You need to use an existing web file data connection.

See also:

p Load (page 119)

userAgentis

This script specifier is used to set the browser user agent when loading a web file.

Syntax:
userAgent is string

Arguments:
Arguments
Argument Description
string Specifies the browser user agent string. This will override the default browser user agent

"Mozilla/5.0".

Limitations:

The userAgent is specifier is only relevant for web files.

Script syntax and chart functions - Qlik Sense, August 2022 135

2 Script statements and keywords

See also:

p Load (page 119)

Let

The let statement is a complement to the set statement, used for defining script variables.
The let statement, in opposition to the set statement, evaluates the expression on the right
side of the ' =" at script run time before it is assigned to the variable.

Syntax:

Let variablename=expression

Examples and results:

Example Result

Set x=3+4; $(x) will be evaluated as ' 3+4"'
Let y=3+4;

z=$(y)+1; $(y) will be evaluatedas ' 7'

$(z) will be evaluatedas '8’

Note the difference between the Set and Let statements. The Set
statement assigns the string '3+4' to the variable, whereas the Let
statement evaluates the string and assigns 7 to the variable.

Let T=now(); $ (1) will be given the value of the current time.

Loosen Table

One or more Qlik Sense internal data tables can be explicitly declared loosely coupled during script
execution by using a Loosen Table statement. When a table is loosely coupled, all associations between
field values in the table are removed. A similar effect could be achieved by loading each field of the loosely
coupled table as independent, unconnected tables. Loosely coupled can be useful during testing to
temporarily isolate different parts of the data structure. A loosely coupled table can be identified in the table
viewer by the dotted lines. The use of one or more Loosen Table statements in the script will make Qlik
Sense disregard any setting of tables as loosely coupled made before the script execution.

Syntax:
Loosen Tabletablename [, tablename2 ...]
Loosen Tablestablename [, tablename2 ...]

Either syntax: Loosen Table or Loosen Tables can be used.

Script syntax and chart functions - Qlik Sense, August 2022 136

2 Script statements and keywords

Should Qlik Sense find circular references in the data structure which cannot be broken by
tables declared loosely coupled interactively or explicitly in the script, one or more additional
tables will be forced loosely coupled until no circular references remain. When this happens,
the Loop Warning dialog, gives a warning.

Example:

Tabl:
SELECT * from Trans;
Loosen Table Tabl;

Map

The map ... using statement is used for mapping a certain field value or expression to the
values of a specific mapping table. The mapping table is created through the Mapping
statement.

Syntax:
Map fieldlist Using mapname

The automatic mapping is done for fields loaded after the Map ... Using statement until the end of the script
or until an Unmap statement is encountered.

The mapping is done last in the chain of events leading up to the field being stored in the internal table in
Qlik Sense. This means that mapping is not done every time a field name is encountered as part of an
expression, but rather when the value is stored under the field name in the internal table. If mapping on the
expression level is required, the Applymap() function has to be used instead.

Arguments:
Arguments
Argument Description
fieldlist A comma separated list of the fields that should be mapped from this point in the script.

Using * as field list indicates all fields. The wildcard characters * and ? are allowed in
field names. Quoting of field names may be necessary when wildcards are used.

mapname The name of a mapping table previously read in a mapping load or mapping select
statement.

Script syntax and chart functions - Qlik Sense, August 2022 137

2 Script statements and keywords

Examples and results:

Example Result
Map Country Using Enables mapping of the field Country using the map Cmap.
Cmap;

Map A, B, C Using X; Enables mapping of the fields A, B and C using the map X.
Map * Using GenMap; Enables mapping of all fields using GenMap.

NullAsNull

The NullAsNull statement turns off the conversion of NULL values to string values previously
set by a NullAsValue statement.

Syntax:
NullAsNull *fieldlist

The NullAsValue statement operates as a switch and can be turned on or off several times in the script,
using either a NullAsValue or a NullAsNull statement.

Arguments:
Arguments
Argument Description
*fieldlist A comma separated list of the fields for which NullAsNull should be turned on. Using *

as field list indicates all fields. The wildcard characters * and ? are allowed in field
names. Quoting of field names may be necessary when wildcards are used.

Example:

NulTlAsNull A,B;
LOAD A,B from x.csv;

NullAsValue

The NullAsValue statement specifies for which fields that NULL should be converted to a
value.

Syntax:
NullAsValue *fieldlist

By default, Qlik Sense considers NULL values to be missing or undefined entities. However, certain
database contexts imply that NULL values are to be considered as special values rather than simply
missing values. The fact that NULL values are normally not allowed to link to other NULL values can be
suspended by means of the NullAsValue statement.

Script syntax and chart functions - Qlik Sense, August 2022 138

2 Script statements and keywords

The NullAsValue statement operates as a switch and will operate on subsequent loading statements. It
can be switched off again by means of the NullAsNull statement.

Arguments:
Arguments
Argument Description
*fieldlist A comma separated list of the fields for which NullAsValue should be turned on. Using *

as field list indicates all fields. The wildcard characters * and ? are allowed in field
names. Quoting of field names may be necessary when wildcards are used.

Example:

NulTAsvalue A,B;
Set Nullvalue = 'NULL';
LOAD A,B from x.csv;

Qualify

The Qualify statement is used for switching on the qualification of field names, i.e. field
names will get the table name as a prefix.

Syntax:
Qualify *fieldlist

The automatic join between fields with the same name in different tables can be suspended by means of
the qualify statement, which qualifies the field name with its table name. If qualified, the field name(s) will
be renamed when found in a table. The new name will be in the form of tablename.fieldname. Tablename
is equivalent to the label of the current table, or, if no label exists, to the name appearing after from in
LOAD and SELECT statements.

The qualification will be made for all fields loaded after the qualify statement.

Qualification is always turned off by default at the beginning of script execution. Qualification of a field
name can be activated at any time using a qualify statement. Qualification can be turned off at any time
using an Unqualify statement.

The qualify statement should not be used in conjunction with partial reload.

Arguments:
Arguments
Argument Description
*fieldlist A comma separated list of the fields for which qualification should be turned on. Using *

as field list indicates all fields. The wildcard characters * and ? are allowed in field
names. Quoting of field names may be necessary when wildcards are used.

Script syntax and chart functions - Qlik Sense, August 2022 139

2 Script statements and keywords

Example 1:

Qualify B;
LOAD A,B from x.csv;
LOAD A,B from y.csv;

The two tables x.csv and y.csv are associated only through A. Three fields will result: A, x.B, y.B.

Example 2:

In an unfamiliar database, it is often useful to start out by making sure that only one or a few fields are
associated, as illustrated in this example:

qualify *;

unqualify TransiD;

SQL SELECT * from tabl;
SQL SELECT * from tab2;
SQL SELECT * from tab3;

Only TransID will be used for associations between the tables tab1, tab2 and tab3.

Rem

The rem statement is used for inserting remarks, or comments, into the script, or to
temporarily deactivate script statements without removing them.

Syntax:
Rem string

Everything between the rem and the next semicolon ; is considered to be a comment.
There are two alternative methods available for making comments in the script:

1. ltis possible to create a comment anywhere in the script - except between two quotes - by placing
the section in question between /* and */.

2. When typing // in the script, all text that follows to the right on the same row becomes a comment.
(Note the exception //: that may be used as part of an Internet address.)

Arguments:

Arguments

Argument Description

string An arbitrary text.
Example:
Rem ** This is a comment **;

/* This is also a comment */
// This is a comment as well

Script syntax and chart functions - Qlik Sense, August 2022 140

2 Script statements and keywords

Rename

The Rename script keyword can be used to rename tables or fields that are already loaded.

Rename field

This script function renames one or more existing Qlik Sense field(s) after they have been
loaded.

It is not recommended to name a variable identically to a field or a function in Qlik Sense.

Either syntax: rename field or rename fields can be used.

Syntax:
Rename Field (using mapname | oldname to newname{ , oldname to newname })
Rename Fields (using mapname | oldname to newname{ , oldname to newname })

Arguments:

Argument Description

mapname The name of a previously loaded mapping table containing one or more pairs of old and
new field names.

oldname The old field name.
newname The new field name.
Limitations:

You cannot rename two fields to having the same name.
Example 1:

Rename Field XAz0007 to Sales;

Example 2:

Fieldmap:
Mapping SQL SELECT oldnames, newnames from datadictionary;
Rename Fields using FieldMmap;

Rename table

This script function renames one or more existing Qlik Sense internal table(s) after they have
been loaded.

Either syntax: rename table or rename tables can be used.

Script syntax and chart functions - Qlik Sense, August 2022 141

2 Script statements and keywords

Syntax:
Rename Table (using mapname | oldname to newname{ , oldname to newname })
Rename Tables (using mapname | oldname to newname{ , oldname to newname })

Arguments:
Arguments
Argument Description
mapname The name of a previously loaded mapping table containing one or more pairs of old and

new table names.

oldname The old table name.
newhame The new table name.
Limitations:

Two differently named tables cannot be renamed to having the same name. The script will generate an
error if you try to rename a table to the same name as an existing table.

Example 1:

Tabl:
SELECT * from Trans;
Rename Table Tabl to Xyz;

Example 2:

TabMap:
Mapping LOAD oldnames, newnames from tabnames.csv;
Rename Tables using TabMap;

Search

The Search statement is used for including or excluding fields in smart search.

Syntax:
Search Include *fieldlist
Search Exclude *fieldlist

You can use several Search statements to refine your selection of fields to include. The statements are
evaluated from top to bottom.

Script syntax and chart functions - Qlik Sense, August 2022 142

2 Script statements and keywords

Arguments:
Arguments
Argument Description
*fieldlist A comma separated list of the fields to include or exclude from searches in smart search.

Using * as field list indicates all fields. The wildcard characters * and ? are allowed in
field names. Quoting of field names may be necessary when wildcards are used.

Example:
Search examples
Statement Description
Search Include *; Include all fields in searches in smart search.
Search Exclude [*ID]; Exclude all fields ending with ID from searches in smart search.
Search Exclude '*ID'; Exclude all fields ending with ID from searches in smart search.
Search Include ProductID; Include the field ProductID in searches in smart search.

The combined result of these three statements, in this sequence, is that all fields ending with ID except
ProductID are excluded from searches in smart search.

Section
With the section statement, it is possible to define whether the subsequent LOAD and SELECT

statements should be considered as data or as a definition of the access rights.

Syntax:
Section (access | application)

If nothing is specified, section application is assumed. The section definition is valid until a new section
statement is made.

Example:

Section access;
Section application;

Select

The selection of fields from an ODBC data source or OLE DB provider is made through
standard SQL SELECT statements. However, whether the SELECT statements are
accepted depends on the ODBC driver or OLE DB provider used. Use of the

SELECT statement requires an open data connection to the source.

Script syntax and chart functions - Qlik Sense, August 2022 143

2 Script statements and keywords

Syntax:
Select [all | distinct | distinctrow | top n [percent]] fieldlist

From tablelist

[where criterion]

[group by fieldlist [having criterion]]
[order by fieldlist [asc | desc]]

[(Inner | Left | Right | Full) join tablename on fieldref = fieldref]

Furthermore, several SELECT statements can sometimes be concatenated into one through the use of a
union operator:

selectstatement Union selectstatement

The SELECT statement is interpreted by the ODBC driver or OLE DB provider, so deviations from the
general SQL syntax might occur depending on the capabilities of the ODBC drivers or OLE DB provider, for
example:.

e as is sometimes not allowed, i.e. aliasname must follow immediately after fieldname.

e asis sometimes compulsory if an aliasname is used.

« distinct, as, where, group by, order by, or union is sometimes not supported.

* The ODBC driver sometimes does not accept all the different quotation marks listed above.

This is not a complete description of the SQL SELECT statement! E.g. SELECT statements
can be nested, several joins can be made in one SELECT statement, the number of functions
allowed in expressions is sometimes very large, etc.

Arguments:
Arguments
Argument Description
distinct distinct is a predicate used if duplicate combinations of values in the selected fields only

should be loaded once.

distinctrow distinctrow is a predicate used if duplicate records in the source table only should be
loaded once.

Script syntax and chart functions - Qlik Sense, August 2022 144

2 Script statements and keywords

Argument

fieldlist

from

where

group by

having

order by

join

Example 1:

Description

fieldlist ::= (*| field) {, field }

A list of the fields to be selected. Using * as field list indicates all fields in the table.
fieldlist ::= field {, field }

A list of one or more fields, separated by commas.

field ::= (fieldref| expression) [as aliasname]

The expression can e.g. be a numeric or string function based on one or several other
fields. Some of the operators and functions usually accepted are: +, -, *, /, & (string
concatenation), sum(fieldname), count(fieldname), avg(fieldname)(average), month
(fieldname), etc. See the documentation of the ODBC driver for more information.
fieldref ::= [tablename.] fieldname

The tablename and the fieldname are text strings identical to what they imply. They
must be enclosed by straight double quotation marks if they contain e.g. spaces.
The as clause is used for assigning a new name to the field.

tablelist ::= table {, table }

The list of tables that the fields are to be selected from.

table ::= tablename [[as] aliasname]

The tablename may or may not be put within quotes.

where is a clause used for stating whether a record should be included in the selection
or not.

criterion is a logical expression that can sometimes be very complex. Some of the
operators accepted are: numeric operators and functions, =, <> or #(not equal), >, >=,
<, <=, and, or, not, exists, some, all, in and also new SELECT statements. See the
documentation of the ODBC driver or OLE DB providerfor more information.

group by is a clause used for aggregating (group) several records into one. Within one
group, for a certain field, all the records must either have the same value, or the field can
only be used from within an expression, e.g. as a sum or an average. The expression
based on one or several fields is defined in the expression of the field symbol.

having is a clause used for qualifying groups in a similar manner to how the where
clause is used for qualifying records.

order by is a clause used for stating the sort order of the resulting table of the SELECT
statement.

join is a qualifier stating if several tables are to be joined together into one. Field names
and table names must be put within quotes if they contain blank spaces or letters from
the national character sets. When the script is automatically generated by Qlik Sense,
the quotation mark used is the one preferred by the ODBC driver or OLE DB provider
specified in the data source definition of the data source in the Connect statement.

SELECT * FROM Categories ;

Script syntax and chart functions - Qlik Sense, August 2022 145

2 Script statements and keywords

Example 2:
SELECT "Category ID , Category Name FROM "Categories ;
Example 3:

SELECT ‘Order ID, "Product ID ,
‘Unit Price’ * Quantity * (1-Discount) as NetSales
FROM “Order Details;

Example 4:

SELECT "Order Details . Order ID,
sum(order Details . Unit Price *
FROM "Order Details’, oOrders

where orders. order ID = "Order Details . Order ID’
group by “order Details . order ID ;

“order Details .Quantity) as "Result’

Set

The set statement is used for defining script variables. These can be used for substituting strings, paths,
drives, and so on.

Syntax:
Set variablename=string

Example 1:

Set FileToUse=Datal.csv;

Example 2:

Set Constant="My string";

Example 3:

Set BudgetYear=2012;

Sleep

The sleep statement pauses script execution for a specified time.

Syntax:
Sleep n

Arguments:

Argument Description

n Stated in milliseconds, where nis a positive integer no larger than 3600000 (i.e. 1 hour).
The value may be an expression.

Script syntax and chart functions - Qlik Sense, August 2022 146

2 Script statements and keywords

Example 1:

Sleep 10000;

Example 2:
Sleep t*1000;

SQL

The SQL statement allows you to send an arbitrary SQL command through an ODBC or OLE DB
connection.

Syntax:
SQL sgl command

Sending SQL statements which update the database will return an error if Qlik Sense has opened the
ODBC connection in read-only mode.

The syntax:

SQL SELECT * from tabl;
is allowed, and is the preferred syntax for SELECT, for reasons of consistency. The SQL prefix will,
however, remain optional for SELECT statements.

Arguments:

Argument Description

sql_command A valid SQL command.

Example 1:
SQL leave;
Example 2:

SQL Execute <storedProc>;

SQLColumns

The sqlcolumns statement returns a set of fields describing the columns of an ODBC or OLE DB data
source, to which a connect has been made.

Syntax:
SQLcolumns

Script syntax and chart functions - Qlik Sense, August 2022 147

2 Script statements and keywords

The fields can be combined with the fields generated by the sqltables and sqltypes commands in order to
give a good overview of a given database. The twelve standard fields are:

TABLE_QUALIFIER
TABLE_OWNER
TABLE_NAME
COLUMN_NAME
DATA_TYPE
TYPE_NAME
PRECISION
LENGTH
SCALE
RADIX
NULLABLE
REMARKS

For a detailed description of these fields, see an ODBC reference handbook.

Example:

Cconnect to 'MS Access 7.0 Database; DBQ=C:\Course3\Datasrc\QWwT.mbd"';
sQLcolumns;

Some ODBC drivers may not support this command. Some ODBC drivers may produce
additional fields.

SQLTables

The sqltables statement returns a set of fields describing the tables of an ODBC or OLE DB data source, to
which a connect has been made.

Syntax:
SQLTables

The fields can be combined with the fields generated by the sglcolumns and sqltypes commands in order
to give a good overview of a given database. The five standard fields are:

TABLE_QUALIFIER
TABLE_OWNER

TABLE_NAME

Script syntax and chart functions - Qlik Sense, August 2022 148

2 Script statements and keywords

TABLE_TYPE
REMARKS
For a detailed description of these fields, see an ODBC reference handbook.

Example:

connect to 'MS Access 7.0 Database; DBQ=C:\Course3\Datasrc\QWT.mbd"';
SQLTables;

Some ODBC drivers may not support this command. Some ODBC drivers may produce
additional fields.

SQLTypes

The sqltypes statement returns a set of fields describing the types of an ODBC or OLE DB data source, to
which a connect has been made.

Syntax:
SQLTypes

The fields can be combined with the fields generated by the sglcolumns and sqltables commands in order
to give a good overview of a given database. The fifteen standard fields are:

TYPE_NAME
DATA_TYPE
PRECISION
LITERAL_PREFIX
LITERAL_SUFFIX
CREATE_PARAMS
NULLABLE
CASE_SENSITIVE
SEARCHABLE
UNSIGNED_ATTRIBUTE
MONEY
AUTO_INCREMENT
LOCAL_TYPE_NAME

MINIMUM_SCALE

Script syntax and chart functions - Qlik Sense, August 2022 149

2 Script statements and keywords

MAXIMUM_SCALE

For a detailed description of these fields, see an ODBC reference handbook.
Example:

Connect to 'MS Access 7.0 Database; DBQ=C:\Course3\DataSrc\QwT.mbd";
SQLTypes;

Some ODBC drivers may not support this command. Some ODBC drivers may produce
additional fields.

Star

The string used for representing the set of all the values of a field in the database can be set
through the star statement. It affects the subsequent LOAD and SELECT statements.

Syntax:
Star is[string]

Arguments:
Arguments
Argument Description
string An arbitrary text. Note that the string must be enclosed by quotation marks if it contains

blanks.

If nothing is specified, star is; is assumed, i.e. there is no star symbol available unless
explicitly specified. This definition is valid until a new star statement is made.

The Star is statement is not recommended for use in the data part of the script (under Section Application)
if section access is used. The star character is however fully supported for the protected fields in the
Section Access part of the script. In this case you do not need to use the explicit Star is statement since
this is always implicit in section access.

Limitations

¢ You cannot use the star character with key fields; that is, fields that link tables.

* You cannot use the star character with any fields affected by the Unqualify statement as this can
affect fields that link tables.

« You cannot use the star character with non-logical tables, for example, info-load tables or mapping-
load tables.

¢ When the star character is used in a reducing field (a field that links to the data) in section access, it
represents the values listed in this field in section access. It does not represent other values that
may exist in the data but are not listed in section access.

Script syntax and chart functions - Qlik Sense, August 2022 150

2 Script statements and keywords

¢ You cannot use the star character with fields affected by any form of data reduction outside the
Section Access area.

Example

The example below is an extract of a data load script featuring section access.

o

Star is *;

Section Access;

LOAD * INLINE [
ACCESS, USERID, OMIT
ADMIN, ADMIN,

USER, USER1, SALES
USER, USER2, WAREHOUSE
USER, USER3, EMPLOYEES
USER, USER4, SALES
USER, USER4, WAREHOUSE
USER, USER5, *

1;

Section Application;

LOAD * INLINE [

SALES, WAREHOUSE, EMPLOYEES, ORDERS
1, 2, 3, 4

1;

The following applies:

e The Starsignis *.

¢ The user ADMIN sees all fields. Nothing is omitted.

e The user USER1is not able to see the field SALES.

e The user USERZ2is not able to see the field WAREHOUSE .

e The user USER3 cannot see the field EMPLOYEES.

¢ The user USER4 is added twice to the solution to OMIT two fields for this user, SALES and
WAREHOUSE.

e The USERS5 has a “*” added which means that all listed fields in OMIT are unavailable, that is, user
USERS5 cannot see the fields SALES, WAREHOUSE and EMPLOYEES but this user can see the
field ORDERS.

Store

The Store statement creates a QVD, CSV, or text file.

Syntax:
Store [fieldlist from] table into filename [format-spec 1];
The statement will create an explicitly named QVD, CSV, or TXT file.

The statement can only export fields from one data table. If fields from several tables are to be exported, an
explicit join must be made previously in the script to create the data table that should be exported.

Script syntax and chart functions - Qlik Sense, August 2022 151

2 Script statements and keywords

The text values are exported to the CSV file in UTF-8 format. A delimiter can be specified, see LOAD. The
store statement to a CSV file does not support BIFF export.

Arguments:

Store command arguments

Argument Description

fieldlist::= (*| field) {, field }) Alist of the fields to be selected. Using * as field list indicates
all fields.

field::= fieldname [as aliasname]

fieldname is a text that is identical to a field name in table.
(Note that the field name must be enclosed b straight double
quotation marks or square brackets if it contains spaces or
other non-standard characters.)

aliasname is an alternate name for the field to be used in the
resulting QVD or CSV file.

table A script label representing an already loaded table to be used
as source for data.

filename The name of the target file including a valid path to an
existing folder data connection.

Example: 'lib://Table Files/target.qvd’

In legacy scripting mode, the following path formats are also
supported:

¢ absolute

Example: c:\datalsales.qvd

« relative to the Qlik Sense app working directory.

Example: datalsales.qvd

If the path is omitted, Qlik Sense stores the file in the
directory specified by the Directory statement. If there
is no Directory statement, Qlik Sense stores the file in
the working directory, C:\Users|
{user}\Documents\Qlik\Sensel\Apps.

format-spec ::=((txt | qvd)) The format specification consists of the text txt for text files,
or the text qvd for qvd files. If the format specification is
omitted, gvd is assumed.

Script syntax and chart functions - Qlik Sense, August 2022 152

2 Script statements and keywords

Examples:

Store mytable into xyz.qvd (qvd);

Store * from mytable into 'lib://FolderConnection/myfile.qvd';

Store Name, RegNo from mytable into xyz.qvd;

Store Name as a, RegNo as b from mytable into 'lib://FoldercConnection/myfile.qvd’;
Store mytable into myfile.txt (txt);

Store * from mytable into 'lib://FoldercConnection/myfile.qvd';

The file extension of DataFiles connections is case sensitive. For example: .qvd.

Table/Tables

The Table and Tables script keywords are used in Drop, Comment and Rename
statements, as well as a format specifier in Load statements.

Tag

This script statement provides a way to assign tags to one or more fields or tables. If an
attempt to tag a field or table not present in the app is made, the tagging will be ignored. If
conflicting occurrences of a field or tag name are found, the last value is used.

Syntax:
Tag [field|fields] fieldlist with tagname

Tag [field|fields] fieldlist using mapname

Tag table tablelist with tagname

Arguments
Argument Description
fieldlist One or several fields that should be tagged, in a comma separated list.
mapname The name of a mapping table previously loaded in a mapping Load or mapping Select
statement.
tablelist A comma separated list of the tables that should be tagged.
tagname The name of the tag that should be applied to the field.
Example 1:
tagmap:
mapping LOAD * inline [
a,b
Alpha,MyTag
Num,MyTag

1;
tag fields using tagmap;

Script syntax and chart functions - Qlik Sense, August 2022 153

2 Script statements and keywords

Example 2:

tag field Alpha with 'MyTag2';

Trace

The trace statement writes a string to the Script Execution Progress window and to the script log file,
when used. Itis very useful for debugging purposes. Using $-expansions of variables that are calculated
prior to the trace statement, you can customize the message.

Syntax:
Trace string

Example 1:

The following statement can be used right after the Load statement that loads the 'Main' table.

Trace Main table loaded;
This will display the text ‘Main table loaded’ in the script execution dialog and in the log file.

Example 2:

The following statements can be used right after the Load statement that loads the 'Main' table.

Let MyMessage = NoOfRows('Main') & ' rows in Main table';
Trace $(MyMessage);

This will display a text showing the number of rows in the script execution dialog and in the log file, for
example, ‘265,391 rows in Main table’ .

Unmap
The Unmap statement disables field value mapping specified by a previous Map ... Using

statement for subsequently loaded fields.

Syntax:
Unmap *fieldlist

Arguments:
Arguments
Argument Description
*fieldlist a comma separated list of the fields that should no longer be mapped from this point in

the script. Using * as field list indicates all fields. The wildcard characters * and ? are
allowed in field names. Quoting of field names may be necessary when wildcards are
used.

Script syntax and chart functions - Qlik Sense, August 2022 154

2 Script statements and keywords

Examples and results:

Example Result

Unmap Country; Disables mapping of field Country.

UnmapA, B, C; Disables mapping of fields A, B and C.

Unmap *; Disables mapping of all fields.
Unqualify

The Unqualify statement is used for switching off the qualification of field names that has
been previously switched on by the Qualify statement.

Syntax:
Unqualify *fieldlist

Arguments:
Arguments
Argument Description
*fieldlist A comma separated list of the fields for which qualification should be turned on. Using *

as field list indicates all fields. The wildcard characters * and ? are allowed in field
names. Quoting of field names may be necessary when wildcards are used.

Refer to the documentation for the Qualify statement for further information.

Example 1:

In an unfamiliar database, it is often useful to start out by making sure that only one or a few fields are
associated, as illustrated in this example:

qualify *;

unqualify TransID;

SQL SELECT * from tabl;
SQL SELECT * from tab2;
SQL SELECT * from tab3;

First, qualification is turned on for all fields.
Then qualification is turned off for TranslID.
Only TransID will be used for associations between the tables tab1, tab2 and tab3. All other fields will be

qualified with the table name.

Untag
This script statement provides a way to remove tags from fields or tables. If an attempt to
untag a field or table not present in the app is made, the untagging will be ignored.

Syntax:
Untag [field|fields] fieldlist with tagname

Script syntax and chart functions - Qlik Sense, August 2022 155

2 Script statements and keywords

Untag [field|fields] fieldlist using mapname

Untag table tablelist with tagname

Arguments:
Arguments
Argument Description
fieldlist One or several fields which tags should be removed, in a comma separated list.
mapname The name of a mapping table previously loaded in a mapping LOAD or mapping
SELECT statement.
tablelist A comma separated list of the tables that should be untagged.
tagname The name of the tag that should be removed from the field.
Example 1:
tagmap:
mapping LOAD * inline [
a,b
Alpha,MyTag
Num,MyTag

1;
Untag fields using tagmap;

Example 2:

Untag field Alpha with MyTag2;

2.6 Working directory

If you are referencing a file in a script statement and the path is omitted, Qlik Sense searches
for the file in the following order:

1. The directory specified by a Directory statement (only supported in legacy scripting mode).

2. Ifthere is no Directory statement, Qlik Sense searches in the working directory.

Qlik Sense Desktop working directory
In Qlik Sense Desktop, the working directory is C:\Users\{user}\Documents\Qlik\Sense\Apps.

Qlik Sense working directory

In a Qlik Sense server installation, the working directory is specified in Qlik Sense Repository Service, by
defaultitis C:\ProgramData\Qlik\Sense\Apps. See the Qlik Management Console help for more
information.

Script syntax and chart functions - Qlik Sense, August 2022 156

2 Working with variables in the data load editor

2 Working with variables in the data load editor

A variable in Qlik Sense is a container storing a static value or a calculation, for example a
numeric or alphanumeric value. When you use the variable in the app, any change made to
the variable is applied everywhere the variable is used. You can define variables in the
variables overview, or in the script using the data load editor. You set the value of a variable
using Let or Set statements in the data load script.

You can also work with the Qlik Sense variables from the variables overview when editing a
sheet.

2.7 Overview

If the first character of a variable value is an equals sign ' ="' Qlik Sense will try to evaluate the value as a
formula (Qlik Sense expression) and then display or return the result rather than the actual formula text.

When used, the variable is substituted by its value. Variables can be used in the script for dollar sign
expansion and in various control statements. This is very useful if the same string is repeated many times
in the script, for example, a path.

Some special system variables will be set by Qlik Sense at the start of the script execution regardless of
their previous values.

2.8 Defining a variable

Variables provide the ability to store static values or the result of a calculation. When defining a variable,
use the following syntax:

set variablename = string
or

let variable = expression

The Set statement is used for string assignment. It assigns the text to the right of the equal sign to the
variable. The Let statement evaluates an expression to the right of the equal sign at script run time and
assigns the result of the expression to the variable.

Variables are case sensitive.

It is not recommended to name a variable identically to a field or a function in Qlik Sense.

Examples:

set x = 3 + 4; //thevariable will get the string '3 + 4' as the value.

Script syntax and chart functions - Qlik Sense, August 2022 157

2 Working with variables in the data load editor

Tet x = 3 + 4; //returns 7 as the value.

set x = Today(); //returns'Today()' as the value.

let x = Today(); //returnstoday's date as the value, for example, ‘9/27/2021°.

2.9 Deleting a variable

If you remove a variable from the script and reload the data, the variable stays in the app. If you want to
fully remove the variable from the app, you must also delete the variable from the variables dialog.

2.10 Loading a variable value as a field value

If you want to load a variable value as a field value in a LOAD statement and the result of the dollar
expansion is text rather than numeric or an expression then you need to enclose the expanded variable in
single quotes.

Example:

This example loads the system variable containing the list of script errors to a table. You can note that the
expansion of ScriptErrorCount in the If clause does not require quotes, while the expansion of
ScriptErrorList requires quotes.

IF $(ScriptErrorCount) >= 1 THEN
LOAD '$(ScriptErrorList)' AS Error AutoGenerate 1;
END IF

2.11 Variable calculation

There are several ways to use variables with calculated values in Qlik Sense, and the result depends on
how you define it and how you call it in an expression.

In this example, we load some inline data:

LOAD * INLINE [
Dim, Sales
A, 150

, 200

, 240

, 230

, 410

, 330

N N ®™® >

1;
Let's define two variables:

Let vSales = 'sum(Sales)' ;
Let vSales2 = '=Ssum(Sales)' ;

In the second variable, we add an equal sign before the expression. This will cause the variable to be
calculated before it is expanded and the expression is evaluated.

Script syntax and chart functions - Qlik Sense, August 2022 158

2 Working with variables in the data load editor

If you use the vSales variable as it is, for example in a measure, the result will be the string Sum(Sales),
that is, no calculation is performed.

If you add a dollar-sign expansion and call $(vSales) in the expression, the variable is expanded, and the
sum of Sales is displayed.

Finally, if you call $(vSales2), the variable will be calculated before it is expanded. This means that the
result displayed is the total sum of Sales. The difference between using =$(vSales) and =$(vSales2) as
measure expressions is seen in this chart showing the results:

Results
Dim $(vSales) $(vSales2)
A 350 1560
470 1560
C 740 1560

As you can see, $(vSales) results in the partial sum for a dimension value, while $(vSales2) results in the
total sum.

The following script variables are available:

e Error variables (page 212)

e Number interpretation variables (page 167)
e System variables (page 159)

e Value handling variables (page 165)

2.12 System variables
System variables, some of which are system-defined, provide information about the system

and the Qlik Sense app.

System variables overview

Some of the functions are described further after the overview. For those functions, you can click the
function name in the syntax to immediately access the details for that specific function.

Floppy
Returns the drive letter of the first floppy drive found, normally a:. This is a system-defined variable.

Floppy

This variable is not supported in standard mode.

Script syntax and chart functions - Qlik Sense, August 2022 159

2 Working with variables in the data load editor

CD

Returns the drive letter of the first CD-ROM drive found. If no CD-ROM is found, then c: is returned. This is
a system-defined variable.

CD

This variable is not supported in standard mode.

Include

The Include/Must_Include variable specifies a file that contains text that should be included in the script
and evaluated as script code. It is not used to add data. You can store parts of your script code in a
separate text file and reuse it in several apps. This is a user-defined variable.

$ (Include=filename)
$ (Must_Include=filename)

HidePrefix

All field names beginning with this text string will be hidden in the same manner as the system fields. This
is a user-defined variable.

HidePrefix

HideSuffix
All field names ending with this text string will be hidden in the same manner as the system fields. Thisis a
user-defined variable.

HideSuffix

QvPath
Returns the browse string to the Qlik Sense executable. This is a system-defined variable.

QvPath

This variable is not supported in standard mode.

QvRoot
Returns the root directory of the Qlik Sense executable. This is a system-defined variable.

QvRoot

This variable is not supported in standard mode.

QvWorkPath
Returns the browse string to the current Qlik Sense app. This is a system-defined variable.

QvWorkPath

Script syntax and chart functions - Qlik Sense, August 2022 160

2 Working with variables in the data load editor

This variable is not supported in standard mode.

QvWorkRoot
Returns the root directory of the current Qlik Sense app. This is a system-defined variable.

QvWorkRoot

This variable is not supported in standard mode.

StripComments
If this variable is set to 0, stripping of /*..*/ and // comments in the script will be inhibited. If this variable is
not defined, stripping of comments will always be performed.

StripComments

Verbatim

Normally all field values are automatically stripped of leading and trailing blanks (ASCII 32) before being
loaded into the Qlik Sense database. Setting this variable to 1 suspends the stripping of blanks. Tab (ASCII
9) and hard space (ANSI 160) characters are never stripped.

Verbatim

OpenUriTimeout
This variable defines the timeout in seconds that Qlik Sense should respect when getting data from URL
sources (e.g. HTML pages). If omitted, the timeout is about 20 minutes.

OpenUrlTimeout

WinPath
Returns the browse string to Windows. This is a system-defined variable.

WinPath

This variable is not supported in standard mode.

WinRoot
Returns the root directory of Windows. This is a system-defined variable.

WinRoot

This variable is not supported in standard mode.

CollationLocale
Specifies which locale to use for sort order and search matching. The value is the culture name of a locale,
for example 'en-US'.This is a system-defined variable.

Script syntax and chart functions - Qlik Sense, August 2022 161

2 Working with variables in the data load editor

CollationLocale

CreateSearchindexOnReload
This variable defines if search index files should be created during data reload.

CreateSearchIndexOnReload

CreateSearchindexOnReload

This variable defines if search index files should be created during data reload.
Syntax:

CreateSearchIndexOnReload

You can define if search index files should be created during data reload, or if they should be created after
the first search request of the user. The benefit of creating search index files during data reload is that you

avoid the waiting time experienced by the first user making a search. This needs to be weighed against the
longer data reload time required by search index creation.

If this variable is omitted, search index files will not be created during data reload.

For session apps, search index files will not be created during data reload, regardless of the
setting of this variable.

Example 1: Create search index fields during data reload

set CreateSearchIndexOnReload=1;

Example 2: Create search index fields after first search request

set CreateSearchiIndexonReload=0;

HidePrefix

All field names beginning with this text string will be hidden in the same manner as the system
fields. This is a user-defined variable.

Syntax:
HidePrefix

Example:
set HidePrefix='_" ;

If this statement is used, the field names beginning with an underscore will not be shown in the field name
lists when the system fields are hidden.

Script syntax and chart functions - Qlik Sense, August 2022 162

2 Working with variables in the data load editor

HideSuffix

All field names ending with this text string will be hidden in the same manner as the system
fields. This is a user-defined variable.

Syntax:
HideSuffix

Example:

set HideSuffix='%";

If this statement is used, the field names ending with a percentage sign will not be shown in the field name
lists when the system fields are hidden.

Include

The Include/Must_Include variable specifies a file that contains text that should be included
in the script and evaluated as script code. It is not used to add data. You can store parts of
your script code in a separate text file and reuse it in several apps. This is a user-defined
variable.

This variable supports only folder data connections in standard mode.

Syntax:
$ (Include=filename)

$ (Must_Include=filename)
There are two versions of the variable:

 Include does not generate an error if the file cannot be found, it will fail silently.

¢ Must_Include generates an error if the file cannot be found.

If you don't specify a path, the filename will be relative to the Qlik Sense app working directory. You can
also specify an absolute file path, or a path to a lib:// folder connection. Do not put a space character before
or after the equal sign.

The construction set Include =filename is not applicable.

Examples:

S (Include=abc.txt) ;

$ (Must Include=lib://DataFiles/abc.txt);

Script syntax and chart functions - Qlik Sense, August 2022 163

2 Working with variables in the data load editor

Limitations

Limited cross-compatibility between UTF-8 encoded files under Windows versus Linux.

It is optional to use UTF-8 with BOM (Byte Order Mark). BOM can interfere with the use of UTF-8 in
software that does not expect non-ASCII bytes at the start of a file, but that could otherwise handle the text
stream.

* Windows systems use BOM in UTF-8 to identify that a file is UTF-8 encoded, despite the fact that
there is no ambiguity in the byte storage.

¢ Unix/Linux use UTF-8 for Unicode, but does not use the BOM as this interferes with the syntax for
command files.

This has some implications for Qlik Sense.

¢ In Windows any file that begins with an UTF-8 BOM is considered a UTF-8 script file. Otherwise
ANSI encoding is assumed.

¢ In Linux, the system default 8 bit code page is UTF-8. This is why the UTF-8 works although it does
not contain a BOM.

As a result, portability cannot be guaranteed. It is not always possible to create a file on Windows that can
be interpreted by Linux and vice versa. There is no cross compatibility between the two systems regarding
UTF-8 encoded files due to different handling of the BOM.

OpenUrITimeout

This variable defines the timeout in seconds that Qlik Sense should respect when getting
data from URL sources (e.g. HTML pages). If omitted, the timeout is about 20 minutes.

Syntax:
OpenUrlTimeout

Example:
set OpenUrlTimeout=10;

StripComments

If this variable is set to 0, stripping of /*..*/ and // comments in the script will be inhibited. If this
variable is not defined, stripping of comments will always be performed.

Syntax:
StripComments

Certain database drivers use /*..*/ as optimization hints in SELECT statements. If this is the case, the
comments should not be stripped before sending the SELECT statement to the database driver.

Script syntax and chart functions - Qlik Sense, August 2022 164

2 Working with variables in the data load editor

It is recommended that this variable be reset to 1 immediately after the statement(s) where it is
needed.

Example:

set StripComments=0;
SQL SELECT * /* <optimization directive> */ FROM Table ;
set StripComments=1;

Verbatim

Normally all field values are automatically stripped of leading and trailing blanks (ASCII 32)
before being loaded into the Qlik Sense database. Setting this variable to 1 suspends the
stripping of blanks. Tab (ASCII 9) and hard space (ANSI 160) characters are never stripped.

Syntax:
Verbatim

Example:

set Verbatim = 1;

2.13 Value handling variables

This section describes variables that are used for handling NULL and other values.

Value handling variables overview

Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

NullDisplay
The defined symbol will substitute all NULL values from ODBC, and connectors, on the lowest level of
data. This is a user-defined variable.

NullDisplay

Nullinterpret
The defined symbol will be interpreted as NULL when it occurs in a text file, Excel file or an inline
statement. This is a user-defined variable.

NullInterpret

NullValue
If the NullAsValue statement is used, the defined symbol will substitute all NULL values in the
NullAsValue specified fields with the specified string.

Script syntax and chart functions - Qlik Sense, August 2022 165

2 Working with variables in the data load editor

NullValue

OtherSymbol
Defines a symbol to be treated as 'all other values' before a LOAD/SELECT statement. This is a user-
defined variable.

OtherSymbol

NullDisplay
The defined symbol will substitute all NULL values from ODBC, and connectors, on the

lowest level of data. This is a user-defined variable.

Syntax:
NullDisplay

Example:

set NullDisplay="<NULL>";

Nulllnterpret
The defined symbol will be interpreted as NULL when it occurs in a text file, Excel file or an

inline statement. This is a user-defined variable.

Syntax:
NullInterpret

Examples:

set NullInterpret= ;
set NullInterpret =;

will not return NULL values for blank values in Excel, but it will for a CSV text file.

set NullInterpret ='";

will return NULL values for blank values in Excel.

NullValue

If the NullAsValue statement is used, the defined symbol will substitute all NULL values in the
NullAsValue specified fields with the specified string.

Syntax:
Nullvalue

Example:

NullAsvalue Fieldl, Field2;
set Nullvalue='<NULL>";

Script syntax and chart functions - Qlik Sense, August 2022 166

2 Working with variables in the data load editor

OtherSymbol

Defines a symbol to be treated as 'all other values' before a LOAD/SELECT statement. This
is a user-defined variable.

Syntax:
OtherSymbol

Example:

set OtherSymbol="+";

LOAD * 1inTine

[X, Y

a, a

b, bl;

LOAD * 1inTine

[X, z

a, a

+, cl;

The field value Y="b' will now link to Z='c' through the other symbol.

2.14 Number interpretation variables

Number interpretation variables are system defined. The variables are included at the top of
the load script and apply number formatting settings at the time of the script execution. They
can be deleted, edited, or duplicated.

Number interpretation variables are automatically generated according to the current regional settings of
the operating system when a new app is created. In Qlik Sense Desktop, this is according to the settings of
the computer operating system. In Qlik Sense, it is according to the operating system of the server where
Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load editor
will use Swedish regional settings for dates, time, and currency. These regional format settings are not
related to the language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the same
language as the browser you are using.

Currency formatting

MoneyDecimalSep
The decimal separator defined replaces the decimal symbol for currency set by your regional settings.

MoneyDecimalSep

MoneyFormat
The symbol defined replaces the currency symbol set by your regional settings.

MoneyFormat

Script syntax and chart functions - Qlik Sense, August 2022 167

2 Working with variables in the data load editor

MoneyThousandSep
The thousands separator defined replaces the digit grouping symbol for currency set by your regional
settings.

MoneyThousandSep

Number formatting

DecimalSep
The decimal separator defined replaces the decimal symbol set by your regional settings.

DecimalSep

ThousandSep
The thousands separator defined replaces the digit grouping symbol of the operating system (regional
settings).

ThousandSep

NumericalAbbreviation
The numerical abbreviation sets which abbreviation to use for scale prefixes of numerals, for example M
for mega or a million (108), and p for micro (10°6).

NumericalAbbreviation

Time formatting

DateFormat

This environment variable defines the date format used as the default in the app. The format is used both to
interpret and format dates. If the variable is not defined, the date format of the regional settings of the
operating system will be fetched when the script runs.

DateFormat

TimeFormat
The format defined replaces the time format of the operating system (regional settings).

TimeFormat

TimestampFormat
The format defined replaces the date and time formats of the operating system (regional settings).

TimestampFormat

MonthNames
The format defined replaces the month names convention of the regional settings.

MonthNames

LongMonthNames
The format defined replaces the long month names convention in the regional settings.

Script syntax and chart functions - Qlik Sense, August 2022 168

2 Working with variables in the data load editor

LongMonthNames

DayNames
The format defined replaces the weekday names convention set by your regional settings.

DayNames

LongDayNames
The format defined replaces the long weekday names convention in the regional settings.

LongDayNames

FirstWeekDay
Integer that defines which day to use as the first day of the week.

FirstWeekDay

BrokenWeeks
This setting defines if weeks are broken or not.

BrokenWeeks

ReferenceDay
The setting defines which day in January to set as reference day to define week 1.

ReferenceDay

FirstMonthOfYear
The setting defines which month to use as first month of the year, which can be used to define financial
years that use a monthly offset, for example starting April 1.

This setting is currently unused but reserved for future use.

Valid settings are 1 (January) to 12 (December). Default setting is 1.

Syntax:
FirstMonthOfYear

Example:

Set FirstMonthofyear=4; //Sets the year to start in April

BrokenWeeks
This setting defines if weeks are broken or not.
Syntax:

BrokenWeeks
By default, Qlik Sense functions use unbroken weeks. This means that:

Script syntax and chart functions - Qlik Sense, August 2022 169

2 Working with variables in the data load editor

¢ In some years, week 1 starts in December, and in other years, week 52 or 53 continues into
January.

* Week 1 always has at least 4 days in January.
The alternative is to use broken weeks:

¢ Week 52 or 53 do not continue into January.

¢ Week 1 starts on January 1 and is, in most cases, not a full week.
The following values can be used:

¢ 0 (=use unbroken weeks)

¢ 1 (= use broken weeks)

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The
date format is specified in the sET pateFormat statement in your data load script. The default date
formatting may be different in your system, due to your regional settings and other factors. You can change
the formats in the examples below to suit your requirements. Or you can change the formats in your load
script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or server
where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load
editor will use Swedish regional settings for dates, time, and currency. These regional format settings are
not related to the language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the
same language as the browser you are using.

Examples:

Set Brokenweeks=0; //(use unbroken weeks)
Set Brokenweeks=1; //(use broken weeks)

DateFormat

This environment variable defines the date format used as the default in the app and by date
returning functions like date() and date#(). The format is used to interpret and format dates. If
the variable is not defined, the date format set by your regional settings is fetched when the
script runs.

Syntax:
DateFormat
DateFormat Function examples
Example Result
Set DateFormat='M/D/YY'; //(US This use of the pateFormat function defines the date as the US
format) format, month/day/year.
Set DateFormat='DD/MM/YY'; //(UK This use of the pateFormat function defines the date as the UK

date format) format, day/month/year.

Script syntax and chart functions - Qlik Sense, August 2022 170

2 Working with variables in the data load editor

Example Result

Set DateFormat='YYYY/MM/DD'; // This use of the pateFormat function defines the date as the
(1so date format) ISO format, year/month/day.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The
date format is specified in the sET pateFormat statement in your data load script. The default date
formatting may be different in your system, due to your regional settings and other factors. You can change
the formats in the examples below to suit your requirements. Or you can change the formats in your load
script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or server
where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load
editor will use Swedish regional settings for dates, time, and currency. These regional format settings are
not related to the language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the
same language as the browser you are using.

Example 1 - System variables default

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset of dates.
¢ The pateFormat function, which will use the US date format.

In this example, a dataset is loaded into a table named 'Transactions'. It includes a date field. The US
pateFormat definition is used. This pattern will be used for implicit text to date conversion when the text
dates are loaded.

Load script
Set DateFormat='MM/DD/YYYY';

Transactions:
LOAD

date,

month(date) as month,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124

Script syntax and chart functions - Qlik Sense, August 2022 171

2 Working with variables in the data load editor

04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e month

Create this measure:

=sum(amount)
Results table
date month =sum(amount)
01/01/2022 Jan 1000
02/01/2022 Feb 2123
03/01/2022 Mar 4124
04/01/2022 Apr 2431

The pateFormat definition MM/DD/YYYY is used for implicit conversion of text to dates, which is why the
date field is properly interpreted as a date. The same format is used to display the date, as shown in the
results table.

Example 2 - Change system variable

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

e The same dataset from the previous example.
* The pateFormat function, which will use the ‘DD/MM/YYYY’ format.

Load script

SET DateFormat='DD/MM/YYYY';
Transactions:

LOAD

date,

month(date) as month,

id,

amount

INLINE

[

date,id,amount

Script syntax and chart functions - Qlik Sense, August 2022 172

2 Working with variables in the data load editor

01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e month

Create this measure:

=sum(amount)
Results table
date month =sum(amount)
01/01/2022 Jan 1000
02/01/2022 Jan 2123
03/01/2022 Jan 4124
04/01/2022 Jan 2431

Because the pateFormat definition was set to ‘DD/MM/YYYY’, you can see that the two digits after the first
“/” symbol have been interpreted as the month, resulting in all records being from the month of January.

Example 3 - Date interpretation

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

+ A dataset with dates in numerical format.
¢ The pateFormat variable, which will use the ‘DD/MM/YYYY’ format.

¢ The date() variable.
Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

date(numerical_date),
month(date(numerical_date)) as month,
id,

Script syntax and chart functions - Qlik Sense, August 2022 173

2 Working with variables in the data load editor

amount
Inline

[
numerical_date,id,amount
43254,1,1000
43255,2,2123
43256,3,4124
43258,4,2431

1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e month

Create this measure:

=sum(amount)
Results table
date month =sum(amount)
06/03/2022 Jun 1000
06/04/2022 Jun 2123
06/05/2022 Jun 4124
06/07/2022 Jun 2431

In the load script, you use the date () function to convert the numerical date into a date format. Because
you do not provide a specified format as a second argument in the function, the pateFormat is used. This
results in the date field using the format ‘MM/DD/YYYY".

Example 4 - Foreign date formatting

Load script and results
Overview
Open the Data load editor and add the load script below to a new tab.

The load script contains:

¢ A dataset of dates.

e The pateFormat variable, which uses the ‘DD/MM/YYYY' format but is uncommented by forward
slashes.

Load script

// SET DateFormat='DD/MM/YYYY';

Script syntax and chart functions - Qlik Sense, August 2022 174

2 Working with variables in the data load editor

Transactions:
Load

date,

month(date) as month,
id,

amount

Inline

[

date,id,amount
22-05-2022,1,1000
23-05-2022,2,2123
24-05-2022,3,4124
25-05-2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e month

Create this measure:

=sum(amount)
Results table
date month =sum(amount)
22-05-2022 - 1000
23-05-2022 - 2123
24-05-2022 - 4124
25-05-2022 - 2431

In the initial load script, the pateFormat being used is the default ‘MM/DD/YYYY’. Because the date field in
the transactions dataset is not in this format, the field is not interpreted as a date. This is shown in the
results table where the month field values are null.

You can verify the interpreted data types in the Data model viewer by inspecting the date field’s “Tags”
properties:

Script syntax and chart functions - Qlik Sense, August 2022 175

2 Working with variables in the data load editor

Preview of the Transactions table. Note the “Tags” for the date field indicating that the textual input data has not
been implicitly converted to a date/timestamp.

date Transactions

Density 100% date month id amount
Subset ratio 100% 22-05-2022 - 1 1000
Has duplicates false 23-05-2022 2 2123
Total distinct values 4 24-05-2022 - 3 4124
Present distinct values 4 25-05-2022 - 4 2431
Mon-null values 4

Tags Sascii Stext

This can be solved by enabling the pateFormat system variable:
// SET DateFormat='DD/MM/YYYY',
Remove the double forward slashes and reload the data.

Preview of the Transactions table. Note the “Tags” for the date field indicating that the textual input data has been
implicitly converted to a date/timestamp.

date Transactions
Density 100% date month id amount
Subset ratio 100% 22-05-2022 lay 0
as duplicates false 23-05-2022 Ma 2 2123
Total distinct values 4 24-05-2022 fa 3 4124
Present distinct values 4 25-05-2022 a 4 243
Mon-null values -
Tags snumeric Sinteger Stimestamp Sdate
DayNames

The format defined replaces the weekday names convention set by your regional settings.

Syntax:
DayNames
When modifying the variable, a semicolon ; is required to separate the individual values.

DayName Function examples
Function example Result definition

set This use of the DayNames function defines day
DayNames="'Mon;Tue;Wed;Thu;Fri;Sat;Sun'; names in their abbreviated form

Script syntax and chart functions - Qlik Sense, August 2022 176

2 Working with variables in the data load editor

Function example Result definition

Set DayNames='M;Tu;W;Th;F;Sa;su’; This use of the DayNames function defines day
names by their first letters.

The payNnames function is often used in combination with the following functions:

Related functions

Function Interaction
weekday (page 709) Script function to return payNames as field values .
Date (page 810) Script function to return payNames as field values.

LongDayNames (page 187) Long form values of bayNames.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The
date format is specified in the SET pateFormat statement in your data load script. The default date
formatting may be different in your system, due to your regional settings and other factors. You can change
the formats in the examples below to suit your requirements. Or you can change the formats in your load
script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or server
where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load
editor will use Swedish regional settings for dates, time, and currency. These regional format settings are
not related to the language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the
same language as the browser you are using.

Example 1 - System variables default

Load script and results

Overview

In this example, the dates in the dataset are set in the MM/DD/YYYY format.
Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset with dates, which will be loaded into a table named, Transactions.
¢ Adate field.

* The default baynames definition.
Load script
SET DayNames='Mon;Tue;wWed;Thu;Fri;Sat;Sun’;

Transactions:
LOAD

Script syntax and chart functions - Qlik Sense, August 2022 177

2 Working with variables in the data load editor

date,
weekDay(date) as dayname,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e dayname

Create this measure:

sum(amount)
Results table
date dayname sum(amount)
01/01/2022 Sat 1000
02/01/2022 Tue 2123
03/01/2022 Tue 4124
04/01/2022 Fri 2431

In the load script, the weekpay function is used with the date field as the provided argument. In the results
table, the output of this weekpay function displays the days of the week in the format of the paynames
definition.

Example 2 - Change system variable

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab. The same dataset and scenario from
the first example are used.

However, at the start of the script, the baynames definition is modified to use the abbreviated days of the
week in Afrikaans.

Script syntax and chart functions - Qlik Sense, August 2022 178

2 Working with variables in the data load editor

Load script
SET DayNames='Ma;D1i;Wo;Do;Vr;Sa;So';

Transactions:
Load

date,
weekDay(date) as dayname,
id,

amount

Inline

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e dayname

Create this measure:

sum(amount)
Results table
date dayname sum(amount)
01/01/2022 Sa 1000
02/01/2022 Di 2123
03/01/2022 Di 4124
04/01/2022 Vr 2431

In the results table, the output of this weekpay function displays the days of the week in the format of the
pDayNames definition.

It is important to remember that if the language for the paynames is modified like it has been in this example,
the LongbayNames would still contain the days of the week in English. This would need to be modified as well
if both variables are used in the application.

Example 3 - Date function

Load script and results

Script syntax and chart functions - Qlik Sense, August 2022 179

2 Working with variables in the data load editor

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset with dates, which will be loaded into a table named, Transactions.
¢ Adate field.
¢ The default paynames definition.

Load script
SET DayNames='Mon;Tue;Wed;Thu;Fri;sat;Sun';

Transactions:
Load

date,

Date(date, 'www') as dayname,
id,

amount

Inline

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e dayname

Create this measure:

sum(amount)
Results table
date dayname sum(amount)
01/01/2022 Sat 1000
02/01/2022 Tue 2123
03/01/2022 Tue 4124
04/01/2022 Fri 2431

The default paynamesdefinition is used. In the load script, the pate function is used with the date field as the
first argument. The second argument is www. This formatting converts the result into the values stored in the
payNames definition. This is displayed in the output of the results table.

Script syntax and chart functions - Qlik Sense, August 2022 180

2 Working with variables in the data load editor

DecimalSep

The decimal separator defined replaces the decimal symbol set by your regional settings.
Qlik Sense automatically interprets text as numbers whenever a recognizable number pattern is
encountered. The Thousandsep and becimalsep system variables determine the makeup of the patterns
applied when parsing text as numbers. The Thousandsep and pecimalsep variables set the default number

format pattern when visualizing numeric content in front-end charts and tables. That is, it directly impacts
the Number formatting options for any front end expression.

Assuming a thousand separator of comma ‘,” and a decimal separator of ‘.’, these are examples of
patterns that would be implicitly converted to numeric equivalent values:

0,000.00
0000.00
0,000

These are examples of patterns that would remain unchanged as text; that is, not converted to numeric:

0.000,00
0,00
Syntax:
DecimalSep
Function examples
Example Result
Set Decimalsep='."; Sets "’ as the decimal separator.
Set Decimalsep=',"'; Sets"’ as the decimal separator.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The
date format is specified in the SET pateFormat statement in your data load script. The default date
formatting may be different in your system, due to your regional settings and other factors. You can change
the formats in the examples below to suit your requirements. Or you can change the formats in your load
script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or server
where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load
editor will use Swedish regional settings for dates, time, and currency. These regional format settings are
not related to the language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the
same language as the browser you are using.

Example - Effect of setting number separator variables on different input data

Load script and results

Script syntax and chart functions - Qlik Sense, August 2022 181

2 Working with variables in the data load editor

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset of sums and dates with the sums set in different format patterns.
e Atable named Transactions.

¢ The pecimalsep variable which is setto ‘.’.

¢ The Thousandsep variable which is setto’,".

¢ The delimiter variable that is set as the '|' character to separate the different fields in a line.
Load script

Set ThousandSep="',"';

Set Decimalsep='.";

Transactions:

Load date,

id,

amount as amount
Inline

[

date|id|amount
01/01/2022]1|1.000-45
01/02/202212|23.344
01/03/202213|4124,35
01/04/202214|2431.36
01/05/202215|4,787
01/06/202216|2431.84
01/07/2022|7|4132.5246
01/08/2022|8|3554.284
01/09/202219|3.756,178
01/10/2022110]3,454.356
] (deTimiter is "[");

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: amount.

Create this measure:

=sum(amount)
Results table
Amount =Sum(amount)
Totals 20814.7086
1.000-45

Script syntax and chart functions - Qlik Sense, August 2022 182

2 Working with variables in the data load editor

Amount =Sum(amount)
3.756,178
4124,35
23.344 23.344
2431.36 2431.36
2431.84 2431.84
3,454.356 3454.356
3554.284 3554.284
4132.5246 4132.5246
4,787 4787

Any value not interpreted as number remains as text and is aligned to the left by default. Any successfully
converted values are aligned to the right, retaining the original input format.

The expression column shows the numeric equivalent, which is by default formatted with only a decimal
separator ‘.. This can be overridden with the Number formatting drop down setting in the expression
configuration.

FirstWeekDay

Integer that defines which day to use as the first day of the week.

Syntax:

FirstWeekDay

By default, the Qlik Sense system variables define Firstweekbpay=6. This means that Sunday is the first day
of the week.

Values that can be set for
FirstWeekDay

Value Day

0 Monday

1 Tuesday
Wednesday
Thursday
Friday
Saturday

o g A~ W N

Sunday

Script syntax and chart functions - Qlik Sense, August 2022 183

2 Working with variables in the data load editor

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The
date format is specified in the SET pateFormat statement in your data load script. The default date
formatting may be different in your system, due to your regional settings and other factors. You can change
the formats in the examples below to suit your requirements. Or you can change the formats in your load
script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or server
where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load
editor will use Swedish regional settings for dates, time, and currency. These regional format settings are
not related to the language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the
same language as the browser you are using.

Example 1 - Using default value (script)

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

In this example, the load script uses the default Qlik Sense system variable value, Firstweekpay=6. This
data contains data for the first 14 days in 2020.

Load script
// Example 1: Load Script using the default value of FirstweekDay=6, 1i.e. Sunday
SET FirstwWeekbDay = 6;

Sales:
LOAD
date,
sales,
week(date) as week,
weekday(date) as weekday
Inline [
date,sales
01/01/2021,6000
01/02/2021,3000
01/03/2021,6000
01/04/2021,8000
01/05/2021,5000
01/06/2020,7000
01/07/2020,3000
01/08/2020,5000
01/09/2020,9000
01/10/2020,5000
01/11/2020,7000
01/12/2020,7000
01/13/2020,7000

Script syntax and chart functions - Qlik Sense, August 2022 184

2 Working with variables in the data load editor

01/14/2020,7000
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

* date

¢ week

o weekday

Results table

Date week weekday
01/01/2021 1 Wed
01/02/2021 1 Thu
01/03/2021 1 Fri
01/04/2021 1 Sat
01/05/2021 2 Sun
01/06/2020 2 Mon
01/07/2020 2 Tue
01/08/2020 2 Wed
01/09/2020 2 Thu
01/10/2020 2 Fri
01/11/2020 2 Sat
01/12/2020 3 Sun
01/13/2020 3 Mon
01/14/2020 3 Tue

Because the default settings are being used, the Firstweekbay system variable is set to 6. In the results
table, each new week can be seen beginning on Sunday (the 5th and 12th of January).

Example 2 - Changing the FirstWeekDay variable (script)

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

In this example, the data contains the first 14 days in 2020. At the start of the script, we set the
Firstweekbay variable to 3.

Script syntax and chart functions - Qlik Sense, August 2022 185

2 Working with variables in the data load editor

Load script

// Example 2: Load Script setting the value of Firstweekbay=3, i.e. Thursday
SET Firstweekbay = 3;

Sales:
LOAD
date,
sales,
week(date) as week,
weekday(date) as weekday
Inline [
date,sales
01/01/2021,6000
01/02/2021,3000
01/03/2021,6000
01/04/2021,8000
01/05/2021,5000
01/06/2020,7000
01/07/2020, 3000
01/08/2020,5000
01/09/2020,9000
01/10/2020, 5000
01/11/2020,7000
01/12/2020,7000
01/13/2020,7000
01/14/2020,7000
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e week

o weekday

Results table

Date week weekday
01/01/2021 52 Wed
01/02/2021 1 Thu
01/03/2021 1 Fri
01/04/2021 1 Sat
01/05/2021 1 Sun
01/06/2020 1 Mon

Script syntax and chart functions - Qlik Sense, August 2022 186

2 Working with variables in the data load editor

Date week weekday
01/07/2020 1 Tue
01/08/2020 1 Wed
01/09/2020 2 Thu
01/10/2020 2 Fri
01/11/2020 2 Sat
01/12/2020 2 Sun
01/13/2020 2 Mon
01/14/2020 2 Tue

Because the Firstweekbay system variable is set to 3, the first day of each week will be a Thursday. In the
results table, each new week can be seen beginning on Thursday (the 2nd and 9th of January).

LongDayNames

The format defined replaces the long weekday names convention in the regional settings.

Syntax:
LongDayNames
The following example of the LongbayNames function defines day names in full:

Set LongDayNames='Monday;Tuesday;wednesday;Thursday;Friday;Saturday;Sunday';
When modifying the variable, a semicolon ; is required to separate the individual values.

The LongbayNames function can be used in combination with the Date (page 810) function which returns
DayNames as field values.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The
date format is specified in the sET pateFormat statement in your data load script. The default date
formatting may be different in your system, due to your regional settings and other factors. You can change
the formats in the examples below to suit your requirements. Or you can change the formats in your load
script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or server
where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load
editor will use Swedish regional settings for dates, time, and currency. These regional format settings are
not related to the language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the
same language as the browser you are using.

Example 1 - System variable default

Load script and results

Script syntax and chart functions - Qlik Sense, August 2022 187

2 Working with variables in the data load editor

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset with dates, which will be loaded into a table named, Transactions.
¢ Adate field.

¢ The default LongbayNames definition.
Load script
SET LongDayNames='Monday;Tuesday;wednesday;Thursday;Friday;Saturday;Sunday';

Transactions:

LOAD

date,

Date(date, "wwww') as dayname,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e dayname

Create this measure:

=sum(amount)
Results table
date dayname =sum(amount)
01/01/2022 Saturday 1000
02/01/2022 Tuesday 2123
03/01/2022 Tuesday 4124
04/01/2022 Friday 2431

In the load script, to create a field called, dayname, the pate function is used with the date field as the first
argument. The second argument in the function is the formatting wwww.

Script syntax and chart functions - Qlik Sense, August 2022 188

2 Working with variables in the data load editor

Using this formatting converts the values from the first argument into the corresponding full day name that
is set in the variable LongbayNames. In the results table, the field values of our created field dayname display
this.

Example 2 - Change system variable

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The same dataset and scenario from the first example are used. However, at the start of the script, the
LongbayNames definition is modified to use the days of the week in Spanish.

Load Script
SET LongDayNames='Lunes;Martes;Miércoles;Jueves;Viernes;Sabado;bomingo';

Transactions:
LOAD

date,

Date(date, 'wwww') as dayname,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e dayname

Create this measure:

=sum(amount)
Results table
date dayname =sum(amount)
01/01/2022 Séabado 1000
02/01/2022 Martes 2123

Script syntax and chart functions - Qlik Sense, August 2022 189

2 Working with variables in the data load editor

date dayname =sum(amount)
03/01/2022 Martes 4124
04/01/2022 Viernes 2431

In the load script, the LongbayNames variable is modified to list the days of the week in Spanish.

Then, you create a field called, dayname, which is the pate function used with the date field as the first
argument.

The second argument in the function is the formatting wwww. By using this formatting Qlik Sense converts
the values from the first argument into the corresponding full day name set in the variable LongbayNames.

In the results table, the field values of our created field dayname displays the days of the week written in
Spanish and in full.

LongMonthNames

The format defined replaces the long month names convention in the regional settings.

Syntax:
LongMonthNames
When modifying the variable, the ; needs to be used to separate the individual values.

The following example of the LongMonthNames function defines month names in full:

Set
LongMonthNames="January;February;March;April;May;June;July;August;September;0October;November;D
ecember’';

The LongMonthNames function is often used in combination with the following functions:

Related functions

Function Interaction
Date (page 810) Script function to return paynamesas field values.

LongDayNames (page 187) Long form values of bayNames.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The
date format is specified in the seT pateFormat statement in your data load script. The default date
formatting may be different in your system, due to your regional settings and other factors. You can change
the formats in the examples below to suit your requirements. Or you can change the formats in your load
script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or server
where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load
editor will use Swedish regional settings for dates, time, and currency. These regional format settings are
not related to the language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the
same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, August 2022 190

2 Working with variables in the data load editor

Example 1 - System variables default

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

* A dataset of dates that is loaded into a table named Transactions.

¢ Adate field.

¢ The default LongmonthNames definition.

Load script

SET

LongMonthNames="3January;February;March;April;May;June;July;August;September;0october;November;D

ecember’';

Transactions:

Load

date,

Date(date, ’MMMM’)
id,

amount

Inline

[

date,id,amount
01/01/2022,1,1000.
01/02/2022,2,2123.
01/03/2022,3,4124.
01/04/2022,4,2431.
01/05/2022,5,4787.
01/06/2022,6,2431.
01/07/2022,7,2854.
01/08/2022,8,3554.
01/09/2022,9,3756.
01/10/2022,10,3454
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e monthname

Create this measure

=sum(amount)

as monthname,

45
34
35
36
78
84
83
28
17
.35

Script syntax and chart functions - Qlik Sense, August 2022

191

2 Working with variables in the data load editor

Results table

date monthname sum(amount)
01/01/2022 January 1000.45
01/02/2022 January 2123.34
01/03/2022 January 4124.35
01/04/2022 January 2431.36
01/05/2022 January 4787.78
01/06/2022 January 2431.84
01/07/2022 January 2854.83
01/08/2022 January 3554.28
01/09/2022 January 3756.17
01/10/2022 January 3454.35

The default LongmonthNames definition is used. In the load script, to create a field called, month, the pate
function is used with the date field as the first argument. The second argument in the function is the
formatting mmmm.

Using this formatting Qlik Sense converts the values from the first argument into the corresponding full
month name set in the variable LongMonthNames. In the results table, the field values of our created field
month display this.

Example 2 - Change system variable

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

* A dataset of dates that is loaded into a table named Transactions.
* A date field.

¢ The LongmonthNames variable that is modified to use the abbreviated days of the week in Spanish.
Load script
SET

LongMonthNames="'Enero;Febrero;Marzo;Abril;Mayo;Junio;Julio;Agosto;Septiembre;0OctubreNoviembre;
Diciembre';

Transactions:

LOAD

date,

Date(date, 'MMMM') as monthname,
id,

Script syntax and chart functions - Qlik Sense, August 2022 192

2 Working with variables in the data load editor

amount
INLINE
L

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add sum(amount) as a measure and these fields
as dimensions:
e date

e monthname

Create this measure:

=sum(amount)
Results table
date monthname sum(amount)
01/01/2022 Enero 1000.45
01/02/2022 Enero 2123.34
01/03/2022 Enero 4124.35
01/04/2022 Enero 2431.36
01/05/2022 Enero 4787.78
01/06/2022 Enero 2431.84
01/07/2022 Enero 2854.83
01/08/2022 Enero 3554.28
01/09/2022 Enero 3756.17
01/10/2022 Enero 3454.35

In the load script, the LongvMonthNnames variable is modified to list the months of the year in Spanish. Then, to
create a field called, monthname, thebate function is used with the date field as the first argument. The
second argument in the function is the formatting mmmm.

Using this formatting Qlik Sense converts the values from the first argument into the corresponding full
month name set in the variable LongMonthNames. In the results table, the field values of our created field
monthname display the month name written in Spanish.

Script syntax and chart functions - Qlik Sense, August 2022 193

2 Working with variables in the data load editor

MoneyDecimalSep

The decimal separator defined replaces the decimal symbol for currency set by your regional
settings.

Syntax:
MoneyDecimalSep

Example:

Set MoneyDecimalSep="'.";

MoneyFormat

The symbol defined replaces the currency symbol set by your regional settings.

Syntax:
MoneyFormat

Example:
Set MoneyFormat='$ #,##0.00; ($ #,##0.00)';

MoneyThousandSep

The thousands separator defined replaces the digit grouping symbol for currency set by your regional
settings.

Syntax:
MoneyThousandSep

Example:

Set MoneyDecimalSep=',"';

MonthNames

The format defined replaces the month names convention of the regional settings.

Syntax:
MonthNames
When modifying the variable, the ; needs to be used to separate the individual values.

Function examples
Example Results
Set MonthNames='3Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;0ct;Nov;Dec'; This use of the

MonthNames function
defines month

Script syntax and chart functions - Qlik Sense, August 2022 194

2 Working with variables in the data load editor

Example Results

names in English
and their
abbreviated form.

Set This use of the

MonthNames='Enero;Feb;Marzo;Abr;Mayo;Jun;Jul;Agosto;Set;0ct;Nov;Dic’; MonthNames
function defines
month names in
Spanish and their
abbreviated form.

The monthNames function can be used in combination with the following functions:

Related functions

Function Interaction
month (page 659) Script function to return values defined in MonthNnames as field values
Date (page 810) Script function to return values defined in MmonthNnames as field values based on a

formatting argument provided

LongMonthNames Long form values of monthNames
(page 190)

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The
date format is specified in the seT bateFormat statement in your data load script. The default date
formatting may be different in your system, due to your regional settings and other factors. You can change
the formats in the examples below to suit your requirements. Or you can change the formats in your load
script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or server
where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load
editor will use Swedish regional settings for dates, time, and currency. These regional format settings are
not related to the language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the
same language as the browser you are using.

Example 1 - System variables default

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, August 2022 195

2 Working with variables in the data load editor

* A dataset of dates that is loaded into a table named Transactions.
¢ Adate field.

¢ The default MonthNames definition.

Load script

SET MonthNames="'3Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;0ct;Nov;Dec';

Transactions:
LOAD
date,

Month(date) as monthname,

id,
amount
INLINE
A

date,id,amount

01/01/2022,1,1000.45
01/02/2022,2,2123.34
01/03/2022,3,4124.35
01/04/2022,4,2431.36
01/05/2022,5,4787.78
01/06/2022,6,2431.84
01/07/2022,7,2854.83
01/08/2022,8,3554.28
01/09/2022,9,3756.17
01/10/2022,10,3454.35

1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e monthname

Create this measure:

=sum(amount)

date

01/01/2022
01/02/2022
01/03/2022
01/04/2022
01/05/2022

Results table

monthname
Jan
Jan
Jan
Jan

Jan

sum(amount)
1000.45
2123.34
4124.35
2431.36
4787.78

Script syntax and chart functions - Qlik Sense, August 2022 196

2 Working with variables in the data load editor

date monthname sum(amount)
01/06/2022 Jan 2431.84
01/07/2022 Jan 2854.83
01/08/2022 Jan 3554.28
01/09/2022 Jan 3756.17
01/10/2022 Jan 3454.35

The default monthnames definition is used. In the load script, the month function is used with the date field as
the provided argument.

In the results table, the output of this month function displays the months of the year in the format of the
MonthNames definition.

Example 2 - Change system variable

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

* A dataset of dates that is loaded into a table named Transactions.
* A date field.

e The monthNames variable that is modified to use the abbreviated months in Spanish.
Load script
Set MonthNames='Enero;Feb;Marzo;Abr;Mayo;Jun;Jul;Agosto;Set;0ct;Nov;Dic';

Transactions:
LOAD

date,

month(date) as month,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, August 2022 197

2 Working with variables in the data load editor

e date

e« monthname

Create this measure:

=sum(amount)
Results table
date monthname sum(amount)
01/01/2022 Enero 1000.45
01/02/2022 Enero 2123.34
01/03/2022 Enero 4124.35
01/04/2022 Enero 2431.36
01/05/2022 Enero 4787.78
01/06/2022 Enero 2431.84
01/07/2022 Enero 2854.83
01/08/2022 Enero 3554.28
01/09/2022 Enero 3756.17
01/10/2022 Enero 3454.35

In the load script, first the MonthNames variable is modified to list the months of the year abbreviated in
Spanish. The mMonth function is used with the date field as the provided argument.

In the results table, the output of this month function displays the months of the year in the format of the
MonthNames definition.

It is important to remember that if the language for the monthNames variable is modified like it has been in
this example, the LongMonthNames variable would still contain the days of the week in English. The
LongMonthNames variable would have to be modified if both variables are used in the application.

Example 3 - Date function

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ A dataset of dates that is loaded into a table named Transactions.
* Adate field.

¢ The default MonthNames definition.

Script syntax and chart functions - Qlik Sense, August 2022 198

2 Working with variables in the data load editor

Load script
SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;0ct;Nov;Dec';

Transactions:

LOAD

date,

Month(date, ’MMM’) as monthname,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000.45
01/02/2022,2,2123.34
01/03/2022,3,4124.35
01/04/2022,4,2431.36
01/05/2022,5,4787.78
01/06/2022,6,2431.84
01/07/2022,7,2854.83
01/08/2022,8,3554.28
01/09/2022,9,3756.17
01/10/2022,10,3454.35
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e« monthname

Create this measure:

=sum(amount)
Results table
date monthname sum(amount)
01/01/2022 Jan 1000.45
01/02/2022 Jan 2123.34
01/03/2022 Jan 4124.35
01/04/2022 Jan 2431.36
01/05/2022 Jan 4787.78
01/06/2022 Jan 2431.84
01/07/2022 Jan 2854.83
01/08/2022 Jan 3554.28

Script syntax and chart functions - Qlik Sense, August 2022 199

2 Working with variables in the data load editor

date monthname sum(amount)
01/09/2022 Jan 3756.17
01/10/2022 Jan 3454.35

The default monthnames definition is used. In the load script, the pate function is used with the date field as
the first argument. The second argument is Mvm.

Using this formatting Qlik Sense converts the values from the first argument into the corresponding month
name set in the variable monthNames. In the results table, the field values of our created field month display
this.

NumericalAbbreviation

The numerical abbreviation sets which abbreviation to use for scale prefixes of numerals, for example M
for mega or a million (10°), and p for micro (10°6).

Syntax:

NumericalAbbreviation

You set the NumericalAbbreviation variable to a string containing a list of abbreviation definition pairs,
delimited by semi colon. Each abbreviation definition pair should contain the scale (the exponent in
decimal base) and the abbreviation separated by a colon, for example, 6:m for a million.

The default settingis '3:k;6:M;9:G6;12:T;15:P;18:E;21:2;24:Y;-3:m;-6:4;-9:n;-12:p;-15:f;-18:a; -
21:z;-24:y".

Examples:

This setting will change the prefix for a thousand to t and the prefix for a billion to B. This would be useful for
financial applications where you would expect abbreviations like t$, M$, and B$.

Set NumericalAbbreviation='3:t;6:M;9:B;12:T;15:P;18:E;21:Z;24:Y;-3:m;-6:4;-9:n;-12:p;-15:F;-
18:a;-21:z;-24:y";

ReferenceDay

The setting defines which day in January to set as reference day to define week 1. In other

words, this setting prescribes how many days in week 1 must be dates within January.

Syntax:
ReferenceDay

ReferenceDay sets how many days are included in the first week of the year. Referencepay can be set to
any value between 1 and 7. Any value outside of the 1-7 range is interpreted as the midpoint of the week
(4), which is equivalent to Referencebay being set to 4.

If you do not select a value for the Referencebay setting, then the default value will show rReferencepay=0
which will be interpreted as the midpoint of the week (4), as seen in the Referencebay values table below.

The referencepay function is often used in combination with the following functions:

Script syntax and chart functions - Qlik Sense, August 2022 200

2 Working with variables in the data load editor

Related functions

Function Interaction
BrokenWeeks If the Qlik Sense app is operating with unbroken weeks, the referencebay variable
(page 169) setting will be enforced. However, if broken weeks are being used, week 1 will begin

on January 1 and terminate in conjunction with the Firstweekpay variable setting
and ignore the referencebay flag.

FirstWeekDay Integer that defines which day to use as the first day of the week.
(page 183)

Qlik Sense allows the following values to be set for Referencepay:
ReferenceDay values
Value Reference day
0 (default) January 4
1 January 1
January 2
January 3
January 4
January 5

January 6

N oo a0 wDN

January 7

In the following example the referencepay = 3 defines January 3 as the reference day:

SET Referencebay=3; //(set January 3 as the reference day)

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY. The
date format is specified in the sET pateFormat statement in your data load script. The default date
formatting may be different in your system, due to your regional settings and other factors. You can change
the formats in the examples below to suit your requirements. Or you can change the formats in your load
script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or server
where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the Data load
editor will use Swedish regional settings for dates, time, and currency. These regional format settings are
not related to the language displayed in the Qlik Sense user interface. Qlik Sense will be displayed in the
same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, August 2022 201

2 Working with variables in the data load editor

Example 1 - Load script using the default value; ReferenceDay=0

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

e The referencepay variable that is setto 0.
¢ The Brokenweeks variable that is set to 0 which forces the app to use unbroken weeks.
¢ A dataset of dates from the end of 2019 to the start of 2020.

Load script

SET Brokenweeks = 0;
SET Referencebay = 0;

Sales:

LOAD

date,

sales,
week(date) as week,
weekday(date) as weekday
Inline [
date,sales
12/27/2019,5000
12/28/2019,6000
12/29/2019,7000
12/30/2019,4000
12/31/2019,3000
01/01/2020,6000
01/02/2020,3000
01/03/2020,6000
01/04/2020,8000
01/05/2020,5000
01/06/2020,7000
01/07/2020,3000
01/08/2020,5000
01/09/2020,9000
01/10/2020,5000
01/11/2020,7000
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

« date
o week

« weekday

Script syntax and chart functions - Qlik Sense, August 2022 202

2 Working with variables in the data load editor

Results table

date week weekday
12/27/2019 52 Fri
12/28/2019 52 Sat
12/29/2019 1 Sun
12/30/2019 1 Mon
12/31/2019 1 Tue
01/01/2020 1 Wed
01/02/2020 1 Thu
01/03/2020 1 Fri
01/04/2020 1 Sat
01/05/2020 2 Sun
01/06/2020 2 Mon
01/07/2020 2 Tue
01/08/2020 2 Wed
01/09/2020 2 Thu
01/10/2020 2 Fri
01/11/2020 2 Sat

Week 52 concludes on Saturday, December 28. Because rReferencebay requires January 4 to be included
in week 1, week 1 therefore begins on December 29 and concludes on Saturday, January 4.

Example - ReferenceDay variable setto 5

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ The Referencebay variable that is set to 5.
¢ The Brokenweeks variable that is set to 0 which forces the app to use unbroken weeks.
e A dataset of dates from the end of 2019 to the start of 2020.

Load script

SET Brokenweeks = 0;
SET Referencebay = 5;

Sales:

Script syntax and chart functions - Qlik Sense, August 2022 203

2 Working with variables in the data load editor

LOAD

date,

sales,
week(date) as week,
weekday(date) as weekday
Inline [
date,sales
12/27/2019,5000
12/28/2019,6000
12/29/2019,7000
12/30/2019,4000
12/31/2019,3000
01/01/2020,6000
01/02/2020,3000
01/03/2020,6000
01/04/2020,8000
01/05/2020,5000
01/06/2020,7000
01/07/2020,3000
01/08/2020,5000
01/09/2020,9000
01/10/2020,5000
01/11/2020,7000
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

« date

. week

« weekday

Results table

date week weekday
12/27/2019 52 Fri
12/28/2019 52 Sat
12/29/2019 53 Sun
12/30/2019 53 Mon
12/31/2019 53 Tue
01/01/2020 53 Wed
01/02/2020 53 Thu
01/03/2020 53 Fri
01/04/2020 53 Sat
01/05/2020 1 Sun

Script syntax and chart functions - Qlik Sense, August 2022 204

2 Working with variables in the data load editor

date week weekday
01/06/2020 1 Mon
01/07/2020 1 Tue
01/08/2020 1 Wed
01/09/2020 1 Thu
01/10/2020 1 Fri
01/11/2020 1 Sat

Week 52 concludes on Saturday, December 28. The Brokenweeks variable forces the app to use unbroken
weeks. The reference day value of 5 requires January 5 to be included in week 1.

However, this is eight days after the conclusion of week 52 of the previous year. Therefore, week 53 begins
on December 29 and concludes on January 4. Week 1 begins on Sunday, January 5.

ThousandSep

The thousands separator defined replaces the digit grouping symbol of the operating system (regional
settings).

Syntax:
ThousandSep

Examples:

Set Thousandsep=','; //(for example, seven billion must be specified as: 7,000,000,000)

TimeFormat

The format defined replaces the time format of the operating system (regional settings).

Syntax:
TimeFormat

Example:
Set TimeFormat='hh:mm:ss';

TimestampFormat

The format defined replaces the date and time formats of the operating system (regional
settings).

Syntax:
TimestampFormat

Script syntax and chart functions - Qlik Sense, August 2022 205

2 Working with variables in the data load editor

Example:

The following examples use 1983-12-14T13:15:30Z as timestamp data to show the results of different SET
TimestampFormat statements. The date format used is YYYYMMDD and the time format is h:mm:ss TT.
The date format is specified in the SET DateFormat statement and the time format is specified in the SET
TimeFormat statement, at the top of the data load script.

Results
Example Result
SET TimestampFormat='YYYYMMDD'; 19831214
SET TimestampFormat='M/D/YY hh:mm:ss[.fff]'; 12/14/83 13:15:30
SET TimestampFormat='DD/MM/YYYY hh:mm:ss[.fff]'; 14/12/1983 13:15:30
SET TimestampFormat='DD/MM/YYYY hh:mm:ss[.fff] TT'; 14/12/1983 1:15:30 PM
SET TimestampFormat='YYYY-MM-DD hh:mm:ss[.fff] TT'; 1983-12-14 01:15:30

Examples: Load script

Example: Load script

In the first load script SET TimestampFormat="DD/MM/YYYY h:mm:ss[.fff] TT'is used. In the second load
script the timestamp format is changed to SET TimestampFormat="MM/DD/YYYY hh:mm:ss[.fff[. The
different results show how the SET TimeFormat statement works with different time data formats.

The table below shows the data set that is used in the load scripts that follow. The second column of the
table shows the format of each timestamp in the data set. The first five timestamps follow ISO 8601 rules
but the sixth does not.

Data set

Table showing the time data used and the format for each timestamp in the

data set.
transaction_timestamp time data format
2018-08-30 YYYY-MM-DD
20180830T193614.857 YYYYMMDDhhmmss.sss

20180830T193614.857+0200 YYYYMMDDhhmmss.sssthhmm

2018-09-16T12:30-02:00 YYYY-MM-DDhh:mm+hh:mm
2018-09-16T13:15:30Z YYYY-MM-DDhh:mmZ
9/30/18 19:36:14 M/D/YY hh:mm:ss

In the Data load editor, create a new section, and then add the example script and run it. Then add, at
least, the fields listed in the results column to a sheet in your app to see the result.

Script syntax and chart functions - Qlik Sense, August 2022 206

2 Working with variables in the data load editor

Load script

SET Firstweekbay=0;

SET Brokenweeks=1;

SET Referencebay=0;

SET DayNames='Mon;Tue;Wed;Thu;Fri;sat;Sun';

SET LongDayNames='Monday;Tuesday;wednesday;Thursday;Friday;Saturday;Sunday';
SET DateFormat='YYYYMMDD';

SET TimestampFormat='DD/MM/YYYY h:mm:ss[.fff] TT';

Transactions:
Load

¥
’

Timestamp(transaction_timestamp, 'YYYY-MM-DD hh:mm:ss[.fff]') as LogTimestamp

Load * Inline [

transaction_id, transaction_timestamp, transaction_amount, transaction_quantity, discount,
customer_id, size, color_code

3750, 2018-08-30, 12423.56, 23, 0,2038593, L, Red

3751, 20180830T193614.857, 5356.31, 6, 0.1, 203521, m, orange

3752, 20180830T193614.857+0200, 15.75, 1, 0.22, 5646471, S, blue

3753, 2018-09-16T12:30-02:00, 1251, 7, O, 3036491, 1, Black

3754, 2018-09-16T13:15:30z, 21484.21, 1356, 75, 049681, xs, Red

3755, 9/30/18 19:36:14, -59.18, 2, 0.333333333333333, 2038593, M, Blue

1;

Results
Qlik Sense table showing results of the TimestampFormat interpretation

variable being used in the load script. The last timestamp in the data set does
not return a correct date.

transaction_id transaction_timestamp LogTimeStamp
3750 2018-08-30 2018-08-30 00:00:00
3751 20180830T193614.857 2018-08-30 19:36:14
3752 20180830T193614.857+0200 2018-08-30 17:36:14
3753 2018-09-16T12:30-02:00 2018-09-16 14:30:00
3754 2018-09-16T13:15:30Z 2018-09-16 13:15:30
3755 9/30/18 19:36:14 -

The next load script uses the same data set. However, it uses SET TimestampFormat="MM/DD/YYYY
hh:mm:ss].fff]'to match the non-ISO 8601 format of the sixth timestamp.

In the Data load editor, replace the previous example script with the one below and run it. Then add, at
least, the fields listed in the results column to a sheet in your app to see the result.

Script syntax and chart functions - Qlik Sense, August 2022 207

2 Working with variables in the data load editor

Load script

SET Firstweekbay=0;

SET Brokenweeks=1;

SET Referencebay=0;

SET DayNames='Mon;Tue;Wed;Thu;Fri;sat;Sun';

SET LongDayNames='Monday;Tuesday;wednesday;Thursday;Friday;Saturday;Sunday';
SET DateFormat='YYYYMMDD';

SET TimestampFormat='MM/DD/YYYY hh:mm:ss[.fff]"';

Transactions:
Load

¥
’

Timestamp(transaction_timestamp, 'YYYY-MM-DD hh:mm:ss[.fff]') as LogTimestamp

Load * Inline [

transaction_id, transaction_timestamp, transaction_amount, transaction_quantity, discount,
customer_id, size, color_code

3750, 2018-08-30, 12423.56, 23, 0,2038593, L, Red

3751, 20180830T193614.857, 5356.31, 6, 0.1, 203521, m, orange

3752, 20180830T193614.857+0200, 15.75, 1, 0.22, 5646471, S, blue

3753, 2018-09-16T12:30-02:00, 1251, 7, O, 3036491, 1, Black

3754, 2018-09-16T13:15:30z, 21484.21, 1356, 75, 049681, xs, Red

3755, 9/30/18 19:36:14, -59.18, 2, 0.333333333333333, 2038593, M, Blue

1;

Results

Qlik Sense table showing results of the TimestampFormat interpretation
variable being used in the load script.

transaction_id transaction_timestamp LogTimeStamp

3750 2018-08-30 2018-08-30 00:00:00
3751 20180830T193614.857 2018-08-30 19:36:14
3752 20180830T193614.857+0200 2018-08-30 17:36:14
3753 2018-09-16T12:30-02:00 2018-09-16 14:30:00
3754 2018-09-16T13:15:30Z 2018-09-16 13:15:30
3755 9/30/18 19:36:14 2018-09-16 19:36:14

Script syntax and chart functions - Qlik Sense, August 2022 208

2 Working with variables in the data load editor

2.15 Direct Discovery variables

Direct Discovery system variables

DirectCacheSeconds

You can set a caching limit to the Direct Discovery query results for visualizations. Once this time limit is
reached, Qlik Sense clears the cache when new Direct Discovery queries are made. Qlik Sense queries
the source data for the selections and creates the cache again for the designated time limit. The result for
each combination of selections is cached independently. That is, the cache is refreshed for each selection
independently, so one selection refreshes the cache only for the fields selected, and a second selection
refreshes cache for its relevant fields. If the second selection includes fields that were refreshed in the first
selection, they are not updated in cache again if the caching limit has not been reached.

The Direct Discovery cache does not apply to Table visualizations. Table selections query the data source
every time.

The limit value must be set in seconds. The default cache limit is 1800 seconds (30 minutes).

The value used for DirectCacheSeconds is the value set at the time the DIRECT QUERY statement is
executed. The value cannot be changed at runtime.

Example:

SET DirectCacheSeconds=1800;

DirectConnectionMax
You can do asynchronous, parallel calls to the database by using the connection pooling capability. The
load script syntax to set up the pooling capability is as follows:

SET DirectConnectionMax=10;
The numeric setting specifies the maximum number of database connections the Direct Discovery code
should use while updating a sheet. The default setting is 1.

This variable should be used with caution. Setting it to greater than 1 is known to cause
problems when connecting to Microsoft SQL Server.

DirectUnicodeStrings

Direct Discovery can support the selection of extended Unicode data by using the SQL standard format for
extended character string literals (N’<extended string>’) as required by some databases (notably SQL
Server). The use of this syntax can be enabled for Direct Discovery with the script variable
DirectUnicodeStrings.

Setting this variable to 'true’ will enable the use of the ANSI standard wide character marker “N” in front of
the string literals. Not all databases support this standard. The default setting is 'false'.

Script syntax and chart functions - Qlik Sense, August 2022 209

2 Working with variables in the data load editor

DirectDistinctSupport

When a DIMENSION field value is selected in a Qlik Sense object, a query is generated for the source
database. When the query requires grouping, Direct Discovery uses the DISTINCT keyword to select only
unique values. Some databases, however, require the GROUP BY keyword. Set DirectDistinctSupport to
'false’ to generate GROUP BY instead of DISTINCT in queries for unique values.

SET DirectDistinctSupport='false';
If DirectDistinctSupport is set to true, then DISTINCT is used. If it is not set, the default behavior is to use

DISTINCT.

DirectEnableSubquery

In high cardinality multi-table scenarios, it is possible to generate sub queries in the SQL query instead of
generating a large IN clause. This is activated by setting DirectEnableSubquery to 'true'. The default value
is 'false’.

When DirectEnableSubquery is enabled, you cannot load tables that are not in Direct
Discovery mode.

SET DirectEnableSubquery="true';

Teradata query banding variables

Teradata query banding is a function that enables enterprise applications to collaborate with the underlying
Teradata database in order to provide for better accounting, prioritization, and workload management.
Using query banding you can wrap metadata, such as user credentials, around a query.

Two variables are available, both are strings that are evaluated and sent to the database.

SQLSessionPrefix
This string is sent when a connection to the database is created.

SET SQLSessionPrefix = "SET QUERY_BAND = ' & Chr(39) & 'who=' & OSuser() & ";' & chr(39) & '
FOR SESSION;';

If OSuser() for example returns WAIsbt, this will be evaluated to SET QUERY_BAND = 'who=wA\sbt;' FOR
SESSION; , which is sent to the database when the connection is created.

SQLQueryPrefix
This string is sent for each single query.

SET SQLSessionPrefix = 'SET QUERY_BAND = ' & chr(39) & 'who=' & OSuser() & '";' & chr(39) &'
FOR TRANSACTION;';

Direct Discovery character variables

DirectFieldColumnDelimiter

You can set the character used as the field delimiter in Direct Query statements for databases that require
a character other than comma as the field delimiter. The specified character must be surrounded by single
quotation marks in the SET statement.

SET DirectFieldColumnDelimiter= '|'

Script syntax and chart functions - Qlik Sense, August 2022 210

2 Working with variables in the data load editor

DirectStringQuoteChar
You can specify a character to use to quote strings in a generated query. The default is a single quotation
mark. The specified character must be surrounded by single quotation marks in the SET statement.

SET DirectStringQuoteChar= '""';

DirectldentifierQuoteStyle

You can specify that non-ANSI quoting of identifiers be used in generated queries. At this time, the only
non-ANSI quoting available is GoogleBQ. The default is ANSI. Uppercase, lowercase, and mixed case can
be used (ANSI, ansi, Ansi).

SET DirectIdentifierQuotestyle="GoogleBQ";
For example, ANSI quoting is used in the following SELECT statement:

SELECT [Quarter] FROM [qvTest].[sales] GROUP BY [Quarter]
When DirectldentifierQuoteStyle is set to "GoogleBQ", the SELECT statement would use quoting as
follows:

SELECT [Quarter] FROM [gvTest.sales] GROUP BY [Quarter]

DirectldentifierQuoteChar

You can specify a character to control the quoting of identifiers in a generated query. This can be set to
either one character (such as a double quotation mark) or two (such as a pair of square brackets). The
default is a double quotation mark.

SET DirectIdentifierQuotechar="[]";
SET DirectIdentifierQuotechar='""";
SET DirectIdentifierQuotechar=" "';
SET DirectIdentifierQuoteChar="""";

DirectTableBoxListThreshold

When Direct Discovery fields are used in a Table visualization, a threshold is set to limit the number of
rows displayed. The default threshold is 1000 records. The default threshold setting can be changed by
setting the DirectTableBoxListThreshold variable in the load script. For example:

SET DirectTableBoxListThresho1d=5000;

The threshold setting applies only to Table visualizations that contain Direct Discovery fields. Table
visualizations that contain only in-memory fields are not limited by the DirectTableBoxListThreshold
setting.

No fields are displayed in the Table visualization until the selection has fewer records than the threshold

limit.

Direct Discovery number interpretation variables

DirectMoneyDecimalSep
The decimal separator defined replaces the decimal symbol for currency in the SQL statement generated
to load data using Direct Discovery. This character must match the character used in DirectMoneyFormat.

Default valueis '.'

Script syntax and chart functions - Qlik Sense, August 2022 211

2 Working with variables in the data load editor

Example:

Set DirectMoneyDecimalSep='.";

DirectMoneyFormat
The symbol defined replaces the currency format in the SQL statement generated to load data using Direct
Discovery. The currency symbol for the thousands separator should not be included.

Default value is '#.0000'
Example:

Set DirectMoneyFormat="'#.0000";

DirectTimeFormat
The time format defined replaces the time format in the SQL statement generated to load data using Direct
Discovery.

Example:

Set DirectTimeFormat="'hh:mm:ss"';

DirectDateFormat
The date format defined replaces the date format in the SQL statement generated to load data using Direct
Discovery.

Example:

Set DirectDateFormat='MM/DD/YYYY';

DirectTimeStampFormat
The format defined replaces the date and time format in the SQL statement generated in the SQL
statement generated to load data using Direct Discovery.

Example:

Set DirectTimestampFormat='M/D/YY hh:mm:ss[.fff]"';

2.16 Error variables

The values of all error variables will exist after the script execution. The first variable, ErrorMode, is input
from the user, and the last three are output from Qlik Sense with information on errors in the script.

Error variables overview

Each variable is described further after the overview. You can also click the variable name in the syntax to
immediately access the details for that specific variable.

Refer to the Qlik Sense online help for further details about the variables.

Script syntax and chart functions - Qlik Sense, August 2022 212

2 Working with variables in the data load editor

ErrorMode
This error variable determines what action is to be taken by Qlik Sense when an error is encountered
during script execution.

ErrorMode

ScriptError
This error variable returns the error code of the last executed script statement.

ScriptError

ScriptErrorCount
This error variable returns the total number of statements that have caused errors during the current script
execution. This variable is always reset to 0 at the start of script execution.

ScriptErrorCount

ScriptErrorList
This error variable will contain a concatenated list of all script errors that have occurred during the last
script execution. Each error is separated by a line feed.

ScriptErrorList

ErrorMode

This error variable determines what action is to be taken by Qlik Sense when an error is encountered
during script execution.

Syntax:
ErrorMode
Arguments:
Arguments
Argument Description
ErrorMode=1 The default setting. The script execution will halt and the user will be prompted for

action (non-batch mode).

ErrorMode =0 Qlik Sense will simply ignore the failure and continue script execution at the next
script statement.

ErrorMode =2 Qlik Sense will trigger an "Execution of script failed..." error message immediately on
failure, without prompting the user for action beforehand.

Example:

set ErrorMode=0;

ScriptError

This error variable returns the error code of the last executed script statement.

Script syntax and chart functions - Qlik Sense, August 2022 213

2 Working with variables in the data load editor

Syntax:

ScriptError

This variable will be reset to 0 after each successfully executed script statement. If an error occurs it will be
set to an internal Qlik Sense error code. Error codes are dual values with a numeric and a text component.
The following error codes exist:

Error
code

a A 0 N

© 00 N O

10
11
12
16

Example:

Script error codes

Description

No error. Dual value
text is empty.
General error.
Syntax error.

General ODBC error.

General OLE DB error.

General custom
database error.

General XML error.
General HTML error.
File not found.
Database not found.
Table not found.

Field not found.

File has wrong format.

Semantic error.

set ErrorMode=0;

LOAD * from abc.qvf;
if ScriptError=8 then
exit script;

//no file;

end if

ScriptErrorCount

This error variable returns the total number of statements that have caused errors during the current script
execution. This variable is always reset to 0 at the start of script execution.

Script syntax and chart functions - Qlik Sense, August 2022 214

2 Working with variables in the data load editor

Syntax:
ScriptErrorCount

ScriptErrorList

This error variable will contain a concatenated list of all script errors that have occurred during the last
script execution. Each error is separated by a line feed.

Syntax:
ScriptErrorList

Script syntax and chart functions - Qlik Sense, August 2022 215

2 Script expressions

2 Script expressions

Expressions can be used in both LOAD statements and SELECT statements. The syntax
and functions described here apply to the LOAD statement, and not to the SELECT
statement, since the latter is interpreted by the ODBC driver and not by Qlik Sense. However,
most ODBC drivers are often capable of interpreting a number of the functions described
below.

Expressions consist of functions, fields and operators, combined in a syntax.

All expressions in a Qlik Sense script return a number and/or a string, whichever is appropriate. Logical
functions and operators return 0 for False and -1 for True. Number to string conversions and vice versa are
implicit. Logical operators and functions interpret 0 as False and all else as True.

The general syntax for an expression is:

General syntax

Expression Fields Operator
expression ::= (constant constant |

expression constant fieldref |

expression constant operator1 expression |

expression

a=(
2=

expression ::= (constant = expression operator2 expression |
::=(constant function |
2= (

expression constant (expression))

where:

e constant is a string (a text, a date or a time) enclosed by single straight quotation marks, or a
number. Constants are written with no thousands separator and with a decimal point as the decimal
separator.

« fieldref is a field name of the loaded table.

« operator1 is a unary operator (working on one expression, the one to the right).
e operator2 is a binary operator (working on two expressions, one on each side).
« function ::= functionname(parameters)

< parameters ::= expression {, expression }
The number and types of parameters are not arbitrary. They depend on the function used.

Expressions and functions can thus be nested freely, and as long as the expression returns an
interpretable value, Qlik Sense will not give any error messages.

Script syntax and chart functions - Qlik Sense, August 2022 216

3 Chart expressions

3 Chart expressions

A chart (visualization) expression is a combination of functions, fields, and mathematical operators (+ * / =),
and other measures. Expressions are used to process data in the app in order to produce a result that can
be seen in a visualization. They are not limited to use in measures. You can build visualizations that are
more dynamic and powerful, with expressions for titles, subtitles, footnotes, and even dimensions.

This means, for example, that instead of the title of a visualization being static text, it can be made from an
expression whose result changes depending on the selections made.

For detailed reference regarding script functions and chart functions, see the Script syntax and
chart functions.

3.1 Defining the aggregation scope

There are usually two factors that together determine which records are used to define the
value of aggregation in an expression. When working in visualizations, these factors are:

« Dimensional value (of the aggregation in a chart expression)
» Selections

Together, these factors define the scope of the aggregation. You may come across situations where you
want your calculation to disregard the selection, the dimension or both. In chart functions, you can achieve
this by using the TOTAL qualifier, set analysis, or a combination of the two.

Aggregation: Method and description
Method Description

TOTAL Using the total qualifier inside your aggregation function disregards the dimensional value.

qualifier
The aggregation will be performed on all possible field values.

The TOTAL qualifier may be followed by a list of one or more field names within angle
brackets. These field names should be a subset of the chart dimension variables. In this
case, the calculation is made disregarding all chart dimension variables except those
listed, that is, one value is returned for each combination of field values in the listed
dimension fields. Also, fields that are not currently a dimension in a chart may be included
in the list. This may be useful in the case of group dimensions, where the dimension fields
are not fixed. Listing all of the variables in the group causes the function to work when the
drill-down level changes.

Set Using set analysis inside your aggregation overrides the selection. The aggregation will be
analysis performed on all values split across the dimensions.

Script syntax and chart functions - Qlik Sense, August 2022 217

3 Chart expressions

Method Description

TOTAL Using the TOTAL qualifier and set analysis inside your aggregation overrides the selection
qualifier and disregards the dimensions.

and set

analysis

ALL Using the ALL qualifier inside your aggregation disregards the selection and the

qualifier dimensions. The equivalent can be achieved with the {1} set analysis statement and the

TOTAL qualifier:
=sum(AT11 sales)

=sum({1} Total Sales)

Example: TOTAL qualifier

The following example shows how TOTAL can be used to calculate a relative share. Assuming that Q2 has
been selected, using TOTAL calculates the sum of all values disregarding the dimensions.

Example: Total qualifier

Year Quarter Sum(Amount) i:n;g:t))TAL i:n;fﬁrt?ount)/Sum(TOTAL
3000 3000 100%

2012 Q2 1700 3000 56,7%

2013 Q2 1300 3000 43,3%

To show the numbers as a percentage, in the properties panel, for the measure you want to
show as a percentage value, under Number formatting, select Number, and from Formatting,
choose Simple and one of the % formats.

Example: Set analysis

The following example shows how set analysis can be used to make a comparison between data sets
before any selection was made. Assuming that Q2 has been selected, using set analysis with the set
definition {1} calculates the sum of all values disregarding any selections but split by the dimensions.

Example: Set analysis
Year Quarter Sum(Amount) Sum({1} Amount) Sum(Amount)/Sum({1} Amount)

3000 10800 27,8%
2012 Q1 0 1100 0%
2012 Q3 0 1400 0%

Script syntax and chart functions - Qlik Sense, August 2022 218

3 Chart expressions

Year
2012
2012
2013
2013
2013
2013

Quarter
Q4
Q2
Q1
Q3
Q4
Q2

Sum(Amount) Sum({1} Amount)

0 1800
1700 1700
0 1000
0 1100
0 1400
1300 1300

Example: TOTAL qualifier and set analysis

Sum(Amount)/Sum({1} Amount)
0%

100%

0%

0%

0%

100%

The following example shows how set analysis and the TOTAL qualifier can be combined to make a
comparison between data sets before any selection was made and across all dimensions. Assuming that
Q2 has been selected, using set analysis with the set definition {1} and the TOTAL qualifier calculates the
sum of all values disregarding any selections and disregarding the dimensions.

Year

2012
2013

Data used in examples:

Quarter

Q2
Q2

AggregationScope:
LOAD * inline [

Year Quarter Amount

2012 Q1
2012 Q2
2012 Q3
2012 Q4
2013 Q1
2013 Q2
2013 Q3
2013 Q4

3.2

1100
1700
1400
1800
1000
1300
1100

Example: TOTAL qualifier and set analysis

Sum Sum({1} TOTAL
(Amount) Amount)

3000 10800

1700 10800

1300 10800

1400] (delimiter is ' ');

Set analysis

Sum(Amount)/Sum({1} TOTAL
Amount)

27,8%
15,7%
12%

When you make a selection in an app, you define a subset of records in the data. Aggregation

functions, such as sum(), Mmax(), Min(), Avg(), and count() are calculated based on this subset.

In other words, your selection defines the scope of the aggregation; it defines the set of records on which

calculations are made.

Script syntax and chart functions - Qlik Sense, August 2022

219

3 Chart expressions

Set analysis offers a way of defining a scope that is different from the set of records defined by the current
selection. This new scope can also be regarded as an alternative selection.

This can be useful if you want to compare the current selection with a particular value, for example last
year’s value or the global market share.

Set expressions

Set expressions can be used inside and outside aggregation functions, and are enclosed in curly brackets.
Example: Inner set expression

sum({$<vear={2021}>} sales)

Example: Outer set expression

{<vear={2021}>} sum(sales) / Count(distinct Customer)
For more information about inner and outer set expressions, see Inner and outer set expressions (page
247).

A set expression consists of a combination of the following elements:

« lIdentifiers. A set identifier represents a selection, defined elsewhere. It also represents a specific
set of records in the data. It could be the current selection, a selection from a bookmark, or a
selection from an alternate state. A simple set expression consists of a single identifier, such as the
dollar sign, {$}, which means all records in the current selection.

Examples: $, 1, Bookmarkl, state2

« Operators. A set operator can be used to create unions, differences or intersections between
different set identifiers. This way, you can create a subset or a superset of the selections defined by
the set identifiers.

Examples: +, -, *, /

¢ Modifiers. A set modifier can be added to the set identifier to change its selection. A modifier can
also be used on its own and will then modify the default identifier. A modifier must be enclosed in
angle brackets <..>.

Examples: <year={2020}>, <Supplier={ACME}>

The elements are combined to form set expressions.

Elements in a set expression

Set expression
|

S?t modifierl's

Sum('{$k —{2021}>+1% —{'Sweden'}>}! Sales)
| 1]

|
Set identifiers LSet operator

The set expression above, for example, is built from the aggregation sum(sales).

Script syntax and chart functions - Qlik Sense, August 2022 220

3 Chart expressions

The first operand returns sales for the year 2021 for the current selection, which is indicated by the $ set
identifier and the modifier containing the selection of year 2021. The second operand returns sales for
sweden, and ignores the current selection, which is indicated by the 1 set identifier.

Finally, the expression returns a set consisting of the records that belongs to any of the two set operands,
as indicated by the + set operator.

Examples

Examples that combine the set expression elements above are available in the following topics:

Natural sets

Usually, a set expression represents both a set of records in the data model, and a selection that defines
this subset of data. In this case, the set is called a natural set.

Set identifiers, with or without set modifiers, always represent natural sets.

However, a set expression using set operators also represents a subset of the records, but can generally
still not be described using a selection of field values. Such an expression is a non-natural set.

For example, the set given by {1-$} cannot always be defined by a selection. It is therefore not a natural
set. This can be shown by loading the following data, adding it to a table, and then making selections using
filter panes.

Load * InTine
[Diml, Dim2, Number
A, X, 1

A, Y, 1
B, X, 1
B, Y, 1];

By making selections for pim1 and pim2, you get the view shown in the following table.

Table with natural and non-natural sets

Dim1 Q. Dim2 Q. Sum({5} Number Sum({1-5} Number

s \
X ~ Totals 1 3

2 ¥ 3 5 -
o A X 1 0

The set expression in the first measure uses a natural set: it corresponds to the selection that is made {3$}.

The second measure is different. It uses {1-$}. It is not possible to make a selection that corresponds to
this set, so it is a non-natural set.

This distinction has a number of consequences:

Script syntax and chart functions - Qlik Sense, August 2022 221

3 Chart expressions

« Set modifiers can only be applied to set identifiers. They cannot be applied to an arbitrary set

expression. For example, it is not possible to use a set expression such as:

{ (BMO1 * BM02) <Field={x,y}> }

Here, the normal (round) brackets imply that the intersection between 8m01 and Bv02 should be
evaluated before the set modifier is applied. The reason is that there is no element set that can be

modified.

* You cannot use non-natural sets inside the p() and () element functions. These functions return
an element set, but it is not possible to deduce the element set from a non-natural set.

* A measure using a non-natural set cannot always be attributed to the right dimensional value if the
data model has many tables. For example, in the following chart, some excluded sales numbers are

attributed to the correct Country, whereas others have NULL as Country.
Chart with non-natural set

ProductCategory

Baby Clothes ’ PreductCategary C Country CL Values

© Baby Clothes 127781.28 o

- © Children's Clothes] £1581.54

Q@ Men's Clothes] 140987.45

© Men's Footwear o 232747.44

2 Sportzwear o] ITOIT2.TE

Q Swimwear] 29548.8

© Women's Clothes o} 549548.5

B © Women's Footwear o 140854.44

\

Whether or not the assignment is made correctly depends on the data model. In this case, the
number cannot be assigned if it pertains to a country that is excluded by the selection.

Identifier

1

$1

$_1

BMO1
MyAltState

Description

Represents the full set of all the records in the application, irrespective of any selections
made.

Represents the records of the current selection. The set expression {$} is thus the
equivalent to not stating a set expression.

Represents the previous selection. $2 represents the previous selection-but-one, and
soon.

Represents the next (forward) selection. $_2 represents the next selection-but-one, and
so on.

You can use any bookmark ID or bookmark name.

You can reference the selections made in an alternate state by its state name.

Script syntax and chart functions - Qlik Sense, August 2022 222

3 Chart expressions

Example Result

sum ({1} Sales) Returns total sales for the app, disregarding selections but not the dimension.
sum ({$} Sales) Returns the sales for the current selection, that is, the same as sum(Sales).
sum ({$1} Sales) Returns the sales for the previous selection.

sum ({BMO01} Sales) Returns the sales for the bookmark named BMO1.

Example Result
sum({$<OrderDate = Returns the sales for the current selection where OrderDate =
DeliveryDate>} Sales) DeliveryDate.

sum({1<Region = {US}>} Sales) Returns the sales for region US, disregarding the current selection.

sum({$<Region = >} Sales) Returns the sales for the selection, but with the selection in Region
removed.
sum({<Region = >} Sales) Returns the same as the example above. When the set to modify is

omitted, $ is assumed.

sum({$<Year={2000}, Region= Returns the sales for the current selection, but with new selections
{“U*"}>} Sales) both in Yearand in Region.

Set identifiers

A set identifier represents a set of records in the data; either all the data or a subset of the
data. It is the set of records defined by a selection. It could be the current selection, all data
(no selection), a selection from a bookmark, or a selection from an alternate state.

In the example sum({$<vear = {2009}>} sales), the identifier is the dollar sign: $. This represents the
current selection. It also represents all the possible records. This set can then altered by the modifier part
of the set expression: the selection 2009 in vear is added.

In a more complex set expression, two identifiers can be used together with an operator to form a union, a
difference, or an intersection of the two record sets.

The following table shows some common identifiers.
Examples with common identifiers
Identifier Description

1 Represents the full set of all the records in the application, irrespective of any
selections made.

$ Represents the records of the current selection in the default state. The set
expression {$} is thus usually the equivalent to not stating a set expression.

$1 Represents the previous selection in the default state. $2 represents the previous
selection-but-one, and so on.

Script syntax and chart functions - Qlik Sense, August 2022 223

3 Chart expressions

Identifier Description

$-1 Represents the next (forward) selection. $_2 represents the next selection-but-one,
and so on.

BMO1 You can use any bookmark ID or bookmark name.

Altstate You can reference an alternate state by its state name.

Altstate::BMO1 A bookmark contains the selections of all states, and you can reference a specific
bookmark by qualifying the bookmark name.

The following table shows examples with different identifiers.
Examples with different identifiers
Example Result

sum ({1} sales) Returns total sales for the app, disregarding selections but
not the dimension.

sum ({$} sales) Returns the sales for the current selection, that is, the same
as sum(Ssales).

sum ({$1} sales) Returns the sales for the previous selection.

Sum ({BMO1} Returns the sales for the bookmark named BmO01.
sales)

Set operators

Set operators are used to include, exclude, or intersect data sets. All operators use sets as operands and
return a set as result.

You can use set operators in two different situations:

¢ To perform a set operation on set identifiers, representing sets of records in data.

¢ To perform a set operation on the element sets, on the field values, or inside a set modifier.
The following table shows the operators that can be used in set expressions.
Operators
Operator Description

+ Union. This binary operation returns a set consisting of the records or elements that
belong to any of the two set operands.

- Exclusion. This binary operation returns a set consisting of the records or elements that
belong to the first but not the other of the two set operands. Also, when used as a unary
operator, it returns the complement set.

Intersection. This binary operation returns a set consisting of the records or elements that
belong to both set operands.

/ Symmetric difference (xor). This binary operation returns a set consisting of the records
or elements that belong to either, but not both set operands.

Script syntax and chart functions - Qlik Sense, August 2022 224

3 Chart expressions

The following table shows examples with operators.

Examples with operators

Example Result
sum ({1-$} sales) Returns sales for everything excluded by current selection.
sum ({$*BMO1} sales) Returns sales for the intersection between the selection and

bookmark sm01.
sum ({-($+BMO1)} sales) Returns sales excluded by the selection and bookmark Bmo1.

sum ({$<vear= Returns sales for the year 2009 associated with the current selections

{2009}>+1<Country= and add the full set of data associated with the country sweden across all
{'sweden'}>} sales) years

sum ({$<Country={"s*"}+ Returns the sales for countries that begin with s or end with Tand.
{"*1and"}>} Sales)

Set modifiers

Set expressions are used to define the scope of a calculation. The central part of the set
expression is the set modifier that specifies a selection. This is used to modify the user
selection, or the selection in the set identifier, and the result defines a new scope for the
calculation.

The set modifier consists of one or more field names, each followed by a selection that should be made on
the field. The modifier is enclosed by angled brackets: < >

For example:

e Sum ({$<vear = {2015}>} sales)
e Count ({l<Country = {Germany}>} distinct orderiID)

e Sum ({$<vear = {2015}, Country = {Germany}>} Sales)

Element sets

An element set can be defined using the following:

* Alist of values
¢ Asearch
* A reference to another field

¢ A setfunction

If the element set definition is omitted, the set modifier will clear any selection in this field. For example:

sum({$<vear = >} sales)

Script syntax and chart functions - Qlik Sense, August 2022 225

3 Chart expressions

Examples: Chart expressions for set modifiers based on element sets

Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

MyTable:

Load * InTline [

Country, Year, Sales
Argentina, 2014, 66295.03
Argentina, 2015, 140037.89
Austria, 2014, 54166.09
Austria, 2015, 182739.87
Belgium, 2014, 182766.87
Belgium, 2015, 178042.33
Brazil, 2014, 174492.67
Brazil, 2015, 2104.22
Canada, 2014, 101801.33
Canada, 2015, 40288.25
Denmark, 2014, 45273.25
Denmark, 2015, 106938.41
Finland, 2014, 107565.55
Finland, 2015, 30583.44
France, 2014, 115644.26
France, 2015, 30696.98
Germany, 2014, 8775.18
Germany, 2015, 77185.68
1;

Chart expressions

Create a table in a Qlik Sense sheet with the following chart expressions.

Table - Set modifiers based on element sets

Sum Sum

({1<Country= Sum Sum ({1<Year=
Country Sum(Sales) Bel ium}g ({1<Country= ({1<Country= {$(=Max

. {"*A*"}>} Sales) {"'A*"}>}Sales) (Year))}>}
Sales)
Sales)

Totals 1645397.3 360809.2 1284588.1 443238.88 788617.07
Argentina 206332.92 0 206332.92 206332.92 140037.89
Austria 236905.96 0 236905.96 236905.96 182739.87
Belgium 360809.2 360809.2 0 0 178042.33

Script syntax and chart functions - Qlik Sense, August 2022 226

3 Chart expressions

Country Sum(Sales)
Brazil 176596.89
Canada 142089.58
Denmark 152211.66
Finland 138148.99
France 146341.24
Germany 85960.86
Explanation

Sum
({1<Country=
{Belgium}>}
Sales)

0
0
0
0
0
0

Sum
({1<Country=
{II*A*II}>} Sales)

176596.89
142089.58
152211.66
138148.99
146341.24
85960.86

Sum
({1<Country=
{"A*"}>} Sales)

o O o o o o

Sum
({1<Year=
{$(=Max
(Year))}>}
Sales)

2104.22
40288.25
106938.41
30583.44
30696.98
77185.68

* Dimensions:

o country

¢ Measures:

o

sum(sales)

Sum sales with no set expression.

sum({1l<Country={Belgium}>}sales)

Select Be1gium, and then sum corresponding sales.
sum({1<Country={"*A*"}>}Sales)

Select all countries that have an A, and then sum corresponding sales.
sum({1<Country={"A*"}>}sales)

Select all countries that begin with an A, and then sum corresponding sales.
sum({1l<vear={$(=Max(Yvear))}>}sales)

Calculate the max(vear), which is 2015, and then sum corresponding sales.

Script syntax and chart functions - Qlik Sense, August 2022

227

3 Chart expressions

Set modifiers based on element sets

e

Sum({1=Country = Sum({1=Country = Sum({1=Country = Sum({1<Year=
Coungy Q Sum (Sales) {Belgium}=} Sales) {"*A*"}=} Sales) {"A*"}=} Sales) {S(=Max(Year))}>=} Sales)
Totals 1645397.3 360809.2 1284588.1 443238.88 788617.07
Argentina 206332.92 0 206332.92 206332.92 140037.89
Austria 236905.96 0 236905.96 236905.96 182739.87
Belgium 360809.2 360809.2 0 0 178042.33
Brazil 176596.89 0 176596.89 0 2104.22
Canada 142089.58 0 142089.58 0 40288.25
Denmark 152211.66 0 152211.66 0 106938.41
Finland 138148.99 0 138148.99 0 30583.44
France 146341.24 0 146341.24 0 30696.98
Germany 85960.86 0 85960.86 0 77185.68

Listed values

The most common example of an element set is one that is based on a list of field values enclosed in curly
brackets. For example:

e {$<Country = {Canada, Germany, Singapore}>}

e {$<vear = {2015, 2016}>}
The inner curly brackets define the element set. The individual values are separated by commas.

Quotes and case sensitivity

If the values contain blanks or special characters, the values need to be quoted. Single quotes will be a
literal, case-sensitive match with a single field value. Double quotes imply a case-insensitive match with
one or several field values. For example:

e <Country = {'New Zealand'}>
Matches New zealand only.
e <Country = {"New Zealand"}>
Matches New zealand, NEw ZEALAND, and new zealand

Dates must be enclosed in quotes and use the date format of the field in question. For example:
e <ISO_Date = {'2021-12-31'}>

{'12/31/2021"'}>

{'31/12/2021"'}>

e <US_Date

e <UK_Date

Double quotes can be substituted by square brackets or by grave accents.

Searches

Element sets can also be created through searches. For example:

Script syntax and chart functions - Qlik Sense, August 2022 228

3 Chart expressions

e <Country = {"C*"}>
e <Ingredient = {"*garlic*"}>
e <vear = {">2015"}>

e <Date = {">12/31/2015"}>

Wildcards can be used in a text searches: An asterisk (*) represents any number of characters, and a
question mark (?) represents a single character. Relational operators can be used to define numeric
searches.

You should always use double quotes for searches. Searches are case-insensitive.

Dollar expansions

Dollar expansions are needed if you want to use a calculation inside your element set. For example, if you
want to look at the last possible year only, you can use:

<Year = {$(=Max(year))}>

Selected values in other fields

Modifiers can be based on the selected values of another field. For example:

<OrderDate = DeliverybDate>

This modifier will take the selected values from peliverybate and apply those as a selection on orderpate.
If there are many distinct values - more than a couple of hundred - then this operation is CPU intensive and
should be avoided.

Element set functions

The element set can also be based on the set functions P() (possible values) and Q) (excluded values).
For example, if you want to select countries where the product cap has been sold, you can use:
<Country = P({1<Product={Cap}>} Country)>

Similarly, if you want to pick out the countries where the product cap has not been sold, you can use:

<Country = E({l<Product={Cap}>} Country)>

Set modifiers with searches

You can create element sets through searches with set modifiers.

For example:

e <Country = {"C*"}>
e <Year = {">2015"}>

e <Ingredient = {"*garlic*"}>

Searches should always be enclosed in double quotes, square brackets or grave accents. You can use a
list with a mixture of literal strings (single quotes) and searches (double quotes). For example:

<Product = {'Nut', "*Bolt", washer}>

Script syntax and chart functions - Qlik Sense, August 2022 229

3 Chart expressions

Text searches

Wildcards and other symbols can be used in text searches:

¢ An asterisk (*) will represent any number of characters.
¢ A question mark (?) will represent a single character.

« A circumflex accent (*) will mark the beginning of a word.

For example:

e <Country = {"c*", "*land"}>
Match all countries beginning with a ¢ or ending with Tand.
e <Country = {"*Az*"}>
This will match all countries that have a word beginning with z, such as New zealand.

Numeric searches

You can make numeric searches using these relational operators: >, >=, <, <=

A numeric search always begins with one of these operators. For example:

e <Year = {">2015"}>
Match 2016 and subsequent years.

e <Date = {">=1/1/2015<1/1/2016"}>
Match all dates during 2015. Note the syntax for describing a time range between two dates. The
date format needs to match the date format of the field in question.

Expression searches

You can use expression searches to make more advanced searches. An aggregation is then evaluated for
each field value in the search field. All values for which the search expression returns true are selected.

An expression search always begins with an equals sign: =

For example:

<Customer = {"=Sum(Sales)>1000"}>

This will return all customers with a sales value greater than 1000. sum(sales) is calculated on the current
selection. This means that if you have a selection in another field, such as the product field, you will get the
customers that fulfilled the sales condition for the selected products only.

If you want the condition to be independent of the selection, you need to use set analysis inside the search
string. For example:

<Customer = {"=sum({1} sales)>1000"}>

The expressions after the equals sign will be interpreted as a boolean value. This means that if it evaluates
to something else, any non-zero number will be interpreted as true, while zero and strings are interpreted
as false.

Script syntax and chart functions - Qlik Sense, August 2022 230

3 Chart expressions

Quotes

Use quotation marks when the search strings contain blanks or special characters. Single quotes imply a
literal, case-sensitive match with a single field value. Double quotes imply a case insensitive search that
potentially matches multiple field values.

For example:

e <Country = {'New Zealand'}>
Match New zealand only.
e <Country = {"New Zealand"}>
Match New zealand, NEw ZEALAND, and new zealand

Double quotes can be substituted by square brackets or by grave accents.

In previous versions of Qlik Sense, there was no distinction between single quotes and double
quotes, and all quoted strings were treated as searches. To maintain backward compatibility,
apps created with older versions of Qlik Sense will continue to work as they did in previous
versions. Apps created with Qlik Sense November 2017 or later will respect the difference
between the two types of quotes.

Examples: Chart expressions for set modifiers with searches

Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

MyTable:

Load

Year(Date) as Year,

Date#(Date, 'YYYY-MM-DD') as ISO_Date,
Date(Date#(Date, 'YYYY-MM-DD'), '"M/D/YYYY') as US_Date,
Country, Product, Amount

Inline

[Date, Country, Product, Amount
2018-02-20, canada, washer, 6
2018-07-08, Germany, Anchor bolt, 10
2018-07-14, Germany, Anchor bolt, 3
2018-08-31, France, Nut, 2
2018-09-02, czech Republic, Bolt, 1
2019-02-11, czech Republic, Bolt, 3
2019-07-31, czech Republic, washer, 6
2020-03-13, France, Anchor bolt, 1
2020-07-12, canada, Anchor bolt, 8
2020-09-16, France, washer, 1];

Script syntax and chart functions - Qlik Sense, August 2022 231

3 Chart expressions

Example 1: Chart expressions with text searches

Create a table in a Qlik Sense sheet with the following chart expressions.

Table - Set modifiers with text searches

Country Sum Sum({<Country= Sum({<Country= Sum({<Product=
(Amount) {"C*'}>}Amount) {"**R*'}>}Amount) {"*bolt*"}>} Amount)
Totals 41 24 10 26
Canada 14 14 0 8
Czech 10 10 10 4
Republic
France 4 0 0 1
Germany 13 0 0 13
Explanation

* Dimensions:

o country

¢ Measures:
o Sum(Amount)
Sum Amount with no set expression.
o sum({<Country={"C*"}>}Amount)
Sum amount for all countries that start with ¢, such as canada and czech Republic.
o sum({<Country={"*AR*"}>}Amount)
Sum amount for all countries that have a word that starts with R, such as czech Republic.
o sum({<Product={"*bolt*"}>}Amount)
Sum amount for all products that contain the string bo1t, such as Bo1t and Anchor bolt.

Set modifiers with text searches

Q Sum Sum(f{<Country={"C*"}=} Sum({<Country={"**R*"}>} Sum({<Product={""bolt*"}>}
Cou rm'yA (Amount) Amount) Amount) Amount)
Totals 41 24 10 26
Canada 14 14 0 8
Czech Republic 10 10 10 4
France 4 0 0 1
Germany 13 0 0 13

Example 2: Chart expressions with numeric searches

Create a table in a Qlik Sense sheet with the following chart expressions.

Script syntax and chart functions - Qlik Sense, August 2022 232

3 Chart expressions

Countr Sum

y (Amount)
Totals 41
Canada 14
Czech 10
Republic
France 4

Germany 13

Explanation

* Dimensions:

o country

¢ Measures:
o Ssum(Amount)

Table - Set modifiers with numeric searches

Sum({<Year=
{">2019"}>}
Amount)

10

8

Sum({<ISO_
Date={">=2019-
07-01"}>}
Amount)

16

8

6

Sum amount with no set expression.
sum({<year={">2019"}>}Amount)
Sum amount for all years after 2019.

sum({<Iso_bate={">=2019-07-01"}>}Amount)

Sum({<US_Date=
{">=4/1/2018<=12/31/2018"}>}
Amount)

16

0

1

13

Sum amount for all dates on or after 2019-07-01. The format of the date in the search must

match the format of the field.

sum({<USs_bate={">=4/1/2018<=12/31/2018"}>}Amount)

Sum Amount for all dates from 4/1/2018 to 12/31/2018, including the start and end dates. The
format of the dates in the search must match the format of the field.

Set modifiers with numeric searches

Country‘
Totals

Canada

Czech Republic

France

Germany

Example 3: Chart expressions with expression searches

Q . Su m Sum({=Yea r={"}2019"}>;-
[Amount) Amount)

41 10

14 3

10 0

4 2

13 0

Sum({=ISO_Date={">=2019-07-01"}>}

Sum({=US_Date={"==4/1/2018==12

Amount) /31/2018"}+} Amount)
16 16

a]

[1

2 2

0 13

Create a table in a Qlik Sense sheet with the following chart expressions.

Script syntax and chart functions - Qlik Sense, August 2022

233

3 Chart expressions

Country

Totals
Canada

Czech
Republic

France

Germany

Explanation

* Dimensions:

(o]

Sum
(Amount)

41
14
10

13

country

¢ Measures:

o

Sum(Amount)
Sum amount with no set expression.

Sum({<Country=
{"=Sum
(Amount)>10"}>}
Amount)

27
14
0

13

Table - Set modifiers with expression searches

Sum({<Country=
{"=Count(distinct
Product)=1"}>}
Amount)

13
0
0

13

sum({<Country={"=Sum(Amount)>10"}>3}Amount)
Sum amount for all countries that have an aggregated sum of amount greater than 10.
sum({<Country={"=Count(distinct Product)=1"}>}Amount)
Sum amount for all countries that are associated with exactly one distinct product.
sum({<Product={"=Count(Amount)>3"}>}Amount)
Sum amount for all countries that have more than three transactions in the data.

Set modifiers with expression searches

Sum({=Country=

Sum({<Product=
{"=Count
(Amount)>3"}>}
Amount)

22
8
0

13

Sum({=Product=

Q Sum {"=Sum(Amount)>10"}>} Sum({=Country=["=Count{distinct {"=Count{Amount)>3"}=}
Country‘ (Amount) Amount) Product)=1"}=} Amount) Amount)
Totals 41 27 13 22
Canada 14 14 0 8
Czech Republic 10 0 0 0
France 4 0 0 1
Germany 13 13 13 13
Script syntax and chart functions - Qlik Sense, August 2022 234

3 Chart expressions

Examples Results

sum({$-1<Product = Returns the sales for current selection, excluding transactions
{**Internal*”, ““Domestic*"}>} pertaining to products with the string 'Internal' or 'Domestic' in the
Sales) product name.

sum({$<Customer = {*=Sum Returns the sales for current selection, but with a new selection in
({1<Year ={2007}>} Sales) > the 'Customer field: only customers who during 2007 had a total
10000007}>} Sales) sales of more than 1000000.

Set modifiers with dollar-sign expansions

Dollar-sign expansions are constructs that are calculated before the expression is parsed and
evaluated. The result is then injected into the expression instead of the $¢.). The calculation
of the expression is then made using the result of the dollar expansion.

The expression editor shows a dollar expansion preview so that you can verify what your dollar-sign
expansion evaluates to.

Dollar-sign expansion preview in expression editor
Edit expression

Sum({< ={">=5% (=Add¥Years (Max (US Date),-1))"}>}

© ok

Sum({{<US_Date={">=9/16/2019"}=}Amount)

Use dollar-sign expansions when you want to use a calculation inside your element set.

For example, if you want to look at the last possible year only, you can use the following construction:
<Year = {$(=Max(Year))}>

Max (vear) is calculated first, and the result would be injected in the expression instead of the $(..).
The result after the dollar expansion will be an expression such as the following:

<Year = {2021}>

The expression inside the dollar expansion is calculated based on the current selection. This means that if
you have a selection in another field, the result of the expression will be affected.

If you want the calculation to be independent of the selection, use set analysis inside the dollar expansion.
For example:

<Year = {$(=Max({1} Year))}>

Script syntax and chart functions - Qlik Sense, August 2022 235

3 Chart expressions

Strings

When you want the dollar expansion to result in a string, normal quoting rules apply. For example:
<Country = {'$(=FirstSortedvalue(Country,Date)"'}>
The result after the dollar expansion will be an expression such as the following:

<Country = {'New zealand'}>

You will get a syntax error if you do not use the quotation marks.

Numbers

When you want the dollar expansion to result in a number, ensure that the expansion gets the same
formatting as the field. This means that you sometimes need to wrap the expression in a formatting
function.

For example:

<Amount = {$(=Num(Max(Amount), '###0.00'))}>

The result after the dollar expansion will be an expression such as the following:
<Amount = {12362.00}>
Use a hash to force the expansion to always use decimal point and no thousand separator . For example:

<Amount = {$(#=Max(Amount))}>

Dates

When you want the dollar expansion to result in a date, ensure that the expansion has the correct
formatting. This means that you sometimes need to wrap the expression in a formatting function.

For example:

<Date = {'$(=Date(Max(Date)))'}>

The result after the dollar expansion will be an expression such as the following:

<Date = {'12/31/2015"}>
Just as with strings, you need to use the correct quotes.

A common use case is that you want your calculation to be limited to the last month (or year). Then you can
use a numeric search in combination with the addvonths) function.

For example:

<Date = {">=$(=AddMonths(Today(),-1))"}>

The result after the dollar expansion will be an expression such as the following:

<bate = {">=9/31/2021"}>

This will pick out all events that have occurred the last month.

Script syntax and chart functions - Qlik Sense, August 2022 236

3 Chart expressions

Example: Chart expressions for set modifiers with dollar-sign expansions

Example - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

Let vToday = Today();

MyTable:

Load

Year(Date) as Year,

Date#(Date, 'YYYY-MM-DD') as ISO_Date,
Date(Date#(Date, 'YYYY-MM-DD'), 'M/D/YYYY') as US_Date,
Country, Product, Amount

Inline

[Date, Country, Product, Amount
2018-02-20, canada, washer, 6
2018-07-08, Germany, Anchor bolt, 10
2018-07-14, Germany, Anchor bolt, 3
2018-08-31, France, Nut, 2
2018-09-02, czech Republic, Bolt, 1
2019-02-11, czech Republic, Bolt, 3
2019-07-31, Cczech Republic, washer, 6
2020-03-13, France, Anchor bolt, 1
2020-07-12, canada, Anchor bolt, 8
2021-10-15, France, washer, 1];

Chart expressions with dollar-sign expansions

Create a table in a Qlik Sense sheet with the following chart expressions.

Table - Set modifiers with dollar-sign expansions

Sum({<US_ Sum({<ISO_Date= Sum({<US_Date=

Countr Sum Date= {"$(=Date(Min(ISO_ ">=$(=AddYears(Max

’ (Amount) {'$(vToday)}>} Date),'YYYY-MM- (US_Date),-1))"}>}

Amount) DD'))"}>} Amount) Amount)

Totals 41 1 6 1

Canada 14 0 6 0

Czech 10 0 0 0

Republic

France 4 1 0 1

Germany 13 0 0 0

Script syntax and chart functions - Qlik Sense, August 2022 237

3 Chart expressions

Explanation

¢ Dimensions:

o country

¢ Measures:

o Sum(Amount)
Sum amount with no set expression.

o sum({<uUs_bate={'$(vToday) '}>}Amount)
Sum amount for all records where the us_pate is the same as in the variable vToday.

o sum({<1so_bate={"$(=Date(Min(ISO_Date), 'YYYY-MM-DD'))"}>}Amount)
Sum Amount for all records where the 1so_pate is the same as the first (smallest) possible
1s0_bate. The pate() function is needed to ensure that the format of the date matches that of
the field.

o sum({<Us_bDate={">=$(=AddYears(Max(US_bate),-1))"}>}Amount)
Sum amount for all records that have a us_pate after or on the date a year before the latest
(largest) possible us_bpate. The addyears () function will return a date in the format specified
by the variable pateFormat, and this needs to match the format of the field us_pate.

Set modifiers with dollar-sign expansions

Sum({<ISO_Date= Sum({<US_Date=

Q sum Sum({«us_Dateri'S:_vToda)-_:'j--v_} {"s:j:Date.j!.sin.j|so_p_ j:_,'m’f-m M- -f"-v=s;=Add‘r'ea.—s_‘.1axjus_Dare_:.-lj"",--»_}
Country [Amount) Amount) DD'))"}>} Amount Amount)
Totals 41 1 6 1
Canada 14] 6 0
Czech Republic 10] 0 0
France 4 1 0 1
Germany 13 0 0 0
Examples Results
sum({$<Year = Returns the sales for the previous year in relation to current selection. Here, a
{$(#vLastYear)}>} variable vLastYear containing the relevant year is used in a dollar-sign
Sales) expansion.
sum({$<Year = Returns the sales for the previous year in relation to current selection. Here, a
{$(#=Only(Year)- dollar-sign expansion is used to calculate previous year.
1)}>} Sales)

Set modifiers with set operators

Set operators are used to include, exclude, or intersect different element sets. They combine
the different methods to define element sets.

The operators are the same as those used for set identifiers.

Script syntax and chart functions - Qlik Sense, August 2022 238

3 Chart expressions

Operators
Operator Description

+ Union. This binary operation returns a set consisting of the records or elements that
belong to any of the two set operands.

- Exclusion. This binary operation returns a set consisting of the records or elements that
belong to the first but not the other of the two set operands. Also, when used as a unary
operator, it returns the complement set.

Intersection. This binary operation returns a set consisting of the records or elements that
belong to both set operands.

/ Symmetric difference (xor). This binary operation returns a set consisting of the records
or elements that belong to either, but not both set operands.

For example, the following two modifiers define the same set of field values:

e <Year = {1997, "20*"}>
e <Year = {1997} + {"20*"}>

Both expressions select 1997 and the years that begin with 20. In other words, this is the union of the two
conditions.

Set operators also allow for more complex definitions. For example:

<Year = {1997, "20*"} - {2000}>

This expression will select the same years as those above, but in addition exclude year 2000.

Examples: Chart expressions for set modifiers with set operators

Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

MyTable:

Load

Year(Date) as Year,

Date#(Date, 'YYYY-MM-DD') as ISO_Date,
Date(Date#(Date, 'YYYY-MM-DD'), '"M/D/YYYY') as US_Date,
Country, Product, Amount

Inline

[Date, Country, Product, Amount
2018-02-20, canada, washer, 6
2018-07-08, Germany, Anchor bolt, 10
2018-07-14, Germany, Anchor bolt, 3

Script syntax and chart functions - Qlik Sense, August 2022 239

3 Chart expressions

2018-08-31, France, Nut, 2
2018-09-02, czech Republic, Bolt, 1
2019-02-11, czech Republic, Bolt, 3
2019-07-31, czech Republic, washer, 6
2020-03-13, France, Anchor bolt, 1
2020-07-12, canada, Anchor bolt, 8
2020-09-16, France, washer, 1];

Chart expressions

Create a table in a Qlik Sense sheet with the following chart expressions.

Table - Set modifiers with set operators

Sum({<Year= Sum
Sum ">2018"- <Country=-

coumy (Amount) §2020}>}} Egefma";;’}
Amount) Amount)

Totals 41 9 28

Canada 14 0 14

Czech 10 9 10

Republic

France 4 0 4

Germany 13 0 0

Explanation

¢ Dimensions:

o country

¢ Measures:
o Sum(Amount)
Sum amount with no set expression.
o sum({<year={">2018"}-{2020}>}Amount)
Sum amount for all years after 2018, except 2020.
o sum({<Country=-{Germany}>}Amount)

Sum({<Country=
{Germany}+P({<Product=
{Nut}>}Country)>} Amount)
17

0

0

13

Sum amount for all countries except Germany. Note the unary exclusion operator.

o sum({<Country={Germany}+P({<Product={Nut}>}Country)>}Amount)
Sum amount for Germany and all countries associated with the product nut.

Script syntax and chart functions - Qlik Sense, August 2022

240

3 Chart expressions

Set modifiers with set operators

Sum

Country Q (Amount
Y

Totals 41
Canada 14
Czech Republic 10
France 4
Germany 13
Examples

sum({$<Product =
Product +
{OurProduct1} -
{OurProduct2} >} Sales

)

sum({$<Year = Year +
({20*",1997} - {2000})

E]
"

Sum({=<Year={">2018"}-{2020}=} Sum({<Country= - {Germany}>} sum({<Country={Germany}+P({<Product=
Amount) Amount {Nut}>} Country)>} Amount)

9 28 17

0 14 0

9 10 0

0 4 4

0 0 13

Results

Returns the sales for the current selection, but with the product
“OurProduct1” added to the list of selected products and “OurProduct2”
removed from the list of selected products.

Returns the sales for the current selection but with additional selections in the
field “Year”: 1997 and all that begin with “20” - however, not 2000.

>} Sales)
Note that if 2000 is included in the current selection, it will still be included

after the modification.

sum({$<Year = (Year +
{“20*,1997)) - {2000} >}
Sales)

Returns almost the same as above, but here 2000 will be excluded, also if it
initially is included in the current selection. The example shows the
importance of sometimes using brackets to define an order of precedence.

sum({$<Year = {“*"} -
{2000}, Product =
{**bearing*”} >} Sales)

Returns the sales for the current selection but with a new selection in “Year”:
all years except 2000; and only for products containing the string 'bearing'.

Set modifiers with implicit set operators

The standard way to write selections in a set modifier is to use an equals sign. For example:
Year = {">2015"}

The expression to the right of the equals sign in the set modifier is called an element set. It defines a set of
distinct field values, in other words a selection.

This notation defines a new selection, disregarding the current selection in the field. So, if the set identifier
contains a selection in this field, the old selection will be replaced by the one in the element set.

When you want to base your selection on the current selection in the field, you need to use a different
expression

Script syntax and chart functions - Qlik Sense, August 2022 241

3 Chart expressions

For example, if you want to respect the old selection, and add the requirement that the year is after 2015,
you can write the following:

Year = Year * {">2015"}

The asterisk is a set operator defining an intersection, so you will get the intersection between the current
selection in year, and the additional requirement that the year be after 2015. An alternative way to write this
is the following:

Year *= {">2015"}
That is, the assignment operator (*=) implicitly defines an intersection.

Similarly, implicit unions, exclusions and symmetric differences can be defined using the following: +=, -=,
/=

Examples: Chart expressions for set modifiers with implicit set operators
Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

MyTable:

Load

Year(Date) as Year,

Date#(Date, 'YYYY-MM-DD') as ISO_Date,
Date(Date#(Date, 'YYYY-MM-DD'), '"M/D/YYYY') as US_Date,
Country, Product, Amount

Inline

[Date, Country, Product, Amount
2018-02-20, canada, washer, 6
2018-07-08, Germany, Anchor bolt, 10
2018-07-14, Germany, Anchor bolt, 3
2018-08-31, France, Nut, 2
2018-09-02, czech Republic, Bolt, 1
2019-02-11, czech Republic, Bolt, 3
2019-07-31, czech Republic, washer, 6
2020-03-13, France, Anchor bolt, 1
2020-07-12, canada, Anchor bolt, 8
2020-09-16, France, washer, 1];

Chart expressions with implicit set operators

Create a table in a Qlik Sense sheet with the following chart expressions.

Select canada and czech Republic from a list of countries.

Script syntax and chart functions - Qlik Sense, August 2022 242

3 Chart expressions

Country

Totals
Canada

Czech
Republic

France

Explanation

Table - Chart expressions with implicit set operators

Sum Sum({<Country*= Sum({<Country-= Sum({<Country+=
(Amount) {Canada}>} Amount) {Canada}>} Amount) {France}>} Amount)
24 14 10 28

14 14 0 14

10 0 10 10

0 0 0 4

* Dimensions:

(o]

country

¢ Measures:

o

Sum(Amount)

Sum amount for the current selection. Note that only canada and czech Republic have non-
zero values.

sum({<Country*={Canada}>}Amount)

Sum amount for the current selection, intersected with the requirement that the country be
canada. If canada is not part of the user selection, the set expression returns an empty set,
and the column will have 0 on all rows.

sum({<Country-={Canada}>}Amount)

Sum amount for the current selection, but first exclude canada from the country selection. If
Canada is not part of the user selection, the set expression will not change any numbers.
sum({<Country+={France}>}Amount)

Sum amount for the current selection, but first add France to the country selection. If France is
already part of the user selection, the set expression will not change any nhumbers.

Set modifiers with implicit set operators

. Country

Canada

Czech Republic

France

Germany

Country X
—
Sum Sum({<Country*= Sum({=Country-= Sum({=Country+=
CountryA Q (Amount) {Canada}=} Amount) {Canada}=} Amount) {France}>} Amount)
Totals 24 14 10 28
Canada 14 14 0 14
Czech Republic 10 0 10 10
France 0 0 0 4

Script syntax and chart functions - Qlik Sense, August 2022 243

3 Chart expressions

Examples Results
sum({$<Product += Returns the sales for the current selection, but using an implicit union to
{OurProductl, add the products 'OurProduct1' and 'OurProduct?' to the list of selected

OurProduct?} >} Sales) products.

sum({$<Year += Returns the sales for the current selection but using an implicit union to add
{“20*”,1997} - {2000} >} a number of years in the selection: 1997 and all that begin with “20” -
Sales) however, not 2000.

Note that if 2000 is included in the current selection, it will still be included
after the modification. Same as <vear=yvear + ({“20*”,1997}-{2000})>.

sum({$<Product *= Returns the sales for the current selection, but only for the intersection of
{OurProduct1} >} Sales) currently selected products and the product OurProduct1.

Set modifiers using set functions

Sometimes you need to define a set of field values using a nested set definition. For example,
you may want to select all customers that have bought a specific product, without selecting
the product.

In such cases, use the element set functions p() and E(). These return the element sets of possible values
and excluded values of a field, respectively. Inside the brackets, you can specify the field in question, and a
set expression that defines the scope. For example:

P({1<yvear = {2021}>} Customer)

This will return the set of customers that had transactions in 2021. You can then use this in a set modifier.
For example:

sum({<Customer = P({l<Year = {2021}>} Customer)>} Amount)
This set expression will select these customers, but it will not restrict the selection to 2021.
These functions cannot be used in other expressions.

Additionally, only natural sets can be used inside the element set functions. That is, a set of records that
can be defined by a simple selection.

For example, the set given by {1-$} cannot always be defined through a selection, and is therefore not a
natural set. Using these functions on non-natural sets will return unexpected results.

Examples: Chart expressions for set modifiers using set functions

Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression examples
below.

Script syntax and chart functions - Qlik Sense, August 2022 244

3 Chart expressions

MyTable:

Load

Year(Date) as Year,

Date#(Date, 'YYYY-MM-DD') as ISO_Date,
Date(Date#(Date, 'YYYY-MM-DD'), 'M/D/YYYY') as US_Date,
Country, Product, Amount

Inline

[Date, Country, Product, Amount
2018-02-20, canada, washer, 6
2018-07-08, Germany, Anchor bolt, 10
2018-07-14, Germany, Anchor bolt, 3
2018-08-31, France, Nut, 2
2018-09-02, czech Republic, Bolt, 1
2019-02-11, czech Republic, Bolt, 3
2019-07-31, czech Republic, washer, 6
2020-03-13, France, Anchor bolt, 1
2020-07-12, canada, Anchor bolt, 8
2020-09-16, France, washer, 1];

Chart expressions

Create a table in a Qlik Sense sheet with the following chart expressions.

Table - Set modifiers using set functions
Sum({<Country=P Sum({<Product=P Sum({<Country=E

Countr Sum ({<Year= ({<Year= ({<Product=
y (Amount) {2019}>}Country)>} {2019}>}Product)>} {Washer}>}Country)>}
Amount) Amount) Amount)
Totals 41 10 17 13
Canada 14 0 6 0
Czech 10 10 10 0
Republic
France 4 0 1 0
Germany 13 0 0 13
Explanation

¢ Dimensions:

o country

¢ Measures:
o Sum(Amount)
Sum amount with no set expression.
o sum({<Country=P({<Year={2019}>} Country)>} Amount)
Sum amount for the countries that are associated with year 2019. It will however not limit the
calculation to 2019.

Script syntax and chart functions - Qlik Sense, August 2022 245

3 Chart expressions

o sum({<Product=P({<Year={2019}>} Product)>} Amount)
Sum amount for the products that are associated with year 2019. It will however not limit the
calculation to 2019.

o sum({<Country=E({<Product={washer}>} Country)>} Amount)
Sum amount for the countries that are not associated with the product washer.

Set modifiers using set functions

Q

Country

F Y
Totals
Canada
Czech Republic
France

Germany

Examples

sum(
{$<Customer =
P({1<Product=
{'Shoe'}>}
Customer)>}
Sales)

sum(
{$<Customer =
P({1<Product=
{'Shoe'}>})>}
Sales)

sum(
{$<Customer =
P({1<Product=
{'Shoe'}>}
Supplier)>}
Sales)

sum(
{$<Customer =
E({1<Product=
{'Shoe'}>})>}
Sales)

Sum Sum({=Country=P({<Year= Sum({<Product=P({<Year= Sum({=Country=E({=Product=

(Amount) {2019}=} Country)=} Amount) {2019}=} Product)=} Amount) {Washer}>} Country)=} Amount)

41 10 17 13

14 1] 6 Q

10 10 10 0

4 (1] 1 Q

13 0 0 13
Results

Returns the sales for current selection, but only those customers that ever have
bought the product 'Shoe'. The element function P(') here returns a list of possible
customers; those that are implied by the selection 'Shoe' in the field Product.

Same as above. If the field in the element function is omitted, the function will return
the possible values of the field specified in the outer assignment.

Returns the sales for current selection, but only those customers that ever have
supplied the product 'Shoe', that is, the customer is also a supplier. The element
function P() here returns a list of possible suppliers; those that are implied by the
selection 'Shoe' in the field Product. The list of suppliers is then used as a selection in
the field Customer.

Returns the sales for current selection, but only those customers that never bought
the product 'Shoe'. The element function E() here returns the list of excluded
customers; those that are excluded by the selection 'Shoe' in the field Product.

Script syntax and chart functions - Qlik Sense, August 2022 246

3 Chart expressions

Inner and outer set expressions

Set expressions can be used inside and outside aggregation functions, and are enclosed in curly brackets.

When you use a set expression inside an aggregation function, it can look like this:
Example: Inner set expression

sum({$<vear={2021}>} sales)
Use a set expression outside the aggregation function if you have expressions with multiple aggregations
and want to avoid writing the same set expression in every aggregation function.

If you use an outer set expression, it must be placed at the beginning of the scope.
Example: Outer set expression

{<vear={2021}>} sum(Sales) / Count(distinct Customer)
If you use a set expression outside the aggregation function, you can also apply it on existing master
measures.

Example: Outer set expression applied to master measure

{<vear={2021}>} [Master Measure]

A set expression used outside aggregation functions affects the entire expression, unless it is enclosed in
brackets then the brackets define the scope. In the lexical scoping example below, the set expression is
only applied to the aggregation inside the brackets.

Example: Lexical scoping
({<year={2021}>} sum(Amount) / Count(distinct Customer)) - Avg(CustomerSales)

Rules

Lexical scope
The set expression affects the entire expression, unless it is enclosed in brackets. If so, the brackets define
the lexical scope.

Position
The set expression must be placed in the beginning of the lexical scope.

Context

The context is the selection that is relevant for the expression. Traditionally, the context has always been
the default state of current selection. But if an object is set to an alternate state, the context is the alternate
state of the current selection.

You can also define a context in the form of an outer set expression.

Inheritance

Inner set expressions have precedence over outer set expressions. If the inner set expression contains a
set identifier, it replaces the context. Otherwise, the context and the set expression will be merged.

Script syntax and chart functions - Qlik Sense, August 2022 247

3 Chart expressions

e {$<seteExpression>} - overrides the outer set expression

e {<SetExpression>} - is merged with the outer set expression

Element set assignment

The element set assignment determines how the two selections are merged. If a normal equals sign is
used, the selection in the inner set expression has precedence. Otherwise, the implicit set operator will be
used.

e {<Field={value}>} - this inner selection replaces any outer selection in “Field”.
e {<Field+={value}>} - this inner selection is merged with the outer selection in “Fie1d”, using the
union operator.

e {<Field*={value}>} - this inner selection is merged with the outer selection in “Fie1d”, using the
intersection operator.

Inheritance in multiple steps
The inheritance can occur in multiple steps. Examples:

¢ Current Selection — sum(amount)
The aggregation function will use the context, which here is the current selection.

e Current Selection — {<set1>} Sum(Amount)
setl will inherit from current selection, and the result will be the context for the aggregation function.

¢ Current Selection — {<setl1>} ({<Set2>} Sum(Amount))
set2 will inherit from set1, which in turn inherits from current selection, and the result will be the
context for the aggregation function.

The Aggr() function

The aggr) function creates a nested aggregation that has two independent aggregations. In the example
below, a count() is calculated for each value of pim, and the resulting array is aggregated using the sum()
function.

Example:

sum(Aggr(Count(X),Dim))
count() is the inner aggregation and sum() is the outer aggregation.

¢ The inner aggregation does not inherit any context from the outer aggregation.

* The inner aggregation inherits the context from the aggr OO function, which may contain a set
expression.

¢ Both the Aggr () function and the outer aggregation function inherit the context from an outer set
expression.

Tutorial - Creating a set expression

You can build set expressions to support data analysis. In this context, the analysis is often
referred to as set analysis. Set analysis offers a way of defining a scope that is different from
the set of records defined by the current selection in an app.

Script syntax and chart functions - Qlik Sense, August 2022 248

3 Chart expressions

What you will learn

This tutorial provides the data and chart expressions to build set expressions using set modifiers,
identifiers and operators.

Who should complete this tutorial

This tutorial is for app developers who are comfortable working with the script editor and chart expressions.

What you need to do before you start

A Qlik Sense Enterprise professional access allocation, which allows you to load data and create apps.

Elements in a set expression

Set expressions are enclosed in an aggregation function, such as sum(Q), Mmax(), Min(), Avg(), or Count().
Set expressions are constructed from building blocks known as elements. These elements are set
modifiers, identifiers, and operators.

Elements in a set expression

Set expression
|

S?t modifierl's
Sum(' {$k — {2021} >+1% —{'Sweden'}>}! Sales)

|
Set identifiers LSet operator

The set expression above, for example, is built from the aggregation sum(sales). The set expression is
enclosed in the outer curly brackets: { }

The first operand in the expression is: $<vear={2021}>

This operand returns sales for the year 2021 for the current selection. The modifier, <vear={2021}>,
contains the selection of the year 2021. The $ set identifier indicates that the set expression is based on
current selection.

The second operand in the expression is: 1<Country={"'sweden"'}>

This operand returns Sales for Sweden. The modifier, <Country={"sweden'}>, contains the selection of the
country Sweden. The 1 set identifier indicates that selections made in the app will be ignored.

Finally, the + set operator indicates that the expression returns a set consisting of the records that belongs
to any of the two set operands.

Creating a set expression tutorial

Complete the following procedures to create the set expressions shown in this tutorial.

Script syntax and chart functions - Qlik Sense, August 2022 249

3 Chart expressions

Create a new app and load data

Do the following:

Create a new app.

Click Script editor. Alternatively, click Prepare > Data load editor in the navigation bar.

Create a new section in the Data load editor.

Copy the following data and paste it into the new section: Set expression tutorial data (page 257)

o > 0N =

Click Load data. The data is loaded as an inline load.

Create set expressions with modifiers

The set modifier consists of one or more field names, each followed by a selection that should be made on
the field. The modifier is enclosed by angled brackets. For example, in this set expression:

sum ({<vear = {2015}>} sales)

The modifier is:

<Year = {2015}>

This modifier specifies that data from the year 2015 will be selected. The curly brackets in which the
modifier is enclosed indicate a set expression.

Do the following:

1. In a sheet, open the Assets panel from the navigation bar, and then click Charts.

[[] Assets [Properties

et
e Q
Fields
id Histogram
(.-'19
Master items #1 KPI
el | Linechart
Charts
ﬁ Rlan

2. Drag a KPI onto the sheet, and then click Add measure.

Script syntax and chart functions - Qlik Sense, August 2022 250

3 Chart expressions

fx
1 From a field
Country »
L First KPI
Year L4

3. Click sales, and then select sum(sales) for the aggregation.

4 Back

Aggregation

1 Sum(Sales) [}

» First KPI

Avg(Sales)
Min[5ales)

Max(Sales)

The KPI shows the sum of sales for all years.

Script syntax and chart functions - Qlik Sense, August 2022 251

3 Chart expressions

4. Copy and paste the KPI to create a new KPI.

Sum(Sales)

1.65M

- @ (18,0) 16x4

Data

Measures
First KPI

| Sum Sales 3

Second KPI

Add

5. Click the new KPI, click Sales under Measures, and then click Open Expression editor.

Sum(Sales)

1.65M

Sum(Sales)

1. 65M

L

@ (182) Elex2

Data

Measures
First KPI

Sum Sales ~

Expression

Sum(Sales)

Label Open Expression editor

S

The expression editor open with the aggregation sum(sales).

Script syntax and chart functions - Qlik Sense, August 2022 252

3 Chart expressions

Edit expression

Sum

O ox

SumiSales)

6. Inthe expression editor, create an expression to sum Sales for 2015 only:
i. Add curly brackets to indicate a set expression: sum({}sales)
i. Add angle brackets to indicate a set modifier: sum({<>}sales)

ii. Inthe angle brackets, add the field to be selected, in this case the field is vear, followed by an
equal sign. Next, enclose 2015 in another set of curly brackets. The resulting set modifier is:
{<Year={2015}>}.

The entire expression is:
sum({<Year={2015}>}sales)

Edit expression

Sum ({< ={2013}>}

@ o«

Sum{i<Year=[2015}~]15alas)

iii. Click Apply to save the expression and to close the expression editor. The sum of Sales for

Script syntax and chart functions - Qlik Sense, August 2022 253

3 Chart expressions

2015 is shown in the KPI.

Sum(Sales) Data
l 6 5 M Measures
] First KPI
o o a Sum | {<Year={2015}=}Sales ~

Sum({<Year={2015}>}Sales) Expression

k L Sum({<¥Year={2015}=15alex)
7188.6
=

Label

@ (18.2) Cl6x2

7. Create two more KPIs with the following expressions:
sum({<Year={2015,2016}>}sales)

The modifier in the above is <vear={2015,2016}>. The expression will return the sum of Sales for
2015 and 2016.

sum({<year={2015},Country={'Germany'}>} Sales)

The modifier in the above is <vyear={2015}, Country={'Germany'}>. The expression will return the
sum of Sales for 2015, where 2015 intersects with Germany.

Script syntax and chart functions - Qlik Sense, August 2022 254

3 Chart expressions

KPIs using set modifiers

Sum(Sales) Data

1.65M
] First KPI
Sum [<Year={2015,2016... =~

Sum({<Year={2015}>}Sales) Expression

k Sum({=Year={2015,2016}+}5
788.6

Label
[= | ﬁt‘
Sum({<Year={2015,2016}>}...
Number formatting
l . 65 M Auto v
B & ®(184) £i6x2 Master item
Sum({<Year={2015},Countr... P Addnew
77.19k s
Second KPI
Add

Add set identifiers

The set expressions above will use current selections as base, because an identifier was not used. Next,
add identifiers to specify the behavior when selections are made.

Do the following:
On your sheet, build or copy the following set expressions:
sum({$<yvear={"2015"}>}sales

The $ identifier will base the set expression on the current selections made in the data. This is also the
default behavior when an identifier is not used.

sum({1l<year={"2015"}>}sales)

Script syntax and chart functions - Qlik Sense, August 2022 255

3 Chart expressions

The 1 identifier will cause the aggregation of sum(sales) on 2015 to ignore the current selection. The value
of the aggregation will not change when the user makes other selections. For example, when Germany is
selected below, the value for the aggregate sum of 2015 does not change.

KPIs using set modifiers and identifiers

L Country))
Sumi{l=Year={"2015"}=]5ales)
788.6k
Alstria
Belgium
. Sum({S<vear={"2015"}}Sales)
Canada
77.19Kk
Finland
Framce
Sum({<Year={"2015"}=}5ales)
77.19k
Add operators

Set operators are used to include, exclude, or intersect data sets. All operators use sets as operands and
return a set as result.

You can use set operators in two different situations:

¢ To perform a set operation on set identifiers, representing sets of records in data.

» To perform a set operation on the element sets, on the field values, or inside a set modifier.

Do the following:

On your sheet, build or copy the following set expression:

sum({$<year={2015}>+1<Country={'Germany'}>}sales)

The plus sign (+) operator produces a union of the data sets for 2015 and Germany. As explained with set
identifiers above, the dollar sign ($) identifier means current selections will be used for the first operand,
<vear={2015}>, will be respected. The 1 identifier means selection will be ignored for the second operand,
<Country={'Germany"'}>.

Script syntax and chart functions - Qlik Sense, August 2022 256

3 Chart expressions

KPI using plus sign (+) operator

Data

sum({5<Year={2015}=+ l-:li'.aurdry:{'{'ﬁ-rma ny'}=}Sales) =

797.4k

rew

Measures
First KPI

Sum {$<Year={2015}>... ~

Expression

SumifS<Year={2015]=+1=

Alternatively, use a minus sign (-) to return a data set that consists of the records that belong to 2015 but
not Germany. Or, use an asterisk (*) to return a set consisting of the records that belong to both sets.

sum({$<year={2015}>-1<Country={'Germany'}>}sales)

sum({$<vear={2015}>*1<Country={'Germany'}>}Sales)

KPIs using operators

Data

>

Suml{s<Year={2 H=Country={ Germany'}>}5ales

Measures

797 4k

Sum {$<Year={2015}>... ~

Su rni{S{‘r’ear={2D15I-}-1{C§u ntry={'Germany'|=}Sales) =

711.4k

suml{S<Year=[2015}=" :-.-_-‘ wntry={' Germany'}=}Sale:

I, l9k

Expression

sum({5=<Year={2015]>-1=!

Label

Jx

Set expression tutorial data

Load script
Load the following data as an inline load and then create the chart expressions in the tutorial.

//Create table SalesByCountry
SalesByCountry:

Load * InTline [

Country, Year, Sales
Argentina, 2016, 66295.03
Argentina, 2015, 140037.89
Austria, 2016, 54166.09
Austria, 2015, 182739.87

Script syntax and chart functions - Qlik Sense, August 2022 257

3 Chart expressions

Belgium, 2016, 182766.87
Belgium, 2015, 178042.33
Brazil, 2016, 174492.67
Brazil, 2015, 2104.22
Canada, 2016, 101801.33
Canada, 2015, 40288.25
Denmark, 2016, 45273.25
Denmark, 2015, 106938.41
Finland, 2016, 107565.55
Finland, 2015, 30583.44
France, 2016, 115644.26
France, 2015, 30696.98
Germany, 2016, 8775.18
Germany, 2015, 77185.68
1;

Syntax for set expressions

The full syntax (not including the optional use of standard brackets to define precedence) is described
using Backus-Naur Formalism:

set expression ::= { set entity { set operator set entity } }
set _entity ::= set identifier [set modifier] | set modifier
set identifier ::=1 | $ | SN | $ N | bookmark id | bookmark name

F)o=0 = | 7
< field selection {, field selection } >

set operator

set modifier

field selection ::= field name [= | += | —= | *= | /=] element set
expression

element set expression ::= [-] element set { set operator element set }
element set ::= [field name] | { element list } | element function
element list ::= element { , element }

element function ::= (P | E) ([set expression] [field name])

element ::= field value | " search mask "

3.3 General syntax for chart expressions
The following general syntax structure can be used for chart expressions, with many optional parameters:

expression ::= (constant | expressionname | operatorl expression | expression operator2
expression | function | aggregation function | (expression))

where:

constant is a string (a text, a date or a time) enclosed by single straight quotation marks, or a number.
Constants are written without thousands separator and with a decimal point as decimal separator.

expressionname is the name (label) of another expression in the same chart.
operator1 is a unary operator (working on one expression, the one to the right).

operator2 is a binary operator (working on two expressions, one on each side).

function ::= functionname (parameters)
parameters ::= expression { , expression }

The number and types of parameters are not arbitrary. They depend on the function used.

Script syntax and chart functions - Qlik Sense, August 2022 258

3 Chart expressions

aggregationfunction ::= aggregationfunctionname (parameters2)
parameters2 ::= aggrexpression { , aggrexpression }

The number and types of parameters are not arbitrary. They depend on the function used.

3.4 General syntax for aggregations
The following general syntax structure can be used for aggregations, with many optional parameters:

aggrexpression ::= (fieldref | operatorl aggrexpression | aggrexpression operator2
aggrexpression | functioninaggr | (aggrexpression))

fieldref is a field name.

functionaggr ::= functionname (parameters2)

Expressions and functions can thus be nested freely, as long as fieldref is always enclosed by exactly one
aggregation function and provided the expression returns an interpretable value, Qlik Sense does not give
any error messages.

Script syntax and chart functions - Qlik Sense, August 2022 259

4 Operators

4 Operators
This section describes the operators that can be used in Qlik Sense. There are two types of operators:

¢ Unary operators (take only one operand)
¢ Binary operators (take two operands)

Most operators are binary.
The following operators can be defined:

¢ Bitoperators

¢ Logical operators

¢ Numeric operators
¢ Relational operators
 String operators

4.1 Bit operators

All bit operators convert (truncate) the operands to signed integers (32 bit) and return the
result in the same way. All operations are performed bit by bit. If an operand cannot be
interpreted as a number, the operation will return NULL.

Bit operators

Operator Full name Description

bitnot Bitinverse. Unary operator. The operation returns the logical inverse of the operand
performed bit by bit.

Example:

bitnot 17 returns -18

bitand Bit and. The operation returns the logical AND of the operands performed bit by bit.

Example:

17 bitand 7 returns 1

bitor Bit or. The operation returns the logical OR of the operands performed bit by bit.

Example:

17 bitor 7returns 23

Script syntax and chart functions - Qlik Sense, August 2022 260

4 Operators

Operator Fullname Description

bitxor Bit The operation returns the logical exclusive or of the operands performed
exclusive bit by bit.
or.
Example:

17 bitxor 7 returns 22

>> Bit right The operation returns the first operand shifted to the right. The number of
shift. steps is defined in the second operand.
Example:

8 >> 2returns 2

<< Bit left shift. The operation returns the first operand shifted to the left. The number of
steps is defined in the second operand.

Example:

8 << 2returns 32

4.2 Logical operators
All logical operators interpret the operands logically and return True (-1) or False (0) as result.
Logical operators

Operator Description

not Logical inverse. One of the few unary operators. The operation returns the
logical inverse of the operand.

and Logical and. The operation returns the logical and of the operands.
or Logical or. The operation returns the logical or of the operands.
Xor Logical exclusive or. The operation returns the logical exclusive or of the

operands. l.e. like logical or, but with the difference that the result is False if
both operands are True.

4.3 Numeric operators

All numeric operators use the numeric values of the operands and return a numeric value as
result.

Script syntax and chart functions - Qlik Sense, August 2022 261

4 Operators

Operator

+

4.4

Numeric operators

Description

Sign for positive number (unary operator) or arithmetic addition. The binary

operation returns the sum of the two operands.

Sign for negative number (unary operator) or arithmetic subtraction. The
unary operation returns the operand multiplied by -1, and the binary the

difference between the two operands.

Arithmetic multiplication. The operation returns the product of the two

operands.

Arithmetic division. The operation returns the ratio between the two

operands.

Relational operators

All relational operators compare the values of the operands and return True (-1) or False (0)

as the result. All relational operators are binary.

Operator

<

<>

Relational operators

Description

Less than. A numeric comparison is made if both operands can be
interpreted numerically. The operation returns the logical value of
the evaluation of the comparison.

Less than or equal. A numeric comparison is made if both
operands can be interpreted numerically. The operation returns
the logical value of the evaluation of the comparison.

Greater than. A numeric comparison is made if both operands can
be interpreted numerically. The operation returns the logical value
of the evaluation of the comparison.

Greater than or equal. A numeric comparison is made if both
operands can be interpreted numerically. The operation returns
the logical value of the evaluation of the comparison.

Equals. A numeric comparison is made if both operands can be
interpreted numerically. The operation returns the logical value of
the evaluation of the comparison.

Not equivalent to. A numeric comparison is made if both operands
can be interpreted numerically. The operation returns the logical
value of the evaluation of the comparison.

Script syntax and chart functions - Qlik Sense, August 2022

262

4 Operators

Operator

precedes

follows

4.5

Description

Unlike the < operator no attempt is made to make a numeric
interpretation of the argument values before the comparison. The
operation returns true if the value to the left of the operator has a
text representation which, in string comparison, comes before the
text representation of the value on the right.

Example:

'l ' precedes ' 2' returns FALSE
' 1' precedes ' 2'returns TRUE

as the ASCII value of a space (') is of less value than the ASCII
value of a number.

Compare this to:
'L ' < " 2" returns TRUE

''1' < ' 2'returns TRUE

Unlike the > operator no attempt is made to make a numeric
interpretation of the argument values before the comparison. The
operation returns true if the value to the left of the operator has a
text representation which, in string comparison, comes after the
text representation of the value on the right.

Example:

' 2' follows '1'returns FALSE
'2' follows ' 1' returns TRUE

as the ASCII value of a space (') is of less value than the ASCII
value of a number.

Compare this to:
''2' > ' 1'returns TRUE

''2' > '1 'returns TRUE

String operators

There are two string operators. One uses the string values of the operands and return a string
as result. The other one compares the operands and returns a boolean value to indicate

match.

Script syntax and chart functions - Qlik Sense, August 2022

263

4 Operators

&

String concatenation. The operation returns a text string, that consists of the two operand strings, one after
another.

Example:

'abc' & 'xyz' returns 'abcxyz'

like
String comparison with wildcard characters. The operation returns a boolean True (-1) if the string before

the operator is matched by the string after the operator. The second string may contain the wildcard
characters * (any number of arbitrary characters) or ? (one arbitrary character).

Example:
'abc' Tike 'a*' returns True (-1)
'abcd' 1ike 'a?c*' returns True (-1)

'abc' Tike 'a??bc’ returns False (0)

Script syntax and chart functions - Qlik Sense, August 2022 264

5 Script and chart functions

5 Script and chart functions

Transform and aggregate data using functions in data load scripts and chart expressions.

Many functions can be used in the same way in both data load scripts and chart expressions, but there are
a number of exceptions:

« Some functions can only be used in data load scripts, denoted by - script function.
¢ Some functions can only be used in chart expressions, denoted by - chart function.

e Some functions can be used in both data load scripts and chart expressions, but with differences in
parameters and application. These are described in separate topics denoted by - script function or -
chart function.

5.1 Analytic connections for server-side extensions (SSE)

Functions enabled by analytic connections will only be visible if you have configured the analytic
connections and Qlik Sense has started.

You configure the analytic connections in the QMC, see the topic " Creating an analytic connection" in the
guide Manage Qlik Sense sites.

In Qlik Sense Desktop, you configure the analytic connections by editing the Settings.inifile, see the topic'
Configuring analytic connections in Qlik Sense Desktop" in the guide Qlik Sense Desktop.

5.2 Aggregation functions

The family of functions known as aggregation functions consists of functions that take
multiple field values as their input and return a single result per group, where the grouping is
defined by a chart dimension or a group by clause in the script statement.

Aggregation functions include Sum(), Count(), Min(), Max(), and many more.

Most aggregation functions can be used in both the data load script and chart expressions, but the syntax
differs.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these
inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the
advanced function Aggr, in combination with a specified dimension.

When naming an entity, avoid assigning the same name to more than one field, variable, or measure.
There is a strict order of precedence for resolving conflicts between entities with identical names. This
order is reflected in any objects or contexts in which these entities are used. This order of precedence is as
follows:

Script syntax and chart functions - Qlik Sense, August 2022 265

5 Script and chart functions

 Inside an aggregation, a field has precedence over a variable. Measure labels are not relevant in
aggregations and are not prioritized.

« Outside an aggregation, a measure label has precedence over a variable, which in turn has
precedence over a field name.

« Additionally, outside an aggregation, a measure can be re-used by referencing its label, unless the
label is in fact a calculated one. In that situation, the measure drops in significance in order to
reduce risk of self-reference, and in this case the name will always be interpreted first as a measure
label, second as a field name, and third as a variable name.

Using aggregation functions in a data load script

Aggregation functions can only be used inside LOAD and SELECT statements.

Using aggregation functions in chart expressions

The parameter of the aggregation function must not contain other aggregation functions, unless these
inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the
advanced function Aggr, in combination with a specified dimension.

An aggregation function aggregates over the set of possible records defined by the selection. However, an
alternative set of records can be defined by using a set expression in set analysis.

How aggregations are calculated

An aggregation loops over the records of a specific table, aggregating the records in it. For example, Count
(<Field>) will count the number of records in the table where <Field> resides. Should you want to
aggregate just the distinct field values, you need to use the distinct clause, such as Count(distinct
<Field>).

If the aggregation function contains fields from different tables, the aggregation function will loop over the
records of the cross product of the tables of the constituent fields. This has a performance penalty, and for
this reason such aggregations should be avoided, particularly when you have large amounts of data.

Aggregation of key fields

The way aggregations are calculated means that you cannot aggregate key fields because it is not clear
which table should be used for the aggregation. For example, if the field <Key> links two tables, it is not
clear whether Count(<Key>) should return the number of records from the first or the second table.

However, if you use the distinct clause, the aggregation is well-defined and can be calculated.

So, if you use a key field inside an aggregation function without the distinct clause, Qlik Sense will return a
number which may be meaningless. The solution is to either use the distinct clause, or use a copy of the
key - a copy that resides in one table only.

For example, in the following tables, ProductID is the key between the tables.

ProductID key between Products and Details tables

Script syntax and chart functions - Qlik Sense, August 2022 266

5 Script and chart functions

Products Details
Productld # Productid »#
CategorylD Discount
Product OrderlD
QuantityPerUnit Sales
SupplierlD Quantity
UnitCost UnitPrice
ListPrice CustomerlD
UnitsinStock EmployeelD
UnitsOnOrder Freight
ShipperlD

Count(ProductID) can be counted either in the Products table (which has only one record per product -
ProductID is the primary key) or it can be counted in the Details table (which most likely has several
records per product). If you want to count the number of distinct products, you should use Count(distinct
ProductID). If you want to count the number of rows in a specific table, you should not use the key.

Basic aggregation functions

Basic aggregation functions overview

Basic aggregation functions are a group of the most common aggregation functions.

Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Basic aggregation functions in the data load script

FirstSortedValue

FirstSortedValue() returns the value from the expression specified in value that corresponds to the result
of sorting the sort_weight argument, for example, the name of the product with the lowest unit price. The
nth value in the sort order, can be specified in rank. If more than one resulting value shares the same sort_
weight for the specified rank, the function returns NULL. The sorted values are iterated over a number of
records, as defined by a group by clause, or aggregated across the full data set if no group by clause is
defined.

FirstSortedvValue ([distinct] expression, sort weight [, rank])

Script syntax and chart functions - Qlik Sense, August 2022 267

5 Script and chart functions

Max
Max() finds the highest numeric value of the aggregated data in the expression, as defined by a group by
clause. By specifying a rank n, the nth highest value can be found.

Max (expression[, rank])

Min
Min() returns the lowest numeric value of the aggregated data in the expression, as defined by a group by
clause. By specifying a rank n, the nth lowest value can be found.

Min (expression[, rank])

Mode

Mode() returns the most commonly-occurring value, the mode value, of the aggregated data in the
expression, as defined by a group by clause. The Mode() function can return numeric values as well as
text values.

Mode (expression)

Only

Only() returns a value if there is one and only one possible result from the aggregated data. If records
contain only one value then that value is returned, otherwise NULL is returned. Use the group by clause to
evaluate over multiple records. The Only() function can return numeric and text values.

Only (expression)

Sum

Sum() calculates the total of the values aggregated in the expression, as defined by a group by clause.
Sum ([distinct]expression)

Basic aggregation functions in chart expressions

Chart aggregation functions can only be used on fields in chart expressions. The argument expression of
one aggregation function must not contain another aggregation function.

FirstSortedValue

FirstSortedValue() returns the value from the expression specified in value that corresponds to the result
of sorting the sort_weight argument, for example, the name of the product with the lowest unit price. The
nth value in the sort order, can be specified in rank. If more than one resulting value shares the same sort_
weight for the specified rank, the function returns NULL.

FirstSortedValue - chart function([{SetExpression}] [DISTINCT] [TOTAL [<fld
{,f1d}>]] value, sort weight [, rank])

Max

Max() finds the highest value of the aggregated data. By specifying a rank n, the nth highest value can be
found.

Max - chart functionMax() finds the highest value of the aggregated data. By

specifying a rank n, the nth highest value can be found. You might also want

to look at FirstSortedValue and rangemax, which have similar functionality to
the Max function. Max([{SetExpression}] [TOTAL [<fld {,£f1d}>]] expr [,rank])

Script syntax and chart functions - Qlik Sense, August 2022 268

#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2

5 Script and chart functions

numeric ArgumentsArgumentDescriptionexprThe expression or field containing
the data to be measured.rankThe default value of rank is 1, which corresponds
to the highest value. By specifying rank as 2, the second highest value is
returned. If rank is 3, the third highest value is returned, and so
on.SetExpressionBy default, the aggregation function will aggregate over the
set of possible records defined by the selection. An alternative set of
records can be defined by a set analysis expression. TOTALIf the word TOTAL
occurs before the function arguments, the calculation is made over all
possible values given the current selections, and not just those that pertain
to the current dimensional value, that is, it disregards the chart
dimensions. By using TOTAL [<fld {.f1ld}>], where the TOTAL qualifier is
followed by a list of one or more field names as a subset of the chart
dimension variables, you create a subset of the total possible

values. DataCustomerProductUnitSalesUnitPrice
AstridaAA416AstridaAAl015AstridaBB99BetacabBB510BetacabCC220BetacabDD-
25CanutilityAA815CanutilityCC-19Examples and resultsExamplesResultsMax
(UnitSales)10, because this is the highest value in UnitSales.The value of an
order is calculated from the number of units sold in (UnitSales) multiplied
by the unit price.Max(UnitSales*UnitPrice)150, because this is the highest
value of the result of calculating all possible values of (UnitSales)*
(UnitPrice) .Max (UnitSales, 2)9, which is the second highest value.Max

(TOTAL UnitSales)10, because the TOTAL qualifier means the highest possible
value is found, disregarding the chart dimensions. For a chart with Customer
as dimension, the TOTAL qualifier will ensure the maximum value across the
full dataset is returned, instead of the maximum UnitSales for each

customer .Make the selection Customer B.Max ({1} TOTAL UnitSales)10,
independent of the selection made, because the Set Analysis expression {1}
defines the set of records to be evaluated as ALL, no matter what selection
is made.Data used in examples:ProductData:LOAD * inline

[Customer | Product|UnitSales|UnitPriceAstrida|AA|4|16Astrida|AA|10|15Astrida|B
B|9|9Betacab|BB|5|10Betacab|CC|2|20Betacab|DD| |25Canutility|AA|8|15Canutility
ICC||19] (delimiter is '|'); FirstSortedValue RangeMax ([{SetExpression}]
[DISTINCT] [TOTAL [<fld {,fld}>]] expr [,rank])

Min
Min() finds the lowest value of the aggregated data. By specifying a rank n, the nth lowest value can be

found.

Min - chart function([{SetExpression}] [DISTINCT] [TOTAL [<fld {,fld}>]] expr
[, rank])

Mode
Mode() finds the most commonly-occurring value, the mode value, in the aggregated data. The Mode()
function can process text values as well as numeric values.

Mode - chart function ({[SetExpression] [TOTAL [<fld {,fld}>]]} expr)

Script syntax and chart functions - Qlik Sense, August 2022 269

#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2

5 Script and chart functions

Only

Only() returns a value if there is one and only one possible result from the aggregated data. For example,
searching for the only product where the unit price =9 will return NULL if more than one product has a unit
price of 9.

Only - chart function([{SetExpression}] [DISTINCT] [TOTAL [<fld {,fld}>]]

expr)

Sum
Sum() calculates the total of the values given by the expression or field across the aggregated data.

Sum - chart function([{SetExpression}] [DISTINCT] [TOTAL [<fld {,fld}>]]
exprl])

FirstSortedValue

FirstSortedValue() returns the value from the expression specified in value that corresponds to the result
of sorting the sort_weight argument, for example, the name of the product with the lowest unit price. The
nth value in the sort order, can be specified in rank. If more than one resulting value shares the same sort_
weight for the specified rank, the function returns NULL. The sorted values are iterated over a number of
records, as defined by a group by clause, or aggregated across the full data set if no group by clause is
defined.

Syntax:
FirstSortedValue ([distinct] value, sort-weight [, rank])

Return data type: dual

Arguments:
Arguments
Argument Description
value The function finds the value of the expression value that corresponds to the result of
Expression sorting sort_weight.

sort-weight The expression containing the data to be sorted. The first (lowest) value of sort_weight

Expression is found, from which the corresponding value of the value expression is determined. If
you place a minus sign in front of sort_weight, the function returns the last (highest)
sorted value instead.

rank By stating a rank "n" larger than 1, you get the nth sorted value.
Expression
distinct If the word DISTINCT occurs before the function arguments, duplicates resulting from

the evaluation of the function arguments are disregarded.

Script syntax and chart functions - Qlik Sense, August 2022 270

5 Script and chart functions

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Scripting examples

Example

Temp:

LOAD * inTline [
Customer|Product|OrderNumber|UnitSales|CustomerID
Astrida|AA|1[10]|1
Astrida|AA|7[18]|1
Astrida|BB|4|9]|1
Astridalcc|6]2|1
Betacab|AA|5]4]|2
Betacab|BB|2|5]|2
Betacab|DD|12]25]|2
Canutility|AA|3]8]3
Canutility|cc|13]19|3
Divadip|AA|9]|16]|4
Divadip|AA|10|16]4
Divadip|DD|11]10|4

] (delimiter is '|");

FirstSortedvalue:

LOAD Customer,FirstSortedvalue(Product, UnitSales)
as MyProductwithsSmallestOrderByCustomer Resident
Temp Group By Customer;

Result

Customer
MyProductwithsmallestorderByCustomer
Astrida ccC

Betacab AA

Canutility AA

Divadip DD

The function sorts UnitSales from smallest
to largest, looking for the value of
Customer with the smallest value of
UnitSales, the smallest order.

Because CC corresponds to the smallest
order (value of UnitSales=2) for customer
Astrida. AA corresponds to the smallest
order (4) for customer Betacab, AA
corresponds to the smallest order (8) for
customer Canutility, and DD corresponds
to the smallest order (10) for customer
Divadip..

Script syntax and chart functions - Qlik Sense, August 2022

271

5 Script and chart functions

Example

Given that the Temp table is loaded as in the previous
example:

LOAD Customer,FirstSortedvalue(Product, -unitSales)
as MyProductwithLargestorderByCustomer Resident
Temp Group By Customer;

Given that the Temp table is loaded as in the previous
example:

LOAD Customer,FirstSortedvalue(distinct Product, -
UnitSales) as MyProductwithSmallestOrderByCustomer
Resident Temp Group By Customer;

FirstSortedValue - chart function

Result

Customer
MyProductWithLargestorderByCustomer
Astrida AA

Betacab DD

Canutility CC

Divadip -

A minus sign precedes the sort_weight
argument, so the function sorts the largest

first.

Because AA corresponds to the largest
order (value of UnitSales:18) for customer
Astrida, DD corresponds to the largest
order (12) for customer Betacab, and CC
corresponds to the largest order (13) for
customer Canutility. There are two identical
values for the largest order (16) for
customer Divadip, therefore this produces
a null result.

Customer
MyProductwithLargestorderByCustomer
Astrida AA

Betacab DD

Canutility cC
Divadip AA

This is the same as the previous example,
except the distinct qualifier is used. This
causes the duplicate result for Divadip to
be disregarded, allowing a non-null value
to be returned.

FirstSortedValue() returns the value from the expression specified in value that corresponds to the result
of sorting the sort_weight argument, for example, the name of the product with the lowest unit price. The
nth value in the sort order, can be specified in rank. If more than one resulting value shares the same sort_
weight for the specified rank, the function returns NULL.

Syntax:
FirstSortedValue ([{SetExpression}] [DISTINCT] [TOTAL [<fld {,fld}>]] wvalue,
sort weight [, rank])

Script syntax and chart functions - Qlik Sense, August 2022 272

5 Script and chart functions

Return data type: dual

Arguments:

Argument

value

sort_weight

rank

SetExpression

DISTINCT

TOTAL

Arguments

Description

Output field. The function finds the value of the expression value that corresponds
to the result of sorting sort_weight.

Input field. The expression containing the data to be sorted. The first (lowest) value
of sort_weight is found, from which the corresponding value of the value expression
is determined. If you place a minus sign in front of sort_weight, the function returns
the last (highest) sorted value instead.

By stating a rank "n" larger than 1, you get the nth sorted value.

By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set
analysis expression.

If the word DISTINCT occurs before the function arguments, duplicates resulting
from the evaluation of the function arguments are disregarded.

If the word TOTAL occurs before the function arguments, the calculation is made
over all possible values given the current selections, and not just those that pertain
to the current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one
or more field names as a subset of the chart dimension variables, you create a
subset of the total possible values.

Examples and results:

Customer
Astrida
Astrida
Astrida
Betacab
Betacab
Betacab
Canutility

Canutility

Data

Product UnitSales UnitPrice

AA

AA

BB

BB

CC

DD

AA

CcC

4 16
10 15
9 9

5 10
2 20
- 25
8 15
- 19

Script syntax and chart functions - Qlik Sense, August 2022 273

5 Script and chart functions

Example

firstsortedvalue (Product,
UnitPrice)

firstsortedvalue (Product,
UnitPrice, 2)

firstsortedvalue (Customer, -
UnitPrice, 2)

firstsortedvalue (Customer,
UnitPrice, 3)

firstsortedvalue (Customer, -
UnitPrice*unitSales, 2)

Data used in examples:

ProductData:
LOAD * inline [

Examples and results

Result

BB, which is the productwith the lowest unitprice(9).

BB, which is the productwith the second-lowest unitprice(10).

Betacab, which is the customerwith the product that has second-
highest unitprice(20).

NULL, because there are two values of customer (Astrida and
Canutility) with the samerank (third-lowest) unitprice(15).

Use the distinct qualifier to make sure unexpected null results do not
occur.

Canutility, which is the customer with the second-highest sales order
value unitpPrice multiplied by unitsales (120).

Ccustomer|Product|UnitSales|UnitPrice

Astrida|AA|4|16
AstridalAA|10]15
Astrida|BB|9]|9
Betacab|BB|5|10
Betacab|ccC|2]|20
Betacab|DD]| |25
Canutility|AA|8]15
Canutility|cc| |19

] (deTimiter is '"[');

Max

Max() finds the highest numeric value of the aggregated data in the expression, as defined by a group by
clause. By specifying a rank n, the nth highest value can be found.

Syntax:
Max (expr [, rank])

Return data type: numeric

Arguments:
Arguments
Argument Description
expr The expression or field containing the data to be measured.
Expression

Script syntax and chart functions - Qlik Sense, August 2022 274

5 Script and chart functions

Argument Description
rank The default value of rank is 1, which corresponds to the highest value. By specifying
Expression rank as 2, the second highest value is returned. If rank is 3, the third highest value is

returned, and so on.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Example:

Temp:

LOAD * inTline [
Customer|Product|OrderNumber|UnitSales|CustomerID
Astrida|AA|1[10]|1
Astrida|AA|7]18]|1
Astrida|BB|4|9|1
Astridalcc|6|2]|1
Betacab|AA|5]4]|2
Betacab|BB|2]|5]2
Betacab|DD
Canutility|DD|3]8
Canutility|cCC

1 (delimiter is '[');

Max:
LOAD Customer, Max(UnitSales) as MyMax Resident Temp Group By Customer;

Resulting table

Customer MyMax

Astrida 18

Betacab 5

Canutility 8
Example:

Given that the Temp table is loaded as in the previous example:

LOAD Customer, Max(UnitSales,2) as MyMaxRank2 Resident Temp Group By Customer;
Resulting table

Customer MyMaxRank2
Astrida 10

Script syntax and chart functions - Qlik Sense, August 2022 275

5 Script and chart functions

Customer MyMaxRank2
Betacab 4
Canutility -

Max - chart function
Max() finds the highest value of the aggregated data. By specifying a rank n, the nth highest value can be
found.

You might also want to look at FirstSortedValue and rangemax, which have similar
functionality to the Max function.

Syntax:
Max ([{SetExpression}] [TOTAL [<fld {,fld}>]] expr [,rank])

Return data type: numeric

Arguments:
Arguments

Argument Description

expr The expression or field containing the data to be measured.

rank The default value of rank is 1, which corresponds to the highest value. By specifying
rank as 2, the second highest value is returned. If rank is 3, the third highest value is
returned, and so on.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set
analysis expression.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made

over all possible values given the current selections, and not just those that pertain
to the current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one
or more field names as a subset of the chart dimension variables, you create a
subset of the total possible values.

Examples and results:

Data

Customer Product UnitSales UnitPrice

Astrida AA 4 16

Script syntax and chart functions - Qlik Sense, August 2022 276

5 Script and chart functions

Customer Product

Astrida AA
Astrida BB
Betacab BB
Betacab CC
Betacab DD

Canutility AA

Canutility CcC

Examples
Max(UnitSales)

The value of an order is
calculated from the
number of units sold in

(unitsales) multiplied by
the unit price.

Max
(Unitsales*UnitPrice)

Max(UnitSales, 2)

Max (TOTAL UnitSales)

Make the selection
Customer B.

Max ({1}
TOTAL UnitSales)

Data used in examples:

ProductData:
LOAD * inline [

UnitSales UnitPrice

10 15
9 9
5 10
2 20
- 25
8 15
- 19

Examples and results

Results
10, because this is the highest value in unitsales.

150, because this is the highest value of the result of calculating all
possible values of (unitsales)*(unitPrice).

9, which is the second highest value.

10, because the TOTAL qualifier means the highest possible value is
found, disregarding the chart dimensions. For a chart with Customer as
dimension, the TOTAL qualifier will ensure the maximum value across the
full dataset is returned, instead of the maximum UnitSales for each
customer.

10, independent of the selection made, because the Set Analysis
expression {1} defines the set of records to be evaluated as ALL, ho matter
what selection is made.

Customer|Product|UnitSales|UnitPrice

AstridalAA|4|16
Astrida|AA|10]15
Astrida|BB|9|9
Betacab|BB|5|10
Betacab|ccC|2]20
Betacab|DD| |25

Script syntax and chart functions - Qlik Sense, August 2022 277

5 Script and chart functions

Canutility|AA|8]15
Canutility|cc| |19
] (deTimiter is '"[");

See also:

p FirstSortedValue - chart function (page 272)
p RangeMax (page 920)

Min
Min() returns the lowest numeric value of the aggregated data in the expression, as defined
by a group by clause. By specifying a rank n, the nth lowest value can be found.

Syntax:
Min (expr [, rank])

Return data type: numeric

Arguments:
Arguments
Argument Description
expr The expression or field containing the data to be measured.
Expression
rank The default value of rank is 1, which corresponds to the lowest value. By specifying
Expression rank as 2, the second lowest value is returned. If rank is 3, the third lowest value is

returned, and so on.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Example:

Temp:

LOAD * inTline [
Customer|Product|OrderNumber|UnitSales|CustomerID
Astrida|AA|1]10]|1
Astrida|AA|7]18]|1
Astrida|BB|4|9]|1
Astridalcc|6]2]|1
Betacab|AA|5(4]|2
Betacab|BB|2|5]|2
Betacab|DD
Canutility|DD|3]|8

Script syntax and chart functions - Qlik Sense, August 2022 278

5 Script and chart functions

Canutility]|ccC

1 (delimiter is '|');

Min:

LOAD Customer, Min(UnitSales) as MyMin Resident Temp Group By Customer;

Resulting table

Customer MyMin

Astrida 2

Betacab 4

Canutility 8
Example:

Given that the Temp table is loaded as in the previous example:

LOAD Customer, Min(UnitSales,2) as MyMinRank2 Resident Temp Group By Customer;
Resulting table

Customer MyMinRank2
Astrida 9
Betacab 5
Canutility -

Min - chart function

Min() finds the lowest value of the aggregated data. By specifying a rank n, the nth lowest value can be
found.

You might also want to look at FirstSortedValue and rangemin, which have similar
functionality to the Min function.

Syntax:
Min ({ [SetExpression] [TOTAL [<fld {,fld}>]]} expr [,rank])

Return data type: numeric

Arguments:
Arguments
Argument Description
expr The expression or field containing the data to be measured.

Script syntax and chart functions - Qlik Sense, August 2022 279

5 Script and chart functions

Argument Description

rank The default value of rank is 1, which corresponds to the lowest value. By specifying
rank as 2, the second lowest value is returned. If rank is 3, the third lowest value is
returned, and so on.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set
analysis expression.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made
over all possible values given the current selections, and not just those that pertain
to the current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one
or more field names as a subset of the chart dimension variables, you create a
subset of the total possible values.

Examples and results:

Data

Customer Product UnitSales UnitPrice

Astrida AA 4 16
Astrida AA 10 15
Astrida BB 9 9

Betacab BB 5 10
Betacab CC 2 20
Betacab DD - 25
Canutility AA 8 15
Canutility CC - 19

The Min() function must return a non-NULL value from the array of values given by the
expression, if there is one. So in the examples, because there are NULL values in the data, the
function returns the first non-NULL value evaluated from the expression.

Examples and results

Examples Results

Min(unitsales) 2, because this is the lowest non-NULL value in unitsales.

Script syntax and chart functions - Qlik Sense, August 2022 280

5 Script and chart functions

Examples Results
The value of an order is 40, because this is the lowest non-NULL value result of calculating all
calculated from the possible values of (unitsales)*(unitPrice).

number of units sold in
(unitsales) multiplied by
the unit price.

Min
(Unitsales*UnitPrice)

Min(unitsales, 2) 4, which is the second lowest value (after the NULL values).

Min(TOTAL UnitsSales) 2, because the TOTAL qualifier means the lowest possible value is found,
disregarding the chart dimensions. For a chart with Customer as
dimension, the TOTAL qualifier will ensure the minimum value across the
full dataset is returned, instead of the minimum UnitSales for each

customer.
Make the selection 2, which is independent of the selection of Customer B.
Customer B.

The Set Analysis expression {1} defines the set of records to be evaluated
Min({1} as ALL, no matter what selection is made.

TOTAL UnitSales)

Data used in examples:

ProductData:

LOAD * dinTline [
Customer|Product|Unitsales|UnitPrice
Astrida|AA|4|16
Astrida|AA|10]15
Astrida|BB|9]|9
Betacab|BB|5]10
Betacab|cC|2]|20
Betacab|DD]| |25
Canutility|AA|8]15
Canutility|cc| |19

] (delimiter is '|");

See also:

p FirstSortedValue - chart function (page 272)

p RangeMin (page 924)

Mode

Mode() returns the most commonly-occurring value, the mode value, of the aggregated data
in the expression, as defined by a group by clause. The Mode() function can return numeric

values as well as text values.

Syntax:
Mode (expr)

Script syntax and chart functions - Qlik Sense, August 2022

281

5 Script and chart functions

Return data type: dual

Arguments

Argument Description

expr Expression The expression or field containing the data to be measured.

Limitations:

If more than one value is equally commonly occurring, NULL is returned.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Scripting examples

Example Result

Temp: MyMostOftenSoldProduct
LOAD * inTline [

Customer|Product|OrderNumber|uUnitSales|CustomerID AA

Astrida|AA|1[10]|1
Astrida|AA|7[18]|1
Astrida|BB|4]9|1
Astridalcc|6]2|1
Betacab|AA|5]4]|2
Betacab|BB|2|5]|2
Betacab|DD
Canutility|DD|3]|8
Canutility]|ccC

1 (delimiter is '|');

because AA is the only product
sold more than once.

Mode:
LOAD Customer, Mode(Product) as MyMostoftensoldProduct
Resident Temp Group By Customer;

Mode - chart function
Mode() finds the most commonly-occurring value, the mode value, in the aggregated data. The Mode()

function can process text values as well as numeric values.

Syntax:
Mode ({ [SetExpression] [TOTAL [<fld {,fld}>]]} expr)

Script syntax and chart functions - Qlik Sense, August 2022 282

5 Script and chart functions

Return data type: dual

Arguments:

Argument
expr

SetExpression

TOTAL

Arguments

Description
The expression or field containing the data to be measured.

By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set
analysis expression.

If the word TOTAL occurs before the function arguments, the calculation is made
over all possible values given the current selections, and not just those that pertain
to the current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one
or more field names as a subset of the chart dimension variables, you create a
subset of the total possible values.

Examples and results:

Data

Product UnitSales UnitPrice

Customer

Astrida AA
Astrida AA
Astrida BB
Betacab BB
Betacab CcC
Betacab DD
Canutility AA
Canutility cC
Examples

Mode (UnitPrice)

Make the selection

Customer A.

4 16
10 15
9 9

5 10
2 20
- 25
8 15
- 19

Examples and results

Results

15, because this is the most commonly-occurring value in unitsales.

Returns NULL (-). No single value occurs more often than another.

Script syntax and chart functions - Qlik Sense, August 2022 283

5 Script and chart functions

Examples Results

Mode (Product) AA, because this is the most commonly occurring value in product.

Make the selection

Customer A Returns NULL (-). No single value occurs more often than another.

Mode 15, because the TOTAL qualifier means the most commonly occurring value is

(TOTAL UnitPrice) still 15, even disregarding the chart dimensions.

Make the selection 15, independent of the selection made, because the Set Analysis expression

Customer B. {1} defines the set of records to be evaluated as ALL, no matter what selection
is made.

Mode ({1}

TOTAL UnitPrice)

Data used in examples:

ProductData:

LOAD * inTline [
Customer|Product|UnitSales|uUnitPrice
Astrida|AA|4|16
Astridal|AA|10]15
Astrida|BB|9|9
Betacab|BB|5|10
Betacab|ccC|2]|20
Betacab|DD| |25
Canutility|AA|8]15
Canutility|cc| |19

1 (delimiter is '|");

See also:

p Avg - chart function (page 326)
p Median - chart function (page 362)

Only

Only() returns a value if there is one and only one possible result from the aggregated data. If
records contain only one value then that value is returned, otherwise NULL is returned. Use
the group by clause to evaluate over multiple records. The Only() function can return numeric
and text values.

Syntax:
Only (expr)

Return data type: dual

Arguments

Argument Description

expr Expression The expression or field containing the data to be measured.

Script syntax and chart functions - Qlik Sense, August 2022 284

5 Script and chart functions

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Temp:

LOAD * 1inTine [
Customer|Product|OrderNumber|UnitSales|CustomerIbD
Astrida|AA|1]10]|1

Astrida|AA|7]18|1

Astrida|BB|4|9]|1

Astridalcc|6|2]|1

Betacab|AA|5|4]|2

Betacab|BB|2]|5]2

Betacab|DD

Canutility|DD|3]8

Canutility|cCC

1 (delimiter is '[');

only:

LOAD Customer, Only(CustomerID) as MyUniqIDCheck Resident Temp Group By Customer;

Resulting table
Customer MyUnigIDCheck

Astrida 1

because only customer Astrida has complete records that include Customer|D.

Only - chart function

Only() returns a value if there is one and only one possible result from the aggregated data. For example,
searching for the only product where the unit price =9 will return NULL if more than one product has a unit
price of 9.

Syntax:
Only ([{SetExpression}] [TOTAL [<fld {,fld}>]] expr)

Return data type: dual

Arguments:
Arguments
Argument Description
expr The expression or field containing the data to be measured.

Script syntax and chart functions - Qlik Sense, August 2022 285

5 Script and chart functions

Argument Description

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set
analysis expression.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made
over all possible values given the current selections, and not just those that pertain
to the current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one
or more field names as a subset of the chart dimension variables, you create a
subset of the total possible values.

Use Only() when you want a NULL result if there are multiple possible values in the sample

data.

Examples and results:

Customer Product

Astrida AA
Astrida AA
Astrida BB
Betacab BB
Betacab CC
Betacab DD

Canutility AA

Canutility CcC

Examples

only({<UnitPrice=
{9}>} Product)

only({<Product=
{DD}>} Customer)

only({<UnitPrice=
{20}>} unitsales)

Data

UnitSales UnitPrice

4 16
10 15
9 9

5 10
2 20
- 25
8 15
- 19

Examples and results

Results

BB, because this is the only productthat has a unitprice of '9".

Betacab, because it is the only customer selling a Product called 'DD'.

The number of unitsales where unitpriceis 20 is 2, because there is only
one value of unitsales where the unitprice =20.

Script syntax and chart functions - Qlik Sense, August 2022 286

5 Script and chart functions

Examples Results

only({<UnitPrice= NULL, because there are two values of unitsales where the unitprice =15.
{15}>} unitsales)

Data used in examples:

ProductData:

LOAD * inline [
Customer|Product|UnitSales|UnitPrice
Astrida|AA|4|16
Astrida|AA|10]15
Astrida|BB|9|9
Betacab|BB|5]10
Betacab|ccC|2]20
Betacab|DD]| |25
Canutility|AA|8]15
Canutility|cc| |19

] (delimiter is '|");

Sum

Sum() calculates the total of the values aggregated in the expression, as defined by a group
by clause.

Syntax:
sum ([distinct] expr)

Return data type: numeric

Arguments:
Arguments
Argument Description
distinct If the word distinct occurs before the expression, all duplicates will be disregarded.

expr Expression = The expression or field containing the data to be measured.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Temp:

LOAD * dinTline [
customer|Product|orderNumber|UnitSales|CustomerID
Astrida|AA|1]10]|1

Astrida|AA|7|18]|1

Astrida|BB|4]9]|1

Astridalcc|6]2]|1

Script syntax and chart functions - Qlik Sense, August 2022 287

5 Script and chart functions

Betacab|AA|5(4]|2

Betacab|BB|2|5|2

Betacab|DD

Canutility|DD|3]8

Canutility|cC

1 (delimiter is '[');

sum:

LOAD Customer, Sum(UnitSales) as MySum Resident Temp Group By Customer;

Resulting table

Customer MySum
Astrida 39
Betacab 9
Canutility 8

Sum - chart function

Sum() calculates the total of the values given by the expression or field across the aggregated data.

Syntax:
Sum([{SetExpression}] [DISTINCT] [TOTAL ([<fld {,fld}>]] expr])

Return data type: numeric

Arguments:
Arguments

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set
analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting
from the evaluation of the function arguments are disregarded.

Although the DISTINCT qualifier is supported, use it only with extreme
caution because it may mislead the reader into thinking a total value is
shown when some data has been omitted.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made

over all possible values given the current selections, and not just those that pertain
to the current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one
or more field names as a subset of the chart dimension variables, you create a
subset of the total possible values.

Script syntax and chart functions - Qlik Sense, August 2022 288

5 Script and chart functions

Examples and results:

Data
Customer Product UnitSales
Astrida AA 4
Astrida AA 10
Astrida BB 9
Betacab BB 5
Betacab CC 2
Betacab DD -
Canutility AA 8
Canutility CC -
Examples
sum(unitsales)

sum(UnitSales*UnitPrice)

UnitPrice

16

15

9

10

20

25

15

19

Examples and results

Results

38. The total of the values in unitsales.

505. The total of unitPrice multiplied by unitsales aggregated.

sum 505 for all rows in the table as well as the total, because the TOTAL

(TOTAL UnitSales*UnitPrice)

dimensions.

Make the selection customer B.

qualifier means the sum is still 505, disregarding the chart

505, independent of the selection made, because the Set Analysis

expression {1} defines the set of records to be evaluated as ALL, no

sum({1}
TOTAL UnitSales*UnitPrice)

Data used in examples:

ProductData:

LOAD * inTline [
Customer|Product|UnitSales|uUnitPrice
AstridalAA|4|16
Astridal|AA|10]|15
Astrida|BB|9|9
Betacab|BB|5|10
Betacab|ccC|2]|20
Betacab|DD| |25
Canutility|AA|8]15
Canutility|cc]| |19

] (deTimiter is '"[");

matter what selection is made.

Script syntax and chart functions - Qlik Sense, August 2022

289

5 Script and chart functions

Counter aggregation functions

Counter aggregation functions return various types of counts of an expression over a number of records in
a data load script, or a number of values in a chart dimension.

Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Counter aggregation functions in the data load script

Count
Count() returns the number of values aggregated in expression, as defined by a group by clause.

Count ([distinct] expression | *)

MissingCount
MissingCount() returns the number of missing values aggregated in the expression, as defined by a group
by clause.

MissingCount ([distinct] expression)

NullCount
NullCount() returns the number of NULL values aggregated in the expression, as defined by a group by
clause.

NullCount ([distinct] expression)

NumericCount
NumericCount() returns the number of numeric values found in the expression, as defined by a group by
clause.

NumericCount ([distinct] expression)

TextCount
TextCount() returns the number of field values that are non-numeric aggregated in the expression, as
defined by a group by clause.

TextCount ([distinct] expression)
Counter aggregation functions in chart expressions
The following counter aggregation functions can be used in charts:

Count
Count() is used to aggregate the number of values, text and numeric, in each chart dimension.

Count - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]}

expr)

Script syntax and chart functions - Qlik Sense, August 2022 290

5 Script and chart functions

MissingCount
MissingCount() is used to aggregate the number of missing values in each chart dimension. Missing
values are all non-numeric values.

MissingCount - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld
{,£1d}>]] expr)

NullCount
NullCount() is used to aggregate the number of NULL values in each chart dimension.

NullCount - chart function({[SetExpression] [DISTINCT] [TOTAL ([<fld {,fld}>]1]}

expr)

NumericCount
NumericCount() aggregates the number of numeric values in each chart dimension.

NumericCount - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld
{,£f1d}>]]} expr)

TextCount
TextCount() is used to aggregate the number of field values that are non-numeric in each chart dimension.

TextCount - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld
{,f1d}>11} expr)

Count

Count() returns the number of values aggregated in expression, as defined by a group by
clause.

Syntax:
Count([distinct] expr)

Return data type: integer

Arguments:
Arguments
Argument Description
expr The expression or field containing the data to be measured.
distinct If the word distinct occurs before the expression, all duplicates are disregarded.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Script syntax and chart functions - Qlik Sense, August 2022 291

5 Script and chart functions

Scripting examples

Example Result
Temp: Customer OrdersByCustomer
LOAD * inTline [Astrida 3
Customer|Product|OrderNumber|unitSales|UnitPrice Betacab 3
Astrida|AA|l|4]|16 Canutility 2
Astrida|AA|7[10(|15 Divadip 2
Astrida|BB|4]|9]9 As long as the dimension Customer is
Betacab|cc|65]10 included in the table on the sheet, otherwise
Betacab|AA|5]2]20]
Betacab|BB|1]|25] 25 the result for OrdersByCustomer is 3, 2.
Canutility|AA|3]|8]15
Canutility|cc|| |19
Divadip|cc|2]4]16
Divadip|DD|3]1]25
1 (delimiter is '|');
Countl:
LOAD Customer,Count(OrderNumber) as
ordersByCustomer Resident Temp Group By Customer;
Given that the Temp table is loaded as in the previous TotalorderNumber
example: 10
LOAD Count(OorderNumber) as TotalorderNumber
Resident Temp;
Given that the Temp table is loaded as in the first TotalorderNumber
example: 8
Because there are two values of
LOAD Count(distinct OorderNumber) as OrderNumber with the same value, 1, and
TotalorderNumber Resident Temp; one null value.

Count - chart function

Count() is used to aggregate the number of values, text and numeric, in each chart dimension.

Syntax:
Count ({ [SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]} expr)

Return data type: integer

Arguments:
Arguments
Argument Description
expr The expression or field containing the data to be measured.

Script syntax and chart functions - Qlik Sense, August 2022 292

5 Script and chart functions

Argument Description

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set
analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting
from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made
over all possible values given the current selections, and not just those that pertain
to the current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one
or more field names as a subset of the chart dimension variables, you create a
subset of the total possible values.

Examples and results:

Data

Customer Product OrderNumber UnitSales Unit Price

Astrida AA 1 4 16
Astrida AA 7 10 15
Astrida BB 4 9 9

Betacab BB 6 5 10
Betacab CcC 5 2 20
Betacab DD 1 25 25
Canutility AA 3 8 15
Canutility cC 19
Divadip AA 2 4 16
Divadip DD 3 25

The following examples assume that all customers are selected, except where stated.

Script syntax and chart functions - Qlik Sense, August 2022 293

5 Script and chart functions

Example

Count(OorderNumber)

Count(Customer)

Count (DISTINCT
[Customer])

Given that customer
Canutility is selected

Count(orderNumber)/Count
({1} TOTAL OrderNumber)

Given that customers
Astrida and Canutility are
selected

Count(TOTAL <Product>
orderNumber)

Data used in examples:

Temp:

LOAD * inline [

Examples and results
Result

10, because there are 10 fields that could have a value for OrderNumber,
and all records, even empty ones, are counted.

"0" counts as a value and not an empty cell. However, if a
measure aggregates to 0 for a dimension, that dimension will
not be included in charts.

10, because Count evaluates the number of occurrences in all fields.

4, because using the Distinct qualifier, Count only evaluates unique
occurrences.

0.2, because the expression returns the number of orders from the
selected customer as a percentage of orders from all customers. In this
case 2/10.

5, because that is the number of orders placed on products for the
selected customers only and empty cells are counted.

Customer|Product|OrderNumber|unitSales|uUnitPrice

Astridal|AA|1|4]16
AstridalAA|7]10]15
Astrida|BB|4|9]|9
Betacab|cC|6]5]10
Betacab|AA|5]2]20
Betacab|BB|1|25| 25
Canutility|AA|3]8]15
Canutility|cc|| |19
Divadip|cC|2]4]|16
Divadip|DD|3]1]|25

] (delimiter is '|");

MissingCount

MissingCount() returns the number of missing values aggregated in the expression, as
defined by a group by clause.

Syntax:
MissingCount ([

distinct]

expr)

Script syntax and chart functions - Qlik Sense, August 2022

294

5 Script and chart functions

Return data type: integer
Arguments:

Arguments

Argument Description

expr Expression The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates are disregarded.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a

sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto

to Custom, then deselect numerical and alphabetical sorting.

Scripting examples
Example

Temp:

LOAD * inline [
Customer|Product|OrderNumber|unitSales|uUnitPrice
AstridalAA|1|4]16

AstridalAA|7]10]15

Astrida|BB|4|9]|9

Betacab|cC|6]5]10

Betacab|AA|5]2]20

Betacab|BB| || 25

Canutility|AA|]]15

Canutility|cc| |19

Divadip|cC|2]|4]|16

Divadip|DD|3]1]|25

1 (delimiter is '|');

MissCountl:

LOAD Customer,MissingCount(OrderNumber) as
MissingOrdersByCustomer Resident Temp Group By Customer;

Load MissingCount(OorderNumber) as TotalMissingCount
Resident Temp;

Given that the Temp table is loaded as in the previous example:

LOAD MissingCount(distinct OorderNumber) as
TotalMissingCountDistinct Resident Temp;

MissingCount - chart function

Result

Customer
MissingordersByCustomer
Astrida 0

Betacab 1

Canutility 2

Divadip 0

The second statement gives:

TotalMissingCount
3

in a table with that dimension.

TotalMissingCountDistinct
1

Because there is only
oneOrderNumber one missing
value.

MissingCount() is used to aggregate the number of missing values in each chart dimension. Missing

values are all non-numeric values.

Script syntax and chart functions - Qlik Sense, August 2022

295

5 Script and chart functions

Syntax:
MissingCount ({ [SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]} expr)

Return data type: integer

Arguments:
Arguments

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set
analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting
from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made

over all possible values given the current selections, and not just those that pertain
to the current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one
or more field names as a subset of the chart dimension variables, you create a
subset of the total possible values.

Examples and results:

Data

Customer Product OrderNumber UnitSales Unit Price

Astrida AA 1 4 16
Astrida AA 7 10 15
Astrida BB 4 9 9

Betacab BB 6 5 10
Betacab CC 5 2 20
Betacab DD 25
Canutility AA 15
Canutility CC 19
Divadip AA 2 4 16
Divadip DD 3 25

Script syntax and chart functions - Qlik Sense, August 2022 296

5 Script and chart functions

Examples and results

Example Result

MissingCount([OrderNumber]) 3 because 3 of the 10 OrderNumber fields are empty
"0" counts as a value and not an empty cell. However, if
a measure aggregates to 0 for a dimension, that
dimension will not be included in charts.

MissingCount The expression returns the number of incomplete orders from the

([orderNumber]) /MissingCount

selected customer as a fraction of incomplete orders from all
({1} Total [OrderNumber])

customers. There is a total of 3 missing values for OrderNumber for
all customers. So, for each Customer that has a missing value for
Product the resultis 1/3.

Data used in example:

Temp:

LOAD * inline [
Customer|Product|OrderNumber|UnitSales|UnitPrice
Astridal|AA|1|4]16
Astrida|AA|7|10]15
Astrida|BB|4|9]|9
Betacab|cC|6]5]10
Betacab|AA|5]2]20
Betacab|BB| || 25
Canutility|AA]| |15
Canutility|cc| |19
Divadip|ccC|2]|4]16
Divadip|DD|3]|1]25

1 (delimiter is '[');

NullCount

NullCount() returns the number of NULL values aggregated in the expression, as defined by
a group by clause.

Syntax:
NullCount ([distinct] expr)

Return data type: integer
Arguments:

Arguments

Argument Description
expr Expression The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates are disregarded.

Script syntax and chart functions - Qlik Sense, August 2022 297

5 Script and chart functions

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Scripting examples

Example Result

Set NULLINTERPRET = NULL; Customer NullordersByCustomer
Temp: Astrida 0O

LOAD * inTline [Betacab 0O
Customer|Product|OrderNumber|UnitSales|CustomerID Canutility 1

Astrida|AA|1[10]|1
Astrida|AA|7]18]|1

Astrida|BB|4]9]1 The second statement gives:
Astridalcc|6|2]|1

Betacab|AA|5|4]|2 TotalNullCount

Betacab|BB|2]|5]2 1

Betacab|DD| || in a table with that dimension, because

Canutility|AA|3]8]

CanutiTlity|CC|NULL] |

1 (delimiter is '['");

Set NULLINTERPRET=;

NullcCountl:

LOAD Customer,NullCount(OorderNumber) as
NullordersByCustomer Resident Temp Group By
Customer;

only one record contains a null value.

LOAD NullcCount(orderNumber) as TotalNullCount
Resident Temp;

NullCount - chart function

NullCount() is used to aggregate the number of NULL values in each chart dimension.

Syntax:
NullCount ({ [SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]} expr)

Return data type: integer

Arguments:
Arguments
Argument Description
expr The expression or field containing the data to be measured.

Script syntax and chart functions - Qlik Sense, August 2022 298

5 Script and chart functions

Argument Description

set_ By default, the aggregation function will aggregate over the set of possible records

expression defined by the selection. An alternative set of records can be defined by a set analysis
expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from

the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Examples and results:

Examples and results

Example Result
NullCount 1 because we have introduced a null value using Nullinterpret in the inline
([OrderNumber]) LOAD statement.

Data used in example:

Set NULLINTERPRET = NULL;
Temp:

LOAD * inline [
Customer|Product|OrderNumber|UnitSales|CustomerID
Astrida|AA|1]10]|1
Astrida|AA|7|18]|1
Astrida|BB|4|9]|1
Astridalcc|6|2]|1
Betacab|AA|5|4]|2
Betacab|BB|2|5]2
Betacab|DD| | |
Canutility|AA|3]8]
Canutility|CC|NULL] |

] (delimiter is '|");

Set NULLINTERPRET=;

NumericCount
NumericCount() returns the number of numeric values found in the expression, as defined by

a group by clause.

Syntax:
NumericCount ([distinct] expr)

Script syntax and chart functions - Qlik Sense, August 2022 299

5 Script and chart functions

Return data type: integer

Arguments:

Arguments

Argument Description

expr Expression The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates are disregarded.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a

sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Scripting example

Example

LOAD NumericCount(OorderNumber) as
TotalNumericCount Resident Temp;

Given that the Temp table is loaded as in the
previous example:

LOAD NumericCount(distinct OrderNumber) as
TotalNumeriCCountDistinct Resident Temp;

Example:

Temp:
LOAD * inTline [

Result

The second statement gives:
TotalNumericCount

7

in a table with that dimension.

TotalNumericCountDistinct

6

Because there is one OrderNumber that duplicates
another, so the result is 6 that are not duplicates..

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1l|4]|16
Astrida|AA|7[10]|15
Astrida|BB|4]9]9
Betacab|ccC|6|5]10
Betacab|AA|5]2]20
Betacab|BB| || 25
Ccanutility|AA|| |15
Canutility|cc| []19
Divadip|cC|2]|4]16
Divadip|DD|7]1]25

1 (delimiter is '[');
NumCountl:

LOAD Customer,NumericCount(OrderNumber) as NumericCountByCustomer Resident Temp Group By

Customer;

Script syntax and chart functions - Qlik Sense, August 2022 300

5 Script and chart functions

Customer
Astrida
Betacab
Canutility

Divadip

Resulting table

NumericCountByCustomer

3

2
0
2

NumericCount - chart function

NumericCount() aggregates the number of numeric values in each chart dimension.

Syntax:

NumericCount ({ [SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]} expr)

Return data type: integer

Arguments:

Argument
expr

set_
expression

DISTINCT

TOTAL

Arguments

Description
The expression or field containing the data to be measured.

By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set analysis
expression.

If the word DISTINCT occurs before the function arguments, duplicates resulting from
the evaluation of the function arguments are disregarded.

If the word TOTAL occurs before the function arguments, the calculation is made over
all possible values given the current selections, and not just those that pertain to the
current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Examples and results:

Customer

Astrida

Astrida

Data

Product OrderNumber UnitSales Unit Price

AA 1 4 16

AA 7 10 15

Script syntax and chart functions - Qlik Sense, August 2022 301

5 Script and chart functions

Customer Product OrderNumber UnitSales Unit Price

Astrida BB 4 9 1

Betacab BB 6 5 10
Betacab CC 5 2 20
Betacab DD 25
Canutility AA 15
Canutility CcC 19
Divadip AA 2 4 16
Divadip DD 3 25

The following examples assume that all customers are selected, except where stated.

Examples and results

Example Result
NumericCount 7 because three of the 10 fields in OrderNumber are empty.
([orderNumber])
"0" counts as a value and not an empty cell. However, if a
measure aggregates to 0 for a dimension, that dimension will
not be included in charts.
NumericCount 0 because all product names are in text. Typically you could use this to
([Product])

check that no text fields have been given numeric content.

NumericCount (DISTINCT Counts all the number of distinct numeric order numbers and divides it by

[orderNumber])/Count the number of order numbers numeric and non-numeric. This will be 1 if all
(DISTINCT field val ic. Typicall Id this to check that all field
Cordernanber)] ield values are numeric. Typically you could use this to check that all fie

values are numeric. In the example, there are 7 distinct numeric values for
OrderNumber of 8 distinct numeric and non-numerid, so the expression
returns 0.875.

Data used in example:

Temp:

LOAD * inline [
Customer|Product|OrderNumber|unitSales|uUnitPrice
Astridal|AA|1|4]16
Astrida|AA|7[10]15
Astrida|BB|4|9]|9
Betacab|cC|6]5]10
Betacab|AA|5]2]20
Betacab|BB| || 25
Canutility|AA|]]15
Canutility|cc| |19

Script syntax and chart functions - Qlik Sense, August 2022 302

5 Script and chart functions

Divadip|cC|2]|4]|16
Divadip|DD|3]1]25
] (deTimiter is '"[");

TextCount

TextCount() returns the number of field values that are non-numeric aggregated in the
expression, as defined by a group by clause.

Syntax:
TextCount ([distinct] expr)

Return data type: integer
Arguments:

Arguments

Argument Description
expr Expression The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates are disregarded.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a
sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto
to Custom, then deselect numerical and alphabetical sorting.

Example:

Temp:

LOAD * inTline [
Customer|Product|OrderNumber|UnitSales|UnitPrice
Astrida|AA|1l|4]|16

Astrida|AA|7[10]15

Astrida|BB|4|9]|9

Betacab|ccC|6|5]10

Betacab|AA|5]2]20

Betacab|BB| || 25

Canutility|AA]|]]15

Canutility|cc| |]19

Divadip|cC|2]|4]16

Divadip|DD|3]1]25

] (deTimiter is '"[');

TextCountl:

LOAD Customer,TextCount(Product) as ProductTextCount Resident Temp Group By Customer;

Script syntax and chart functions - Qlik Sense, August 2022 303

5 Script and chart functions

Customer
Astrida
Betacab
Canutility

Divadip

Example:

Resulting table

ProductTextCount

N N W

LOAD Customer,TextCount(OrderNumber) as OrderNumberTextCount Resident Temp Group By Customer;

Customer
Astrida
Betacab
Canutility

Divadip

Resulting table

OrderNumberTextCount
0
1

TextCount - chart function

TextCount() is used to aggregate the number of field values that are non-numeric in each chart dimension.

Syntax:

TextCount ({ [SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]1} expr)

Return data type: integer

Arguments:

Argument
expr

SetExpression

DISTINCT

Arguments

Description
The expression or field containing the data to be measured.

By default, the aggregation function will aggregate over the set of possible records
defined by the selection. An alternative set of records can be defined by a set
analysis expression.

If the word DISTINCT occurs before the function arguments, duplicates resulting
from the evaluation of the function arguments are disregarded.

Script syntax and chart functions - Qlik Sense, August 2022 304

5 Script and chart functions

Argument

TOTAL

Description

If the word TOTAL occurs before the function arguments, the calculation is made
over all possible values given the current selections, and not just those that pertain
to the current dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one
or more field names as a subset of the chart dimension variables, you create a
subset of the total possible values.

Examples and results:

Customer Product
Astrida AA
Astrida AA
Astrida BB
Betacab BB
Betacab CcC
Betacab DD
Canutility AA
Canutility CcC
Divadip AA
Divadip DD
Example
TextCount
([Product])
TextCount
([orderNumber])

Data

OrderNumber UnitSales Unit Price

1

7

Result

4 16
10 15
9 1
5 10
2 20
25
15
19
4 16
25

Examples and results

10 because all of the 10 fields in Product are text.

"0" counts as a value and not an empty cell. However, if a measure
aggregates to 0 for a dimension, that dimension will not be included
in charts. Empty cells are evaluated as being non text and are not
counted by TextCount.

3, because empty cells are counted. Typically, you would use this to check that
no numeric fields have been given text values or are non-zero.

Script syntax and chart functions - Qlik Sense, August 2022 305

5 Script and chart functions

Example Result

TextCount Counts all the number of distinct text values of Product (4), and divides it by the
(DISTINCT total number of values in Product (10). The resultis 0.4.

[Product])/Count

([Product)]

Data used in example:

Temp:

LOAD * inline [
Customer|Product|OrderNumber|UnitSales|UnitPrice
Astrida|AA|l|4]|16
Astrida|AA|7|1]15
Astrida|BB|4|9]|9
Betacab|ccC|6|5]10
Betacab|AA|5]2]20
Betacab|BB| ||| 25
Canutility|AA]|]]15
Canutility|cc|]|]19
Divadip|cC|2]|4]16
Divadip|DD|3|1]25

] (deTimiter is '"|');

Financial aggregation functions

This section describes aggregation functions for financial operations regarding payments and cash flow.

Each function is described further after the overview. You can also click the function name in the syntax to
immediately access the details for that specific function.

Financial aggregation functions in the data load script

IRR
IRR() returns the aggregated internal rate of return for a series of cash flows represented by the numbers
in the expression iterated over a number of records as defined by a group by clause.

IRR (expression)

XIRR

XIRR() returns the aggregated internal rate of return for a schedule of cash flows (that is not necessarily
periodic) represented by paired numbers in pmt and date iterated over a number of records as defined by a
group by clause. All payments are discounted based on a 365-day year.

XIRR (valueexpression, dateexpression)

NPV

NPV() returns the aggregated net present value of an investment based on a discount_rate per period and
a series of future payments (negative values) and incomes (positive values), represented by the numbers
in value, iterated over a number of records, as defined by a group by clause. The payments and incomes
are assumed to occur at the end of each period.

Script syntax and chart functions - Qlik Sense, August 2022 306

5 Script and chart functions

NPV (rate, expression)

XNPV

XNPV() returns the aggregated net present value for a schedule of cashflows (not necessarily periodic)
represented by paired numbers in pmt and date, iterated over a number of records as defined by a group
by clause. Rate is the interest rate per period. All payments are discounted based on a 365-day year.

XNPV (rate, valueexpression, dateexpression)

Financial aggregation functions in chart expressions

These financial aggregation functions can be used in charts.

IRR
IRR() returns the aggregated internal rate of return for a series of cash flows represented by the numbers
in the expression given by value iterated over the chart dimensions.

IRR - chart function[TOTAL [<fld {,fld}>]] wvalue)

NPV

NPV() returns the aggregated net present value of an investment based on a discount_rate per period and
a series of future payments (negative values) and incomes (positive values,) represented by the numbers
in value, iterated over the chart dimensions. The payments and incomes are assumed to occur at the end
of each period.

NPV - chart function([TOTAL [<fld {,fld}>]] discount rate, value)

XIRR

XIRR()returns the aggregated internal rate of return for a schedule of cash flows (that is not necessarily
periodic) represented by paired numbers in the expressions given by pmt and date iterated over the chart
dimensions. All payments are discounted based on a 365-day year.

XIRR - chart function (page 314) ([TOTAL [<fld {,fld}>]] pmt, date)

XNPV

XNPV() returns the aggregated net present value for a schedule of cash flows (not necessarily periodic)
represented by paired numbers in the expressions given by pmt and date iterated over the chart
dimensions. All payments are discounted based on a 365-day year.

XNPV - chart function([TOTAL [<fld{,fld}>]] discount rate, pmt, date)

IRR

IRR() returns the aggregated internal rate of return for a series of cash flows represented by
the numbers in the expression iterated over a number of records as defined by a group by
clause.

These cash flows do not have to be even, as they would be for an annuity. However, the cash flows must
occur at regular intervals, such as monthly or annually. The internal rate of return is the interest rate
received for an investment consisting of payments (negative values) and income (positive values) that
occur at regular periods.The function needs at least one positive and one negative value to calculate.

Script syntax and chart functions - Qlik Sense, August 2022 307

5 Script and chart functions

Syntax:
IRR (value)

Return data type: numeric

Arguments:
Arguments
Argument Description
value The expression or field containing the data to be measured.
Limitations:

Text values, NULL values and missing values are disregarded.

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to
a sheet in your app.

Examples and results:

Examples and results
Example Year IRR2013

cashflow: 2013 0.1634
LOAD 2013 as Year, * inline [

Date|Discount|Payments
2013-01-01/0.1]-10000
2013-03-01/0.113000
2013-10-30/0.114200
2014-02-01/0.216800

] (deTimiter is '"[|");

Cashflowl:
LOAD Year,IRR(Payments) as IRR2013 Resident Cashflow Group By Year;

IRR - chart function

IRR() returns the aggregated internal rate of return for a series of cash flows represented by the numbers
in the expression given by value iterated over the chart dimensions.

These cash flows do not have to be even, as they would be for an annuity. However, the cash flows must
occur at regular intervals, such as monthly or annually. The internal rate of return is the interest rate
received for an investment consisting of payments (negative values) and income (positive values) that
occur at regular periods. The function needs at least one positive and one negative value to calculate.

Syntax:
IRR([TOTAL [<fld {,fld}>]] value)

Script syntax and chart functions - Qlik Sense, August 2022 308

5 Script and chart functions

Return data type: numeric

Arguments:
Arguments
Argument Description
value The expression or field containing the data to be measured.
TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over all

possible values given the current selections, and not just those that pertain to the current
dimensional value, that is, it disregards the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of one or
more field names as a subset of the chart dimension variables, you create a subset of
the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless these
inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the
advanced function Aggr, in combination with a specified dimension.

Text values, NULL values and missing values are disregarded.

Examples and results:

Examples and results

Example Result
IRR 0.1634
(Payments)

The payments are assumed to be periodic in nature, for example monthly.

The Date field is used in the XIRR example where payments can be non-
periodical as long as you provide the dates on which payments were made.

Data used in examples:

Cashflow:

LOAD 2013 as Year, * inline [
Date|Discount|Payments
2013-01-01/0.1]-10000
2013-03-01/0.11]3000
2013-10-30/0.114200
2014-02-01/0.216800

] (deTimiter is '"[');

Script syntax and chart functions - Qlik Sense, August 2022 309

5 Script and chart functions

See also:

p XIRR - chart function (page 314)
p Aggr - chart function (page 462)

NPV

NPV() returns the aggregated net present value of an investment based on a discount_rate
per period and a series of future payments (negative values) and incomes (positive values),
represented by the numbers in value, iterated over a number of records, as defined by a
group by clause. The payments and incomes are assumed to occur at the end of each period.

Syntax:
NPV (discount rate, value)

Return data type: numeric. The result has a default number format of money.

Arguments:
Arguments
Argument Description
discount_rate discount_rate is the rate of discount over the length of the period.
value The expression or field containing the data to be measured.

Text values, NULL values and missing values are disregarded.

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results column to
a sheet in your app.

Examples and results

Example Year NPV1_2013
cashflow: 2013 -$540.12
LOAD 2013 as Year, * inline [

Date|Discount|Payments
2013-01-01]0.1|-10000
2013-03-01]0.1]3000
2013-10-30/0.114200
2014-02-01]0.216800

] (deTimiter is '"[");

Cashflowl:

LOAD Year,NPV(0.2, Payments) as NPV1_2013 Resident Cashflow Group
By Year;

Script syntax and chart functions - Qlik Sense, August 2022 310

5 Script and chart functions

Examples and resul