Script Syntax and Chart Functions Guide

Qlik® Sense
1.1
Copyright © 1993-2015 QlikTech International AB. All rights reserved.
## Contents

1 **What is Qlik Sense?** ......................................................................................... 18
   1.1 What can you do in Qlik Sense? ................................................................. 18
   1.2 How does Qlik Sense work? ..................................................................... 18
       The app model ......................................................................................... 18
       The associative experience .................................................................. 18
       Collaboration and mobility .................................................................. 18
   1.3 How can you deploy Qlik Sense? ............................................................... 18
       Qlik Sense Desktop .................................................................................. 19
       Qlik Sense Server .................................................................................... 19
   1.4 How to administer and manage a Qlik Sense site ..................................... 19
   1.5 Extend Qlik Sense and adapt it for your own purposes ............................. 19
       Building extensions and mashups ............................................................ 19
       Building clients ..................................................................................... 19
       Building server tools ............................................................................. 19
       Connecting to other data sources ......................................................... 19
2 **Script syntax** ................................................................................................. 20
   2.1 Introduction to script syntax .................................................................... 20
   2.2 What is Backus-Naur formalism? .............................................................. 20
   2.3 Script statements and keywords .............................................................. 21
       Script control statements ...................................................................... 21
       Script control statements overview ....................................................... 22
       Call ......................................................................................................... 23
       Do..loop .................................................................................................. 24
       Exit script .............................................................................................. 25
       For..next .................................................................................................. 26
       For each..next ......................................................................................... 27
       If.. then..elseif..else..end if .................................................................... 30
       Sub..end sub .......................................................................................... 31
       Switch..case..default..end switch ............................................................ 32
       Script prefixes ........................................................................................ 33
       Script prefixes overview ....................................................................... 33
       Buffer ..................................................................................................... 37
       Bundle .................................................................................................... 38
       Concatenate ........................................................................................... 38
       Crosstable ............................................................................................... 39
       First .......................................................................................................... 40
       Generic .................................................................................................... 40
       Hierarchy ................................................................................................. 40
       HierarchyBelongsTo ............................................................................... 42
       Image_Size ............................................................................................. 43
       Info .......................................................................................................... 43
       Inner ...................................................................................................... 44
       IntervalMatch ......................................................................................... 45
       Join ......................................................................................................... 47
       Keep ....................................................................................................... 48
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ........................................</td>
</tr>
<tr>
<td>Mapping ....................................</td>
</tr>
<tr>
<td>NoConcatenate ..........................</td>
</tr>
<tr>
<td>Outer ......................................</td>
</tr>
<tr>
<td>Right ......................................</td>
</tr>
<tr>
<td>Sample ....................................</td>
</tr>
<tr>
<td>Semantic ..................................</td>
</tr>
<tr>
<td>Unless ....................................</td>
</tr>
<tr>
<td>When .......................................</td>
</tr>
<tr>
<td>Script regular statements ..........</td>
</tr>
<tr>
<td>Script regular statements overview</td>
</tr>
<tr>
<td>Alias ......................................</td>
</tr>
<tr>
<td>Binary .....................................</td>
</tr>
<tr>
<td>Comment field ............................</td>
</tr>
<tr>
<td>Comment table ............................</td>
</tr>
<tr>
<td>Connect ....................................</td>
</tr>
<tr>
<td>Declare ....................................</td>
</tr>
<tr>
<td>Setting up a new field definition ....</td>
</tr>
<tr>
<td>Re-using an existing field definition</td>
</tr>
<tr>
<td>Derive ....................................</td>
</tr>
<tr>
<td>Direct Query .............................</td>
</tr>
<tr>
<td>Direct Discovery field lists .........</td>
</tr>
<tr>
<td>Directory ..................................</td>
</tr>
<tr>
<td>Disconnect ...............................</td>
</tr>
<tr>
<td>Drop field ................................</td>
</tr>
<tr>
<td>Drop table ................................</td>
</tr>
<tr>
<td>Execute ....................................</td>
</tr>
<tr>
<td>FlushLog ..................................</td>
</tr>
<tr>
<td>Force ......................................</td>
</tr>
<tr>
<td>Load .......................................</td>
</tr>
<tr>
<td>Format specification items ..........</td>
</tr>
<tr>
<td>Character set ............................</td>
</tr>
<tr>
<td>Table format .............................</td>
</tr>
<tr>
<td>Delimiter ..................................</td>
</tr>
<tr>
<td>No eof ....................................</td>
</tr>
<tr>
<td>Labels ....................................</td>
</tr>
<tr>
<td>Header is ..................................</td>
</tr>
<tr>
<td>Record is ..................................</td>
</tr>
<tr>
<td>Quotes ....................................</td>
</tr>
<tr>
<td>XML ........................................</td>
</tr>
<tr>
<td>KML ........................................</td>
</tr>
<tr>
<td>Let .........................................</td>
</tr>
<tr>
<td>Map ........................................</td>
</tr>
<tr>
<td>NullAsNull ................................</td>
</tr>
<tr>
<td>NullAsValue ..............................</td>
</tr>
<tr>
<td>Qualify ....................................</td>
</tr>
</tbody>
</table>
## Contents

<table>
<thead>
<tr>
<th>Script</th>
<th>Syntax</th>
<th>and</th>
<th>Chart</th>
<th>Functions</th>
<th>Guide</th>
<th>Qlik</th>
<th>Sense</th>
<th>1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Rename field</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Rename table</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Search</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Select</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Sleep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>SQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>SQLColumns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>SQLTables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>SQLTypes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Star</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Store</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Tag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Trace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Unmap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Unqualify</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Untag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>109</td>
<td></td>
</tr>
</tbody>
</table>

### 2.4 Working with variables in the data load editor

| Variable calculation | | | | | 110 |
| System variables | | | | | 111 |
| System variables overview | | | | | 111 |
| HidePrefix | | | | | 114 |
| HideSuffix | | | | | 114 |
| Include | | | | | 114 |
| OpenUrlTimeout | | | | | 115 |
| StripComments | | | | | 115 |
| Verbatim | | | | | 116 |

| Value handling variables | | | | | 116 |
| Value handling variables overview | | | | | 116 |
| NullDisplay | | | | | 117 |
| NullInterpret | | | | | 117 |
| NullValue | | | | | 117 |
| OtherSymbol | | | | | 117 |

| Number interpretation variables | | | | | 118 |
| Number interpretation variables overview | | | | | 118 |
| Currency formatting | | | | | 118 |
| Number formatting | | | | | 119 |
| Time formatting | | | | | 119 |
| BrokenWeeks | | | | | 120 |
| DateFormat | | | | | 121 |
| DayNames | | | | | 121 |
| DecimalSep | | | | | 121 |
| FirstWeekDay | | | | | 121 |
5.1 Aggregation functions ............................................................................................................. 145
    Using aggregation functions in a data load script ......................................................................... 145
    Using aggregation functions in chart expressions .......................................................................... 145
    Aggr - chart function ..................................................................................................................... 145
    Basic aggregation functions ........................................................................................................... 148
        Basic aggregation functions overview ....................................................................................... 148
        Basic aggregation functions in the data load script ................................................................. 148
        Basic aggregation functions in chart expressions ....................................................................... 149
        FirstSortedValue ......................................................................................................................... 150
        FirstSortedValue - chart function .............................................................................................. 151
    Max ................................................................................................................................................ 153
    Max - chart function ....................................................................................................................... 154
    Min ................................................................................................................................................ 156
    Min - chart function ....................................................................................................................... 157
    Mode .............................................................................................................................................. 160
    Mode - chart function ..................................................................................................................... 160
    Only ............................................................................................................................................. 162
    Only - chart function ..................................................................................................................... 163
    Sum ............................................................................................................................................. 165
    Sum - chart function ....................................................................................................................... 166
    Counter aggregation functions ...................................................................................................... 167
        Counter aggregation functions in the data load script ............................................................ 167
        Counter aggregation functions in chart expressions ............................................................... 168
        Count ........................................................................................................................................ 169
        Count - chart function ............................................................................................................... 170
        MissingCount ............................................................................................................................ 172
        MissingCount - chart function .................................................................................................. 173
        NullCount ................................................................................................................................ 175
        NullCount - chart function ......................................................................................................... 176
        NumericCount ............................................................................................................................ 177
        NumericCount - chart function .................................................................................................. 178
        TextCount ................................................................................................................................ 180
        TextCount - chart function ......................................................................................................... 181
    Financial aggregation functions ................................................................................................... 183
        Financial aggregation functions in the data load script .......................................................... 183
        Financial aggregation functions in chart expressions ............................................................ 184
        IRR ......................................................................................................................................... 184
        IRR - chart function .................................................................................................................... 185
        NPV ......................................................................................................................................... 187
        NPV - chart function .................................................................................................................... 188
        XIRR ....................................................................................................................................... 190
        XIRR - chart function .................................................................................................................. 190
        XNPV ..................................................................................................................................... 192
        XNPV - chart function ................................................................................................................ 193
    Statistical aggregation functions .................................................................................................. 194
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical aggregation functions in the data load script</td>
<td>194</td>
</tr>
<tr>
<td>Statistical aggregation functions in chart expressions</td>
<td>197</td>
</tr>
<tr>
<td>Avg</td>
<td>200</td>
</tr>
<tr>
<td>Avg - chart function</td>
<td>201</td>
</tr>
<tr>
<td>Correl</td>
<td>203</td>
</tr>
<tr>
<td>Correl - chart function</td>
<td>204</td>
</tr>
<tr>
<td>Fractile</td>
<td>206</td>
</tr>
<tr>
<td>Fractile - chart function</td>
<td>207</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>209</td>
</tr>
<tr>
<td>Kurtosis - chart function</td>
<td>210</td>
</tr>
<tr>
<td>LINEST_B</td>
<td>212</td>
</tr>
<tr>
<td>LINEST_B - chart function</td>
<td>213</td>
</tr>
<tr>
<td>LINEST_DF</td>
<td>214</td>
</tr>
<tr>
<td>LINEST_DF - chart function</td>
<td>215</td>
</tr>
<tr>
<td>LINEST_F</td>
<td>216</td>
</tr>
<tr>
<td>LINEST_F - chart function</td>
<td>217</td>
</tr>
<tr>
<td>LINEST_M</td>
<td>218</td>
</tr>
<tr>
<td>LINEST_M - chart function</td>
<td>219</td>
</tr>
<tr>
<td>LINEST_R2</td>
<td>220</td>
</tr>
<tr>
<td>LINEST_R2 - chart function</td>
<td>221</td>
</tr>
<tr>
<td>LINEST_SEB</td>
<td>222</td>
</tr>
<tr>
<td>LINEST_SEB - chart function</td>
<td>222</td>
</tr>
<tr>
<td>LINEST_SEM</td>
<td>224</td>
</tr>
<tr>
<td>LINEST_SEM - chart function</td>
<td>224</td>
</tr>
<tr>
<td>LINEST_SEY</td>
<td>226</td>
</tr>
<tr>
<td>LINEST_SEY - chart function</td>
<td>226</td>
</tr>
<tr>
<td>LINEST_SSREG</td>
<td>227</td>
</tr>
<tr>
<td>LINEST_SSREG - chart function</td>
<td>228</td>
</tr>
<tr>
<td>LINEST_SSRESID</td>
<td>229</td>
</tr>
<tr>
<td>LINEST_SSRESID - chart function</td>
<td>230</td>
</tr>
<tr>
<td>Median</td>
<td>231</td>
</tr>
<tr>
<td>Median - chart function</td>
<td>232</td>
</tr>
<tr>
<td>Skew</td>
<td>234</td>
</tr>
<tr>
<td>Skew - chart function</td>
<td>235</td>
</tr>
<tr>
<td>Stdev</td>
<td>237</td>
</tr>
<tr>
<td>Stdev - chart function</td>
<td>238</td>
</tr>
<tr>
<td>Sterr</td>
<td>240</td>
</tr>
<tr>
<td>Sterr - chart function</td>
<td>241</td>
</tr>
<tr>
<td>STEYX</td>
<td>243</td>
</tr>
<tr>
<td>STEYX - chart function</td>
<td>244</td>
</tr>
<tr>
<td>An example of how to use linest functions</td>
<td>246</td>
</tr>
<tr>
<td>Loading the sample data</td>
<td>246</td>
</tr>
<tr>
<td>Displaying the results from the data load script calculations</td>
<td>247</td>
</tr>
<tr>
<td>Creating the linest chart function visualizations</td>
<td>247</td>
</tr>
<tr>
<td>Statistical test functions</td>
<td>248</td>
</tr>
<tr>
<td>Chi-2 test functions</td>
<td>248</td>
</tr>
<tr>
<td>Statistical test function examples</td>
<td>300</td>
</tr>
<tr>
<td>------------------------------------------------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Examples of how to use chi2-test functions in charts</td>
<td>300</td>
</tr>
<tr>
<td>Examples of how to use chi2-test functions in the data load script</td>
<td>302</td>
</tr>
<tr>
<td>Creating a typical t-test report</td>
<td>304</td>
</tr>
<tr>
<td>Examples of how to use z-test functions</td>
<td>307</td>
</tr>
<tr>
<td>String aggregation functions</td>
<td>309</td>
</tr>
<tr>
<td>String aggregation functions in the data load script</td>
<td>309</td>
</tr>
<tr>
<td>String aggregation functions in charts</td>
<td>310</td>
</tr>
<tr>
<td>Concat</td>
<td>310</td>
</tr>
<tr>
<td>Concat - chart function</td>
<td>312</td>
</tr>
<tr>
<td>FirstValue</td>
<td>314</td>
</tr>
<tr>
<td>LastValue</td>
<td>315</td>
</tr>
<tr>
<td>MaxString</td>
<td>316</td>
</tr>
<tr>
<td>MaxString - chart function</td>
<td>317</td>
</tr>
<tr>
<td>MinString</td>
<td>319</td>
</tr>
<tr>
<td>MinString - chart function</td>
<td>320</td>
</tr>
<tr>
<td>Synthetic dimension functions</td>
<td>321</td>
</tr>
<tr>
<td>ValueList - chart function</td>
<td>322</td>
</tr>
<tr>
<td>ValueLoop - chart function</td>
<td>323</td>
</tr>
<tr>
<td>Nested aggregations</td>
<td>324</td>
</tr>
<tr>
<td>Nested aggregations with the TOTAL qualifier</td>
<td>325</td>
</tr>
<tr>
<td>5.2 Color functions</td>
<td>325</td>
</tr>
<tr>
<td>Pre-defined color functions</td>
<td>327</td>
</tr>
<tr>
<td>ARGB</td>
<td>328</td>
</tr>
<tr>
<td>RGB</td>
<td>328</td>
</tr>
<tr>
<td>HSL</td>
<td>329</td>
</tr>
<tr>
<td>5.3 Conditional functions</td>
<td>329</td>
</tr>
<tr>
<td>Conditional functions overview</td>
<td>330</td>
</tr>
<tr>
<td>alt</td>
<td>331</td>
</tr>
<tr>
<td>class</td>
<td>331</td>
</tr>
<tr>
<td>if</td>
<td>332</td>
</tr>
<tr>
<td>match</td>
<td>333</td>
</tr>
<tr>
<td>mixmatch</td>
<td>333</td>
</tr>
<tr>
<td>pick</td>
<td>334</td>
</tr>
<tr>
<td>wildmatch</td>
<td>334</td>
</tr>
<tr>
<td>5.4 Counter functions</td>
<td>335</td>
</tr>
<tr>
<td>Counter functions overview</td>
<td>335</td>
</tr>
<tr>
<td>Function</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>autonumber</td>
<td>336</td>
</tr>
<tr>
<td>autonumberhash128</td>
<td>338</td>
</tr>
<tr>
<td>autonumberhash256</td>
<td>341</td>
</tr>
<tr>
<td>fieldvaluecount</td>
<td>343</td>
</tr>
<tr>
<td>IterNo</td>
<td>343</td>
</tr>
<tr>
<td>RecNo</td>
<td>344</td>
</tr>
<tr>
<td>RowNo</td>
<td>345</td>
</tr>
<tr>
<td>RowNo - chart function</td>
<td>346</td>
</tr>
<tr>
<td><strong>5.5 Date and time functions</strong></td>
<td>348</td>
</tr>
<tr>
<td>Date and time functions overview</td>
<td>349</td>
</tr>
<tr>
<td>Integer expressions of time</td>
<td>349</td>
</tr>
<tr>
<td>Timestamp functions</td>
<td>350</td>
</tr>
<tr>
<td>Make functions</td>
<td>350</td>
</tr>
<tr>
<td>Other date functions</td>
<td>350</td>
</tr>
<tr>
<td>Timezone functions</td>
<td>351</td>
</tr>
<tr>
<td>Set time functions</td>
<td>351</td>
</tr>
<tr>
<td>In... functions</td>
<td>352</td>
</tr>
<tr>
<td>Start ... end functions</td>
<td>353</td>
</tr>
<tr>
<td>Day numbering functions</td>
<td>356</td>
</tr>
<tr>
<td>addmonths</td>
<td>357</td>
</tr>
<tr>
<td>addyears</td>
<td>358</td>
</tr>
<tr>
<td>age</td>
<td>358</td>
</tr>
<tr>
<td>converttolocaltime</td>
<td>359</td>
</tr>
<tr>
<td>day</td>
<td>361</td>
</tr>
<tr>
<td>dayend</td>
<td>362</td>
</tr>
<tr>
<td>daylightsaving</td>
<td>363</td>
</tr>
<tr>
<td>dayname</td>
<td>363</td>
</tr>
<tr>
<td>daynumberofquarter</td>
<td>365</td>
</tr>
<tr>
<td>daynumberofyear</td>
<td>366</td>
</tr>
<tr>
<td>daystart</td>
<td>367</td>
</tr>
<tr>
<td>firstworkdate</td>
<td>369</td>
</tr>
<tr>
<td>GMT</td>
<td>370</td>
</tr>
<tr>
<td>hour</td>
<td>370</td>
</tr>
<tr>
<td>inday</td>
<td>371</td>
</tr>
<tr>
<td>indaytoendtime</td>
<td>372</td>
</tr>
<tr>
<td>inlunarweek</td>
<td>374</td>
</tr>
<tr>
<td>inlunarweektodate</td>
<td>375</td>
</tr>
<tr>
<td>inmonth</td>
<td>377</td>
</tr>
<tr>
<td>inmonths</td>
<td>378</td>
</tr>
<tr>
<td>inmonthsstodate</td>
<td>380</td>
</tr>
<tr>
<td>innmonthtodate</td>
<td>382</td>
</tr>
<tr>
<td>inquarter</td>
<td>383</td>
</tr>
<tr>
<td>inquartertodate</td>
<td>385</td>
</tr>
<tr>
<td>inweek</td>
<td>386</td>
</tr>
<tr>
<td>inweektodate</td>
<td>388</td>
</tr>
</tbody>
</table>
Contents

inyear ................................................................. 390
in yeartodate .................................................. 392
lastworkdate .................................................... 394
localtime .............................................................. 395
lunarweekend ................................................... 396
lunarweekname .................................................. 398
lunarweekstart ................................................... 400
makedate .............................................................. 401
maketime .............................................................. 402
makeweekdate .................................................... 402
minute ................................................................. 403
month ................................................................. 403
monthend ............................................................ 404
monthname ........................................................... 405
monthsend ............................................................ 407
monthsname .......................................................... 408
monthssstart ........................................................ 410
monthssstart ........................................................ 412
networkdays ......................................................... 413
now ................................................................. 415
quarterend ............................................................ 416
quartername .......................................................... 417
quarterstart .......................................................... 420
second ................................................................. 421
setdateyearmonth ................................................ 422
setdateyearemonth ................................................ 423
timezone .............................................................. 424
today ................................................................. 424
UTC ................................................................. 425
week ................................................................. 425
weekday .............................................................. 426
weekend .............................................................. 427
weekname .............................................................. 428
weekstart .............................................................. 430
weekyear ............................................................... 432
year ................................................................. 433
yearend ............................................................... 433
yearearname .......................................................... 435
yearstart .............................................................. 436
y eartodate ............................................................ 438
5.6 Exponential and logarithmic functions ................. 439
Exponential and logarithmic functions ......................... 441
5.7 Field functions .................................................. 442
Count functions ...................................................... 442
Field and selection functions .................................. 443
<table>
<thead>
<tr>
<th>Function Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetAlternativeCount - chart function</td>
<td>443</td>
</tr>
<tr>
<td>GetCurrentSelections - chart function</td>
<td>444</td>
</tr>
<tr>
<td>GetExcludedCount - chart function</td>
<td>445</td>
</tr>
<tr>
<td>GetFieldSelections - chart function</td>
<td>446</td>
</tr>
<tr>
<td>GetNotSelectedCount - chart function</td>
<td>448</td>
</tr>
<tr>
<td>GetPossibleCount - chart function</td>
<td>448</td>
</tr>
<tr>
<td>GetSelectedCount - chart function</td>
<td>449</td>
</tr>
<tr>
<td>5.8 File functions</td>
<td>450</td>
</tr>
<tr>
<td>File functions overview</td>
<td>450</td>
</tr>
<tr>
<td>Attribute</td>
<td>452</td>
</tr>
<tr>
<td>ConnectString</td>
<td>460</td>
</tr>
<tr>
<td>FileBaseName</td>
<td>460</td>
</tr>
<tr>
<td>FileDir</td>
<td>460</td>
</tr>
<tr>
<td>FileExtension</td>
<td>461</td>
</tr>
<tr>
<td>FileName</td>
<td>461</td>
</tr>
<tr>
<td>FilePath</td>
<td>461</td>
</tr>
<tr>
<td>FileSize</td>
<td>462</td>
</tr>
<tr>
<td>FileTime</td>
<td>463</td>
</tr>
<tr>
<td>GetFolderPath</td>
<td>463</td>
</tr>
<tr>
<td>QvdCreateTime</td>
<td>464</td>
</tr>
<tr>
<td>QvdFieldName</td>
<td>465</td>
</tr>
<tr>
<td>QvdNoOfFields</td>
<td>465</td>
</tr>
<tr>
<td>QvdNoOfRecords</td>
<td>466</td>
</tr>
<tr>
<td>QvdTableName</td>
<td>467</td>
</tr>
<tr>
<td>5.9 Financial functions</td>
<td>468</td>
</tr>
<tr>
<td>Financial functions overview</td>
<td>468</td>
</tr>
<tr>
<td>BlackAndSchole</td>
<td>469</td>
</tr>
<tr>
<td>FV</td>
<td>470</td>
</tr>
<tr>
<td>nPer</td>
<td>471</td>
</tr>
<tr>
<td>Pmt</td>
<td>472</td>
</tr>
<tr>
<td>PV</td>
<td>472</td>
</tr>
<tr>
<td>Rate</td>
<td>473</td>
</tr>
<tr>
<td>5.10 Formatting functions</td>
<td>474</td>
</tr>
<tr>
<td>Formatting functions overview</td>
<td>474</td>
</tr>
<tr>
<td>Date</td>
<td>475</td>
</tr>
<tr>
<td>Dual</td>
<td>476</td>
</tr>
<tr>
<td>Interval</td>
<td>477</td>
</tr>
<tr>
<td>Num</td>
<td>477</td>
</tr>
<tr>
<td>Money</td>
<td>478</td>
</tr>
<tr>
<td>Time</td>
<td>479</td>
</tr>
<tr>
<td>Timestamp</td>
<td>479</td>
</tr>
<tr>
<td>5.11 General numeric functions</td>
<td>480</td>
</tr>
<tr>
<td>General numeric functions overview</td>
<td>480</td>
</tr>
<tr>
<td>Combination and permutation functions</td>
<td>481</td>
</tr>
<tr>
<td>Modulo functions</td>
<td>481</td>
</tr>
</tbody>
</table>
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parity functions</td>
<td>481</td>
</tr>
<tr>
<td>Rounding functions</td>
<td>482</td>
</tr>
<tr>
<td>BitCount</td>
<td>482</td>
</tr>
<tr>
<td>Ceil</td>
<td>482</td>
</tr>
<tr>
<td>Combin</td>
<td>483</td>
</tr>
<tr>
<td>Div</td>
<td>483</td>
</tr>
<tr>
<td>Even</td>
<td>484</td>
</tr>
<tr>
<td>Fabs</td>
<td>484</td>
</tr>
<tr>
<td>Fact</td>
<td>485</td>
</tr>
<tr>
<td>Floor</td>
<td>485</td>
</tr>
<tr>
<td>Fmod</td>
<td>486</td>
</tr>
<tr>
<td>Frac</td>
<td>486</td>
</tr>
<tr>
<td>Mod</td>
<td>487</td>
</tr>
<tr>
<td>Odd</td>
<td>487</td>
</tr>
<tr>
<td>Permut</td>
<td>488</td>
</tr>
<tr>
<td>Round</td>
<td>488</td>
</tr>
<tr>
<td>Sign</td>
<td>489</td>
</tr>
<tr>
<td>5.12 Geographical functions</td>
<td>489</td>
</tr>
<tr>
<td>Geographical functions overview</td>
<td>489</td>
</tr>
<tr>
<td>Parameters used in geographical functions</td>
<td>490</td>
</tr>
<tr>
<td>5.13 Interpretation functions</td>
<td>491</td>
</tr>
<tr>
<td>Interpretation functions overview</td>
<td>491</td>
</tr>
<tr>
<td>Date#</td>
<td>492</td>
</tr>
<tr>
<td>Interval#</td>
<td>493</td>
</tr>
<tr>
<td>Money#</td>
<td>494</td>
</tr>
<tr>
<td>Num#</td>
<td>494</td>
</tr>
<tr>
<td>Text</td>
<td>495</td>
</tr>
<tr>
<td>Time#</td>
<td>495</td>
</tr>
<tr>
<td>Timestamp#</td>
<td>496</td>
</tr>
<tr>
<td>5.14 Inter-record functions</td>
<td>496</td>
</tr>
<tr>
<td>Row functions</td>
<td>497</td>
</tr>
<tr>
<td>Column functions</td>
<td>498</td>
</tr>
<tr>
<td>Field functions</td>
<td>498</td>
</tr>
<tr>
<td>Pivot table functions</td>
<td>498</td>
</tr>
<tr>
<td>Inter-record functions in the data load script</td>
<td>499</td>
</tr>
<tr>
<td>Above - chart function</td>
<td>500</td>
</tr>
<tr>
<td>Below - chart function</td>
<td>505</td>
</tr>
<tr>
<td>Bottom - chart function</td>
<td>508</td>
</tr>
<tr>
<td>Column - chart function</td>
<td>512</td>
</tr>
<tr>
<td>Dimensionality - chart function</td>
<td>514</td>
</tr>
<tr>
<td>Exists</td>
<td>514</td>
</tr>
<tr>
<td>FieldIndex</td>
<td>516</td>
</tr>
<tr>
<td>FieldValue</td>
<td>518</td>
</tr>
<tr>
<td>FieldValueCount</td>
<td>520</td>
</tr>
<tr>
<td>LookUp</td>
<td>521</td>
</tr>
</tbody>
</table>
### Contents

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoOfRows - chart function</td>
<td>523</td>
</tr>
<tr>
<td>Peek</td>
<td>524</td>
</tr>
<tr>
<td>Previous</td>
<td>527</td>
</tr>
<tr>
<td>Top - chart function</td>
<td>528</td>
</tr>
<tr>
<td>Secondarydimensionality</td>
<td>532</td>
</tr>
<tr>
<td>After - chart function</td>
<td>532</td>
</tr>
<tr>
<td>Before - chart function</td>
<td>533</td>
</tr>
<tr>
<td>First - chart function</td>
<td>534</td>
</tr>
<tr>
<td>Last - chart function</td>
<td>535</td>
</tr>
<tr>
<td>ColumnNo - chart function</td>
<td>536</td>
</tr>
<tr>
<td>NoOfColumns - chart function</td>
<td>537</td>
</tr>
<tr>
<td>5.15 Logical functions</td>
<td>537</td>
</tr>
<tr>
<td>5.16 Mapping functions</td>
<td>538</td>
</tr>
<tr>
<td>Mapping functions overview</td>
<td>538</td>
</tr>
<tr>
<td>ApplyMap</td>
<td>538</td>
</tr>
<tr>
<td>MapSubstring</td>
<td>540</td>
</tr>
<tr>
<td>5.17 Mathematical functions</td>
<td>541</td>
</tr>
<tr>
<td>5.18 NULL functions</td>
<td>542</td>
</tr>
<tr>
<td>NULL functions overview</td>
<td>542</td>
</tr>
<tr>
<td>IsNull</td>
<td>543</td>
</tr>
<tr>
<td>NULL</td>
<td>543</td>
</tr>
<tr>
<td>5.19 Range functions</td>
<td>544</td>
</tr>
<tr>
<td>Basic range functions</td>
<td>545</td>
</tr>
<tr>
<td>Counter range functions</td>
<td>545</td>
</tr>
<tr>
<td>Statistical range functions</td>
<td>546</td>
</tr>
<tr>
<td>Financial range functions</td>
<td>547</td>
</tr>
<tr>
<td>RangeAvg</td>
<td>547</td>
</tr>
<tr>
<td>RangeCorrel</td>
<td>549</td>
</tr>
<tr>
<td>RangeCount</td>
<td>550</td>
</tr>
<tr>
<td>RangeFractile</td>
<td>552</td>
</tr>
<tr>
<td>RangeIRR</td>
<td>554</td>
</tr>
<tr>
<td>RangeKurtosis</td>
<td>555</td>
</tr>
<tr>
<td>RangeMax</td>
<td>556</td>
</tr>
<tr>
<td>RangeMaxString</td>
<td>558</td>
</tr>
<tr>
<td>RangeMin</td>
<td>559</td>
</tr>
<tr>
<td>RangeMinString</td>
<td>561</td>
</tr>
<tr>
<td>RangeMissingCount</td>
<td>562</td>
</tr>
<tr>
<td>RangeMode</td>
<td>564</td>
</tr>
<tr>
<td>RangeNPV</td>
<td>566</td>
</tr>
<tr>
<td>RangeNullCount</td>
<td>567</td>
</tr>
<tr>
<td>RangeNumericCount</td>
<td>569</td>
</tr>
<tr>
<td>RangeOnly</td>
<td>570</td>
</tr>
<tr>
<td>RangeSkew</td>
<td>571</td>
</tr>
<tr>
<td>RangeStdev</td>
<td>572</td>
</tr>
<tr>
<td>RangeSum</td>
<td>573</td>
</tr>
</tbody>
</table>
## Contents

<table>
<thead>
<tr>
<th>Function/Statement</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetObjectField - chart function</td>
<td>605</td>
</tr>
<tr>
<td>ProductVersion</td>
<td>605</td>
</tr>
<tr>
<td>StateName - chart function</td>
<td>605</td>
</tr>
<tr>
<td>5.24 Table functions</td>
<td>606</td>
</tr>
<tr>
<td>Table functions overview</td>
<td>606</td>
</tr>
<tr>
<td>FieldName</td>
<td>608</td>
</tr>
<tr>
<td>FieldNumber</td>
<td>608</td>
</tr>
<tr>
<td>NoOfFields</td>
<td>609</td>
</tr>
<tr>
<td>NoOfRows</td>
<td>609</td>
</tr>
<tr>
<td>5.25 Trigonometric and hyperbolic functions</td>
<td>609</td>
</tr>
<tr>
<td>6 File system access restriction</td>
<td>612</td>
</tr>
<tr>
<td>Security aspects when connecting to file based ODBC and OLE DB data connections</td>
<td>612</td>
</tr>
<tr>
<td>6.1 Limitations in standard mode</td>
<td>612</td>
</tr>
<tr>
<td>System variables</td>
<td>612</td>
</tr>
<tr>
<td>Regular script statements</td>
<td>613</td>
</tr>
<tr>
<td>Script control statements</td>
<td>615</td>
</tr>
<tr>
<td>File functions</td>
<td>615</td>
</tr>
<tr>
<td>System functions</td>
<td>617</td>
</tr>
<tr>
<td>6.2 Disabling standard mode</td>
<td>617</td>
</tr>
<tr>
<td>Qlik Sense</td>
<td>617</td>
</tr>
<tr>
<td>Qlik Sense Desktop</td>
<td>617</td>
</tr>
<tr>
<td>7 QlikView functions and statements not supported in Qlik Sense</td>
<td>619</td>
</tr>
<tr>
<td>7.1 Script statements not supported in Qlik Sense</td>
<td>619</td>
</tr>
<tr>
<td>7.2 Functions not supported in Qlik Sense</td>
<td>619</td>
</tr>
<tr>
<td>8 Functions and statements not recommended in Qlik Sense</td>
<td>620</td>
</tr>
<tr>
<td>8.1 Script statements not recommended in Qlik Sense</td>
<td>620</td>
</tr>
<tr>
<td>8.2 Script statement parameters not recommended in Qlik Sense</td>
<td>620</td>
</tr>
<tr>
<td>8.3 Functions not recommended in Qlik Sense</td>
<td>621</td>
</tr>
<tr>
<td>ALL qualifier</td>
<td>622</td>
</tr>
</tbody>
</table>
1 What is Qlik Sense?

Qlik Sense is a platform for data analysis. With Qlik Sense you can analyze data and make data discoveries on your own. You can share knowledge and analyze data in groups and across organizations. Qlik Sense lets you ask and answer your own questions and follow your own paths to insight. Qlik Sense enables you and your colleagues to reach decisions collaboratively.

1.1 What can you do in Qlik Sense?

Most Business Intelligence (BI) products can help you answer questions that are understood in advance. But what about your follow-up questions? The ones that come after someone reads your report or sees your visualization? With the Qlik Sense associative experience, you can answer question after question after question, moving along your own path to insight. With Qlik Sense you can explore your data freely, with just clicks, learning at each step along the way and coming up with next steps based on earlier findings.

1.2 How does Qlik Sense work?

Qlik Sense generates views of information on the fly for you. Qlik Sense does not require predefined and static reports or you being dependent on other users – you just click and learn. Every time you click, Qlik Sense instantly responds, updating every Qlik Sense visualization and view in the app with a newly calculated set of data and visualizations specific to your selections.

The app model

Instead of deploying and managing huge business applications, you can create your own Qlik Sense apps that you can reuse, modify and share with others. The app model helps you ask and answer the next question on your own, without having to go back to an expert for a new report or visualization.

The associative experience

Qlik Sense automatically manages all the relationships in the data and presents information to you using a green/white/gray metaphor. Selections are highlighted in green, associated data is represented in white, and excluded (unassociated) data appears in gray. This instant feedback enables you to think of new questions and continue to explore and discover.

Collaboration and mobility

Qlik Sense further enables you to collaborate with colleagues no matter when and where they are located. All Qlik Sense capabilities, including the associative experience and collaboration, are available on mobile devices. With Qlik Sense, you can ask and answer your questions and follow-up questions, with your colleagues, wherever you are.

1.3 How can you deploy Qlik Sense?

There are two versions of Qlik Sense to deploy, Qlik Sense Desktop and Qlik Sense Server.
Qlik Sense Desktop
This is an easy-to-install single user version that is typically installed on a local computer.

Qlik Sense Server
This version is used to deploy Qlik Sense sites. A site is a collection of one or more server machines connected to a common logical repository or central node.

1.4 How to administer and manage a Qlik Sense site
With the Qlik Management Console you can configure, manage and monitor Qlik Sense sites in an easy and intuitive way. You can manage licenses, access and security rules, configure nodes and data source connections and synchronize content and users among many other activities and resources.

1.5 Extend Qlik Sense and adapt it for your own purposes
Qlik Sense provides you with flexible APIs and SDKs to develop your own extensions and adapt and integrate Qlik Sense for different purposes, such as:

Building extensions and mashups
Here you can do web development using JavaScript to build extensions that are custom visualization in Qlik Sense apps, or you use a mashups APIs to build websites with Qlik Sense content.

Building clients
You can build clients in .NET and embed Qlik Sense objects in your own applications. You can also build native clients in any programming language that can handle WebSocket communication by using the Qlik Sense client protocol.

Building server tools
With service and user directory APIs you can build your own tool to administer and manage Qlik Sense sites.

Connecting to other data sources
Create Qlik Sense connectors to retrieve data from custom data sources.
2 Script syntax

2.1 Introduction to script syntax

In the script, the name of the data source, the names of the tables and the names of the fields included in the logic are defined. Furthermore, the fields in the access rights definition are defined in the script.

The script consists of a number of statements that are executed consecutively.

The Qlik Sense command line syntax and script syntax are described in a notation called Backus-Naur Formalism, or BNF code.

The first lines of code are already generated when a new Qlik Sense file is created. The default values of these number interpretation variables are derived from the regional settings of the OS.

In the script the name of the data source, the names of the tables and the names of the fields included in the logic are defined. The script consists of a number of script statements and keywords that are executed consecutively.

For a table file with commas, tabs or semicolons as delimiter, the LOAD-statement may be used. By default the LOAD-statement will load all fields of the file.

A general database must be accessed through Microsoft ODBC. Here standard SQL statements are used. The SQL syntax accepted differs between different ODBC drivers.

All script statements must end with a semicolon, ";".

A detailed description of script syntax can be accessed via the topics in this section.

2.2 What is Backus-Naur formalism?

The Qlik Sense command line syntax and script syntax are described in a notation called Backus-Naur formalism, also known as BNF code.

The following table provides a list of symbols used in BNF code, with a description of how they are interpreted:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical OR: the symbol on either side can be used.</td>
<td></td>
</tr>
<tr>
<td>()</td>
<td>Parentheses defining precedence: used for structuring the BNF syntax.</td>
</tr>
<tr>
<td>[]</td>
<td>Square brackets: enclosed items are optional.</td>
</tr>
<tr>
<td>{}</td>
<td>Braces: enclosed items may be repeated zero or more times.</td>
</tr>
<tr>
<td>Symbol</td>
<td>A non-terminal syntactic category, that: can be divided further into other symbols. For example, compounds of the above, other non-terminal symbols, text strings, and so on.</td>
</tr>
<tr>
<td>::=</td>
<td>Marks the beginning of a block that defines a symbol.</td>
</tr>
<tr>
<td>LOAD</td>
<td>A terminal symbol consisting of a text string. Should be written as it is into the script.</td>
</tr>
</tbody>
</table>
All terminal symbols are printed in a **bold face** font. For example, "(" should be interpreted as a parenthesis defining precedence, whereas ")" should be interpreted as a character to be printed in the script.

**Example:**

The description of the alias statement is:

```
alias fieldname as aliasname { , fieldname as aliasname}
```

This should be interpreted as the text string "alias", followed by an arbitrary field name, followed by the text string "as", followed by an arbitrary alias name. Any number of additional combinations of "fieldname as alias" may be given, separated by commas.

The following statements are correct:

```
alias a as first;
alias a as first, b as second;
alias a as first, b as second, c as third;
```

The following statements are not correct:

```
alias a as first b as second;
alias a as first {, b as second};
```

### 2.3 Script statements and keywords

The Qlik Sense script consists of a number of statements. A statement can be either a regular script statement or a script control statement. Certain statements can be preceded by prefixes.

Regular statements are typically used for manipulating data in one way or another. These statements may be written over any number of lines in the script and must always be terminated by a semicolon, ";".

Control statements are typically used for controlling the flow of the script execution. Each clause of a control statement must be kept inside one script line and may be terminated by a semicolon or the end-of-line.

Prefixes may be applied to applicable regular statements but never to control statements. The **when** and **unless** prefixes can however be used as suffixes to a few specific control statement clauses.

In the next subchapter, an alphabetical listing of all script statements, control statements and prefixes, are found.

All script keywords can be typed with any combination of lower case and upper case characters. Field and variable names used in the statements are however case sensitive.

### Script control statements

The Qlik Sense script consists of a number of statements. A statement can be either a regular script statement or a script control statement.

Control statements are typically used for controlling the flow of the script execution. Each clause of a control statement must be kept inside one script line and may be terminated by semicolon or end-of-line.
Prefixes are never applied to control statements, with the exceptions of the prefixes **when** and **unless** which may be used with a few specific control statements.

All script keywords can be typed with any combination of lower case and upper case characters.

### Script control statements overview

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

#### Call
The **call** control statement calls a subroutine which must be defined by a previous **sub** statement.

```
Call name ( [ paramlist ])
```

#### Do..loop
The **do..loop** control statement is a script iteration construct which executes one or several statements until a logical condition is met.

```
Do..loop [ ( while | until ) condition ] [statements]
[exit do [ ( when | unless ) condition ] [statements]
loop [ ( while | until ) condition ]
```

#### Exit script
This control statement stops script execution. It may be inserted anywhere in the script.

```
Exit script[ ( when | unless ) condition ]
```

#### For each ..next
The **for each..next** control statement is a script iteration construct which executes one or several statements for each value in a comma separated list. The statements inside the loop enclosed by **for** and **next** will be executed for each value of the list.

```
For each..next var in list
[statements]
[exit for [ ( when | unless ) condition ]
[statements]
next [var]
```

#### For..next
The **for..next** control statement is a script iteration construct with a counter. The statements inside the loop enclosed by **for** and **next** will be executed for each value of the counter variable between specified low and high limits.

```
For..next counter = expr1 to expr2 [ step expr3 ]
[statements]
[exit for [ ( when | unless ) condition ]
[statements]
Next [counter]
```
If..then
The if..then control statement is a script selection construct forcing the script execution to follow different paths depending on one or several logical conditions.

Since the if..then statement is a control statement and as such is ended with either a semicolon or end-of-line, each of its four possible clauses (if..then, elseif..then, else and end if) must not cross a line boundary.

If..then..elseif..else..end if condition then
[ statements ]
{ elseif condition then
[ statements ] }
[ else
[ statements ] ]
end if

Sub
The sub..end sub control statement defines a subroutine which can be called upon from a call statement.

Sub..end sub name [ ( paramlist )] statements end sub

Switch
The switch control statement is a script selection construct forcing the script execution to follow different paths, depending on the value of an expression.

Switch..case..default..end switch expression {case valuelist [ statements ]} [default statements] end switch

Call
The call control statement calls a subroutine which must be defined by a previous sub statement.

Syntax:

Call name [ ( paramlist )]

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The name of the subroutine.</td>
</tr>
<tr>
<td>paramlist</td>
<td>A comma separated list of the actual parameters to be sent to the subroutine. Each item in the list may be a field name, a variable or an arbitrary expression.</td>
</tr>
</tbody>
</table>
The subroutine called by a call statement must be defined by a sub encountered earlier during script execution.

Parameters are copied into the subroutine and, if the parameter in the call statement is a variable and not an expression, copied back out again upon exiting the subroutine.

Limitations:

Since the call statement is a control statement and as such is ended with either a semicolon or end-of-line, it must not cross a line boundary.

Example 1:

```script
// Example 1
Sub INCRI,J):
    I = I + 1
    Exit Sub when I < 10
    J = J + 1
End Sub
Call INCRI,X,Y)
```

Example 2:

```script
// Example 2 - list all QV related files on disk
Sub DoDir (Root):
    For Each Ext in 'qvw', 'qvo', 'qvs', 'qvt', 'qvd', 'qvc', 'qvf'
        For Each File in filelist (Root&'\*. &Ext)
            LOAD
                '$(File)' as Name, FileSize( '$(File)' ) as Size, FileTime( '$(File)' ) as FileTime autogenerate 1;
            Next File
        Next Ext
    For Each Dir in dirlist (Root&'\*')
        Call DoDir (Dir)
    Next Dir
End Sub
Call DoDir ('C:')
```

**Do..loop**

The do..loop control statement is a script iteration construct which executes one or several statements until a logical condition is met.

**Syntax:**
Do [ ( while | until ) condition ] [statements]
|exit do [ ( when | unless ) condition ] [statements]
loop[ ( while | until ) condition ]

Since the do..loop statement is a control statement and as such is ended with either a semicolon or end-of-line, each of its three possible clauses (do, exit do and loop) must not cross a line boundary.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>condition</td>
<td>A logical expression evaluating to True or False.</td>
</tr>
<tr>
<td>statements</td>
<td>Any group of one or more Qlik Sense script statements.</td>
</tr>
<tr>
<td>while / until</td>
<td>The while or until conditional clause must only appear once in any do..loop statement, i.e. either after do or after loop. Each condition is interpreted only the first time it is encountered but is evaluated for every time it encountered in the loop.</td>
</tr>
<tr>
<td>exit do</td>
<td>If an exit do clause is encountered inside the loop, the execution of the script will be transferred to the first statement after the loop clause denoting the end of the loop. An exit do clause can be made conditional by the optional use of a when or unless suffix.</td>
</tr>
</tbody>
</table>

Example:

```c
// LOAD files file1.csv..file9.csv
Set a=1;
Do while a<10
LOAD * from file$(a).csv;
Let a=a+1;
Loop
```

Exit script

This control statement stops script execution. It may be inserted anywhere in the script.

Syntax:

```
Exit Script [ (when | unless) condition ]
```

Since the exit script statement is a control statement and as such is ended with either a semicolon or end-of-line, it must not cross a line boundary.

Arguments:
Argument | Description
--- | ---
condition | A logical expression evaluating to True or False.
when / unless | An `exit script` statement can be made conditional by the optional use of `when` or `unless` clause.

Examples:

```plaintext
//Exit script
Exit Script;

//Exit script when a condition is fulfilled
Exit Script when a=1
```

**For..next**

The `for..next` control statement is a script iteration construct with a counter. The statements inside the loop enclosed by `for` and `next` will be executed for each value of the counter variable between specified low and high limits.

**Syntax:**

```plaintext
For counter = expr1 to expr2 [ step expr3 ]
[statements]
[exit for [ ( when | unless ) condition ]
[statements]
Next [counter]
```

The expressions `expr1`, `expr2` and `expr3` are only evaluated the first time the loop is entered. The value of the counter variable may be changed by statements inside the loop, but this is not good programming practice.

If an `exit for` clause is encountered inside the loop, the execution of the script will be transferred to the first statement after the `next` clause denoting the end of the loop. An `exit for` clause can be made conditional by the optional use of a `when` or `unless` suffix.

> Since the `for..next` statement is a control statement and as such is ended with either a semicolon or end-of-line, each of its three possible clauses (`for..to..step, exit for and next`) must not cross a line boundary.

**Arguments:**
### Argument | Description
--- | ---
**counter** | A variable name. If *counter* is specified after **next** it must be the same variable name as the one found after the corresponding **for**.

**expr1** | An expression which determines the first value of the *counter* variable for which the loop should be executed.

**expr2** | An expression which determines the value indicating the increment of the *counter* variable each time the loop has been executed.

**expr3** | An expression which determines the value indicating the increment of the *counter* variable each time the loop has been executed.

**condition** | A logical expression evaluating to True or False.

**statements** | Any group of one or more Qlik Sense script statements.

### Example 1: Loading a sequence of files

```plaintext
// LOAD files file1.csv..file9.csv
for a=1 to 9
    LOAD * from file$(a).csv;
next
```

### Example 2: Loading a random number of files

In this example, we assume there are data files *x1.csv, x3.csv, x5.csv, x7.csv* and *x9.csv*. Loading is stopped at a random point using the if rand( )<0.5 then condition.

```plaintext
for counter=1 to 9 step 2
    set filename=x$(counter).csv;
    if rand( )<0.5 then
        exit for unless counter=1
    end if
    LOAD a,b from $(filename);
next
```

### For each..next

The **for each..next** control statement is a script iteration construct which executes one or several statements for each value in a comma separated list. The statements inside the loop enclosed by **for** and **next** will be executed for each value of the list.

### Syntax:

Special syntax makes it possible to generate lists with file and directory names in the current directory.

```plaintext
for each var in list
    [statements]
    [exit for [ ( when | unless ) condition ]]
```
[statements]
next [var]

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>var</td>
<td>A script variable name which will acquire a new value from list for each loop execution. If var is specified after next it must be the same variable name as the one found after the corresponding for each.</td>
</tr>
</tbody>
</table>

The value of the var variable may be changed by statements inside the loop, but this is not good programming practice.

If an exit for clause is encountered inside the loop, the execution of the script will be transferred to the first statement after the next clause denoting the end of the loop. An exit for clause can be made conditional by the optional use of a when or unless suffix.

> Since the for each..next statement is a control statement and as such is ended with either a semicolon or end-of-line, each of its three possible clauses (for each, exit for and next) must not cross a line boundary.

Syntax:

```plaintext
list := item { , item }
item := constant | (expression) | filelist mask | dirlist mask |
fieldvalue list mask
```

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>Any number or string. Note that a string written directly in the script must be enclosed by single quotes. A string without single quotes will be interpreted as a variable, and the value of the variable will be used. Numbers do not need to be enclosed by single quotes.</td>
</tr>
<tr>
<td>expression</td>
<td>An arbitrary expression.</td>
</tr>
<tr>
<td>mask</td>
<td>A filename or folder name mask which may include any valid filename characters as well as the standard wildcard characters, * and ?. You can use absolute file paths or lib: path.</td>
</tr>
<tr>
<td>condition</td>
<td>A logical expression evaluating to True or False.</td>
</tr>
<tr>
<td>statements</td>
<td>Any group of one or more Qlik Sense script statements.</td>
</tr>
</tbody>
</table>
### Argument Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filelist mask</td>
<td>This syntax produces a comma separated list of all files in the current directory matching the filename mask.</td>
</tr>
<tr>
<td></td>
<td><em>This argument supports only library connections in standard mode.</em></td>
</tr>
<tr>
<td>dirlist mask</td>
<td>This syntax produces a comma separated list of all folders in the current folder matching the folder name mask.</td>
</tr>
<tr>
<td></td>
<td><em>This argument supports only library connections in standard mode.</em></td>
</tr>
<tr>
<td>fieldvalue list mask</td>
<td>This syntax iterates through the values of a field already loaded into Qlik Sense.</td>
</tr>
</tbody>
</table>

### Example 1: Loading a list of files

```qscript
// LOAD the files 1.csv, 3.csv, 7.csv and xyz.csv
for each a in 1,3,7,'xyz'
  LOAD * from file$(a).csv;
next
```

### Example 2: Creating a list of files on disk

This example loads a list of all Qlik Sense related files in a folder.

```qscript
sub DoDir (Root)
  for each Ext in 'qvw', 'qva', 'qvo', 'qvs', 'qvc', 'qvf', 'qvd'
    for each File in filelist (Root&'*.\.'&Ext)
      LOAD
        '$(File)' as Name,
        FileSize( '$(File)' ) as Size,
        FileTime( '$(File)' ) as FileTime
        autogenerate 1;
    next File
  next Ext
  for each Dir in dirlist (Root&'\*')
    call DoDir (Dir)
  next Dir
end sub

call DoDir ('lib://MyData')
```
Example 3: Iterating through the values of a field

This example iterates through the list of loaded values of FIELD and generates a new field, NEWFIELD. For each value of FIELD, two NEWFIELD records will be created.

```
load * inline [
FIELD
one
two
three
];

FOR Each a in FieldValueList('FIELD')
LOAD '$(a)' &'-'&RecNo() as NEWFIELD AutoGenerate 2;
NEXT a
```

The resulting table looks like this:

<table>
<thead>
<tr>
<th>NEWFIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>one-1</td>
</tr>
<tr>
<td>one-2</td>
</tr>
<tr>
<td>two-1</td>
</tr>
<tr>
<td>two-2</td>
</tr>
<tr>
<td>three-1</td>
</tr>
<tr>
<td>three-2</td>
</tr>
</tbody>
</table>

If..then..elseif..else..end if

The if..then control statement is a script selection construct forcing the script execution to follow different paths depending on one or several logical conditions.

See: if (page 332) (script and chart function)

Syntax:

```
If  condition then
    [ statements ]
{ elseif condition then
    [ statements ] }
[ else
    [ statements ] ]
end if
```

Since the if..then statement is a control statement and as such is ended with either a semicolon or end-of-line, each of its four possible clauses (if..then, elseif..then, else and end if) must not cross a line boundary.

Arguments:
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>condition</td>
<td>A logical expression which can be evaluated as True or False.</td>
</tr>
<tr>
<td>statements</td>
<td>Any group of one or more Qlik Sense script statements.</td>
</tr>
</tbody>
</table>

**Example 1:**

```plaintext
if a=1 then
    LOAD * from abc.csv;
    SQL SELECT e, f, g from tab1;
end if
```

**Example 2:**

```plaintext
if a=1 then; drop table xyz; end if;
```

**Example 3:**

```plaintext
if x>0 then
    LOAD * from pos.csv;
elseif x<0 then
    LOAD * from neg.csv;
else
    LOAD * from zero.txt;
end if
```

**Sub..end sub**

The **sub..end sub** control statement defines a subroutine which can be called upon from a **call** statement.

**Syntax:**

```
Sub name [ ( paramlist )] statements end sub
```

Arguments are copied into the subroutine and, if the corresponding actual parameter in the **call** statement is a variable name, copied back out again upon exiting the subroutine.

If a subroutine has more formal parameters than actual parameters passed by a **call** statement, the extra parameters will be initialized to NULL and can be used as local variables within the subroutine.

Since the **sub** statement is a control statement and as such is ended with either a semicolon or end-of-line, each of its two clauses (**sub** and **end sub**) must not cross a line boundary.

**Arguments:**
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The name of the subroutine.</td>
</tr>
<tr>
<td>paramlist</td>
<td>A comma separated list of variable names for the formal parameters of the subroutine. These can be used as any variable inside the subroutine.</td>
</tr>
<tr>
<td>statements</td>
<td>Any group of one or more Qlik Sense script statements.</td>
</tr>
</tbody>
</table>

**Example 1:**

```
Sub INCR (I,J)
  I = I + 1
Exit Sub when I < 10
  J = J + 1
End Sub
Call INCR (X,Y)
```

**Example 2:** - parameter transfer

```
Sub ParTrans (A,B,C)
  A=A+1
  B=B+1
  C=C+1
End Sub
Call ParTrans (A, B+1)
```

The result of the above will be that locally, inside the subroutine, A will be initialized to 1, B will be initialized to 4 and C will be initialized to NULL.

When exiting the subroutine, the global variable A will get 2 as value (copied back from subroutine). The second actual parameter "(X+1)" will not be copied back since it is not a variable. Finally, the global variable C will not be affected by the subroutine call.

**Switch..case..default..end switch**

The switch control statement is a script selection construct forcing the script execution to follow different paths, depending on the value of an expression.

**Syntax:**

```
Switch expression { case valuelist [ statements ]} [ default statements] end switch
```

*i Since the switch statement is a control statement and as such is ended with either a semicolon or end-of-line, each of its four possible clauses (switch, case, default and end switch) must not cross a line boundary.***

**Arguments:**
### Argument Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expression</td>
<td>An arbitrary expression.</td>
</tr>
<tr>
<td>valuelist</td>
<td>A comma separated list of values with which the value of expression will be compared. Execution of the script will continue with the statements in the first group encountered with a value in valuelist equal to the value in expression. Each value in valuelist may be an arbitrary expression. If no match is found in any case clause, the statements under the default clause, if specified, will be executed.</td>
</tr>
<tr>
<td>statements</td>
<td>Any group of one or more Qlik Sense script statements.</td>
</tr>
</tbody>
</table>

### Script prefixes

Prefixes may be applied to applicable regular statements but never to control statements. The **when** and **unless** prefixes can however be used as suffixes to a few specific control statement clauses.

All script keywords can be typed with any combination of lower case and upper case characters. Field and variable names used in the statements are however case sensitive.

### Script prefixes overview

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

#### Buffer

QVD files can be created and maintained automatically via the **buffer** prefix. This prefix can be used on most LOAD and SELECT statements in script. It indicates that QVD files are used to cache/buffer the result of the statement.

```plaintext
Buffer[(option [ , option])] ( loadstatement | selectstatement )
option:= incremental | stale [after] amount [(days | hours)]
```

#### Bundle

The **Bundle** prefix is used to include external files, such as image or sound files, or objects connected to a field value, to be stored in the qvf file.

```plaintext
Bundle [Info] ( loadstatement | selectstatement)
```

#### Concatenate
If two tables that are to be concatenated have different sets of fields, concatenation of two tables can still be forced with the `Concatenate` prefix.

```plaintext
Concatenate[ (tablename ) ] ( loadstatement | selectstatement )
```

**Crosstable**

The `crosstable` prefix is used to turn a cross table into a straight table.

```plaintext
Crosstable (attribute field name, data field name [ , n ] ) ( loadstatement | selectstatement )
```

**First**

The `First` prefix to a `LOAD` or `SELECT` (SQL) statement is used for loading a set maximum number of records from a data source table.

```plaintext
First n( loadstatement | selectstatement )
```

**Generic**

The unpacking and loading of a generic database can be done with a `generic` prefix.

```plaintext
Generic ( loadstatement | selectstatement )
```

**Hierarchy**

The `hierarchy` prefix is used to transform a hierarchy table to a table that is useful in a Qlik Sense data model. It can be put in front of a `LOAD` or a `SELECT` statement and will use the result of the loading statement as input for a table transformation.

```plaintext
Hierarchy (NodeID, ParentID, NodeName, [ParentName], [PathSource], [PathName], [PathDelimiter], [Depth]) (loadstatement | selectstatement)
```

**HierarchBelongsTo**

This prefix is used to transform a hierarchy table to a table that is useful in a Qlik Sense data model. It can be put in front of a `LOAD` or a `SELECT` statement and will use the result of the loading statement as input for a table transformation.

```plaintext
HierarchBelongsTo (NodeID, ParentID, NodeName, AncestorID, AncestorName, [DepthDiff]) (loadstatement | selectstatement)
```

**Image_Size**

This clause is used with the `Info` prefix to resize images from a database management system to fit in the fields.

```plaintext
Info [Image_Size(width, height)] ( loadstatement | selectstatement )
```

**Info**

The `info` prefix is used to link external information, such as a text file, a picture or a video to a field value.

```plaintext
Info( loadstatement | selectstatement )
```
The **join** and **keep** prefixes can be preceded by the prefix **inner**. If used before **join** it specifies that an inner join should be used. The resulting table will thus only contain combinations of field values from the raw data tables where the linking field values are represented in both tables. If used before **keep**, it specifies that both raw data tables should be reduced to their common intersection before being stored in Qlik Sense.

```
Inner ( Join | Keep ) [ (tablename) ] (loadstatement | selectstatement )
```

**IntervalMatch**

The **IntervalMatch** prefix is used to create a table matching discrete numeric values to one or more numeric intervals, and optionally matching the values of one or several additional keys.

```
IntervalMatch (matchfield)(loadstatement | selectstatement )
IntervalMatch (matchfield, keyfield1 [ , keyfield2, ... keyfield5 ] )
(loadstatement | selectstatement )
```

**Join**

The **join** prefix joins the loaded table with an existing named table or the last previously created data table.

```
[Inner | Outer | Left | Right ] Join [ (tablename ) ] ( loadstatement | selectstatement )
```

**Keep**

The **keep** prefix is similar to the **join** prefix. Just as the **join** prefix, it compares the loaded table with an existing named table or the last previously created data table, but instead of joining the loaded table with an existing table, it has the effect of reducing one or both of the two tables before they are stored in Qlik Sense, based on the intersection of table data. The comparison made is equivalent to a natural join made over all the common fields, i.e. the same way as in a corresponding join. However, the two tables are not joined and will be kept in Qlik Sense as two separately named tables.

```
(Inner | Left | Right) Keep [(tablename ) ] ( loadstatement | selectstatement )
```

**Left**

The **Join** and **Keep** prefixes can be preceded by the prefix **left**.

If used before **join** it specifies that a left join should be used. The resulting table will only contain combinations of field values from the raw data tables where the linking field values are represented in the first table. If used before **keep**, it specifies that the second raw data table should be reduced to its common intersection with the first table, before being stored in Qlik Sense.

```
Left ( Join | Keep ) [ (tablename) ] (loadstatement | selectstatement )
```

**Mapping**

The **mapping** prefix is used to create a mapping table that can be used to, for example, replacing field values and field names during script execution.

```
Mapping ( loadstatement | selectstatement )
```

**NoConcatenate**
The **NoConcatenate** prefix forces two loaded tables with identical field sets to be treated as two separate internal tables, when they would otherwise be automatically concatenated.

```
NoConcatenate ( loadstatement | selectstatement )
```

**Outer**

The explicit **Join** prefix can be preceded by the prefix **outer** in order to specify an outer join. In an outer join all combinations between the two tables are generated. The resulting table will thus contain combinations of field values from the raw data tables where the linking field values are represented in one or both tables. The **outer** keyword is optional.

```
Outer Join [ (tablename) ] (loadstatement | selectstatement )
```

**Right**

The **Join** and **Keep** prefixes can be preceded by the prefix **right**.

If used before **join** it specifies that a right join should be used. The resulting table will only contain combinations of field values from the raw data tables where the linking field values are represented in the second table. If used before **keep**, it specifies that the first raw data table should be reduced to its common intersection with the second table, before being stored in Qlik Sense.

```
Right (Join | Keep) [ (tablename) ] (loadstatement | selectstatement )
```

**Sample**

The **sample** prefix to a LOAD or SELECT statement is used for loading a random sample of records from the data source.

```
Sample p ( loadstatement | selectstatement )
```

**Semantic**

Tables containing relations between records can be loaded through a **semantic** prefix. This can for example be self-references within a table, where one record points to another, such as parent, belongs to, or predecessor.

```
Semantic ( loadstatement | selectstatement )
```

**Unless**

The **unless** prefix and suffix is used for creating a conditional clause which determines whether a statement or exit clause should be evaluated or not. It may be seen as a compact alternative to the full **if..end if** statement.

```
(Unless condition statement | exitstatement Unless condition )
```

**When**

The **when** prefix and suffix is used for creating a conditional clause which determines whether a statement or exit clause should be executed or not. It may be seen as a compact alternative to the full **if..end if** statement.

```
( When condition statement | exitstatement when condition )
```
Buffer

QVD files can be created and maintained automatically via the buffer prefix. This prefix can be used on most LOAD and SELECT statements in script. It indicates that QVD files are used to cache/buffer the result of the statement.

Syntax:

```
Buffer [(option [, option])] ( loadstatement | selectstatement )
```

option ::= incremental | stale [after] amount [(days | hours)]

If no option is used, the QVD buffer created by the first execution of the script will be used indefinitely.

QVD buffers will normally be removed when no longer referenced anywhere throughout a complete script execution in the app that created it or when the app that created it no longer exists.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>incremental</td>
<td>The incremental option enables the ability to read only part of an underlying file. Previous size of the file is stored in the XML header in the QVD file. This is particularly useful with log files. All records loaded at a previous occasion are read from the QVD file whereas the following new records are read from the original source and finally an updated QVD-file is created. Note that the incremental option can only be used with LOAD statements and text files and that incremental load cannot be used where old data is changed or deleted!</td>
</tr>
<tr>
<td>stale [after]</td>
<td>amount is a number specifying the time period. Decimals may be used. The unit is assumed to be days if omitted. The stale after option is typically used with DB sources where there is no simple timestamp on the original data. Instead you specify how old the QVD snapshot can be to be used. A stale after clause simply states a time period from the creation time of the QVD buffer after which it will no longer be considered valid. Before that time the QVD buffer will be used as source for data and after that the original data source will be used. The QVD buffer file will then automatically be updated and a new period starts.</td>
</tr>
<tr>
<td>amount [(days</td>
<td>hours)]</td>
</tr>
</tbody>
</table>

Limitations:

Numerous limitations exist, most notable is that there must be either a file LOAD or a SELECT statement at the core of any complex statement.

Example 1:

```
Buffer SELECT * from MyTable;
```

Example 2:

```
Buffer (stale after 7 days) SELECT * from MyTable;
```
Example 3:

Buffer (incremental) LOAD * from MyLog.log;

Bundle

The Bundle prefix is used to include external files, such as image or sound files, or objects connected to a field value, to be stored in the qvf file.

Syntax:

```
Bundle [Info] ( loadstatement | selectstatement )
```

In order to maintain portability, it is possible to include the external files into the .qvf file itself. To this end use the Bundle prefix. The bundled info files are compressed in the process, but will nevertheless take up additional space both in the file and in RAM. Therefore consider both the size and the number of bundled files before going for this solution.

The info may be referenced from the layout as normal info, via the chart info function or as an internal file via the special syntax `qmem:// fieldname / fieldvalue` alternatively `qmem:// fieldname / < index >` where index is the internal index of a field value.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info</td>
<td>If a piece of external information, such as an image or a sound file is to be connected to a field value, this is done in a table that is loaded with the Info prefix. The Info prefix may be omitted when Bundle is used.</td>
</tr>
</tbody>
</table>

Example:

```
Bundle Info LOAD * From flagoecd.csv;
Bundle SQL SELECT * from infotable;
```

Concatenate

If two tables that are to be concatenated have different sets of fields, concatenation of two tables can still be forced with the Concatenate prefix. This statement forces concatenation with an existing named table or the latest previously created logical table.

Syntax:

```
Concatenate[ ( tablename ) ] ( loadstatement | selectstatement )
```

A concatenation is in principle the same as the SQL UNION statement, but with two differences:
- The **Concatenate** prefix can be used no matter if the tables have identical field names or not.
- Identical records are not removed with the **Concatenate** prefix.

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tablename</td>
<td>The name of the existing table.</td>
</tr>
</tbody>
</table>

**Example:**

```plaintext
Concatenate LOAD * From file2.csv;
Concatenate SELECT * From table3;
   tab1: LOAD * From file1.csv;
   tab2: LOAD * From file2.csv;
   ... ...
Concatenate (tab1) LOAD * From file3.csv;
```

**Crosstable**

The **crosstable** prefix is used to turn a cross table into a straight table.

**Syntax:**

```plaintext
crosstable (attribute field name, data field name [ , n ] ) ( loadstatement | selectstatement )
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>attribute field name</td>
<td>The field that contains the attribute values.</td>
</tr>
<tr>
<td>data field name</td>
<td>The field that contains the data values.</td>
</tr>
<tr>
<td>n</td>
<td>The number of qualifier fields preceding the table to be transformed to generic form. Default is 1.</td>
</tr>
</tbody>
</table>

A crosstable is a common type of table featuring a matrix of values between two or more orthogonal lists of header data, of which one is used as column headers. A typical example could be to have one column per month. The result of the **crosstable** prefix is that the column headers (for example month names) will be stored in one field, the attribute field, and the column data (month numbers) will be stored in a second field: the data field.

**Examples:**

```plaintext
Crosstable (Month, Sales) LOAD * from ex1.csv;
Crosstable (Month, Sales, 2) LOAD * from ex2.csv;
```
Crosstable (A,B) SELECT * from table3;

First
The First prefix to a LOAD or SELECT (SQL) statement is used for loading a set maximum number of records from a data source table.

Syntax:

```
First n ( loadstatement | selectstatement )
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>An arbitrary expression that evaluates to an integer indicating the maximum number of records to be read.</td>
</tr>
<tr>
<td></td>
<td>n can be enclosed in parentheses, like (n), but this is not required.</td>
</tr>
</tbody>
</table>

Examples:

First 10 LOAD * from abc.csv;
First (1) SQL SELECT * from Orders;

Generic
The unpacking and loading of a generic database can be done with a generic prefix.

Syntax:

```
Generic( loadstatement | selectstatement )
```

Tables loaded through a generic statement are not auto-concatenated.

Examples:

Generic LOAD * from abc.csv;
Generic SQL SELECT * from table1;

Hierarchy
The hierarchy prefix is used to transform a hierarchy table to a table that is useful in a Qlik Sense data model. It can be put in front of a LOAD or a SELECT statement and will use the result of the loading statement as input for a table transformation.

Syntax:

```
Hierarchy (NodeID, ParentID, NodeName, [ParentName], [PathSource], [PathName], [PathDelimiter], [Depth]) (loadstatement | selectstatement)
```
The input table must be an adjacent nodes table. Adjacent nodes tables are tables where each record corresponds to a node and has a field that contains a reference to the parent node. In such a table the node is stored on one record only but the node can still have any number of children. The table may of course contain additional fields describing attributes for the nodes.

The prefix creates an expanded nodes table, which normally has the same number of records as the input table, but in addition each level in the hierarchy is stored in a separate field. The path field can be used in a tree structure.

Usually the input table has exactly one record per node and in such a case the output table will contain the same number of records. However, sometimes there are nodes with multiple parents, i.e. one node is represented by several records in the input table. If so, the output table may have more records than the input table.

All nodes with a parent id not found in the node id column (including nodes with missing parent id) will be considered as roots. Also, only nodes with a connection to a root node - direct or indirect - will be loaded, thus avoiding circular references.

Additional fields containing the name of the parent node, the path of the node and the depth of the node can be created.

## Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NodeID</td>
<td>The name of the field that contains the node id. This field must exist in the input table.</td>
</tr>
<tr>
<td>ParentID</td>
<td>The name of the field that contains the node id of the parent node. This field must exist in the input table.</td>
</tr>
<tr>
<td>NodeName</td>
<td>The name of the field that contains the name of the node. This field must exist in the input table.</td>
</tr>
<tr>
<td>ParentName</td>
<td>A string used to name the new ParentName field. If omitted, this field will not be created.</td>
</tr>
<tr>
<td>ParentSource</td>
<td>The name of the field that contains the name of the node used to build the node path. Optional parameter. If omitted, NodeName will be used.</td>
</tr>
<tr>
<td>PathName</td>
<td>A string used to name the new Path field, which contains the path from the root to the node. Optional parameter. If omitted, this field will not be created.</td>
</tr>
<tr>
<td>PathDelimiter</td>
<td>A string used as delimiter in the new Path field. Optional parameter. If omitted, '/' will be used.</td>
</tr>
<tr>
<td>Depth</td>
<td>A string used to name the new Depth field, which contains the depth of the node in the hierarchy. Optional parameter. If omitted, this field will not be created.</td>
</tr>
</tbody>
</table>

## Example:

```
Hierarchy(NodeID, ParentID, NodeName) LOAD
  NodeID,
  ParentID,
```

Script Syntax and Chart Functions Guide - Qlik Sense, 1.1
HierarchyBelongsTo

This prefix is used to transform a hierarchy table to a table that is useful in a Qlik Sense data model. It can be put in front of a LOAD or a SELECT statement and will use the result of the loading statement as input for a table transformation.

Syntax:

HierarchyBelongsTo (NodeID, ParentID, NodeName, AncestorID, AncestorName, [DepthDiff]) (loadstatement | selectstatement)

The input table must be an adjacent nodes table. Adjacent nodes tables are tables where each record corresponds to a node and has a field that contains a reference to the parent node. In such a table the node is stored on one record only but the node can still have any number of children. The table may of course contain additional fields describing attributes for the nodes.

The prefix creates a table containing all ancestor-child relations of the hierarchy. The ancestor fields can then be used to select entire trees in the hierarchy. The output table in most cases contains several records per node.

An additional field containing the depth difference of the nodes can be created.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NodeID</td>
<td>The name of the field that contains the node id. This field must exist in the input table.</td>
</tr>
<tr>
<td>ParentID</td>
<td>The name of the field that contains the node id of the parent node. This field must exist in the input table.</td>
</tr>
<tr>
<td>NodeName</td>
<td>The name of the field that contains the name of the node. This field must exist in the input table.</td>
</tr>
<tr>
<td>AncestorID</td>
<td>A string used to name the new ancestor id field, which contains the id of the ancestor node.</td>
</tr>
<tr>
<td>AncestorName</td>
<td>A string used to name the new ancestor field, which contains the name of the ancestor node.</td>
</tr>
<tr>
<td>DepthDiff</td>
<td>A string used to name the new DepthDiff field, which contains the depth of the node in the hierarchy relative the ancestor node. Optional parameter. If omitted, this field will not be created.</td>
</tr>
</tbody>
</table>

Example:

HierarchyBelongsTo (NodeID, ParentID, Node, Tree, ParentName) LOAD
NodeID,
ParentID, NodeName
From data.xls (biff, embedded labels, table is [Sheet1$]);

Image_Size
This clause is used with the Info prefix to resize images from a database management system to fit in the fields.

Syntax:

```
Info [Image_Size(width,height)] (loadstatement | selectstatement )
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>width</td>
<td>The width of the image specified in pixels.</td>
</tr>
<tr>
<td>height</td>
<td>The height of the image specified in pixels.</td>
</tr>
</tbody>
</table>

Example:

```
Info Image_Size(122,122) SQL SELECT ID, Photo From infotable;
```

Info

The info prefix is used to link external information, such as a text file, a picture or a video to a field value.

Syntax:

```
Info (loadstatement | selectstatement )
```

If a piece of external information, such as a text file, a picture or a video is to be linked to a field value, this is done in a table that is loaded using an info prefix. (In some cases it will be preferable to store the information inside the qvf file, by using the bundle prefix. The table must contain two columns only, the first one with the field values that will form the keys to the information, the second one containing the information elements, that is, the file names of the pictures etcetera.

The same applies to, for example, a picture from a database management system. On a binary field, a blob, the info select statement makes an implicit bundle, i.e. the binary data will be fetched immediately and stored in the qvf. The binary data must be the second field in a SELECT statement.

If a picture needs to be resized, the image_size clause can be used.

Example:

```
Info LOAD * from flagoeed.csv;
Info SQL SELECT * from infotable;
Info SQL SELECT Key, Picture From infotable;
```
Inner

The join and keep prefixes can be preceded by the prefix inner. If used before join it specifies that an inner join should be used. The resulting table will thus only contain combinations of field values from the raw data tables where the linking field values are represented in both tables. If used before keep, it specifies that both raw data tables should be reduced to their common intersection before being stored in Qlik Sense.

Syntax:

```
Inner (Join | Keep) [ (tablename) ] (loadstatement | selectstatement )
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tablename</td>
<td>The named table to be compared to the loaded table.</td>
</tr>
<tr>
<td>loadstatement or selectstatement</td>
<td>The LOAD or SELECT statement for the loaded table.</td>
</tr>
</tbody>
</table>

Example 1:

```
Table1
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>aa</td>
</tr>
<tr>
<td>2</td>
<td>cc</td>
</tr>
<tr>
<td>3</td>
<td>ee</td>
</tr>
</tbody>
</table>

Table2
<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>xx</td>
</tr>
<tr>
<td>4</td>
<td>yy</td>
</tr>
</tbody>
</table>

QVTable:
SQL SELECT * From table1;
inner join SQL SELECT * From table2;

QVTable
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>aa</td>
<td>xx</td>
</tr>
</tbody>
</table>
```

Example 2:

```
QVTab1:
SQL SELECT * From Table1;
```
The two tables in the `keep` example are, of course, associated via A.

**IntervalMatch**

The `IntervalMatch` prefix is used to create a table matching discrete numeric values to one or more numeric intervals, and optionally matching the values of one or several additional keys.

**Syntax:**

```plaintext
IntervalMatch (matchfield) (loadstatement | selectstatement )
IntervalMatch (matchfield, keyfield1 [ , keyfield2, ... keyfield5 ] )
(loadstatement | selectstatement )
```

The `IntervalMatch` prefix must be placed before a `LOAD` or a `SELECT` statement that loads the intervals. The field containing the discrete data points (Time in the example below) and additional keys must already have been loaded into Qlik Sense before the statement with the `IntervalMatch` prefix. The prefix does not by itself read this field from the database table. The prefix transforms the loaded table of intervals and keys to a table that contains an additional column: the discrete numeric data points. It also expands the number of records so that the new table has one record per possible combination of discrete data point, interval and value of the key field(s).

The intervals may be overlapping and the discrete values will be linked to all matching intervals.

In order to avoid undefined interval limits being disregarded, it may be necessary to allow NULL values to map to other fields that constitute the lower or upper limits to the interval. This can be handled by the `NullAsValue` statement or by an explicit test that replaces NULL values with a numeric value well before or after any of the discrete numeric data points.

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>matchfield</td>
<td>The field containing the discrete numeric values to be linked to intervals.</td>
</tr>
</tbody>
</table>
### Argument | Description
--- | ---
keyfield | Fields that contain the additional attributes that are to be matched in the transformation.
loadstatement or selectstatement | Must result in a table, where the first field contains the lower limit of each interval, the second field contains the upper limit of each interval, and in the case of using key matching, the third and any subsequent fields contain the keyfield(s) present in the IntervalMatch statement. The intervals are always closed, i.e. the end points are included in the interval. Non-numeric limits render the interval to be disregarded (undefined).

**Example 1:**

In the two tables below, the first one defines the start and end times for the production of different orders. The second one lists a number of discrete events. By means of the IntervalMatch prefix it is possible to logically connect the two tables in order to find out e.g. which orders were affected by disturbances and which orders were processed by which shifts.

**OrderLog**

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:00</td>
<td>03:35</td>
<td>A</td>
</tr>
<tr>
<td>02:30</td>
<td>07:58</td>
<td>B</td>
</tr>
<tr>
<td>03:04</td>
<td>10:27</td>
<td>C</td>
</tr>
<tr>
<td>07:23</td>
<td>11:43</td>
<td>D</td>
</tr>
</tbody>
</table>

**EventLog**

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
<td>0</td>
<td>Start of shift 1</td>
</tr>
<tr>
<td>01:18</td>
<td>1</td>
<td>Line stop</td>
</tr>
<tr>
<td>02:23</td>
<td>2</td>
<td>Line restart 50%</td>
</tr>
<tr>
<td>04:15</td>
<td>3</td>
<td>Line speed 100%</td>
</tr>
<tr>
<td>08:00</td>
<td>4</td>
<td>Start of shift 2</td>
</tr>
<tr>
<td>11:43</td>
<td>5</td>
<td>End of production</td>
</tr>
</tbody>
</table>

First load the two tables as usual, then link the field *Time* to the time intervals defined by the fields *Start* and *End*:

```sql
SELECT * from OrderLog;
SELECT * from Eventlog;
IntervalMatch (Time) SELECT Start, End from OrderLog;
```
The following table box could now be created in Qlik Sense:

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Comment</th>
<th>Order</th>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
<td>0</td>
<td>Start of shift 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>01:18</td>
<td>1</td>
<td>Line stop A</td>
<td>A</td>
<td>01:00</td>
<td>03:35</td>
</tr>
<tr>
<td>02:23</td>
<td>2</td>
<td>Line restart 50%</td>
<td>A</td>
<td>01:00</td>
<td>03:35</td>
</tr>
<tr>
<td>04:15</td>
<td>3</td>
<td>Line speed 100%</td>
<td>B</td>
<td>02:30</td>
<td>07:58</td>
</tr>
<tr>
<td>04:15</td>
<td>3</td>
<td>Line speed 100%</td>
<td>C</td>
<td>03:04</td>
<td>10:27</td>
</tr>
<tr>
<td>08:00</td>
<td>4</td>
<td>Start of shift 2</td>
<td>C</td>
<td>03:04</td>
<td>10:27</td>
</tr>
<tr>
<td>08:00</td>
<td>4</td>
<td>Start of shift 2</td>
<td>D</td>
<td>07:23</td>
<td>11:43</td>
</tr>
<tr>
<td>11:43</td>
<td>5</td>
<td>End of production</td>
<td>D</td>
<td>07:23</td>
<td>11:43</td>
</tr>
</tbody>
</table>

**Example 2: (using keyfield)**

Inner Join IntervalMatch (Date,Key) LOAD FirstDate, LastDate, Key resident Key;

**Join**

The `join` prefix joins the loaded table with an existing named table or the last previously created data table.

**Syntax:**

```
[inner | outer | left | right ]Join [ (tablename ) ]( loadstatement | selectstatement )
```

The join is a natural join made over all the common fields. The join statement may be preceded by one of the prefixes `inner`, `outer`, `left` or `right`.

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tablename</td>
<td>The named table to be compared to the loaded table.</td>
</tr>
<tr>
<td>loadstatement or selectstatement</td>
<td>The <strong>LOAD</strong> or <strong>SELECT</strong> statement for the loaded table.</td>
</tr>
</tbody>
</table>

**Example:**

Join LOAD * from abc.csv;

Join SELECT * from table1;

tab1: LOAD * from file1.csv;
tab2:
LOAD * from file2.csv;
...
join (tab1) LOAD * from file3.csv;

**Keep**

The *keep* prefix is similar to the *join* prefix. Just as the *join* prefix, it compares the loaded table with an existing named table or the last previously created data table, but instead of joining the loaded table with an existing table, it has the effect of reducing one or both of the two tables before they are stored in Qlik Sense, based on the intersection of table data. The comparison made is equivalent to a natural join made over all the common fields, i.e. the same way as in a corresponding join. However, the two tables are not joined and will be kept in Qlik Sense as two separately named tables.

**Syntax:**

```
(inner | left | right) keep [tablename] (loadstatement | selectstatement)
```

The *keep* prefix must be preceded by one of the prefixes *inner*, *left* or *right*.

The explicit *join* prefix in Qlik Sense script language performs a full join of the two tables. The result is one table. In many cases such joins will result in very large tables. One of the main features of Qlik Sense is its ability to make associations between multiple tables instead of joining them, which greatly reduces memory usage, increases processing speed and offers enormous flexibility. Explicit joins should therefore generally be avoided in Qlik Sense scripts. The keep functionality was designed to reduce the number of cases where explicit joins needs to be used.

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tablename</td>
<td>The named table to be compared to the loaded table.</td>
</tr>
<tr>
<td>loadstatement or selectstatement</td>
<td>The <strong>LOAD</strong> or <strong>SELECT</strong> statement for the loaded table.</td>
</tr>
</tbody>
</table>

**Example:**

Inner Keep LOAD * from abc.csv;
Left Keep SELECT * from table1;
tab1: LOAD * from file1.csv;
tab2: LOAD * from file2.csv;
...
Left Keep (tab1) LOAD * from file3.csv;

**Left**

The **Join** and **Keep** prefixes can be preceded by the prefix **left**.
If used before `join` it specifies that a left join should be used. The resulting table will only contain combinations of field values from the raw data tables where the linking field values are represented in the first table. If used before `keep`, it specifies that the second raw data table should be reduced to its common intersection with the first table, before being stored in Qlik Sense.

Were you looking for the string function by the same name? See: **Left** (page 597)

**Syntax:**

```
Left ( Join | Keep) [ (tablename) ] (loadstatement | selectstatement)
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tablename</td>
<td>The named table to be compared to the loaded table.</td>
</tr>
<tr>
<td>loadstatement or selectstatement</td>
<td>The <strong>LOAD</strong> or <strong>SELECT</strong> statement for the loaded table.</td>
</tr>
</tbody>
</table>

**Example:**

**Table1**

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>aa</td>
</tr>
<tr>
<td>2</td>
<td>cc</td>
</tr>
<tr>
<td>3</td>
<td>ee</td>
</tr>
</tbody>
</table>

**Table2**

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>xx</td>
</tr>
<tr>
<td>4</td>
<td>yy</td>
</tr>
</tbody>
</table>

**QVTable:**

```
SELECT * From table1;
Left Join SSelect * From table2;
```

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>aa</td>
<td>xx</td>
</tr>
<tr>
<td>2</td>
<td>cc</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>ee</td>
</tr>
</tbody>
</table>
QVTab1:  
SELECT * From Table1;
QVTab2:  
Left Keep SELECT * From Table2;

<table>
<thead>
<tr>
<th>QVTab1</th>
<th></th>
<th>QVTab2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>aa</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>cc</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ee</td>
<td>xx</td>
</tr>
</tbody>
</table>

The two tables in the `keep` example are, of course, associated via A.

tab1:  
LOAD * From file1.csv;
tab2:  
LOAD * From file2.csv;  
Left Keep (tab1) LOAD * From file3.csv;

Mapping  
The `mapping` prefix is used to create a mapping table that can be used to, for example, replacing field values and field names during script execution.

Syntax:

```
Mapping ( loadstatement | selectstatement )
```

The `mapping` prefix can be put in front of a `LOAD` or a `SELECT` statement and will store the result of the loading statement as a mapping table. A mapping table consists of two columns, the first containing comparison values and the second containing the desired mapping values. Mapping tables are stored temporarily in memory and dropped automatically after script execution.

The content of the mapping table can be accessed using e.g. the `Map ... Using` statement, the `Rename Field` statement, the `Applymap()` function or the `Mapsubstring()` function.

Example:

```
Mapping LOAD * from x.csv
Mapping SQL SELECT a, b from map1
map1:
  mapping LOAD * inline [
x,y
US,USA
```
NoConcatenate

The **NoConcatenate** prefix forces two loaded tables with identical field sets to be treated as two separate internal tables, when they would otherwise be automatically concatenated.

**Syntax:**

```plaintext
NoConcatenate ( loadstatement | selectstatement )
```

**Example:**

```plaintext
LOAD A,B from file1.csv;
NoConcatenate LOAD A,B from file2.csv;
```

Outer

The explicit **Join** prefix can be preceded by the prefix **outer** in order to specify an outer join. In an outer join all combinations between the two tables are generated. The resulting table will thus contain combinations of field values from the raw data tables where the linking field values are represented in one or both tables. The **outer** keyword is optional.

**Syntax:**

```plaintext
Outer Join [ (tablename) ](loadstatement | selectstatement )
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tablename</td>
<td>The named table to be compared to the loaded table.</td>
</tr>
<tr>
<td>loadstatement or selectstatement</td>
<td>The <strong>LOAD</strong> or <strong>SELECT</strong> statement for the loaded table.</td>
</tr>
</tbody>
</table>

**Example:**

```plaintext
Table1

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>aa</td>
</tr>
<tr>
<td>2</td>
<td>cc</td>
</tr>
<tr>
<td>3</td>
<td>ee</td>
</tr>
</tbody>
</table>

Table2

| A | C |
```

2  Script syntax

SQL SELECT * from table1;
join SQL SELECT * from table2;
OR

SQL SELECT * from table1;
outer join SQL SELECT * from table2;

<table>
<thead>
<tr>
<th>Joined table</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>aa</td>
<td>xx</td>
</tr>
<tr>
<td>2</td>
<td>cc</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ee</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>yy</td>
</tr>
</tbody>
</table>

Right

The Join and Keep prefixes can be preceded by the prefix right.

If used before join it specifies that a right join should be used. The resulting table will only contain combinations of field values from the raw data tables where the linking field values are represented in the second table. If used before keep, it specifies that the first raw data table should be reduced to its common intersection with the second table, before being stored in Qlik Sense.

Were you looking for the string function by the same name? See: Right (page 600)

Syntax:

Right (Join | Keep) [(tablename)](loadstatement | selectstatement )

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tablename</td>
<td>The named table to be compared to the loaded table.</td>
</tr>
<tr>
<td>loadstatement or selectstatement</td>
<td>The LOAD or SELECT statement for the loaded table.</td>
</tr>
</tbody>
</table>

Examples:

<table>
<thead>
<tr>
<th>Table1</th>
<th></th>
</tr>
</thead>
</table>
The two tables in the `keep` example are, of course, associated via `A`.

tab1:
LOAD * from file1.csv;
tab2:
LOAD * from file2.csv;

right keep (tab1) LOAD * from file3.csv;
Sample

The **sample** prefix to a **LOAD** or **SELECT** statement is used for loading a random sample of records from the data source.

**Syntax:**

```
Sample p ( loadstatement | selectstatement )
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>An arbitrary expression which valuates to a number larger than 0 and lower or equal to 1. The number indicates the probability for a given record to be read. All records will be read but only some of them will be loaded into Qlik Sense.</td>
</tr>
</tbody>
</table>

**Example:**

Sample 0.15 SQL SELECT * from Longtable;
Sample(0.15) LOAD * from Longtab.csv;

> The parentheses are allowed but not required.

Semantic

Tables containing relations between records can be loaded through a **semantic** prefix. This can for example be self-references within a table, where one record points to another, such as parent, belongs to, or predecessor.

**Syntax:**

```
Semantic ( loadstatement | selectstatement)
```

The semantic load will create semantic fields that can be displayed in filter panes to be used for navigation in the data.

Tables loaded through a **semantic** statement cannot be concatenated.

**Example:**

Semantic LOAD * from abc.csv;
Semantic SELECT Object1, Relation, Object2, InverseRelation from table1;
Unless
The **unless** prefix and suffix is used for creating a conditional clause which determines whether a statement or exit clause should be evaluated or not. It may be seen as a compact alternative to the full **if..end if** statement.

Syntax:

```
(Unless condition statement | exitstatement Unless condition )
```

The **statement** or the **exitstatement** will only be executed if **condition** is evaluated to False.

The **unless** prefix may be used on statements which already have one or several other statements, including additional **when** or **unless** prefixes.

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>condition</td>
<td>A logical expression evaluating to True or False.</td>
</tr>
<tr>
<td>statement</td>
<td>Any Qlik Sense script statement except control statements.</td>
</tr>
<tr>
<td>exitstatement</td>
<td>An exit for, exit do or exit sub clause or an exit script statement.</td>
</tr>
</tbody>
</table>

**Examples:**

```qlik
exit script unless A=1;
unless A=1 LOAD * from myfile.csv;
unless A=1 when B=2 drop table Tab1;
```

When
The **when** prefix and suffix is used for creating a conditional clause which determines whether a statement or exit clause should be executed or not. It may be seen as a compact alternative to the full **if..end if** statement.

Syntax:

```
(when condition statement | exitstatement when condition )
```

The **statement** or the **exitstatement** will only be executed if condition is evaluated to True.

The **when** prefix may be used on statements which already have one or several other statements, including additional **when** or **unless** prefixes.

**Syntax:**
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>condition</td>
<td>A logical expression evaluating to True or False.</td>
</tr>
<tr>
<td>statement</td>
<td>Any Qlik Sense script statement except control statements.</td>
</tr>
<tr>
<td>exitstatement</td>
<td>An exit for, exit do or exit sub clause or an exit script statement.</td>
</tr>
</tbody>
</table>

**Example 1:**

```plaintext```
exit script when A=1;
```

**Example 2:**

```plaintext```
when A=1 LOAD * from myfile.csv;
```

**Example 3:**

```plaintext```
when A=1 unless B=2 drop table Tab1;
```

**Script regular statements**

Regular statements are typically used for manipulating data in one way or another. These statements may be written over any number of lines in the script and must always be terminated by a semicolon, ";".

All script keywords can be typed with any combination of lower case and upper case characters. Field and variable names used in the statements are however case sensitive.

**Script regular statements overview**

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

**Alias**

The **alias** statement is used for setting an alias according to which a field will be renamed whenever it occurs in the script that follows.

```plaintext```
Alias `fieldname` as `aliasname` {, `fieldname` as `aliasname`}
```

**Binary**

The **binary** statement is used for loading the data from another Qlik Sense app or QlikView 11.2 or earlier document, including section access data.

```plaintext```
Binary `file`  
file ::= [ `path` ] `filename`
```

**comment**

Provides a way of displaying the field comments (metadata) from databases and spreadsheets. Field names not present in the app will be ignored. If multiple occurrences of a field name are found, the last value is
used.

```plaintext
Comment field *fieldlist using mapname
Comment field fieldname with comment
```

**comment table**

Provides a way of displaying the table comments (metadata) from databases or spreadsheets.

```plaintext
Comment table tablelist using mapname
Comment table tablename with comment
```

**Connect**

The **CONNECT** statement is used to define Qlik Sense access to a general database through the OLE DB/ODBC interface. For ODBC, the data source first needs to be specified using the ODBC administrator.

```plaintext
ODBC Connect TO connect-string [ ( access_info ) ]
OLEDB CONNECT TO connect-string [ ( access_info ) ]
CUSTOM CONNECT TO connect-string [ ( access_info ) ]
LIB CONNECT TO connection
```

**Declare**

The **Declare** statement is used to create field and group definitions, where you can define relations between fields or functions. A set of field definitions can be used to automatically generate derived fields, which can be used as dimensions. For example, you can create a calendar definition, and use that to generate related dimensions, such as year, month, week and day, from a date field.

```plaintext
definition_name:
Declare [Field[s]] Definition [Tagged tag_list ]
[Parameters parameter_list ]
Fields field_list
[Groups group_list ]

<definition name>:
Declare [Field][s] Definition
Using <existing_definition>
[With <parameter_assignment> ]
```

**Derive**

The **Derive** statement is used to generate derived fields based on a field definition created with a **Declare** statement. You can either specify which data fields to derive fields for, or derive them explicitly or implicitly based on field tags.

```plaintext
Derive [Field[s]] From [Field[s]] field_list Using definition
Derive [Field[s]] From Explicit [Tag[s]] (tag_list) Using definition
Derive [Field[s]] From Implicit [Tag[s]] Using definition
```

**Direct Query**

The **DIRECT QUERY** statement allows you to access tables through an ODBC or OLE DB connection using
the Direct Discovery function.

**Direct Query** [path]

**Directory**
The **Directory** statement defines which directory to look in for data files in subsequent **LOAD** statements, until a new **Directory** statement is made.

**Disconnect**
The **Disconnect** statement terminates the current ODBC/OLE DB/Custom connection. This statement is optional.

**drop field**
One or several Qlik Sense fields can be dropped from the data model, and thus from memory, at any time during script execution, by means of a **drop field** statement.

> Both **drop field** and **drop fields** are allowed forms with no difference in effect. If no table is specified, the field will be dropped from all tables where it occurs.

**Drop field**  
fieldname [ , fieldname2 ...] [from tablename1 [ , tablename2 ...]]

**drop fields**  
fieldname [ , fieldname2 ...] [from tablename1 [ , tablename2 ...]]

**drop table**
One or several Qlik Sense internal tables can be dropped from the data model, and thus from memory, at any time during script execution, by means of a **drop table** statement.

> The forms **drop table** and **drop tables** are both accepted.

**Drop table**  
tablename [, tablename2 ...]

**drop tables**  
[ tablename [, tablename2 ...]

**Execute**
The **Execute** statement is used to run other programs while Qlik Sense is loading data. For example, to make conversions that are necessary.

**Execute commandline**

**FlushLog**
The **FlushLog** statement forces Qlik Sense to write the content of the script buffer to the script log file.
Force

The **force** statement forces Qlik Sense to interpret field values of subsequent **LOAD** and **SELECT** statements as written with only upper case letters, with only lower case letters, as always capitalized or as they appear (mixed). This statement makes it possible to associate field values from tables made according to different conventions.

| Force ( capitalization | case upper | case lower | case mixed ) |

LOAD

The **LOAD** statement loads fields from a file, from data defined in the script, from a previously loaded table, from a web page, from the result of a subsequent **SELECT** statement or by generating data automatically.

| Load [ distinct ] *fieldlist
| [ from file [ format-spec ] | from_field fieldassource [format-spec]
| inline data [ format-spec ] | resident table-label |
| autogenerate size ])
| [ where criterion | while criterion ]
| [ group_by groupbyfieldlist ]
| [order_by orderbyfieldlist ] |

Let

The **let** statement is a complement to the **set** statement, used for defining script variables. The **let** statement, in opposition to the **set** statement, evaluates the expression on the right side of the '=' before it is assigned to the variable.

| Let variablename=expression |

Map ... using

The **map ... using** statement is used for mapping a certain field value or expression to the values of a specific mapping table. The mapping table is created through the **Mapping** statement.

| Map *fieldlist Using mapname |

NullAsNull

The **NullAsNull** statement turns off the conversion of NULL values to string values previously set by a **NullAsValue** statement.

| NullAsNull *fieldlist |

NullAsValue

The **NullAsValue** statement specifies for which fields that NULL should be converted to a value.

| NullAsValue *fieldlist |

Qualify

The **Qualify** statement is used for switching on the qualification of field names, i.e. field names will get the
table name as a prefix.

**Qualify** *fieldlist*

**Rem**
The `rem` statement is used for inserting remarks, or comments, into the script, or to temporarily deactivate script statements without removing them.

**Rem string**

**Rename Field**
This script function renames one or more existing Qlik Sense field(s) after they have been loaded.

```
Rename field (using mapname|oldname to newname{ , oldname to newname })
```

```
Rename Fields (using mapname | oldname to newname{ , oldname to newname })
```

**Rename Table**
This script function renames one or more existing Qlik Sense internal table(s) after they have been loaded.

```
Rename table (using mapname | oldname to newname{ , oldname to newname })
```

```
Rename Tables (using mapname | oldname to newname{ , oldname to newname })
```

**Section**
With the `section` statement, it is possible to define whether the subsequent `LOAD` and `SELECT` statements should be considered as data or as a definition of the access rights.

```
Section (access | application)
```

**Select**
The selection of fields from an ODBC data source or OLE DB provider is made through standard SQL `SELECT` statements. However, whether the `SELECT` statements are accepted depends on the ODBC driver or OLE DB provider used.

```
Select [all | distinct | distinctrow | top n [percent] ] *fieldlist
```

```
From tablelist
```

```
[Where criterion ]
```

```
[Group by fieldlist [having criterion ] ]
```

```
[Order by fieldlist [asc | desc ]]
```

```
[ (Inner | Left | Right | Full)Join tablename on fieldref = fieldref ]
```

**Set**
The `set` statement is used for defining script variables. These can be used for substituting strings, paths, drives, and so on.

```
Set variablename=string
```
Sleep
The `sleep` statement pauses script execution for a specified time.

```
Sleep n
```

SQL
The `SQL` statement allows you to send an arbitrary SQL command through an ODBC or OLE DB connection.

```
SQL sql_command
```

SQLColumns
The `sqlcolumns` statement returns a set of fields describing the columns of an ODBC or OLE DB data source, to which a `connect` has been made.

```
SQLColumns
```

SQLTables
The `sqltables` statement returns a set of fields describing the tables of an ODBC or OLE DB data source, to which a `connect` has been made.

```
SQLTables
```

SQLTypes
The `sqltypes` statement returns a set of fields describing the types of an ODBC or OLE DB data source, to which a `connect` has been made.

```
SQLTypes
```

Star
The string used for representing the set of all the values of a field in the database can be set through the `star` statement. It affects the subsequent `LOAD` and `SELECT` statements.

```
Star is [ string ]
```

Store
This script function creates a QVD or a CSV file.

```
Store [ *fieldlist from] table into filename [ format-spec ];
```

Tag
This script function provides a way of assigning tags to one or more fields. If an attempt to tag a field name not present in the app is made, the tagging will be ignored. If conflicting occurrences of a field or tag name are found, the last value is used.

```
Tag fields fieldlist using mapname
Tag field fieldname with tagname
```

Trace
The `trace` statement writes a string to the **Script Execution Progress** window and to the script log file, when used. It is very useful for debugging purposes. Using `$-` expansions of variables that are calculated prior to the `trace` statement, you can customize the message.

```
Trace  string
```

**Unmap**

The **Unmap** statement disables field value mapping specified by a previous `Map ... Using` statement for subsequently loaded fields.

```
Unmap  *fieldlist
```

**Unqualify**

The **Unqualify** statement is used for switching off the qualification of field names that has been previously switched on by the **Qualify** statement.

```
Unqualify  *fieldlist
```

**Untag**

Provides a way of removing tags from one or more fields. If an attempt to untag a Field name not present in the app is made, the untagging will be ignored. If conflicting occurrences of a field or tag name is found, the last value is used.

```
Untag  fields  fieldlist  using  mapname
```

```
Untag  field  fieldname  with  tagname
```

**Alias**

The **alias** statement is used for setting an alias according to which a field will be renamed whenever it occurs in the script that follows.

**Syntax:**

```
alias  fieldname  as  aliasname  {,fieldname  as  aliasname}
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fieldname</code></td>
<td>The name of the field in your source data</td>
</tr>
<tr>
<td><code>aliasname</code></td>
<td>An alias name you want to use instead</td>
</tr>
</tbody>
</table>

**Examples and results:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias  ID_N  as NameID;</td>
<td></td>
</tr>
</tbody>
</table>
### Binary

The **binary** statement is used for loading the data from another Qlik Sense app or QlikView 11.2 or earlier document, including section access data.

**Syntax:**

```plaintext
binary file
file ::= [ path ] filename
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>file</td>
<td>The name of the file, including the file extension .qvw or .qvf.</td>
</tr>
<tr>
<td>path</td>
<td>The path to the file as a folder data connection.</td>
</tr>
</tbody>
</table>

*Example:* `lib://Table Files/`

In legacy scripting mode, the following path formats are also supported:

- absolute
  
  *Example:* `c:\data\`

- relative to the app containing this script line.
  
  *Example:* `data\`

**Only one binary statement is allowed in the script and it must be the first statement of the script.**

**Examples**

- Binary `lib://MyData/customer.qvw;`
- Binary `customer.qvw;`
- Binary `c:\qv\customer.qvw;`
Comment field

Provides a way of displaying the field comments (metadata) from databases and spreadsheets. Field names not present in the app will be ignored. If multiple occurrences of a field name are found, the last value is used.

Syntax:

```
comment [fields]  *fieldlist using  mapname
comment [field]  fieldname with  comment
```

The map table used should have two columns, the first containing field names and the second the comments.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*fieldlist</td>
<td>A comma separated list of the fields to be commented. Using * as field list indicates all fields. The wildcard characters * and ? are allowed in field names. Quoting of field names may be necessary when wildcards are used.</td>
</tr>
<tr>
<td>mapname</td>
<td>The name of a mapping table previously read in a mapping LOAD or mapping SELECT statement.</td>
</tr>
<tr>
<td>fieldname</td>
<td>The name of the field that should be commented.</td>
</tr>
<tr>
<td>comment</td>
<td>The comment that should be added to the field.</td>
</tr>
</tbody>
</table>

Example 1:

```
commentmap:
mapping LOAD * inline [ 
 a,b
 Alpha,This field contains text values
 Num,This field contains numeric values
 ];
 comment fields using commentmap;
```

Example 2:

```
comment field Alpha with AFieldContainingCharacters;
comment field Num with "A field containing numbers";
comment Gamma with 'Mickey Mouse field';
```

Comment table

Provides a way of displaying the table comments (metadata) from databases or spreadsheets.

Table names not present in the app are ignored. If multiple occurrences of a table name are found, the last value is used. The keyword can be used to read comments from a data source.
Syntax:

```
comment [tables] tablelist using mapname
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tablelist</td>
<td>(table,table)</td>
</tr>
<tr>
<td>mapname</td>
<td>The name of a mapping table previously read in a mapping LOAD or mapping SELECT statement.</td>
</tr>
</tbody>
</table>

Syntax:

To set individual comments, the following syntax is used:

```
comment [table] tablename with comment
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tablename</td>
<td>The name of the table that should be commented.</td>
</tr>
<tr>
<td>comment</td>
<td>The comment that should be added to the table.</td>
</tr>
</tbody>
</table>

Example 1:

```
Commentmap:
mapping LOAD * inline [
a,b
Main,This is the fact table
Currencies, Currency helper table
];
comment tables using commentmap;
```

Example 2:

```
comment table Main with 'Main fact table';
```

Connect

The CONNECT statement is used to define Qlik Sense access to a general database through the OLE DB/ODBC interface. For ODBC, the data source first needs to be specified using the ODBC administrator.

```
This statement supports only folder data connections in standard mode.
```
Script Syntax

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connect-string</td>
<td>connect-string ::= datasourcename { ; conn-spec-item }</td>
</tr>
<tr>
<td></td>
<td>The connection string is the data source name and an optional list of one or more connection specification items. If the data source name contains blanks, or if any connection specification items are listed, the connection string must be enclosed by quotation marks.</td>
</tr>
<tr>
<td>datasourcename</td>
<td>must be a defined ODBC data source or a string that defines an OLE DB provider.</td>
</tr>
<tr>
<td>conn-spec-item</td>
<td>::= DBQ=databaseSpecifier</td>
</tr>
<tr>
<td></td>
<td>The possible connection specification items may differ between different databases. For some databases, also other items than the above are possible. For OLE DB, some of the connection specific items are mandatory and not optional.</td>
</tr>
<tr>
<td>connection</td>
<td>The name of a data connection stored in the data load editor.</td>
</tr>
</tbody>
</table>

If the ODBC is placed before CONNECT, the ODBC interface will be used; else, OLE DB will be used.

Using **LIB CONNECT TO** connects to a database using a stored data connection that was created in the data load editor.

**Example 1:**

```
ODBC CONNECT TO 'Sales
DBQ=C:\Program Files\Access\Samples\Sales.mdb';
```

The data source defined through this statement is used by subsequent **Select (SQL)** statements, until a new **CONNECT** statement is made.

**Example 2:**

```
LIB CONNECT TO 'MyDataConnection';
```

**Connect32**

This statement is used the same way as the **CONNECT** statement, but forces a 64-bit system to use a 32-bit ODBC/OLE DB provider. Not applicable for custom connect.
Connect64
This statement is used the same way as the as the CONNECT statement, but forces use of a 64-bit provider. Not applicable for custom connect.

Declare
The Declare statement is used to create field and group definitions, where you can define relations between fields or functions. A set of field definitions can be used to automatically generate derived fields, which can be used as dimensions. For example, you can create a calendar definition, and use that to generate related dimensions, such as year, month, week and day, from a date field.

You can use Declare to either set up a new field definition, or to create a field definition based on an already existing definition.

Setting up a new field definition

Syntax:

```
definition_name:
Declare [Field[s]] Definition [Tagged tag_list ]
[Parameters parameter_list ]
Fields field_list
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>definition_name</td>
<td>Name of the field definition, ended with a colon.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Calendar:</td>
</tr>
<tr>
<td>tag_list</td>
<td>A comma separated list of tags to apply to fields derived from the field definition. Optional.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> '$date'</td>
</tr>
<tr>
<td>parameter_list</td>
<td>A comma separated list of parameters. A parameter is defined in the form name=value and is assigned a start value, which can be overridden when a field definition is re-used. Optional.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> first_month_of_year = 1</td>
</tr>
</tbody>
</table>
2 Script syntax

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>field_list</td>
<td>A comma separated list of fields to generate when the field definition is used. A field is defined in the form <code>&lt;expression&gt; As field_name tagged tag</code>. Use $1 to reference the data field from which the derived fields should be generated.</td>
</tr>
</tbody>
</table>

**Example:**

Year($1) As Year tagged '$year'

**Example:**

In this example we create a calendar definition that can be used to generate date related fields, such as year and month, that can be used in dimensions.

To try out the calendar we need some source data with date fields.

```
Load * Inline [
OrderID, Terminal, OrderDate, ShippingDate
100001, London, 2012-03-12, 2012-03-14
100002, Berlin, 2012-03-12, 2012-03-16
100003, London, 2012-03-12, 2012-03-14
100004, Paris, 2012-03-12, 2012-03-16
100005, Paris, 2012-03-12, 2012-03-14
100007, London, 2012-04-12, 2012-04-14
100009, London, 2013-01-12, 2013-03-14
100010, Berlin, 2013-01-12, 2013-03-16
100011, London, 2013-01-12, 2013-03-14
100012, Paris, 2013-01-12, 2013-03-16
100013, Paris, 2013-01-12, 2013-03-14
100014, Berlin, 2013-03-12, 2013-03-16
100015, London, 2013-03-12, 2013-03-14
100016, Berlin, 2013-03-12, 2013-03-16
100017, Paris, 2013-09-12, 2013-10-14
100018, Berlin, 2013-09-12, 2013-09-16
];
```

Now we can define a calendar that creates fields for year, month, week, weekday and day number.

```
Calendar:
DECLARE FIELD DEFINITION TAGGED '$date'
Parameters
   first_month_of_year = 1
Fields
   Year($1) As Year Tagged '$year',
   Month($1) as Month Tagged '$month',
   Date($1) as Date Tagged ('$date', '$day'),
   Week($1) as Week Tagged '$week',
   weekday($1) as weekday Tagged '$weekday',
   DayNumberOfYear($1, first_month_of_year) as DayNumberOfYear Tagged ('$numeric');
```
The calendar is now defined, and you can apply it to the date fields that have been loaded, in this case OrderDate and ShippingDate, using a **Derive** clause.

```sql
DERIVE FIELDS FROM FIELDS OrderDate,ShippingDate USING Calendar;
```

When you have reloaded the data script, you can find the generated fields, for example OrderDate.Calendar.Weekday under **Date & time fields** in the **Fields** asset panel. They are also available in the expression editor and when you create dimensions, and can be used as any other field in visualizations.

### Re-using an existing field definition

**Syntax:**

```sql
<definition name>:
Declare [Field][s] Definition
Using <existing_definition>
[With <parameter_assignment> ]
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>definition_name</td>
<td>Name of the field definition, ended with a colon.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> MyCalendar:</td>
</tr>
<tr>
<td>existing_definition</td>
<td>The field definition to re-use when creating the new field definition. The new field definition will function the same way as the definition it is based on, with the exception if you use parameter_assignment to change a value used in the field expressions.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> using Calendar</td>
</tr>
<tr>
<td>parameter_assignment</td>
<td>A comma separated list of parameter assignments. A parameter assignment is defined in the form name=value and overrides the parameter value that is set in the base field definition. Optional.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> first_month_of_year = 4</td>
</tr>
</tbody>
</table>

**Example:**

In this example we re-use the calendar definition that was created in the previous example. In this case we want to use a fiscal year that starts in April. This is achieved by assigning the value 4 to the first_month_of_year parameter, which will affect the DayNumberOfYear field that is defined.

The example assumes that you use the sample data and field definition from the previous example.
MyCalendar:
DECLARE FIELD DEFINITION USING Calendar WITH first_month_of_year=4;

DERIVE FIELDS FROM FIELDS OrderDate,ShippingDate USING MyCalendar;

When you have reloaded the data script, the generated fields are available in the sheet editor, with names OrderDate.MyCalendar.* and ShippingDate.MyCalendar.*.

Derive
The Derive statement is used to generate derived fields based on a field definition created with a Declare statement. You can either specify which data fields to derive fields for, or derive them explicitly or implicitly based on field tags.

Syntax:

Derive [Field[s]] From [Field[s]] field_list Using definition
Derive [Field[s]] From Explicit [Tag[s]] tag_list Using definition
Derive [Field[s]] From Implicit [Tag[s]] Using definition

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>definition</td>
<td>Name of the field definition to use when deriving fields.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> calendar</td>
</tr>
<tr>
<td>field_list</td>
<td>A comma separated list of data fields from which the derived fields should be generated, based on the field definition. The data fields should be fields you have already loaded in the script.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> OrderDate, ShippingDate</td>
</tr>
<tr>
<td>tag_list</td>
<td>A comma separated list of tags. Derived fields will be generated for all data fields with any of the listed tags.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> '$date'</td>
</tr>
</tbody>
</table>

Example:

In this example we create a calendar definition that can be used to generate date related fields, such as year and month, that can be used in dimensions.

To try out the calendar we need some source data with date fields.

Load * Inline [
OrderID, Terminal, OrderDate, ShippingDate
100001, London, 2012-03-12, 2012-03-14
100002, Berlin, 2012-03-12, 2012-03-16
100003, London, 2012-03-12, 2012-03-14
100004, Paris, 2012-03-12, 2012-03-16
100005, Paris, 2012-03-12, 2012-03-14
]
Now we can define a calendar that creates fields for year, month, week, weekday and day number.

Calendar:
```plaintext
DECLARE FIELD DEFINITION TAGGED '$date'
Parameters
  first_month_of_year = 1
Fields
  Year($1) as Year Tagged '$year',
  Month($1) as Month Tagged '$month',
  Date($1) as Date Tagged ('$date', '$day'),
  Week($1) as Week Tagged '$week',
  Weekday($1) as Weekday Tagged '$weekday',
  DayNumberOfYear($1, first_month_of_year) as DayNumberOfYear Tagged ('$numeric');
```

The calendar is now defined, and you can apply it to the date fields that have been loaded, in this case OrderDate and ShippingDate, using a Derive clause. There are three alternative ways of doing this.

- Derive fields for specific data fields.
  In this case we specify the OrderDate and ShippingDate fields.
  ```plaintext
  DERIVE FIELDS FROM FIELDS OrderDate,ShippingDate USING Calendar;
  ```

- Derive fields for all fields with a specific tag.
  In this case we derive fields based on Calendar for all fields with a $date tag.
  ```plaintext
  DERIVE FIELDS FROM EXPLICIT TAGS '$date' USING Calendar;
  ```

- Derive fields for all fields with the field definition tag.
  In this case we derive fields for all data fields with the same tag as the Calendar field definition, which in this case is $date.
  ```plaintext
  DERIVE FIELDS FROM IMPLICIT TAG USING Calendar;
  ```

When you have reloaded the data script, you can find the generated fields, for example OrderDate.Calendar.Weekday under Date & time fields in the Fields asset panel. They are also available in the expression editor and when you create dimensions, and can be used as any other field in visualizations.

**Direct Query**

The **DIRECT QUERY** statement allows you to access tables through an ODBC or OLE DB connection using the Direct Discovery function.

**Syntax:**
The **DIRECT QUERY** statement cannot contain **DISTINCT** or **GROUP BY** clauses.

Using the **MEASURE** keyword you can define fields that Qlik Sense is aware of on a "meta level". The actual data of a measure field resides only in the database during the data load process, and is retrieved on an ad hoc basis driven by the chart expressions that are used in a visualization.

Typically, fields with discrete values that will be used as dimensions should be loaded with the **DIMENSION** keyword, whereas numbers that will be used in aggregations only should be selected with the **MEASURE** keyword.

**DETAIL** fields provide information or details, like comment fields, that a user may want to display in a drill-to-details table box. **DETAIL** fields cannot be used in chart expressions.

By design, the **DIRECT QUERY** statement is data-source neutral for data sources that support SQL. For that reason, the same **DIRECT QUERY** statement can be used for different SQL databases without change. Direct Discovery generates database-appropriate queries as needed.

Native data-source syntax can be used when the user knows the database to be queried and wants to exploit database-specific extensions to SQL. Native data-source syntax is supported:

- As field expressions in **DIMENSION** and **MEASURE** clauses
- As the content of the **WHERE** clause

**Examples:**

```plaintext
DIRECT QUERY
  DIMENSION Dim1, Dim2
  MEASURE

  NATIVE ('X % Y') AS X_MOD_Y

FROM TableName
```

```plaintext
DIRECT QUERY
  DIMENSION Dim1, Dim2
  MEASURE X, Y
  FROM TableName

  WHERE NATIVE ('EMAIL MATCHES ".EDU"')
```
The following terms are used as keywords and so cannot be used as column or field names without being quoted: and, as, detach, detail, dimension, distinct, from, in, is, like, measure, native, not, or, where

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| fieldlist | A comma-separated list of field specifications, *fieldname {, fieldname}*.
    A field specification can be a field name, in which case the same name is used for the database column name and the Qlik Sense field name. Or a field specification can be a "field alias," in which case a database expression or column name is given a Qlik Sense field name. |
| tablelist | A list of the names of tables or views in the database from which data will be loaded. Typically, it will be views that contain a JOIN performed on the database. |
| where_clause | The full syntax of database WHERE clauses is not defined here, but most SQL "relational expressions" are allowed, including the use of function calls, the LIKE operator for strings, IS NULL and IS NOT NULL, and IN. BETWEEN is not included. NOT is a unary operator, as opposed to a modifier on certain keywords. Examples:  
WHERE x > 100 AND "Region Code" IN ('south', 'west')  
WHERE Code IS NOT NULL and Code LIKE '%prospect'  
WHERE NOT X in (1,2,3)  
The last example can not be written as:  
WHERE X NOT in (1,2,3) |

Example:

In this example, a database table called TableName, containing fields Dim1, Dim2, Num1, Num2 and Num3, is used. Dim1 and Dim2 will be loaded into the Qlik Sense dataset.

```
DIRECT QUERY DIMENSION Dim1, Dim2 MEASURE Num1, Num2, Num3 FROM TableName;
```

Dim1 and Dim2 will be available for use as dimensions. Num1, Num2 and Num3 will be available for aggregations. Dim1 and Dim2 are also available for aggregations. The type of aggregations for which Dim1 and Dim2 can be used depends on their data types. For example, in many cases DIMENSION fields contain string data such as names or account numbers. Those fields cannot be summed, but they can be counted: count(Dim1).
**DIRECT QUERY** statements are written directly in the script editor. To simplify construction of **DIRECT QUERY** statements, you can generate a **SELECT** statement from a data connection, and then edit the generated script to change it into a **DIRECT QUERY** statement. For example, the **SELECT** statement:

```sql
SQL SELECT
    SalesOrderID,
    RevisionNumber,
    OrderDate,
    SubTotal,
    TaxAmt
FROM MyDB.Sales.SalesOrderHeader;
```

could be changed to the following **DIRECT QUERY** statement:

```directquery
DIRECT QUERY
    DIMENSION
        SalesOrderID,
        RevisionNumber,

    MEASURE
        SubTotal,
        TaxAmt
    DETAIL
        OrderDate,
FROM MyDB.Sales.SalesOrderHeader;
```

**Direct Discovery field lists**

A field list is a comma-separated list of field specifications, `fieldname {, fieldname}`. A field specification can be a field name, in which case the same name is used for the database column name and the field name. Or a field specification can be a field alias, in which case a database expression or column name is given a Qlik Sense field name.

Field names can be either simple names or quoted names. A simple name begins with an alphabetic Unicode character and is followed by any combination of alphabetic or numeric characters or underscores. Quoted names begin with a double quotation mark and contain any sequence of characters. If a quoted name contains double quotation marks, those quotation marks are represented using two adjacent double quotation marks.

Qlik Sense field names are case-sensitive. Database field names may or may not be case-sensitive, depending on the database. A Direct Discovery query preserves the case of all field identifiers and aliases. In the following example, the alias "MyState" is used internally to store the data from the database column "STATEID".

```directquery
DIRECT QUERY Dimension STATEID as MyState Measure AMOUNT from SALES_TABLE;
```
This differs from the result of an **SQL Select** statement with an alias. If the alias is not explicitly quoted, the result contains the default case of column returned by the target database. In the following example, the **SQL Select** statement to an Oracle database creates "MYSTATE," with all upper case letters, as the internal Qlik Sense alias even though the alias is specified as mixed case. The **SQL Select** statement uses the column name returned by the database, which in the case of Oracle is all upper case.

```
SQL Select STATEID as MyState, STATENAME from STATE_TABLE;
```

To avoid this behavior, use the **LOAD** statement to specify the alias.

```
Load STATEID as MyState, STATENAME;
SQL Select STATEID, STATEMENT from STATE_TABLE;
```

In this example, the "STATEID" column is stored internally by Qlik Sense as "MyState".

Most database scalar expressions are allowed as field specifications. Function calls can also be used in field specifications. Expressions can contain constants that are boolean, numeric, or strings contained in single quotation marks (embedded single quotation marks are represented by adjacent single quotation marks).

**Examples:**

```
DIRECT QUERY DIMENSION SalesOrderID, RevisionNumber MEASURE SubTotal AS "Sub Total" FROM AdventureWorks.Sales.SalesOrderHeader
DIRECT QUERY DIMENSION "SalesOrderID" AS "Sales Order ID" MEASURE SubTotal, TaxAmt, (SubTotal-TaxAmt) AS "Net Total" FROM AdventureWorks.Sales.SalesOrderHeader
DIRECT QUERY DIMENSION (2*Radius*3.14159) AS Circumference, Molecules/6.02e23 AS Moles MEASURE Num1 AS numA FROM TableName
DIRECT QUERY DIMENSION concat(region, 'code') AS region_code MEASURE Num1 AS NumA FROM TableName
```

Direct Discovery does not support using aggregations in **LOAD** statements. If aggregations are used, the results are unpredictable. A **LOAD** statement such as the following should not be used:

```
DIRECT QUERY DIMENSION stateid, SUM(amount^7) AS MultiFirst MEASURE amount FROM sales_table
```

The **SUM** should not be in the **LOAD** statement.

Direct Discovery also does not support Qlik Sense functions in **Direct Query** statements. For example, the following specification for a **DIMENSION** field results in a failure when the "Mth" field is used as a dimension in a visualization:

```
month(ModifiedDate) as Mth
```

**Directory**

The **Directory** statement defines which directory to look in for data files in subsequent **LOAD** statements, until a new **Directory** statement is made.

> This statement has no effect in standard scripting mode.

**Syntax:**

```
Directory [path]
```
If the `Directory` statement is issued without a `path` or left out, Qlik Sense will look in the Qlik Sense working directory.

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>path</td>
<td>A text that can be interpreted as the path to the qvf file. The path is the path to the file, either:</td>
</tr>
<tr>
<td></td>
<td>• absolute</td>
</tr>
<tr>
<td></td>
<td>- Example: <code>c:\data</code></td>
</tr>
<tr>
<td></td>
<td>• relative to the Qlik Sense app working directory.</td>
</tr>
<tr>
<td></td>
<td>- Example: <code>data</code></td>
</tr>
<tr>
<td></td>
<td>• URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.</td>
</tr>
<tr>
<td></td>
<td>- Example: <code>http://www.qlik.com</code></td>
</tr>
</tbody>
</table>

**Example:**

Directory `c:\userfiles\data`;

**Disconnect**

The `Disconnect` statement terminates the current ODBC/OLE DB/Custom connection. This statement is optional.

**Syntax:**

```
Disconnect
```

The connection will be automatically terminated when a new `connect` statement is executed or when the script execution is finished.

**Example:**

```
Disconnect;
```

**Drop field**

One or several Qlik Sense fields can be dropped from the data model, and thus from memory, at any time during script execution, by means of a `drop field` statement.
Both drop field and drop fields are allowed forms with no difference in effect. If no table is specified, the field will be dropped from all tables where it occurs.

Syntax:

Drop field fieldname [, fieldname2 ...] [from tablename1 [, tablename2 ...]]
Drop fields fieldname [, fieldname2 ...] [from tablename1 [, tablename2 ...]]

Examples:

Drop field A;
Drop fields A,B;
Drop field A from X;
Drop fields A,B from X,Y;

Drop table

One or several Qlik Sense internal tables can be dropped from the data model, and thus from memory, at any time during script execution, by means of a drop table statement.

Syntax:

drop table  tablename [, tablename2 ...]
drop tables [  tablename [, tablename2 ...]

The forms drop table and drop tables are both accepted.

The following items will be lost as a result of this:

- The actual table(s).
- All fields which are not part of remaining tables.
- Field values in remaining fields, which came exclusively from the dropped table(s).

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>drop table Orders, Salesmen, T456a;</td>
<td>This line results in three tables being dropped from memory.</td>
</tr>
<tr>
<td>Tab1:</td>
<td>As a result only the aggregates remain in the memory. Trans data is discarded.</td>
</tr>
<tr>
<td>SQL SELECT* FROM Trans;</td>
<td></td>
</tr>
<tr>
<td>LOAD Customer, Sum( sales ) resident Tab1 group by Month;</td>
<td></td>
</tr>
<tr>
<td>drop table Tab1;</td>
<td></td>
</tr>
</tbody>
</table>
Execute
The **Execute** statement is used to run other programs while Qlik Sense is loading data. For example, to make conversions that are necessary.

*This statement is not supported in standard mode.*

**Syntax:**

```
execute commandline
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>commandline</code></td>
<td>A text that can be interpreted by the operating system as a command line.</td>
</tr>
<tr>
<td></td>
<td>You can refer to an absolute file path or a lib:// folder path.</td>
</tr>
</tbody>
</table>

If you want to use **Execute** the following conditions need to be met:

- You must run in legacy mode (applicable for Qlik Sense and Qlik Sense Desktop).
- You need to set OverrideScriptSecurity to 1 in `Settings.ini` (applicable for Qlik Sense).
  - `Settings.ini` is located in `C:\ProgramData\Qlik\Sense\Engine\` and is generally an empty file.

Do the following:

1. Make a copy of `Settings.ini` and open it in a text editor.
2. Check that the file includes `[Settings 7]` in the first line.
4. Insert an empty line at the end of the file.
5. Save the file.
7. Restart Qlik Sense Engine Service (QES).

*If Qlik Sense is running as a service, some commands may not behave as expected.*

**Example:**

```
Execute C:\Program Files\Office12\Excel.exe;
Execute lib://win\notepad.exe // win is a folder connection referring to c:\windows
```

FlushLog
The **FlushLog** statement forces Qlik Sense to write the content of the script buffer to the script log file.
FlushLog

The content of the buffer is written to the log file. This command can be useful for debugging purposes, as you will receive data that otherwise may have been lost in a failed script execution.

Example:

FlushLog;

Force

The force statement forces Qlik Sense to interpret field values of subsequent LOAD and SELECT statements as written with only upper case letters, with only lower case letters, as always capitalized or as they appear (mixed). This statement makes it possible to associate field values from tables made according to different conventions.

Syntax:

Force ( capitalization | case upper | case lower | case mixed )

If nothing is specified, force case mixed is assumed. The force statement is valid until a new force statement is made.

The force statement has no effect in the access section: all field values loaded are case insensitive.

Examples:

Force Capitalization;
Force Case Upper;
Force Case Lower;
Force Case Mixed;

Load

The LOAD statement loads fields from a file, from data defined in the script, from a previously loaded table, from a web page, from the result of a subsequent SELECT statement or by generating data automatically.

Syntax:

LOAD [ distinct ] *fieldlist
[( from file [ format-spec ] | from_field fieldassource [ format-spec ]
inline data [ format-spec ] | resident table-label |
autogenerate size )]
[ where criterion | while criterion ]
[ group_by groupbyfieldlist ]
[ order_by orderbyfieldlist ]

Arguments:
Argument | Description
--- | ---
distinct | **distinct** is a predicate used if only the first of duplicate records should be loaded.
fieldlist | *fieldlist ::= ( * | field {, field } )  
A list of the fields to be loaded. Using * as a field list indicates all fields in the table.  
*field ::= ( fieldref | expression ) [as aliasname ]  
The field definition must always contain a literal, a reference to an existing field, or an expression.  
fieldref ::= ( fieldname | @fieldnumber | @startpos:endpos [ l | U | R | B | T ] )  
fieldname is a text that is identical to a field name in the table. Note that the field name must be enclosed by straight double quotation marks or square brackets if it contains e.g. spaces. Sometimes field names are not explicitly available. Then a different notation is used:  
@fieldnumber represents the field number in a delimited table file. It must be a positive integer preceded by "@". The numbering is always made from 1 and up to the number of fields.  
@startpos:endpos represents the start and end positions of a field in a file with fixed length records. The positions must both be positive integers. The two numbers must be preceded by "@" and separated by a colon. The numbering is always made from 1 and up to the number of positions. In the last field, n is used as end position.

- If @startpos:endpos is immediately followed by the characters I or U, the bytes read will be interpreted as a binary signed (I) or unsigned (U) integer (Intel byte order). The number of positions read must be 1, 2 or 4.
- If @startpos:endpos is immediately followed by the character R, the bytes read will be interpreted as a binary real number (IEEE 32-bit or 64 bit floating point). The number of positions read must be 4 or 8.
- If @startpos:endpos is immediately followed by the character B, the bytes read will be interpreted as a BCD (Binary Coded Decimal) numbers according to the COMP-3 standard. Any number of bytes may be specified.

*expression* can be a numeric function or a string function based on one or several other fields in the same table. For further information, see the syntax of expressions.  
**as** is used for assigning a new name to the field.
### Argument Description

**from**  
*from* is used if data should be loaded from a file using a folder or a web file data connection.

\[ file ::= [ path ] \text{filename} \]

**Example:** `lib://Table Files/`  

In legacy scripting mode, the following path formats are also supported:

- **absolute**  
  **Example:** `c:\data\`

- **relative to the Qlik Sense app working directory.**  
  **Example:** `data\`

- **URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.**  
  **Example:** `http://www.qlik.com`

If the path is omitted, Qlik Sense searches for the file in the directory specified by the **Directory** statement. If there is no **Directory** statement, Qlik Sense searches in the working directory, `C:\Users\{user}\Documents\Qlik\Sense\Apps`.

**In a Qlik Sense server installation, the working directory is specified in Qlik Sense Repository Service, by default it is `C:\ProgramData\Qlik\Sense\Apps`. See the Qlik Management Console help for more information.**

The **filename** may contain the standard DOS wildcard characters (`*` and `?`). This will cause all the matching files in the specified directory to be loaded.

\[ format-spec ::= (fspec-item, , fspec-item) \]

The format specification consists of a list of several format specification items, within brackets.

**from\_field**  
*from\_field* is used if data should be loaded from a previously loaded field.

\[ field\_source ::= (tablename, fieldname) \]

The field is the name of the previously loaded `tablename` and `fieldname`.  

\[ format-spec ::= (fspec-item, , fspec-item) \]

The format specification consists of a list of several format specification items, within brackets.
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| **inline** | **inline** is used if data should be typed within the script, and not loaded from a file.  
\[ data ::= [ text ] \]  
Data entered through an **inline** clause must be enclosed by double quotation marks or by square brackets. The text between these is interpreted in the same way as the content of a file. Hence, where you would insert a new line in a text file, you should also do it in the text of an **inline** clause, i.e. by pressing the Enter key when typing the script.  
\[ format-spec ::= ( fspec-item , fspec-item ) \]  
The format specification consists of a list of several format specification items, within brackets. |
| **resident** | **resident** is used if data should be loaded from a previously loaded table.  
**table label** is a label preceding the **LOAD** or **SELECT** statement(s) that created the original table. The label should be given with a colon at the end. |
| **autogenerate** | **autogenerate** is used if data should be automatically generated by Qlik Sense.  
\[ size ::= number \]  
**Number** is an integer indicating the number of records to be generated. The field list must not contain expressions which require data from a database. Only constants and parameter-free functions (such as **rand()** or **recno()**), are allowed in the expressions. |
| **where** | **where** is a clause used for stating whether a record should be included in the selection or not. The selection is included if **criterion** is True.  
**criterion** is a logical expression. |
| **while** | **while** is a clause used for stating whether a record should be repeatedly read. The same record is read as long as **criterion** is True. In order to be useful, a **while** clause must typically include the **IterNo()** function.  
**criterion** is a logical expression. |
| **group_by** | **group by** is a clause used for defining over which fields the data should be aggregated (grouped). The aggregation fields should be included in some way in the expressions loaded. No other fields than the aggregation fields may be used outside aggregation functions in the loaded expressions.  
\[ groupbyfieldlist ::= (fieldname , ,fieldname ) \] |
### Argument Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| order_by   | `order by` is a clause used for sorting the records of a resident table before they are processed by the `load` statement. The resident table can be sorted by one or more fields in ascending or descending order. The sorting is made primarily by numeric value and secondarily by national ASCII value. This clause may only be used when the data source is a resident table. The ordering fields specify which field the resident table is sorted by. The field can be specified by its name or by its number in the resident table (the first field is number 1).

orderbyfieldlist ::= fieldname [ sortorder ] { , fieldname [ sortorder ] }  

- `sortorder` is either `asc` for ascending or `desc` for descending. If no `sortorder` is specified, `asc` is assumed.
- `fieldname`, `path`, `filename` and `aliasname` are text strings representing what the respective names imply. Any field in the source table can be used as `fieldname`. However, fields created through the `as` clause (`aliasname`) are out of scope and cannot be used inside the same `load` statement. |

If no source of data is given by means of a `from`, `inline`, `resident`, `from_field` or `autogenerate` clause, data will be loaded from the result of the immediately succeeding `SELECT` or `LOAD` statement. The succeeding statement should not have a prefix.

#### Examples:

**Loading different file formats**

- **// LOAD a delimited data file with default options**
  LOAD * from data1.csv;

- **// LOAD a delimited data file from a library connection MyData**
  LOAD * from 'lib://MyData/data1.csv';

- **// LOAD a delimited file, specifying comma as delimiter and embedded labels**
  LOAD * from 'c:\userfiles\data1.csv' (ansi, txt, delimiter is ',', embedded labels);

- **// LOAD a delimited file specifying tab as delimiter and embedded labels**
  LOAD * from 'c:\userfiles\data2.txt' (ansi, txt, delimiter is '\t', embedded labels);

- **// LOAD a dif file with embedded headers**
  LOAD * from file2.dif (ansi, dif, embedded labels);

- **// LOAD three fields from a fixed record file without headers**
  LOAD @1:2 as ID, @3:25 as Name, @57:80 as City from data4.fix (ansi, fix, no labels, header is 0, record is 80);

- **//LOAD a QVX file, specifying an absolute path**
  LOAD * from c:\qdssamples\xyz.qvx (qvx);

**Selecting certain fields, renaming and calculating fields**

- **// LOAD only three specific fields**
LOAD FirstName, LastName, Number from data1.csv;

// Rename first field as A and second field as B when loading a file without labels
LOAD @1 as A, @2 as B from data3.txt' (ansi, txt, delimiter is '\t', no labels);

// LOAD Name as a concatenation of FirstName, a space, and LastName
LOAD FirstName&' ' & LastName as Name from data1.csv;

//LOAD Quantity, Price and Value (the product of Quantity and Price)
LOAD Quantity, Price, Quantity*Price as Value from data1.csv;

Selecting certain records
// LOAD only unique records, duplicate records will be discarded
LOAD distinct FirstName, LastName, Number from data1.csv;

// LOAD only records where the field Litres has a value above zero
LOAD * from Consumption.csv where Litres>0;

Loading data not on file and autogenerated data
// LOAD a table with inline data, fields CatID and Category
LOAD * Inline
[CatID, Category
0,Regular
1,Occasional
2,Permanent];

// LOAD a table with inline data, fields UserID, Password and Access
LOAD * Inline [UserID, Password, Access
A, ABC456, User
B, VIP789, Admin];

// LOAD a table with 10 000 rows
// Field A will contain the number of the read record (1,2,3,4,5...)
// Field B will contain a random number between 0 and 1
LOAD RecNo( ) as A, rand( ) as B autogenerate(10000);

The parenthesis after autogenerate is allowed but not required.

Loading data from previously loaded table
tab1:
SELECT A,B,C,D from transtable;

// LOAD fields from already loaded table tab1
LOAD A,B,month(C),A*B+D as E resident tab1;

// LOAD fields from already loaded table tab1 but only records where A is larger than B
LOAD A,A+B+C resident tab1 where A>B;

// LOAD fields from already loaded table tab1 ordered by A
LOAD A,B*C as E resident tab1 order by A;

// LOAD fields from already loaded table tab1, ordered by the first field, then the second field
LOAD A,B*C as E resident tab1 order by 1,2;

// LOAD fields from already loaded table tab1 ordered by C descending, then B ascending,


// then first field descending
LOAD A, B*C as E resident tab1 order by C desc, B asc, 1 desc

Loading data from previously loaded fields
// LOAD field Types from previously loaded table Characters as A
LOAD A from_field (Characters, Types)

// LOAD field Types from previously loaded table Characters as A
LOAD A from_field (Characters, Types)

Loading data from succeeding table
// LOAD A, B and calculated fields C and D from Table1 that is loaded in succeeding statement
LOAD A, B, if(C>0,'positive','negative') as X, weekday(D) as Y;
SELECT A, B, C, D from Table1;

Grouping data
// LOAD fields grouped (aggregated) by ArtNo
LOAD ArtNo, round(Sum(TransAmount),0.05) as ArtNoTotal from table.csv group by ArtNo;
// // LOAD fields grouped (aggregated) by week and ArtNo
LOAD Week, ArtNo, round(Avg(TransAmount),0.05) as WeekArtNoAverages from table.csv group by Week, ArtNo;

Reading one record repeatedly
In this example we have a input file Grades.csv containing the grades for each student condensed in one field:

Student, Grades
Mike, 5234
John, 3345
Pete, 1234
Paul, 3352

The grades, in a 1-5 scale, represent Math, English, Science and History. We can separate the grades into separate values by reading each record several times with a while clause, using the IterNo() function as a counter. In each read, the Grade is extracted with the Mid function, and the Subject is selected using the pick function. The final while clause contains the test to check if all grades have been read (four per student in this case), which means next student record should be read.

MyTab:
LOAD Student,  
mid(Grades, IterNo(), 1) as Grade,  
pick(IterNo(), 'Math', 'English', 'Science', 'History') as Subject from Grades.csv  
while IsNum(mid(Grades, IterNo(), 1));

The result is a table containing this data:
Format specification items

Each format specification item defines a certain property of the table file:

```
fspec-item ::= [ ansi | oem | mac | UTF-8 | Unicode | txt | fix | dif | biff | ooxml | html | xml | kml | qvd | qvx | delimiter is char | no eof | embedded labels | explicit labels | no labels | table is [ tablename ] | header is n | header is line | header is n lines | comment is string | record is n | record is line | record is n lines | no quotes | msq ]
```

Character set

Character set is a file specifier for the LOAD statement that defines the character set used in the file.

The `ansi`, `oem` and `mac` specifiers were used in QlikView and will still work. However, they will not be generated when creating the LOAD statement with Qlik Sense.

Syntax:

```
utf8 | unicode | ansi | oem | mac | codepage is
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>utf8</td>
<td>UTF-8 character set</td>
</tr>
<tr>
<td>unicode</td>
<td>Unicode character set</td>
</tr>
<tr>
<td>ansi</td>
<td>Windows, codepage 1252</td>
</tr>
<tr>
<td>oem</td>
<td>DOS, OS/2, AS400 and others</td>
</tr>
<tr>
<td>mac</td>
<td>Codepage 10000</td>
</tr>
<tr>
<td>codepage is</td>
<td>With the <code>codepage</code> specifier, it is possible to use any Windows codepage as ( N ).</td>
</tr>
</tbody>
</table>
Limitations:

Conversion from the oem character set is not implemented for MacOS. If nothing is specified, codepage 1252 is assumed under Windows.

Example:

LOAD * from a.txt (utf8, txt, delimiter is ',', embedded labels)
LOAD * from a.txt (unicode, txt, delimiter is ',', embedded labels)
LOAD * from a.txt (codepage is 10000, txt, delimiter is ',', no labels)

See also:

- Load (page 79)

Table format

The table format is a file specifier for the LOAD statement that defines the file type. If nothing is specified, a .txt file is assumed.

- txt In a delimited text file, .txt, the columns in the table are separated by some character.
- fix In a fixed record length file, .fix, each column is exactly a certain number of characters wide.
- dif In a .dif file, (Data Interchange Format) a special format for defining the table is used.
- biff Qlik Sense can also interpret data in standard Excel files by means of the biff format (Binary Interchange File Format).
- ooxml Excel 2007 and later versions use the ooxml .xlsx format.
- html If the table is part of an html page or file, html should be used.
- xml xml (Extensible Markup Language) is a common markup language that is used to represent data structures in a textual format.
- qvd The format qvd is the proprietary QVD files format, exported from a Qlik Sense app.
- qvx qvx is a file/stream format for high performance output to Qlik Sense.

Delimiter

For delimited table files, an arbitrary delimiter can be specified through the delimiter is specifier. This specifier is relevant only for delimited .txt files.

Syntax:

```
delimiter is char
```

Arguments:
### Argument Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>Specifies a single character from the 127 ASCII characters.</td>
</tr>
</tbody>
</table>

Additionally, the following values can be used:

- **"\t"** representing a tab sign, with or without quotation marks.
- **"\\"** representing a backslash (\) character.
- **"spaces"** representing all combinations of one or more spaces. Non-printable characters with an ASCII-value below 32, with the exception of CR and LF, will be interpreted as spaces.

If nothing is specified, **delimiter is ','** is assumed.

**Example:**

```
LOAD * from a.txt (utf8, txt, delimiter is ',', embedded labels);
```

---

**See also:**

- [Load (page 79)]

### No eof

The **no eof** specifier is used to disregard end-of-file character when loading delimited .txt files.

**Syntax:**

```
no eof
```

If the **no eof** specifier is used, ASCII character 26, which otherwise denotes end-of-file, is disregarded and can be part of a field value.

It is relevant only for delimited .txt files.

**Example:**

```
LOAD * from a.txt (txt, utf8, embedded labels, delimiter is ' ', no eof);
```

---

**See also:**

- [Load (page 79)]

### Labels

**Labels** is a file specifier for the **LOAD** statement that defines where in a file the field names can be found.
Syntax:

```
embedded labels|explicit labels|no labels
```

The field names can be found in different places of the file. If the first record contains the field names, **embedded labels** should be used. If there are no field names to be found, **no labels** should be used. In dif files, a separate header section with explicit field names is sometimes used. In such a case, **explicit labels** should be used. If nothing is specified, **embedded labels** is assumed, also for dif files.

**Example 1:**

```
LOAD * from a.txt (unicode, txt, delimiter is ',', embedded labels)
```

**Example 2:**

```
LOAD * from a.txt (codePage is 1252, txt, delimiter is ',', no labels)
```

**See also:**

- [Load (page 79)]

**Header is**

Specifies the header size in table files. An arbitrary header length can be specified through the **header is** specifier. A header is a text section not used by Qlik Sense.

Syntax:

```
header is n
header is line
header is n lines
```

The header length can be given in bytes (**header is n**), or in lines (**header is line** or **header is n lines**). **n** must be a positive integer, representing the header length. If not specified, **header is 0** is assumed. The **header is** specifier is only relevant for table files.

**Example:**

This is an example of a data source table containing a header text line that should not be interpreted as data by Qlik Sense.

```
*Header line
Col1,Col2
a,B
c,D
```

Using the **header is 1 lines** specifier, the first line will not be loaded as data. In the example, the **embedded labels** specifier tells Qlik Sense to interpret the first non-excluded line as containing field labels.

```
LOAD Col1, Col2
FROM 'lib://files/header.txt'
txt, embedded labels, delimiter is ',', msq, header is 1 lines);
```
The result is a table with two fields, Col1 and Col2.

See also:

- Load (page 79)

Record is
For fixed record length files, the record length must be specified through the record is specifier.

Syntax:

```
Record is n
Record is line
Record is n lines
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Specifies the record length in bytes.</td>
</tr>
<tr>
<td>line</td>
<td>Specifies the record length in one lines.</td>
</tr>
<tr>
<td>n lines</td>
<td>Specifies the record length in lines where n is a positive integer representing the record length.</td>
</tr>
</tbody>
</table>

Limitations:

The record is specifier is only relevant for fix files.

See also:

- Load (page 79)

Quotes
Quotes is a file specifier for the LOAD statement that defines whether quotes can be used and the precedence between quotes and separators. For text files only.

Syntax:

```
no quotes
msq
```

If the specifier is omitted, standard quoting is used, that is, the quotes " " or ' ' can be used, but only if they are the first and last non blank character of a field value.

Arguments:
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no quotes</td>
<td>Used if quotation marks are not to be accepted in a text file.</td>
</tr>
<tr>
<td>msq</td>
<td>Used to specify modern style quoting, allowing multi-line content in fields. Fields containing end-of-line characters must be enclosed within double quotes. One limitation of the msq option is that single double-quote (&quot;) characters appearing as first or last character in field content will be interpreted as start or end of multi-line content, which may lead to unpredicted results in the data set loaded. In this case you should use standard quoting instead, omitting the specifier.</td>
</tr>
</tbody>
</table>

**XML**

This script specifier is used when loading xml files. Valid options for the XML specifier are listed in syntax.

**Syntax:**

```xml
xmlsax
xmlsimple
pattern is path
```

`xmlsax` and `xmlsimple` are mutually exclusive, only one can be specified when using xml. When using `pattern`, the file will be read from the start of the specified tag to the end of the tag. If `path` contains spaces, the path must be quoted.

> In order to use `xmlsax`, Microsoft’s xml parser MSXML 3.0 or higher must be installed on the computer. MSXML is shipped with e.g. Windows XP and MS Internet Explorer 6. It can also be downloaded from the Microsoft home page.

**See also:**

- Load (page 79)

**KML**

This script specifier is used when loading KML files to use in a map visualization.

**Syntax:**

```xml
kml
```

The KML file can represent either area data (for example, countries or regions) represented by polygons, or point data (for example, cities or places) represented by points in the form [long, lat].
Let

The let statement is a complement to the set statement, used for defining script variables. The let statement, in opposition to the set statement, evaluates the expression on the right side of the '=' before it is assigned to the variable.

Syntax:

```
Let variablename=expression
```

The word let may be omitted, but the statement then becomes a control statement. Such a statement without the keyword let must be contained within a single script row and may be terminated either with a semicolon or end-of-line.

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
</table>
| Set x=3+4; Let y=3+4 z=$(y)+1; | $(x) will be evaluated as '3+4'
| | $(y) will be evaluated as '7'
| | $(z) will be evaluated as '8'
| Let T=now(); | $(T) will be given the value of the current time. |

Map

The map ... using statement is used for mapping a certain field value or expression to the values of a specific mapping table. The mapping table is created through the Mapping statement.

Syntax:

```
Map *fieldlist Using mapname
```

The automatic mapping is done for fields loaded after the Map ... Using statement until the end of the script or until an Unmap statement is encountered.

The mapping is done last in the chain of events leading up to the field being stored in the internal table in Qlik Sense. This means that mapping is not done every time a field name is encountered as part of an expression, but rather when the value is stored under the field name in the internal table. If mapping on the expression level is required, the Applymap() function has to be used instead.

Arguments:
2 Script syntax

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*fieldlist</td>
<td>A comma separated list of the fields that should be mapped from this point in the script. Using * as field list indicates all fields. The wildcard characters * and ? are allowed in field names. Quoting of field names may be necessary when wildcards are used.</td>
</tr>
<tr>
<td>mapname</td>
<td>The name of a mapping table previously read in a mapping load or mapping select statement.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map Country Using Cmap;</td>
<td>Enables mapping of the field Country using the map Cmap.</td>
</tr>
<tr>
<td>Map A, B, C Using X;</td>
<td>Enables mapping of the fields A, B and C using the map X.</td>
</tr>
<tr>
<td>Map * Using GenMap;</td>
<td>Enables mapping of all fields using GenMap.</td>
</tr>
</tbody>
</table>

NullAsNull

The **NullAsNull** statement turns off the conversion of NULL values to string values previously set by a **NullAsValue** statement.

**Syntax:**

```plaintext
NullAsNull *fieldlist
```

The **NullAsValue** statement operates as a switch and can be turned on or off several times in the script, using either a **NullAsValue** or a **NullAsNull** statement.

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*fieldlist</td>
<td>A comma separated list of the fields for which <strong>NullAsNull</strong> should be turned on. Using * as field list indicates all fields. The wildcard characters * and ? are allowed in field names. Quoting of field names may be necessary when wildcards are used.</td>
</tr>
</tbody>
</table>

**Example:**

```plaintext
NullAsNull A,B;
LOAD A,B from x.csv;
```

NullAsValue

The **NullAsValue** statement specifies for which fields that NULL should be converted to a value.

**Syntax:**
### NullAsValue *fieldlist*

By default, Qlik Sense considers NULL values to be missing or undefined entities. However, certain database contexts imply that NULL values are to be considered as special values rather than simply missing values. The fact that NULL values are normally not allowed to link to other NULL values can be suspended by means of the `nullasvalue` statement.

The `nullasvalue` statement operates as a switch and will operate on subsequent loading statements. It can be switched off again by means of the `nullasnull` statement.

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>fieldlist</em></td>
<td>A comma separated list of the fields for which <code>nullasvalue</code> should be turned on. Using * as field list indicates all fields. The wildcard characters * and ? are allowed in field names. Quoting of field names may be necessary when wildcards are used.</td>
</tr>
</tbody>
</table>

**Example:**

```plaintext
nullasvalue a,b;
set nullvalue = 'NULL';
load a,b from x.csv;
```

**Qualify**

The `qualify` statement is used for switching on the qualification of field names, i.e. field names will get the table name as a prefix.

**Syntax:**

```plaintext
qualify *fieldlist
```

The automatic join between fields with the same name in different tables can be suspended by means of the `qualify` statement, which qualifies the field name with its table name. If qualified, the field name(s) will be renamed when found in a table. The new name will be in the form of `tablename.fieldname`. `TableName` is equivalent to the label of the current table, or, if no label exists, to the name appearing after `from` in `load` and `select` statements.

The qualification will be made for all fields loaded after the `qualify` statement.

Qualification is always turned off by default at the beginning of script execution. Qualification of a field name can be activated at any time using a `qualify` statement. Qualification can be turned off at any time using an `unqualify` statement.

> The `qualify` statement should not be used in conjunction with partial reload.
Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*fieldlist</td>
<td>A comma separated list of the fields for which qualification should be turned on. Using * as field list indicates all fields. The wildcard characters * and ? are allowed in field names. Quoting of field names may be necessary when wildcards are used.</td>
</tr>
</tbody>
</table>

Example 1:

```
Qualify B;
LOAD A,B from x.csv;
LOAD A,B from y.csv;
```

The two tables `x.csv` and `y.csv` are associated only through `A`. Three fields will result: `A`, `x.B`, `y.B`.

Example 2:

In an unfamiliar database, it is often useful to start out by making sure that only one or a few fields are associated, as illustrated in this example:

```
qualify *;
unqualify TransID;
SQL SELECT * from tab1;
SQL SELECT * from tab2;
SQL SELECT * from tab3;
```

Only `TransID` will be used for associations between the tables `tab1`, `tab2` and `tab3`.

Rem

The `rem` statement is used for inserting remarks, or comments, into the script, or to temporarily deactivate script statements without removing them.

Syntax:

```
Rem string
```

Everything between the `rem` and the next semicolon `;` is considered to be a comment.

There are two alternative methods available for making comments in the script:

1. It is possible to create a comment anywhere in the script - except between two quotes - by placing the section in question between `/*` and `*/`.
2. When typing `//` in the script, all text that follows to the right on the same row becomes a comment. (Note the exception `//`: that may be used as part of an Internet address.)

Arguments:
Script syntax

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>An arbitrary text.</td>
</tr>
</tbody>
</table>

Example:

Rem ** This is a comment **;
/
/
/

Rename field

This script function renames one or more existing Qlik Sense field(s) after they have been loaded.

Either syntax: `rename field` or `rename fields` can be used.

Syntax:

```
Rename Field (using mapname | oldname to newname( , oldname to newname })
Rename Fields (using mapname | oldname to newname( , oldname to newname })
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mapname</td>
<td>The name of a previously loaded mapping table containing one or more pairs of old and new field names.</td>
</tr>
<tr>
<td>oldname</td>
<td>The old field name.</td>
</tr>
<tr>
<td>newname</td>
<td>The new field name.</td>
</tr>
</tbody>
</table>

Limitations:

Two differently named fields cannot be renamed to having the same name. The script will run without errors, but the second field will not be renamed.

Example 1:

```
Rename Field XAZ0007 to Sales;
```

Example 2:

```
FieldMap:
Mapping SQL SELECT oldnames, newnames from datadictionary;
Rename Fields using FieldMap;
```

Rename table

This script function renames one or more existing Qlik Sense internal table(s) after they have been loaded.

Either syntax: `rename table` or `rename tables` can be used.
Syntax:

**Rename Table** (using mapname | oldname to newname{, oldname to newname })

**Rename Tables** (using mapname | oldname to newname{, oldname to newname })

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mapname</td>
<td>The name of a previously loaded mapping table containing one or more pairs of old and new table names.</td>
</tr>
<tr>
<td>oldname</td>
<td>The old table name.</td>
</tr>
<tr>
<td>newname</td>
<td>The new table name.</td>
</tr>
</tbody>
</table>

Limitations:

Two differently named tables cannot be renamed to having the same name. The script will run without errors, but the second table will not be renamed.

**Example 1:**

Tab1:
SELECT * from Trans;
Rename Table Tab1 to Xyz;

**Example 2:**

TabMap:
Mapping LOAD oldnames, newnames from tabnames.csv;
Rename Tables using TabMap;

Search

The **Search** statement is used for including or excluding fields in the search tool function.

Syntax:

**Search Include** *fieldlist

**Search Exclude** *fieldlist

You can use several Search statements to refine your selection of fields to include. The statements are evaluated from top to bottom.

Arguments:
### Argument Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*fieldlist</td>
<td>A comma separated list of the fields to include or exclude from searches in the search tool. Using * as field list indicates all fields. The wildcard characters * and ? are allowed in field names. Quoting of field names may be necessary when wildcards are used.</td>
</tr>
</tbody>
</table>

#### Example:

<table>
<thead>
<tr>
<th>Search Include *;</th>
<th>Include all fields in searches in the search tool.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search Exclude *ID;</td>
<td>Exclude all fields ending with ID from searches in the search tool.</td>
</tr>
<tr>
<td>Search Include ProductID;</td>
<td>Include the field ProductID in searches in the search tool.</td>
</tr>
</tbody>
</table>

The combined result of these three statements, in this sequence, is that all fields ending with ID except ProductID are excluded from searches in the search tool.

### Section

With the **section** statement, it is possible to define whether the subsequent **LOAD** and **SELECT** statements should be considered as data or as a definition of the access rights.

#### Syntax:

```
Section (access | application)
```

If nothing is specified, **section application** is assumed. The **section** definition is valid until a new **section** statement is made.

#### Example:

```sql
section access;
section application;
```

### Select

The selection of fields from an ODBC data source or OLE DB provider is made through standard SQL **SELECT** statements. However, whether the **SELECT** statements are accepted depends on the ODBC driver or OLE DB provider used.

#### Syntax:

```
Select [all | distinct | distinctrow | top n [percent] ] *fieldlist
From tablelist
[where criterion ]
[group by fieldlist [having criterion ] ]
[order by fieldlist [asc | desc] ]
```
Furthermore, several `SELECT` statements can sometimes be concatenated into one through the use of a `union` operator:

```
selectstatement Union selectstatement
```

The `SELECT` statement is interpreted by the ODBC driver or OLE DB provider, so deviations from the general SQL syntax might occur depending on the capabilities of the ODBC drivers or OLE DB provider, for example:

- `as` is sometimes not allowed, i.e. `aliasname` must follow immediately after `fieldname`.
- `as` is sometimes compulsory if an `aliasname` is used.
- `distinct, as, where, group by, order by, or union` is sometimes not supported.
- The ODBC driver sometimes does not accept all the different quotation marks listed above.

This is not a complete description of the SQL `SELECT` statement! E.g. `SELECT` statements can be nested, several joins can be made in one `SELECT` statement, the number of functions allowed in expressions is sometimes very large, etc.

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>distinct</code></td>
<td><code>distinct</code> is a predicate used if duplicate combinations of values in the selected fields only should be loaded once.</td>
</tr>
<tr>
<td><code>distinctrow</code></td>
<td><code>distinctrow</code> is a predicate used if duplicate records in the source table only should be loaded once.</td>
</tr>
<tr>
<td><code>*fieldlist</code></td>
<td>`<em>fieldlist ::= (</em></td>
</tr>
</tbody>
</table>
### 2 Script syntax

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>from</td>
<td><code>tablelist ::= table {, table }</code>&lt;br&gt;The list of tables that the fields are to be selected from.&lt;br&gt;<code>table ::= tablename [ [as ] aliasname ]</code>&lt;br&gt;The <code>tablename</code> may or may not be put within quotes.</td>
</tr>
<tr>
<td>where</td>
<td><code>where</code> is a clause used for stating whether a record should be included in the selection or not.&lt;br&gt;<code>criterion</code> is a logical expression that can sometimes be very complex. Some of the operators accepted are: numeric operators and functions, =, &lt;&gt; or # (not equal), &gt;, &gt;=, &lt;, &lt;=, and, or, not, exists, some, all, in and also new <code>SELECT</code> statements. See the documentation of the ODBC driver or OLE DB provider for more information.</td>
</tr>
<tr>
<td>group by</td>
<td><code>group by</code> is a clause used for aggregating (group) several records into one. Within one group, for a certain field, all the records must either have the same value, or the field can only be used from within an expression, e.g. as a sum or an average. The expression based on one or several fields is defined in the expression of the field symbol.</td>
</tr>
<tr>
<td>having</td>
<td><code>having</code> is a clause used for qualifying groups in a similar manner to how the <code>where</code> clause is used for qualifying records.</td>
</tr>
<tr>
<td>order by</td>
<td><code>order by</code> is a clause used for stating the sort order of the resulting table of the <code>SELECT</code> statement.</td>
</tr>
<tr>
<td>join</td>
<td><code>join</code> is a qualifier stating if several tables are to be joined together into one. Field names and table names must be put within quotes if they contain blank spaces or letters from the national character sets. When the script is automatically generated by Qlik Sense, the quotation mark used is the one preferred by the ODBC driver or OLE DB provider specified in the data source definition of the data source in the <code>Connect</code> statement.</td>
</tr>
</tbody>
</table>

**Example 1:**

```sql
SELECT * FROM 'Categories';
```

**Example 2:**

```sql
SELECT 'Category ID', 'Category Name' FROM 'Categories';
```

**Example 3:**

```sql
SELECT 'Order ID', 'Product ID',
'Unit Price' * Quantity * (1-Discount) as NetSales
FROM 'Order Details';
```

**Example 4:**

```sql
SELECT 'Order Details'.'Order ID',
Sum('Order Details'. 'Unit Price' * 'Order Details'.Quantity) as 'Result'
```
FROM `Order Details`, Orders
where Orders.`Order ID` = `Order Details`.`Order ID`
group by `Order Details`.`Order ID`;

Set
The **set** statement is used for defining script variables. These can be used for substituting strings, paths, drives, and so on.

**Syntax:**

```
Set variableName=string
```

**Example 1:**

Set FileToUse=Data1.csv;

**Example 2:**

Set Constant="My string";

**Example 3:**

Set BudgetYear=2012;

Sleep
The **sleep** statement pauses script execution for a specified time.

**Syntax:**

```
Sleep n
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Stated in milliseconds, where n is a positive integer no larger than 3600000 (i.e. 1 hour). The value may be an expression.</td>
</tr>
</tbody>
</table>

**Example 1:**

Sleep 10000;

**Example 2:**

Sleep t*1000;
SQL
The SQL statement allows you to send an arbitrary SQL command through an ODBC or OLE DB connection.

Syntax:
```
SQL sql_command
```

Sending SQL statements which update the database will return an error if Qlik Sense has opened the ODBC connection in read-only mode.

The syntax:
```
SQL SELECT * from tab1;
```
is allowed, and is the preferred syntax for SELECT, for reasons of consistency. The SQL prefix will, however, remain optional for SELECT statements.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sql_command</td>
<td>A valid SQL command.</td>
</tr>
</tbody>
</table>

Example 1:
```
SQL leave;
```

Example 2:
```
SQL Execute <storedProc>;
```

SQLColumns
The sqlcolumns statement returns a set of fields describing the columns of an ODBC or OLE DB data source, to which a connect has been made.

Syntax:
```
SQLcolumns
```

The fields can be combined with the fields generated by the sqltables and sqltypes commands in order to give a good overview of a given database. The twelve standard fields are:

- TABLE_QUALIFIER
- TABLE_OWNER
- TABLE_NAME
COLUMN_NAME
DATA_TYPE
TYPE_NAME
PRECISION
LENGTH
SCALE
RADIX
NULLABLE
REMARKS

For a detailed description of these fields, see an ODBC reference handbook.

**Example:**

```sql
Connect to 'MS Access 7.0 Database; DBQ=C:\Course3\DataSrc\QWT.mbd';
SQLcolumns;
```

*Some ODBC drivers may not support this command. Some ODBC drivers may produce additional fields.*

**SQLTables**

The sqltables statement returns a set of fields describing the tables of an ODBC or OLE DB data source, to which a connect has been made.

**Syntax:**

```
SQLTables
```

The fields can be combined with the fields generated by the sqlcolumns and sqltypes commands in order to give a good overview of a given database. The five standard fields are:

- TABLE_QUALIFIER
- TABLE_OWNER
- TABLE_NAME
- TABLE_TYPE
- REMARKS

For a detailed description of these fields, see an ODBC reference handbook.
Example:

Connect to 'MS Access 7.0 Database; DBQ=C:\Course3\DataSrc\QWT.mbd';
SQLTables;

Some ODBC drivers may not support this command. Some ODBC drivers may produce additional fields.

SQLTypes

The sqltypes statement returns a set of fields describing the types of an ODBC or OLE DB data source, to which a connect has been made.

Syntax:

```
SQLTypes
```

The fields can be combined with the fields generated by the sqlcolumns and sqltables commands in order to give a good overview of a given database. The fifteen standard fields are:

- TYPE_NAME
- DATA_TYPE
- PRECISION
- LITERAL_PREFIX
- LITERAL_SUFFIX
- CREATE_PARAMS
- NULLABLE
- CASE_SENSITIVE
- SEARCHABLE
- UNSIGNED_ATTRIBUTE
- MONEY
- AUTO_INCREMENT
- LOCAL_TYPE_NAME
- MINIMUM_SCALE
- MAXIMUM_SCALE

For a detailed description of these fields, see an ODBC reference handbook.
Example:

Connect to 'MS Access 7.0 Database; DBQ=C:\Course3\DataSrc\QWT.mbd';

Some ODBC drivers may not support this command. Some ODBC drivers may produce additional fields.

Star
The string used for representing the set of all the values of a field in the database can be set through the `star` statement. It affects the subsequent `LOAD` and `SELECT` statements.

Syntax:

```
Star [ string ]
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>An arbitrary text. Note that the string must be enclosed by quotation marks if it contains blanks.</td>
</tr>
<tr>
<td></td>
<td>If nothing is specified, <code>star</code> is; is assumed, i.e. there is no star symbol available unless explicitly specified. This definition is valid until a new <code>star</code> statement is made.</td>
</tr>
</tbody>
</table>

Examples:

```
star is *
star is %
star is;
```

Store
This script function creates a QVD or a CSV file.

Syntax:

```
Store [ *fieldlist from] table into filename [ format-spec ];
```

The statement will create an explicitly named QVD or CSV file. The statement can only export fields from one data table. If fields from several tables are to be exported, an explicit join must be made previously in the script to create the data table that should be exported.

The text values are exported to the CSV file in UTF-8 format. A delimiter can be specified, see `LOAD`. The `store` statement to a CSV file does not support BIFF export.
## Script syntax

### Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>fieldlist::= (</em></td>
<td>A list of the fields to be selected. Using * as field list indicates all fields.</td>
</tr>
<tr>
<td>field) {, field}</td>
<td></td>
</tr>
<tr>
<td>field::= fieldname [as aliasname ]</td>
<td>*fieldname is a text that is identical to a field name in table. (Note that the field name must be enclosed b straight double quotation marks or square brackets if it contains spaces or other non-standard characters.)</td>
</tr>
<tr>
<td>aliasname is an alternate name for the field to be used in the resulting QVD or CSV file.</td>
<td></td>
</tr>
<tr>
<td>table</td>
<td>A script label representing an already loaded table to be used as source for data.</td>
</tr>
<tr>
<td>filename</td>
<td>The name of the target file as a folder data connection.</td>
</tr>
<tr>
<td>format-spec ::= (</td>
<td>The format specification consists of the text txt for text files, or the text qvd for qvd files. If the format specification is omitted, qvd is assumed.</td>
</tr>
<tr>
<td>(txt</td>
<td>qvd ) )</td>
</tr>
</tbody>
</table>

**Example:**

store mytable into xyz.qvd (qvd);
store * from mytable into xyz.qvd;
Store Name, RegNo from mytable into xyz.qvd;
Store Name as a, RegNo as b from mytable into xyz.qvd;
store mytable into myfile.txt (txt);
store * from mytable into 'lib://FolderConnection/myfile.qvd';

The two first examples have identical function.

Tag
This script function provides a way of assigning tags to one or more fields. If an attempt to tag a field name not present in the app is made, the tagging will be ignored. If conflicting occurrences of a field or tag name are found, the last value is used.

Syntax:

Tag fields fieldlist using mapname
Tag field fieldname with tagname

A field tagged with dimension will be displayed at the top of all field selection controls in Qlik Sense except in the Edit Expression dialog.

A field tagged with measure will be displayed at the top of all field selection controls in the Edit Expression dialog.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fieldlist</td>
<td>A comma separated list of the fields that should be tagged from this point in the script.</td>
</tr>
<tr>
<td>mapname</td>
<td>The name of a mapping table previously loaded in a mapping Load or mapping Select statement.</td>
</tr>
<tr>
<td>fieldname</td>
<td>The name of the field that should be tagged.</td>
</tr>
<tr>
<td>tagname</td>
<td>The name of the tag that should be applied to the field.</td>
</tr>
</tbody>
</table>

Example 1:

tagmap:
mapping LOAD * inline [
  a,b
  Alpha,MyTag
  Num,MyTag
];
tag fields using tagmap;

Example 2:

tag field Alpha with 'MyTag2';
Trace
The **trace** statement writes a string to the **Script Execution Progress** window and to the script log file, when used. It is very useful for debugging purposes. Using $-expansions of variables that are calculated prior to the **trace** statement, you can customize the message.

**Syntax:**
```
Trace string
```

**Example 1:**
```
Trace Main table loaded;
```

**Example 2:**
```
Let MyMessage = NoOfRows('MainTable') & ' rows in Main Table';
Trace $(MyMessage);
```

Unmap
The **Unmap** statement disables field value mapping specified by a previous **Map ... Using** statement for subsequently loaded fields.

**Syntax:**
```
Unmap *fieldlist
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*fieldlist</td>
<td>a comma separated list of the fields that should no longer be mapped from this point in the script. Using * as field list indicates all fields. The wildcard characters * and ? are allowed in field names. Quoting of field names may be necessary when wildcards are used.</td>
</tr>
</tbody>
</table>

**Examples and results:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmap Country;</td>
<td>Disables mapping of field Country.</td>
</tr>
<tr>
<td>Unmap A, B, C;</td>
<td>Disables mapping of fields A, B and C.</td>
</tr>
<tr>
<td>Unmap * ;</td>
<td>Disables mapping of all fields.</td>
</tr>
</tbody>
</table>

Un qualify
The **Unqualify** statement is used for switching off the qualification of field names that has been previously switched on by the **Qualify** statement.

**Syntax:**
Unqualify *fieldlist

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*fieldlist</td>
<td>A comma separated list of the fields for which qualification should be turned on. Using * as field list indicates all fields. The wildcard characters * and ? are allowed in field names. Quoting of field names may be necessary when wildcards are used. Refer to the documentation for the <strong>Qualify</strong> statement for further information.</td>
</tr>
</tbody>
</table>

Example 1:

Unqualify *;

Example 2:

Unqualify TransID;

Untag

Provides a way of removing tags from one or more fields. If an attempt to untag a Field name not present in the app is made, the untagging will be ignored. If conflicting occurrences of a field or tag name is found, the last value is used.

Syntax:

```
Untag fields fieldlist using mapname
Untag field fieldname with tagname
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fieldlist</td>
<td>A comma separated list of the fields which tags should be removed.</td>
</tr>
<tr>
<td>mapname</td>
<td>The name of a mapping table previously loaded in a mapping <strong>LOAD</strong> or mapping <strong>SELECT</strong> statement.</td>
</tr>
<tr>
<td>fieldname</td>
<td>The name of the field that should be untagged.</td>
</tr>
<tr>
<td>tagname</td>
<td>The name of the tag that should be removed from the field.</td>
</tr>
</tbody>
</table>

Example 1:

tagmap:
mapping LOAD * inline [a,b Alpha,MyTag Num,MyTag];
Untag fields using tagmap;

**Example 2:**

Untag field Alpha with MyTag2;]

## 2.4 Working with variables in the data load editor

A variable in Qlik Sense is a named entity, containing a single data value. A variable typically acquires its value from a **Let**, **Set** or other control statement. The value of a variable can normally be changed by the user at any time. Variables can contain numeric or alphanumeric data.

If the first character of a variable value is an equals sign ' = ' Qlik Sense will try to evaluate the value as a formula (Qlik Sense expression) and then display or return the result rather than the actual formula text.

When used, the variable is substituted by its value. Variables can be used in the script for dollar sign expansion and in various control statements. This is very useful if the same string is repeated many times in the script, for example, a path.

Some special system variables will be set by Qlik Sense at the start of the script execution regardless of their previous values.

When defining a variable, the syntax:

```
set variablename = string
```

or

```
let variable = expression
```

is used. The **Set** command assigns the text to the right of the equal sign to the variable, whereas the **Let** command evaluates the expression.

Variables are case sensitive.

### Examples:

```
set HidePrefix = $ ; // the variable will get the character `$` as value.

let vToday = Num(Today()); // returns the date serial number of today.
```

### Variable calculation

There are several ways to use variables with calculated values in Qlik Sense, and the result depends on how you define it and how you call it in an expression.

In this example we load some inline data:

```
LOAD * INLINE [   
  Dim, Sales
  A, 150
  A, 200
  B, 240
  B, 230
  C, 410
]
Let's define two variables:

```plaintext
Let vSales = 'Sum(Sales)';
Let vSales2 = '=Sum(Sales)';
```

In the second variable, we add an equal sign before the expression. This will cause the variable to be calculated before it is expanded and the expression is evaluated.

If you use the vSales variable as it is, for example in a measure, the result will be the string Sum(Sales), that is, no calculation is performed.

If you add a dollar-sign expansion and call $(vSales)$ in the expression, the variable is expanded, and the sum of Sales is displayed.

Finally, if you call $(vSales2)$, the variable will be calculated before it is expanded. This means that the result displayed is the total sum of Sales. The difference between using =$vSales$ and =$vSales2$ as measure expressions is seen in this chart showing the results:

<table>
<thead>
<tr>
<th>Dim</th>
<th>$(vSales)$</th>
<th>$(vSales2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>350</td>
<td>1560</td>
</tr>
<tr>
<td>B</td>
<td>470</td>
<td>1560</td>
</tr>
<tr>
<td>C</td>
<td>740</td>
<td>1560</td>
</tr>
</tbody>
</table>

As you can see, $(vSales)$ results in the partial sum for a dimension value, while $(vSales2)$ results in the total sum.

The following script variables are available:

- **Error variables**  
  page 128
- **Number interpretation variables**  
  page 118
- **System variables**  
  page 111
- **Value handling variables**  
  page 116

**System variables**

System variables, some of which are system-defined, provide information about the system and the Qlik Sense app.

**System variables overview**

Some of the functions are described further after the overview. For those functions, you can click the function name in the syntax to immediately access the details for that specific function.

**Floppy**

Returns the drive letter of the first floppy drive found, normally a: This is a system-defined variable.
Floppy

This variable is not supported in standard mode.

CD

Returns the drive letter of the first CD-ROM drive found. If no CD-ROM is found, then c: is returned. This is a system-defined variable.

CD

This variable is not supported in standard mode.

Include

The include variable specifies a file that contains text that should be included in the script. The entire script can thus be put in a file. This is a user-defined variable.

$\text{(Include} \equiv \text{filename})$

HidePrefix

All field names beginning with this text string will be hidden in the same manner as the system fields. This is a user-defined variable.

HideSuffix

All field names ending with this text string will be hidden in the same manner as the system fields. This is a user-defined variable.

QvPath

Returns the browse string to the Qlik Sense executable. This is a system-defined variable.

QvPath

This variable is not supported in standard mode.

QvRoot

Returns the root directory of the Qlik Sense executable. This is a system-defined variable.

QvRoot

This variable is not supported in standard mode.

QvWorkPath

2  Script syntax
Returns the browse string to the current Qlik Sense app. This is a system-defined variable.

**QvWorkPath**

*This variable is not supported in standard mode.*

**QvWorkRoot**

Returns the root directory of the current Qlik Sense app. This is a system-defined variable.

**QvWorkRoot**

*This variable is not supported in standard mode.*

**StripComments**

If this variable is set to 0, stripping of /*...*/ and // comments in the script will be inhibited. If this variable is not defined, stripping of comments will always be performed.

**StripComments**

**Verbatim**

Normally all field values are automatically stripped of leading and trailing blanks (ASCII 32) before being loaded into the Qlik Sense database. Setting this variable to 1 suspends the stripping of blanks. Tab (ASCII 32) and hard space (ANSI 160) are never stripped.

**Verbatim**

**OpenUrlTimeout**

This variable defines the timeout in seconds that Qlik Sense should respect when getting data from URL sources (e.g. HTML pages). If omitted, the timeout is about 20 minutes.

**OpenUrlTimeout**

**WinPath**

Returns the browse string to Windows. This is a system-defined variable.

**WinPath**

*This variable is not supported in standard mode.*

**WinRoot**

Returns the root directory of Windows. This is a system-defined variable.

**WinRoot**

*This variable is not supported in standard mode.*
**CollationLocale**
Specifies which locale to use for sort order and search matching. The value is the culture name of a locale, for example 'en-US'. This is a system-defined variable.

**HidePrefix**
All field names beginning with this text string will be hidden in the same manner as the system fields. This is a user-defined variable.

**Syntax:**

```
HidePrefix
```

**Example:**

```
set HidePrefix='_' ;
```

If this statement is used, the field names beginning with an underscore will not be shown in the field name lists when the system fields are hidden.

**HideSuffix**
All field names ending with this text string will be hidden in the same manner as the system fields. This is a user-defined variable.

**Syntax:**

```
HideSuffix
```

**Example:**

```
set HideSuffix='%';
```

If this statement is used, the field names ending with a percentage sign will not be shown in the field name lists when the system fields are hidden.

**Include**
The include variable specifies a file that contains text that should be included in the script. The entire script can thus be put in a file. This is a user-defined variable.

*This variable supports only folder data connections in standard mode.*

**Syntax:**

```
$(Include = filename)
```
Example:

```sql
$(Include=abc.txt);
$(Include=lib://MyDataFiles\abc.txt);
```
If you don’t specify a path, the filename will be relative to the Qlik Sense app working directory. You can also specify an absolute file path, or a path to a lib:// folder connection.

*The construction set Include =filename is not applicable.*

**OpenUrlTimeout**

This variable defines the timeout in seconds that Qlik Sense should respect when getting data from URL sources (e.g. HTML pages). If omitted, the timeout is about 20 minutes.

**Syntax:**

```sql
OpenUrlTimeout
```

**Example:**

```sql
set OpenUrlTimeout=10
```

**StripComments**

If this variable is set to 0, stripping of /*..*/ and // comments in the script will be inhibited. If this variable is not defined, stripping of comments will always be performed.

**Syntax:**

```sql
StripComments
```

Certain database drivers use /*..*/ as optimization hints in `SELECT` statements. If this is the case, the comments should not be stripped before sending the `SELECT` statement to the database driver.

*It is recommended that this variable be reset to 1 immediately after the statement(s) where it is needed.*

**Example:**

```sql
set StripComments=0;
SQL SELECT * /* <optimization directive> */ FROM Table;
set StripComments=1;
```
Verbatim

Normally all field values are automatically stripped of leading and trailing blanks (ASCII 32) before being loaded into the Qlik Sense database. Setting this variable to 1 suspends the stripping of blanks. Tab (ASCII 32) and hard space (ANSI 160) are never stripped.

Syntax:

Verbatim

Example:

set verbatim = 1;

Value handling variables

This section describes variables that are used for handling NULL and other values.

Value handling variables overview

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

NullDisplay

The defined symbol will substitute all NULL values from ODBC on the lowest level of data. This is a user-defined variable.

NullDisplay

NullInterpret

The defined symbol will be interpreted as NULL when it occurs in a text file, Excel file or an inline statement. This is a user-defined variable.

NullInterpret

NullValue

If the NullAsValue statement is used, the defined symbol will substitute all NULL values in the NullAsValue specified fields with the specified string.

NullValue

OtherSymbol

Defines a symbol to be treated as 'all other values' before a LOAD/SELECT statement. This is a user-defined variable.

OtherSymbol
NullDisplay
The defined symbol will substitute all NULL values from ODBC on the lowest level of data. This is a user-defined variable.

Syntax:
NullDisplay

Example:
set NullDisplay='<NULL>';

NullInterpret
The defined symbol will be interpreted as NULL when it occurs in a text file, Excel file or an inline statement. This is a user-defined variable.

Syntax:
NullInterpret

Examples:
set NullInterpret='';
set NullInterpret='=';
    will NOT return NULL values for blank values in Excel (but it will for a csv text file)
set NullInterpret='';
    will return NULL values for blank values in Excel (but will NOT for a csv text files)

NullValue
If the NullAsValue statement is used, the defined symbol will substitute all NULL values in the NullAsValue specified fields with the specified string.

Syntax:
NullValue

Example:
NullAsValue Field1, Field2;
set NullValue='<NULL>';
OtherSymbol

Example:

set OtherSymbol='+';
LOAD * inline
[X, Y
a, a
b, b];
LOAD * inline
[X, Z
a, a
+ , c];
The field value Y='b' will now link to Z='c' through the other symbol.

Number interpretation variables

Number interpretation variables are system defined, that is, they are automatically generated according to the current regional settings of the operating system when a new app is created. In Qlik Sense Desktop, this is according to the settings of the computer operating system, and in Qlik Sense, it is according to the operating system of the server where Qlik Sense is installed.

The variables are included at the top of the script of the new Qlik Sense app and substitute operating system defaults for certain number formatting settings at the time of the script execution. They can be deleted, edited or duplicated freely.

If you want to create an app for a certain locale, the easiest way is probably to use Qlik Sense Desktop on a computer with the desired locale setting in the operating system to create the app. The app will then contain the appropriate regional settings of that locale, and you can move it to a Qlik Sense server of choice for further development.

Number interpretation variables overview

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

Currency formatting

MoneyDecimalSep

The decimal separator defined replaces the decimal symbol for currency of the operating system (regional settings).

MoneyFormat

The symbol defined replaces the currency symbol of the operating system (regional settings).

MoneyThousandsSep
The thousands separator defined replaces the digit grouping symbol for currency of the operating system (regional settings).

**MoneyThousandsSep**

Number formatting

**DecimalSep**
The decimal separator defined replaces the decimal symbol of the operating system (regional settings).

**DecimalSep**

**ThousandsSep**
The thousands separator defined replaces the digit grouping symbol of the operating system (regional settings).

**ThousandsSep**

Time formatting

**DateFormat**
The format defined replaces the date format of the operating system (regional settings).

**DateFormat**

**TimeFormat**
The format defined replaces the time format of the operating system (regional settings).

**TimeFormat**

**TimestampFormat**
The format defined replaces the date and time formats of the operating system (regional settings).

**TimestampFormat**

**MonthNames**
The format defined replaces the month names convention of the operating system (regional settings).

**MonthNames**

**LongMonthNames**
The format defined replaces the long month names convention of the operating system (regional settings).

**LongMonthNames**

**DayNames**
The format defined replaces the weekday names convention of the operating system (regional settings).

**DayNames**

**LongDayNames**
The format defined replaces the long weekday names convention of the operating system (regional settings).
**LongDayNames**

**FirstWeekDay**
The integer defines which day to use as the first day of the week.

**FirstWeekDay**

**BrokenWeeks**
The setting defines if weeks are broken or not.

**BrokenWeeks**

**ReferenceDay**
The setting defines which day in January to set as reference day to define week 1.

**ReferenceDay**

**FirstMonthOfYear**
The setting defines which month to use as first month of the year, which can be used to define financial years that use a monthly offset, for example starting April 1.

Valid settings are 1 (January) to 12 (December). Default setting is 1.

**Syntax:**

**FirstMonthOfYear**

**Example:**

Set FirstMonthOfYear=4; //Sets the year to start in April

**BrokenWeeks**
The setting defines if weeks are broken or not.

**Syntax:**

**BrokenWeeks**

By default, Qlik Sense functions use unbroken weeks. This means that:

- In some years, week 1 starts in December, and in other years, week 52 or 53 continues into January.
- Week 1 always has at least 4 days in January.

The alternative is to use broken weeks.

- Week 52 or 53 do not continue into January.
- Week 1 starts on January 1 and is, in most cases, not a full week.

The following values can be used:

- 0 (=use unbroken weeks)
- 1 (= use broken weeks)
Examples:

Set Brokenweeks=0; // (use unbroken weeks)
Set Brokenweeks=1; // (use broken weeks)

Date Format
The format defined replaces the date format of the operating system (regional settings).

Syntax:

**DateFormat**

Examples:

Set DateFormat='M/D/YY'; // (US format)
Set DateFormat='DD/MM/YY'; // (UK date format)
Set DateFormat='YYYY-MM-DD'; // (ISO date format)

DayNames
The format defined replaces the weekday names convention of the operating system (regional settings).

Syntax:

**DayNames**

Example:

Set DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

DecimalSep
The decimal separator defined replaces the decimal symbol of the operating system (regional settings).

Syntax:

**DecimalSep**

Examples:

Set DecimalSep='.';
Set DecimalSep=',';

First Week Day
The integer defines which day to use as the first day of the week.

Syntax:

**First Week Day**

By default, Qlik Sense functions use Monday as the first day of the week. The following values can be used:
- 0 (= Monday)
- 1 (= Tuesday)
- 2 (= Wednesday)
- 3 (= Thursday)
- 4 (= Friday)
- 5 (= Saturday)
- 6 (= Sunday)

**Examples:**

Set FirstWeekDay=6; // (set Sunday as the first day of the week)

**LongDayNames**
The format defined replaces the long weekday names convention of the operating system (regional settings).

**Syntax:**

```
LongDayNames
```

**Example:**

Set LongDayNames='Monday;Tuesday;Wednesday;Thursday;Friday;Saturday;Sunday';

**LongMonthNames**
The format defined replaces the long month names convention of the operating system (regional settings).

**Syntax:**

```
LongMonthNames
```

**Example:**

Set LongMonthNames='January;February;March;April;May;June - -

**MoneyDecimalSep**
The decimal separator defined replaces the decimal symbol for currency of the operating system (regional settings).

**Syntax:**

```
MoneyDecimalSep
```

**Example:**

Set MoneyDecimalSep='.';

**MoneyFormat**
The symbol defined replaces the currency symbol of the operating system (regional settings).
2 Script syntax

Syntax:

MoneyFormat

Example:

Set MoneyFormat='$',#0.00; ($#,##0.00)';

MoneyThousandSep
The thousands separator defined replaces the digit grouping symbol for currency of the operating system (regional settings).

Syntax:

MoneyThousandSep

Example:

Set MoneyThousandSep=',';

MonthNames
The format defined replaces the month names convention of the operating system (regional settings).

Syntax:

MonthNames

Example:

Set MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

ReferenceDay
The setting defines which day in January to set as reference day to define week 1.

Syntax:

ReferenceDay

By default, Qlik Sense functions use 4 as the reference day. This means that week 1 must contain January 4, or put differently, that week 1 must always have at least 4 days in January.

The following values can be used to set a different reference day:

- 1 (= January 1)
- 2 (= January 2)
- 3 (= January 3)
- 4 (= January 4)
- 5 (= January 5)
6 (January 6)
7 (January 7)

Examples:
Set ReferenceDay=3; // (set January 3 as the reference day)

ThousandSep
The thousands separator defined replaces the digit grouping symbol of the operating system (regional settings).

Syntax:

```plaintext
ThousandSep
```

Examples:
Set ThousandSep=','; // (for example, seven billion must be specified as: 7,000,000,000)
Set ThousandSep=' ';

TimeFormat
The format defined replaces the time format of the operating system (regional settings).

Syntax:

```plaintext
TimeFormat
```

Example:
Set TimeFormat='hh:mm:ss';

TimestampFormat
The format defined replaces the date and time formats of the operating system (regional settings).

Syntax:

```plaintext
TimestampFormat
```

Example:
Set TimestampFormat='M/D/YY hh:mm:ss[.fff]';

Direct Discovery variables

Direct Discovery system variables

DirectCacheSeconds
You can set a caching limit to the Direct Discovery query results for visualizations. Once this time limit is
reached, Qlik Sense clears the cache when new Direct Discovery queries are made. Qlik Sense queries the source data for the selections and creates the cache again for the designated time limit. The result for each combination of selections is cached independently. That is, the cache is refreshed for each selection independently, so one selection refreshes the cache only for the fields selected, and a second selection refreshes cache for its relevant fields. If the second selection includes fields that were refreshed in the first selection, they are not updated in cache again if the caching limit has not been reached.

The Direct Discovery cache does not apply to Table visualizations. Table selections query the data source every time.

The limit value must be set in seconds. The default cache limit is 1800 seconds (30 minutes).

The value used for DirectCacheSeconds is the value set at the time the DIRECT QUERY statement is executed. The value cannot be changed at runtime.

**Example:**

```
SET DirectCacheSeconds=1800
```

**DirectConnectionMax**

You can do asynchronous, parallel calls to the database by using the connection pooling capability. The load script syntax to set up the pooling capability is as follows:

```
SET DirectConnectionMax=10
```

The numeric setting specifies the maximum number of database connections the Direct Discovery code should use while updating a sheet. The default setting is 1.

*This variable should be used with caution. Setting it to greater than 1 is known to cause problems when connecting to Microsoft SQL Server.*

**DirectUnicodeStrings**

Direct Discovery can support the selection of extended Unicode data by using the SQL standard format for extended character string literals (`N`<extended string>`) as required by some databases (notably SQL Server). The use of this syntax can be enabled for Direct Discovery with the script variable DirectUnicodeStrings.

Setting this variable to 'true' will enable the use of the ANSI standard wide character marker “N” in front of the string literals. Not all databases support this standard. The default setting is 'false'.

**DirectDistinctSupport**

When a DIMENSION field value is selected in a Qlik Sense object, a query is generated for the source database. When the query requires grouping, Direct Discovery uses the DISTINCT keyword to select only unique values. Some databases, however, require the GROUP BY keyword. Set DirectDistinctSupport to 'false' to generate GROUP BY instead of DISTINCT in queries for unique values.

```
SET DirectDistinctSupport='false'
```

If DirectDistinctSupport is set to true, then DISTINCT is used. If it is not set, the default behavior is to use DISTINCT.
Teradata query banding variables

Teradata query banding is a function that enables enterprise applications to collaborate with the underlying Teradata database in order to provide for better accounting, prioritization, and workload management. Using query banding you can wrap metadata, such as user credentials, around a query.

Two variables are available, both are strings that are evaluated and sent to the database.

**SQLSessionPrefix**
This string is sent when a connection to the database is created.

```sql
SET SQLSessionPrefix = 'SET QUERY_BAND = ' & Chr(39) & 'who=' & OSuser() & ';' & Chr(39) & ' FOR SESSION;';
```

If `OSuser()` for example returns `WA\sbt`, this will be evaluated to `SET QUERY_BAND = 'who=WA\sbt;' FOR SESSION;`, which is sent to the database when the connection is created.

**SQLQueryPrefix**
This string is sent for each single query.

```sql
SET SQLSessionPrefix = 'SET QUERY_BAND = ' & Chr(39) & 'who=' & OSuser() & ';' & Chr(39) & ' FOR TRANSACTION;';
```

Direct Discovery character variables

**DirectFieldColumnDelimiter**
You can set the character used as the field delimiter in **Direct Query** statements for databases that require a character other than comma as the field delimiter. The specified character must be surrounded by single quotation marks in the `SET` statement.

```sql
SET DirectFieldColumnDelimiter= '|' 
```

**DirectStringQuoteChar**
You can specify a character to use to quote strings in a generated query. The default is a single quotation mark. The specified character must be surrounded by single quotation marks in the `SET` statement.

```sql
SET DirectStringQuoteChar= '"'
```

**DirectIdentifierQuoteStyle**
You can specify that non-ANSI quoting of identifiers be used in generated queries. At this time, the only non-ANSI quoting available is GoogleBQ. The default is ANSI. Uppercase, lowercase, and mixed case can be used (ANSI, ansi, Ansi).

```sql
SET DirectIdentifierQuoteStyle="GoogleBQ"
```

For example, ANSI quoting is used in the following **SELECT** statement:

```sql
SELECT [Quarter] FROM [qvTest].[sales] GROUP BY [Quarter]
```

When **DirectIdentifierQuoteStyle** is set to "GoogleBQ", the **SELECT** statement would use quoting as follows:

```sql
SELECT [Quarter] FROM [qvTest.sales] GROUP BY [Quarter]
```

**DirectIdentifierQuoteChar**
You can specify a character to control the quoting of identifiers in a generated query. This can be set to either one character (such as a double quotation mark) or two (such as a pair of square brackets). The default is a double quotation mark.

```
SET DirectIdentifierQuoteChar='YYYY-MM-DD'
```

**DirectTableBoxListThreshold**

When Direct Discovery fields are used in a **Table** visualization, a threshold is set to limit the number of rows displayed. The default threshold is 1000 records. The default threshold setting can be changed by setting the **DirectTableBoxListThreshold** variable in the load script. For example:

```
SET DirectTableBoxListThreshold=5000
```

The threshold setting applies only to **Table** visualizations that contain Direct Discovery fields. **Table** visualizations that contain only in-memory fields are not limited by the **DirectTableBoxListThreshold** setting.

No fields are displayed in the **Table** visualization until the selection has fewer records than the threshold limit.

**Direct Discovery number interpretation variables**

**DirectMoneyDecimalSep**

The decimal separator defined replaces the decimal symbol for currency in the SQL statement generated to load data using Direct Discovery. This character must match the character used in **DirectMoneyFormat**.

Default value is '.

**Example:**

```
Set DirectMoneyDecimalSep='.';
```

**DirectMoneyFormat**

The symbol defined replaces the currency format in the SQL statement generated to load data using Direct Discovery. The currency symbol for the thousands separator should not be included.

Default value is '#.0000'

**Example:**

```
Set DirectMoneyFormat='#.0000';
```

**DirectTimeFormat**

The time format defined replaces the time format in the SQL statement generated to load data using Direct Discovery.

**Example:**

```
Set DirectTimeFormat='hh:mm:ss';
```

**DirectDateFormat**
The date format defined replaces the date format in the SQL statement generated to load data using Direct Discovery.

Example:

```sql
SET DirectDateFormat='MM/DD/YYYY';
```

**DirectTimeStampFormat**
The format defined replaces the date and time format in the SQL statement generated in the SQL statement generated to load data using Direct Discovery.

Example:

```sql
SET DirectTimestampFormat='M/D/YY hh:mm:ss[.fff]';
```

**Error variables**
The values of all error variables will exist after the script execution. The first variable, ErrorMode, is input from the user, and the last three are output from Qlik Sense with information on errors in the script.

**Error variables overview**
Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

**ErrorMode**
The error variable determines what action is to be taken by Qlik Sense when an error is encountered during script execution.

**ScriptError**
This error variable returns the error code of the last executed script statement.

**ScriptErrorCount**
This error variable returns the total number of statements that have caused errors during the current script execution. This variable is always reset to 0 at the start of script execution.

**ScriptErrorList**
This error variable will contain a concatenated list of all script errors that have occurred during the last script execution. Each error is separated by a line feed.
ErrorMode

This error variable determines what action is to be taken by Qlik Sense when an error is encountered during script execution.

Syntax:

```
ErrorMode
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ErrorMode=1</td>
<td>The default setting. The script execution will halt and the user will be prompted for action (non-batch mode).</td>
</tr>
<tr>
<td>ErrorMode =0</td>
<td>Qlik Sense will simply ignore the failure and continue script execution at the next script statement.</td>
</tr>
<tr>
<td>ErrorMode =2</td>
<td>Qlik Sense will trigger an &quot;Execution of script failed...&quot; error message immediately on failure, without prompting the user for action beforehand.</td>
</tr>
</tbody>
</table>

Example:

```
set ErrorMode=0;
```

ScriptError

This error variable returns the error code of the last executed script statement.

Syntax:

```
ScriptError
```

This variable will be reset to 0 after each successfully executed script statement. If an error occurs it will be set to an internal Qlik Sense error code. Error codes are dual values with a numeric and a text component. The following error codes exist:

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No error</td>
</tr>
<tr>
<td>1</td>
<td>General error</td>
</tr>
<tr>
<td>2</td>
<td>Syntax error</td>
</tr>
<tr>
<td>3</td>
<td>General ODBC error</td>
</tr>
<tr>
<td>4</td>
<td>General OLE DB error</td>
</tr>
<tr>
<td>Error code</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>5</td>
<td>General custom database error</td>
</tr>
<tr>
<td>6</td>
<td>General XML error</td>
</tr>
<tr>
<td>7</td>
<td>General HTML error</td>
</tr>
<tr>
<td>8</td>
<td>File not found</td>
</tr>
<tr>
<td>9</td>
<td>Database not found</td>
</tr>
<tr>
<td>10</td>
<td>Table not found</td>
</tr>
<tr>
<td>11</td>
<td>Field not found</td>
</tr>
<tr>
<td>12</td>
<td>File has wrong format</td>
</tr>
<tr>
<td>13</td>
<td>BIFF error</td>
</tr>
<tr>
<td>14</td>
<td>BIFF error encrypted</td>
</tr>
<tr>
<td>15</td>
<td>BIFF error unsupported version</td>
</tr>
<tr>
<td>16</td>
<td>Semantic error</td>
</tr>
</tbody>
</table>

Example:

```plaintext
set ErrorMode=0;
LOAD * from abc.qvf;
if ScriptError=8 then
  exit script;
  //no file;
end if
```

**ScriptErrorCount**

This error variable returns the total number of statements that have caused errors during the current script execution. This variable is always reset to 0 at the start of script execution.

**Syntax:**

```plaintext
ScriptErrorCount
```

**ScriptErrorList**

This error variable will contain a concatenated list of all script errors that have occurred during the last script execution. Each error is separated by a line feed.

**Syntax:**

```plaintext
ScriptErrorList
```
2.5 Script expressions

Expressions can be used in both the **LOAD** statement and the **SELECT** statement. The syntax and functions described here apply to the **LOAD** statement, and not to the **SELECT** statement, since the latter is interpreted by the ODBC driver and not by Qlik Sense. However, most ODBC drivers are often capable of interpreting a number of the functions described below.

Expressions consist of functions, fields and operators, combined in a syntax.

All expressions in a Qlik Sense script return a number and/or a string, whichever is appropriate. Logical functions and operators return 0 for False and -1 for True. Number to string conversions and vice versa are implicit. Logical operators and functions interpret 0 as False and all else as True.

The general syntax for an expression is:

```
expression ::= (constant constant)
  | fieldref
  | operator1 expression
  | expression operator2 expression
  | function
  | ( expression )
```

where:

- **constant** is a string (a text, a date or a time) enclosed by single straight quotation marks, or a number. Constants are written with no thousands separator and with a decimal point as decimal separator.

- **fieldref** is a field name of the loaded table.

- **operator1** is a unary operator (working on one expression, the one to the right).

- **operator2** is a binary operator (working on two expressions, one on each side).

- **function ::= functionname( parameters)**

- **parameters ::= expression { , expression }**

The number and types of parameters is not arbitrary. It depends on the function used.

Expressions and functions can thus be nested freely, and as long as the expression returns an interpretable value, Qlik Sense will not give any error messages.
3  Visualization expressions

An expression is a combination of functions, fields, and mathematical operators (+ * / =). Expressions are used to process data in the app in order to produce a result that can be seen in a visualization. They are not limited to use in measures. You can build visualizations that are more dynamic and powerful, with expressions for titles, subtitles, footnotes, and even dimensions.

This means, for example, that instead of the title of a visualization being static text, it can be made from an expression whose result changes depending on the selections made.

For detailed reference regarding script functions and chart functions, see the Qlik Sense online help.

3.1  Defining the aggregation scope

There are usually two factors that together determine which records are used to define the value of aggregation in an expression. When working in visualizations, these factors are:

- Dimensional value (of the aggregation in a chart expression)
- Selections

Together, these factors define the scope of the aggregation. You may come across situations where you want your calculation to disregard the selection, the dimension or both. In chart functions, you can achieve this by using the TOTAL qualifier, set analysis, or a combination of the two.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL qualifier</td>
<td>Using the total qualifier inside your aggregation function disregards the dimensional value. The aggregation will be performed on all possible field values.</td>
</tr>
<tr>
<td></td>
<td>The TOTAL qualifier may be followed by a list of one or more field names within angle brackets. These field names should be a subset of the chart dimension variables. In this case, the calculation is made disregarding all chart dimension variables except those listed, that is, one value is returned for each combination of field values in the listed dimension fields. Also, fields that are not currently a dimension in a chart may be included in the list. This may be useful in the case of group dimensions, where the dimension fields are not fixed. Listing all of the variables in the group causes the function to work when the drill-down level changes.</td>
</tr>
<tr>
<td>Set analysis</td>
<td>Using set analysis inside your aggregation disregards the selection. The aggregation will be performed on all values split across the dimensions.</td>
</tr>
<tr>
<td>TOTAL qualifier and set analysis</td>
<td>Using set analysis inside your aggregation disregards the selection and the dimensions.</td>
</tr>
</tbody>
</table>

This method corresponds to using the ALL qualifier.
3  Visualization expressions

Example: TOTAL qualifier

The following example shows how TOTAL can be used to calculate a relative share. Assuming that Q2 has been selected, using TOTAL calculates the sum of all values disregarding the dimensions.

<table>
<thead>
<tr>
<th>Year</th>
<th>Quarter</th>
<th>Sum(Amount)</th>
<th>Sum(TOTAL Amount)</th>
<th>Sum(Amount)/Sum(TOTAL Amount)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>Q2</td>
<td>1700</td>
<td>3000</td>
<td>56,7%</td>
</tr>
<tr>
<td>2013</td>
<td>Q2</td>
<td>1300</td>
<td>3000</td>
<td>43,3%</td>
</tr>
</tbody>
</table>

To show the numbers as a percentage, in the properties panel, for the measure you want to show as a percentage value, under **Number formatting**, select **Number**, and from **Formatting**, choose **Simple** and one of the % formats.

Example: Set analysis

The following example shows how set analysis can be used to make a comparison between data sets before any selection was made. Assuming that Q2 has been selected, using set analysis with the set definition {1} calculates the sum of all values disregarding any selections but split by the dimensions.

<table>
<thead>
<tr>
<th>Year</th>
<th>Quarter</th>
<th>Sum(Amount)</th>
<th>Sum({1} Amount)</th>
<th>Sum(Amount)/Sum({1} Amount)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>Q1</td>
<td>0</td>
<td>1100</td>
<td>0%</td>
</tr>
<tr>
<td>2012</td>
<td>Q3</td>
<td>0</td>
<td>1400</td>
<td>0%</td>
</tr>
<tr>
<td>2012</td>
<td>Q4</td>
<td>0</td>
<td>1800</td>
<td>0%</td>
</tr>
<tr>
<td>2012</td>
<td>Q2</td>
<td>1700</td>
<td>1700</td>
<td>100%</td>
</tr>
<tr>
<td>2013</td>
<td>Q1</td>
<td>0</td>
<td>1000</td>
<td>0%</td>
</tr>
<tr>
<td>2013</td>
<td>Q3</td>
<td>0</td>
<td>1100</td>
<td>0%</td>
</tr>
<tr>
<td>2013</td>
<td>Q4</td>
<td>0</td>
<td>1400</td>
<td>0%</td>
</tr>
<tr>
<td>2013</td>
<td>Q2</td>
<td>1300</td>
<td>1300</td>
<td>100%</td>
</tr>
</tbody>
</table>

Example: TOTAL qualifier and set analysis

The following example shows how set analysis and the TOTAL qualifier can be combined to make a comparison between data sets before any selection was made and across all dimensions. Assuming that Q2 has been selected, using set analysis with the set definition {1} and the TOTAL qualifier calculates the sum of all values disregarding any selections and disregarding the dimensions.
### 3 Visualization expressions

<table>
<thead>
<tr>
<th>Year</th>
<th>Quarter</th>
<th>Sum (Amount)</th>
<th>Sum((1) TOTAL Amount)</th>
<th>Sum(Amount)/Sum((1) TOTAL Amount)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>Q2</td>
<td>3000</td>
<td>10800</td>
<td>27.8%</td>
</tr>
<tr>
<td>2013</td>
<td>Q2</td>
<td>1300</td>
<td>10800</td>
<td>12%</td>
</tr>
</tbody>
</table>

**Data used in examples:**

```sql
AggregationScope:
LOAD * inline {
  Year Quarter Amount
  2012 Q1 1100
  2012 Q2 1700
  2012 Q3 1400
  2012 Q4 1800
  2013 Q1 1000
  2013 Q2 1300
  2013 Q3 1100
  2013 Q4 1400
} (delimiter is ',');
```

#### 3.2 Syntax for sets

The full syntax (not including the optional use of standard brackets to define precedence) is described using Backus-Naur Formalism:

```plaintext
set_expression ::= { set_entity { set_operator set_entity } }
set_entity ::= set_identifier [ set_modifier ]
set_identifier ::= 1 | $ | $N | $N | bookmark_id | bookmark_name
set_operator ::= + | - | * | /
set_modifier ::= < field_selection {, field_selection } >
field_selection ::= field_name [ = | += | -= | *= | /= ] element_set_expression
element_set_expression ::= element_set { set_operator element_set }
element_set ::= [ field_name ] | { element_list } | element_function
element_list ::= element {, element }
element_function ::= ( P | E ) ( [ set_expression ] [ field_name ] )
element ::= field_value | " search_mask "
```

#### 3.3 Set modifiers

A set can be modified by an additional or a changed selection. Such a modification can be written in the set expression.

The modifier consists of one or several field names, each followed by a selection that should be made on the field, all enclosed by `<` and `>`. For example: `<year={2007,2008},region={us}>`. Field names and field values can be quoted as usual, e.g. `<sales region>={"west coast", "south america">`.

---

Script Syntax and Chart Functions Guide - Qlik Sense, 1.1
A set modifier can be used on a set identifier or on its own. It cannot be used on a set expression. When used on a set identifier, the modifier must be written immediately after the set identifier, for examples \{<year = 2007, 2008>\}. When used on its own, it is interpreted as a modification of the current selection.

There are several ways to define the selection as described in the following.

**Based on another field**

A simple case is a selection based on the selected values of another field, for example <orderDate = DeliveryDate>. This modifier will take the selected values from DeliveryDate and apply those as a selection on OrderDate. If there are many distinct values – more than a couple of hundred – then this operation is CPU intense and should be avoided.

**Based on element sets (a field value list in the modifier)**

The most common case is a selection based on a field value list enclosed in curly brackets, the values separated by commas, for example <year = {2007, 2008}>. The curly brackets here define an element set, where the elements can be either field values or searches of field values. A search is always defined by the use of double quotes, for example <ingredient = "Garlic"> will select all ingredients including the string ‘garlic’. Searches are case-insensitive and are made also over excluded values.

Empty element sets, either explicitly for example <Product = {}> or implicitly for example <Product = "Perpetuum Mobile"> (a search with no hits) mean no product, i.e. they will result in a set of records that are not associated with any product. Note that this set cannot be achieved through usual selections, unless a selection is made in another field, for example, TransactionID.

**Forced exclusion**

Finally, for fields in and-mode, there is also the possibility of forced exclusion. If you want to force exclusion of specific field values, you will need to use “~” in front of the field name.

**Examples and results:**

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sum( {1&lt;Region={USA}&gt;} Sales )</code></td>
<td>Returns the sales for the region USA disregarding the current selection</td>
</tr>
<tr>
<td><code>sum( {$&lt;region=&gt;} Sales )</code></td>
<td>Returns the sales for the current selection, but with the selection in 'Region' removed</td>
</tr>
</tbody>
</table>
3 Visualization expressions

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum( {&lt;Region = &gt;} Sales )</td>
<td>Returns the same as the example immediately above. When the set to modify is omitted, $ is assumed.</td>
</tr>
</tbody>
</table>

The syntax in the two previous examples is interpreted as “no selections” in 'Region', that is to say all regions given other selections will be possible. It is not equivalent to the syntax <Region = {}> (or any other text on the right side of the equal sign implicitly resulting in an empty element set) which is interpreted as no region.

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum( {&lt;Year = (2000), Region = (US, SE, DE, UK, FR)&gt;} Sales )</td>
<td>Returns the sales for current selection, but with new selections both in 'Year' and in 'Region'.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum( {$&lt;~Ingredient = {&quot;garlic&quot;}&gt;} Sales )</td>
<td>Returns the sales for current selection, but with a forced exclusion of all ingredients containing the string 'garlic'.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum( {$&lt;Year = {&quot;2*&quot;&gt;} Sales )</td>
<td>Returns the sales for the current selection, but with all years beginning with the digit “2”, i.e. most likely year 2000 and onwards, selected in the field 'Year'.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum( {$&lt;Year = {&quot;2*&quot;,&quot;198*&quot;}&gt;} Sales )</td>
<td>As above, but now also the 1980:s are included in the selection.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum( {$&lt;Year = {&quot;&gt;1978&lt;2004&quot;}&gt;} Sales )</td>
<td>As above, but now with a numeric search so that an arbitrary range can be specified.</td>
</tr>
</tbody>
</table>

Set modifiers with set operators

The selection within a field can be defined using set operators working on different element sets. For example the modifier <Year = {"20*", 1997} - {2000}> will select all years beginning with “20” in addition to “1997”, except for “2000”.

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum( {$&lt;Product = Product + {OurProduct1} – {OurProduct2} &gt;} Sales )</td>
<td>Returns the sales for the current selection, but with the product “OurProduct1” added to the list of selected products and “OurProduct2” removed from the list of selected products.</td>
</tr>
</tbody>
</table>
### 3 Visualization expressions

#### Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum( {$&lt;Year = Year + (&quot;20&quot;,1997) – (2000) &gt;} Sales )</td>
<td>Returns the sales for the current selection but with additional selections in the field “Year”: 1997 and all that begin with “20” – however, not 2000.</td>
</tr>
<tr>
<td>sum( {$&lt;Year = (Year + (&quot;20&quot;,1997) – (2000) &gt;} Sales )</td>
<td>Returns almost the same as above, but here 2000 will be excluded, also if it initially is included in the current selection. The example shows the importance of sometimes using brackets to define an order of precedence.</td>
</tr>
<tr>
<td>sum( {$&lt;Year = (&quot;*&quot; – (2000), Product = (&quot;*bearing&quot;”) &gt;} Sales )</td>
<td>Returns the sales for the current selection but with a new selection in “Year”: all years except 2000; and only for products containing the string ‘bearing’.</td>
</tr>
</tbody>
</table>

#### Set modifiers using assignments with implicit set operators

This notation defines new selections, disregarding the current selection in the field. However, if you want to base your selection on the current selection in the field and add field values, for example you may want a modifier <Year = Year + {2007, 2008}>. A short and equivalent way to write this is <Year += {2007, 2008}>. A short and equivalent way to write this is <Year += {2007, 2008}>. A short and equivalent way to write this is <Year += {2007, 2008}>, i.e. the assignment operator implicitly defines a union. Also implicit intersections, exclusions and symmetric differences can be defined using “*” = , “-” = and “/” =.

#### Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum( {$&lt;Product += (OurProduct1, OurProduct2) &gt;} Sales )</td>
<td>Returns the sales for the current selection, but using an implicit union to add the products ‘OurProduct1’ and ‘OurProduct2’ to the list of selected products.</td>
</tr>
<tr>
<td>sum( {$&lt;Year += (&quot;20&quot;,1997) – (2000) &gt;} Sales )</td>
<td>Returns the sales for the current selection but using an implicit union to add a number of years in the selection: 1997 and all that begin with “20” – however, not 2000.</td>
</tr>
<tr>
<td>sum( {$&lt;Product *= (OurProduct1) &gt;} Sales )</td>
<td>Returns the sales for the current selection, but only for the intersection of currently selected products and the product OurProduct1.</td>
</tr>
</tbody>
</table>

#### Set modifiers with advanced searches

Advanced searches using wild cards and aggregations can be used to define sets.

#### Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
</table>
3 Visualization expressions

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sum( {$&lt;Product = \{&quot;*Internal*&quot;, &quot;*Domestic*&quot;\}&gt; Sales )</code></td>
<td>Returns the sales for current selection, excluding transactions pertaining to products with the string 'Internal' or 'Domestic' in the product name.</td>
</tr>
<tr>
<td><code>sum( {$&lt;Customer = \{=Sum (\{1&lt;Year = (2007)&gt; Sales \} &gt; 1000000\}&gt; Sales )</code></td>
<td>Returns the sales for current selection, but with a new selection in the 'Customer' field: only customers who during 2007 had a total sales of more than 1000000.</td>
</tr>
</tbody>
</table>

Set modifiers with dollar-sign expansions

Variables and other dollar-sign expansions can be used in set expressions.

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sum( {$&lt;Year = \{$(#vLastYear)\}&gt; Sales )</code></td>
<td>Returns the sales for the previous year in relation to current selection. Here, a variable vLastYear containing the relevant year is used in a dollar-sign expansion.</td>
</tr>
<tr>
<td><code>sum( {$&lt;Year = \{$(#=Only(Year)-1)\}&gt; Sales )</code></td>
<td>Returns the sales for the previous year in relation to current selection. Here, a dollar-sign expansion is used to calculate previous year.</td>
</tr>
</tbody>
</table>

Set modifiers with implicit field value definitions

The following describes how to define a set of field values using a nested set definition.

In such cases, the element functions P() and E() must be used, representing the element set of possible values and the excluded values of a field, respectively. Inside the brackets, it is possible to specify one set expression and one field, for example P({1} Customer). These functions cannot be used in other expressions.

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sum( {$&lt;Customer = P(\{1&lt;Product= \{&quot;Shoe&quot;\}&gt; Customer\}&gt; Sales )</code></td>
<td>Returns the sales for current selection, but only those customers that ever have bought the product 'Shoe'. The element function P() here returns a list of possible customers; those that are implied by the selection 'Shoe' in the field Product.</td>
</tr>
</tbody>
</table>
### 3.4 Visualization expression and aggregation syntax

The syntax used for visualization (chart) expressions and aggregations is described in the following sections.

#### General syntax for chart expressions

```
expression ::= ( constant  )
expressionname |  
operator1 expression |  
expression operator2 expression |  
function |  
aggregation function |  
(expression )
```

where:

- **constant** is a string (a text, a date or a time) enclosed by single straight quotation marks, or a number. Constants are written without thousands separator and with a decimal point as decimal separator.

- **expressionname** is the name (label) of another expression in the same chart.

- **operator1** is a unary operator (working on one expression, the one to the right).

- **operator2** is a binary operator (working on two expressions, one on each side).

- **function ::= functionname ( parameters )**
parameters ::= expression { , expression }

The number and types of parameters are not arbitrary. They depend on the function used.

aggregationfunction ::= aggregationfunctionname ( parameters2 )
parameters2 ::= aggexpression { , aggexpression }

The number and types of parameters are not arbitrary. They depend on the function used.

**General syntax for aggregations**

| aggexpression ::= ( fieldref | operator1 aggexpression | aggexpression operator2 aggexpression | functioninaggr | ( aggexpression ) ) |

**fieldref** is a field name.

functioninaggr ::= functionname ( parameters2 )

Expressions and functions can thus be nested freely, as long as **fieldref** is always enclosed by exactly one aggregation function and provided the expression returns an interpretable value, Qlik Sense does not give any error messages.
4 Operators

This section describes the operators that can be used in Qlik Sense. There are two types of operators:

- Unary operators (take only one operand)
- Binary operators (take two operands)

Most operators are binary.

The following operators can be defined:

- Bit operators
- Logical operators
- Numeric operators
- Relational operators
- String operators

4.1 Bit operators

All bit operators convert (truncate) the operands to signed integers (32 bit) and return the result in the same way. All operations are performed bit by bit. If an operand cannot be interpreted as a number, the operation will return NULL.

- **bitnot**  Bit inverse. Unary operator. The operation returns the logical inverse of the operand performed bit by bit.

  **Example:**

  ```plaintext
  bitnot 17 returns -18
  ```

- **bitand**  Bit and. The operation returns the logical AND of the operands performed bit by bit.

  **Example:**

  ```plaintext
  17 bitand 7 returns 1
  ```

- **bitor**  Bit or. The operation returns the logical OR of the operands performed bit by bit.

  **Example:**

  ```plaintext
  17 bitor 7 returns 23
  ```

- **bitxor**  Bit exclusive or. The operation returns the logical exclusive or of the operands performed bit by bit.

  **Example:**

  ```plaintext
  17 bitxor 7 returns 22
  ```
4.2 Logical operators

All logical operators interpret the operands logically and return True (-1) or False (0) as result.

- **not**
  Logical inverse. One of the few unary operators. The operation returns the logical inverse of the operand.

- **and**
  Logical and. The operation returns the logical and of the operands.

- **or**
  Logical or. The operation returns the logical or of the operands.

- **Xor**
  Logical exclusive or. The operation returns the logical exclusive or of the operands. I.e. like logical or, but with the difference that the result is False if both operands are True.

4.3 Numeric operators

All numeric operators use the numeric values of the operands and return a numeric value as result.

- **+**
  Sign for positive number (unary operator) or arithmetic addition. The binary operation returns the sum of the two operands.

- **-**
  Sign for negative number (unary operator) or arithmetic subtraction. The unary operation returns the operand multiplied by -1, and the binary the difference between the two operands.

- *****
  Arithmetic multiplication. The operation returns the product of the two operands.

- **/**
  Arithmetic division. The operation returns the ratio between the two operands.

4.4 Relational operators

All relational operators compare the values of the operands and return True (-1) or False (0) as the result. All relational operators are binary.
<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;</code></td>
<td>Less than</td>
<td>A numeric comparison is made if both operands can be interpreted numerically. The operation returns the logical value of the evaluation of the comparison.</td>
</tr>
<tr>
<td><code>&lt;=</code></td>
<td>Less than or equal</td>
<td>A numeric comparison is made if both operands can be interpreted numerically. The operation returns the logical value of the evaluation of the comparison.</td>
</tr>
<tr>
<td><code>&gt;</code></td>
<td>Greater than</td>
<td>A numeric comparison is made if both operands can be interpreted numerically. The operation returns the logical value of the evaluation of the comparison.</td>
</tr>
<tr>
<td><code>&gt;=</code></td>
<td>Greater than or equal</td>
<td>A numeric comparison is made if both operands can be interpreted numerically. The operation returns the logical value of the evaluation of the comparison.</td>
</tr>
<tr>
<td><code>=</code></td>
<td>Equals</td>
<td>A numeric comparison is made if both operands can be interpreted numerically. The operation returns the logical value of the evaluation of the comparison.</td>
</tr>
<tr>
<td><code>&lt;&gt;</code></td>
<td>Not equivalent to</td>
<td>A numeric comparison is made if both operands can be interpreted numerically. The operation returns the logical value of the evaluation of the comparison.</td>
</tr>
<tr>
<td><code>precedes</code></td>
<td>ASCII less than</td>
<td>Unlike the <code>&lt;</code> operator no attempt is made to make a numeric interpretation of the argument values before the comparison. The operation returns true if the value to the left of the operator has a text representation which, in ASCII comparison, comes before the text representation of the value on the right.</td>
</tr>
<tr>
<td><code>follows</code></td>
<td>ASCII greater than</td>
<td>Unlike the <code>&gt;</code> operator no attempt is made to make a numeric interpretation of the argument values before the comparison. The operation returns true if the value to the left of the operator has a text representation which, in ASCII comparison, comes after the text representation of the value on the right.</td>
</tr>
</tbody>
</table>

**Example:**

- `'11' precedes '2' returns True`

  compare this to:

- `'11' < '2' returns False`

- `'23' follows '111' returns True`

  compare this to:

- `'23' > '111' returns False`
4.5 String operators

There are two string operators. One uses the string values of the operands and return a string as result. The other one compares the operands and returns a boolean value to indicate match.

&

String concatenation. The operation returns a text string, that consists of the two operand strings, one after another.

Example:
'abc' & 'xyz' returns 'abcxyz'

like

String comparison with wildcard characters. The operation returns a boolean True (-1) if the string before the operator is matched by the string after the operator. The second string may contain the wildcard characters * (any number of arbitrary characters) or ? (one arbitrary character).

Example:
'abc' like 'a*' returns True (-1)
'abcd' like 'a?c*' returns True (-1)
'abc' like 'a??bc' returns False (0)
5 Functions in scripts and chart expressions

This section describes functions that can be used in Qlik Sense data load scripts and chart expressions to transform and aggregate data.

Many functions can be used in the same way in both data load scripts and chart expressions, but there are a number of exceptions:

- Some functions can only be used in data load scripts, denoted by - script function.
- Some functions can only be used in chart expressions, denoted by - chart function.
- Some functions can be used in both data load scripts and chart expressions, but with differences in parameters and application. These are described in separate topics denoted by - script function or - chart function.

5.1 Aggregation functions

An aggregation function aggregates over the set of possible records defined by the selection, and returns a single value describing a property of several records in the data, for example a sum or a count.

Most aggregation functions can be used in both the data load script and chart expressions, but the syntax differs.

Using aggregation functions in a data load script

Aggregation functions can only be used in field lists for LOAD statements with a group by clause.

Using aggregation functions in chart expressions

The argument expression of one aggregation function must not contain another aggregation function.

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function Aggr, in combination with calculated dimensions.

An aggregation function aggregates over the set of possible records defined by the selection. However, an alternative set of records can be defined by using a set expression in set analysis.

Aggr - chart function

Aggr() returns an array of values for the expression calculated over the stated dimension or dimensions. For example, the maximum value of sales, per customer, per region. The Aggr function is used for advanced aggregations, in which the Aggr function is enclosed in another aggregation function, using the array of results from the Aggr function as input to the aggregation in which it is nested.

Syntax:

```plaintext
Aggr([DISTINCT] [NODISTINCT] expr, dim[, dimension])
```

Return data type: dual
5 Functions in scripts and chart expressions

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>An expression usually consisting of an aggregation function. By default, the aggregation function will aggregate over the set of possible records defined by the selection.</td>
</tr>
<tr>
<td>dim</td>
<td>The dimension for which the array of values in the expression is determined. This is a single field and cannot be an expression.</td>
</tr>
<tr>
<td>dimension</td>
<td>Optional. One or more dimensions by which the expression can be further expanded.</td>
</tr>
<tr>
<td>DISTINCT</td>
<td>If the expression argument is preceded by the distinct qualifier or if no qualifier is used at all, each distinct combination of dimension values will generate only one return value. This is the normal way aggregations are made – each distinct combination of dimension values will render one line in the chart.</td>
</tr>
<tr>
<td>NODISTINCT</td>
<td>If the expression argument is preceded by the nodistinct qualifier, each combination of dimension values may generate more than one return value, depending on underlying data structure. If there is only one dimension, the aggr function will return an array with the same number of elements as there are rows in the source data.</td>
</tr>
</tbody>
</table>

Basic aggregation functions, such as Sum, Min, and Avg, return a single numerical value while the Aggr() function can be compared to creating a temporary straight table that can be used in a chart. For example, finding the maximum value by customer. We can then find the minimum value of the resulting temporary table. You use the Aggr() function to nest the initial aggregation and place that inside a basic aggregation function, for example, Sum, Max or Count. For example: Min(Aggr(Max(Value),Customer))

Use this function in calculated dimensions if you want to create nested chart aggregation in multiple levels.

Limitations:

Each dimension must be a single field, and cannot be an expression (calculated dimension).

Examples and results:

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>UnitSales</th>
<th>UnitPrice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Betacab</td>
<td>BB</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>
Create a table with Customer, Product, UnitPrice, and UnitSales as dimensions.

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>UnitSales</th>
<th>UnitPrice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betacab</td>
<td>CC</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Betacab</td>
<td>DD</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Canutility</td>
<td>AA</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Canutility</td>
<td>CC</td>
<td>-</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min(Aggr(Max(UnitPrice), Customer))</td>
<td>The part of the expression Aggr(Max(UnitPrice), Customer) finds the maximum UnitPrice by Customer, and returns an array of values: 16, 19, and 25. These can be seen in the table rows in the measure column.</td>
</tr>
<tr>
<td></td>
<td>The aggregation Max(UnitPrice) produces a result for each Product by Customer. By using this expression as the expr argument in the Aggr() function and Customer as the dim argument, we can find the result of Max(UnitPrice) by Customer.</td>
</tr>
<tr>
<td></td>
<td>Effectively, we have built a temporary list of values without having to create a separate chart containing those values.</td>
</tr>
<tr>
<td></td>
<td>The totals row for the measure returns 15 as a result of the Aggr() function enclosed in the Min() aggregation. Ig is the minimum value of the array returned by the Aggr() expression.</td>
</tr>
<tr>
<td>Aggr (NODISTINCT Max(UnitPrice), Customer)</td>
<td>An array of values: 16, 16, 16, 25, 25, 25, 19, and 19. The nodistinct qualifier means that the array contains one element for each row in the source data: each is the maximum UnitPrice for each Customer and Product.</td>
</tr>
</tbody>
</table>

Data used in examples:

ProductData:
LOAD * inline [Customer|Product|UnitSales|UnitPrice
Astrida|AA|4|16
Astrida|AA|10|15
Astrida|BB|9|9
Betacab|BB|5|10
Betacab|CC|2|20
Betacab|DD|25
Canutility|AA|8|15
Canutility|CC|19
] (delimiter is '|');
See also:

- Basic aggregation functions (page 148)

Basic aggregation functions

Basic aggregation functions overview

Basic aggregation functions are a group of the most common aggregation functions.

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

Basic aggregation functions in the data load script

**FirstSortedValue**

`FirstSortedValue()` returns the value of the first expression that corresponds to the first value in the sort order of the second expression iterated over a number of records, as defined by a **group by** clause.

```
FirstSortedValue ([ distinct ] expression [, sort-weight [, n ]])
```

**Max**

`Max()` finds the highest numeric value of the aggregated data in the expression, as defined by a **group by** clause. By specifying a **rank** n, the nth highest value can be found.

```
Max ( expression[, rank] )
```

**Min**

`Min()` returns the lowest numeric value of the aggregated data in the expression, as defined by a **group by** clause. By specifying a **rank** n, the nth lowest value can be found.

```
Min ( expression[, rank] )
```

**Mode**

`Mode()` returns the most commonly-occurring value, the mode value, of the aggregated data in the expression, as defined by a **group by** clause. The **Mode()** function can return numeric values as well as text values.

```
Mode ( expression )
```

**Only**

`Only()` returns a value if there is one and only one possible result from the aggregated data. If records contain only one value then that value is returned, otherwise NULL is returned. Use the **group by** clause to evaluate over multiple records. The **Only()** function can return numeric and text values.

```
Only ( expression )
```

**Sum**

- See also: Basic aggregation functions (page 148)
5 Functions in scripts and chart expressions

**Sum()** calculates the total of the values aggregated in the expression, as defined by a group by clause.

```
Sum ([distinct]expression)
```

Basic aggregation functions in chart expressions

Chart aggregation functions can only be used on fields in chart expressions. The argument expression of one aggregation function must not contain another aggregation function.

FirstSortedValue

**FirstSortedValue()** returns the value of one field based on the sorted values of another field. For example, the product with the lowest unit price.

```
FirstSortedValue - chart function([[SetExpression]] [DISTINCT] [TOTAL [<fld [,fld]>]] value, sort_weight [,rank])
```

Max

**Max()** finds the highest value of the aggregated data. By specifying a rank n, the nth highest value can be found.

```
Max - chart function([[SetExpression]] [DISTINCT] [TOTAL [<fld [,fld]>]] expr [,rank])
```

Min

**Min()** finds the lowest value of the aggregated data. By specifying a rank n, the nth lowest value can be found.

```
Min - chart function([[SetExpression]] [DISTINCT] [TOTAL [<fld [,fld]>]] expr [,rank])
```

Mode

**Mode()** finds the most commonly-occurring value, the mode value, in the aggregated data. The **Mode()** function can process text values as well as numeric values.

```
Mode - chart function([[SetExpression] [TOTAL [<fld [,fld>]>]] expr)
```

Only

**Only()** returns a value if there is one and only one possible result from the aggregated data. For example, searching for the only product where the unit price = 9 will return NULL if more than one product has a unit price of 9.

```
Only - chart function([[SetExpression]] [DISTINCT] [TOTAL [<fld [,fld>]>]] expr)
```

Sum

**Sum()** calculates the total of the values given by the expression or field across the aggregated data.

```
Sum - chart function([[SetExpression]] [DISTINCT] [TOTAL [<fld [,fld>]>]] expr)
```
FirstSortedValue

FirstSortedValue() returns the value of the first expression that corresponds to the first value in the sort order of the second expression iterated over a number of records, as defined by a group by clause.

Syntax:

FirstSortedValue ([ distinct ] value, sort-weight [, rank ])

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The function returns the value from the field specified in value associated with the result of sorting the sort_weight field, taking into account rank, if specified. If more than one resulting value shares the same sort_weight for the specified rank, the function returns NULL.</td>
</tr>
<tr>
<td>sort-weight</td>
<td>The expression containing the data to be sorted. The first (lowest) value of sort_weight is found, from which the corresponding value of the value expression is determined. If you place a minus sign in front of sort_weight, the function returns the last (highest) sorted value instead.</td>
</tr>
<tr>
<td>rank</td>
<td>By stating a rank &quot;n&quot; larger than 1, you get the nth sorted value.</td>
</tr>
<tr>
<td>distinct</td>
<td>If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
</tbody>
</table>

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto to Custom, then deselect numerical and alphabetical sorting.
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp: LOAD * inline [ Customer</td>
<td>Product</td>
</tr>
<tr>
<td>Given that the Temp table is loaded as in the previous example: LOAD Customer,FirstSortedValue(Product, - UnitSales) as MyProductWithSmallestOrderByCustomer Resident Temp Group By Customer;</td>
<td>MyProductWithSmallestOrderByCustomer CC AA DD because CC corresponds to the smallest order (2) for customer Astrida, AA corresponds to the smallest order (4) for customer Betacab and DD corresponds to the smallest order (8) for customer Canutility (there is only one valid order for customer Canutility so it is both the smallest and the largest).</td>
</tr>
<tr>
<td>Given that the Temp table is loaded as in first example: LOAD Customer, FirstSortedValue(Product, - UnitSales,2) as MySecondLargestOrderCustomer, Resident Temp Group By Customer;</td>
<td>MySecondLargestOrderCustomer AA AA - Note! The field will only show AA once, because it is the second-largest order for both customers Astrida and Betacab.</td>
</tr>
</tbody>
</table>

FirstSortedValue - chart function

FirstSortedValue() returns the value of one field based on the sorted values of another field. For example, the product with the lowest unit price.

Syntax:

FirstSortedValue([SetExpression]) [DISTINCT] [TOTAL [<fld {,fld}>]] value, sort_weight [,rank])

Return data type: dual

Arguments:
### Functions in scripts and chart expressions

**Argument** | **Description**
---|---
**value** | Output field. The function returns the value from the field specified in value associated with the result of sorting the **sort_weight** field, taking into account **rank**, if specified. If more than one resulting value shares the same **sort_weight** for the specified **rank**, the function returns NULL.

**sort_weight** | Input field. The expression containing the data to be sorted. The first (lowest) value of **sort_weight** is found, from which the corresponding value of the **value** expression is determined. If you place a minus sign in front of **sort_weight**, the function returns the last (highest) sorted value instead.

**rank** | By stating a **rank** "n" larger than 1, you get the nth sorted value.

**SetExpression** | By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.

**DISTINCT** | If the word **DISTINCT** occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.

**TOTAL** | If the word **TOTAL** occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions.

The **TOTAL** qualifier may be followed by a list of one or more field names within angle brackets `<fld>`. These field names should be a subset of the chart dimension variables.

#### Examples and results:

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>UnitSales</th>
<th>UnitPrice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Betacab</td>
<td>BB</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Betacab</td>
<td>CC</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Betacab</td>
<td>DD</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Canutility</td>
<td>AA</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Canutility</td>
<td>CC</td>
<td>-</td>
<td>19</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>firstsortedvalue (Product, UnitPrice)</code></td>
<td>BB, which is the Product with the lowest UnitPrice (9).</td>
</tr>
<tr>
<td><code>firstsortedvalue (Product, UnitPrice, 2)</code></td>
<td>BB, which is the Product with the second-lowest UnitPrice (10).</td>
</tr>
<tr>
<td><code>firstsortedvalue (Customer, - UnitPrice, 2)</code></td>
<td>Betacab, which is the Customer with the Product that has second-highest UnitPrice (20).</td>
</tr>
<tr>
<td><code>firstsortedvalue (Customer, UnitPrice, 3)</code></td>
<td>NULL, because there are two values of Customer (A and C) with the same rank (third-lowest UnitPrice (15)).</td>
</tr>
<tr>
<td><code>firstsortedvalue (Customer, - UnitPrice*UnitSales, 2)</code></td>
<td>Astrida, which is the Customer with the second-highest sales order value UnitPrice multiplied by UnitSales (120).</td>
</tr>
</tbody>
</table>

Data used in examples:

ProductData:
LOAD * inline [Customer|Product|UnitSales|UnitPrice
Astrida|AA|4|16
Astrida|AA|10|15
Astrida|BB|9|9
Betacab|BB|5|10
Betacab|CC|2|20
Betacab|DD|1|25
Canutility|AA|8|15
Canutility|CC|1|19
] (delimiter is '|');

Max

Max() finds the highest numeric value of the aggregated data in the expression, as defined by a group by clause. By specifying a rank n, the nth highest value can be found.

Syntax:

Max ( expression[, rank])

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>rank</td>
<td>The default value of rank is 1, which corresponds to the highest value. By specifying rank as 2, the second highest value is returned. If rank is 3, the third highest value is returned, and so on.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto to Custom, then deselect numerical and alphabetical sorting.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp: LOAD * inline [ Customer</td>
<td>Product</td>
</tr>
<tr>
<td>Max: LOAD Customer, Max(UnitSales) as MyMax, Resident Temp Group By Customer;</td>
<td></td>
</tr>
<tr>
<td>Given that the Temp table is loaded as in the previous example:</td>
<td></td>
</tr>
<tr>
<td>LOAD Customer, Max(UnitSales,2) as MyMaxRank2, Resident Temp Group By Customer;</td>
<td>Customer</td>
</tr>
</tbody>
</table>

Max - chart function

Max() finds the highest value of the aggregated data. By specifying a rank n, the nth highest value can be found.

You might also want to look at FirstSortedValue and rangemax, which have similar functionality to the Max function.

Syntax:

\[
\text{Max}([\{\text{SetExpression}\}] [\text{DISTINCT}] [\text{TOTAL} [\text{<fld} \{,\text{fld}\}>]] \text{ expr} [,, \text{rank}])
\]

Return data type: numeric

Arguments:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>rank</td>
<td>The default value of rank is 1, which corresponds to the highest value. By specifying rank as 2, the second highest value is returned. If rank is 3, the third highest value is returned, and so on.</td>
</tr>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>UnitSales</th>
<th>UnitPrice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Betacab</td>
<td>BB</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Betacab</td>
<td>CC</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Betacab</td>
<td>DD</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Canutility</td>
<td>AA</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Canutility</td>
<td>CC</td>
<td>-</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max(UnitSales)</td>
<td>10, because this is the highest value in UnitSales.</td>
</tr>
<tr>
<td>The value of an order is calculated from the number of units sold in (UnitSales) multiplied by the unit price.</td>
<td>150, because this is the highest value of the result of calculating all possible values of (UnitSales)*UnitPrice.</td>
</tr>
</tbody>
</table>

Max(UnitSales*UnitPrice)
## Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Max(UnitSales, 2)</code></td>
<td>9, which is the second highest value.</td>
</tr>
<tr>
<td><code>Max(TOTAL UnitSales)</code></td>
<td>10, because the TOTAL qualifier means the highest possible value is found, disregarding the chart dimensions. For a chart with Customer as dimension, the TOTAL qualifier will ensure the maximum value across the full dataset is returned, instead of the maximum UnitSales for each customer.</td>
</tr>
</tbody>
</table>
| Make the selection Customer B.                     | 10, independent of the selection made, because the Set Analysis expression 

{1} defines the set of records to be evaluated as ALL, no matter what selection is made. |

### Data used in examples:

```plaintext
ProductData:
LOAD * inline [ 
  Customer|Product|UnitSales|UnitPrice 
Astrida|AA|4|16 
Astrida|AA|10|15 
Astrida|BB|9|9 
Betacab|BB|5|10 
Betacab|CC|2|20 
Betacab|DD||25 
Canutility|AA|8|15 
Canutility|CC||19 
] (delimiter is '|');
```

### See also:

- FirstSortedValue - chart function (page 151)
- RangeMax (page 556)

### Min

`Min()` returns the lowest numeric value of the aggregated data in the expression, as defined by a `group by` clause. By specifying a `rank n`, the nth lowest value can be found.

### Syntax:

```
Min ( expression[, rank] )
```

### Return data type: numeric

### Arguments:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>rank</td>
<td>The default value of rank is 1, which corresponds to the lowest value. By specifying rank as 2, the second lowest value is returned. If rank is 3, the third lowest value is returned, and so on.</td>
</tr>
</tbody>
</table>

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto to Custom, then deselect numerical and alphabetical sorting.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp: LOAD * inline [ Customer</td>
<td>Product</td>
</tr>
<tr>
<td>Min: LOAD Customer, Min(UnitSales) as MyMin Resident Temp Group By Customer;</td>
<td>Customer</td>
</tr>
<tr>
<td>Given that the Temp table is loaded as in the previous example:</td>
<td></td>
</tr>
<tr>
<td>LOAD Customer, Min(UnitSales,2) as MyMinRank2 Resident Temp Group By Customer;</td>
<td></td>
</tr>
</tbody>
</table>

Min - chart function

Min() finds the lowest value of the aggregated data. By specifying a rank n, the nth lowest value can be found.

You might also want to look at FirstSortedValue andrangemin, which have similar functionality to the Min function.
5 Functions in scripts and chart expressions

Syntax:

\[
\text{Min}((\text{SetExpression}\text{[TOTAL [<fld (,fld)>]]) expr [,rank]])
\]

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>rank</td>
<td>The default value of rank is 1, which corresponds to the highest value. By specifying rank as 2, the second highest value is returned. If rank is 3, the third highest value is returned, and so on.</td>
</tr>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>UnitSales</th>
<th>UnitPrice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Betacab</td>
<td>BB</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Betacab</td>
<td>CC</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Betacab</td>
<td>DD</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Canutility</td>
<td>AA</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Canutility</td>
<td>CC</td>
<td>-</td>
<td>19</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

The Min() function must return a non-NULL value from the array of values given by the expression, if there is one. So in the examples, because there are NULL values in the data, the function returns the first non-NULL value evaluated from the expression.

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Min(UnitSales)</code></td>
<td>2, because this is the lowest non-NULL value in <code>unitsales</code>.</td>
</tr>
<tr>
<td>The value of an order is calculated from the number of units sold in <code>UnitSales</code> multiplied by the unit price. <code>Min(UnitSales*UnitPrice)</code></td>
<td>40, because this is the lowest non-NULL value result of calculating all possible values of <code>(UnitSales)*(UnitPrice)</code>.</td>
</tr>
<tr>
<td><code>Min(UnitSales, 2)</code></td>
<td>4, which is the second lowest value (after the NULL values).</td>
</tr>
<tr>
<td><code>Min(TOTAL UnitSales)</code></td>
<td>2, because the TOTAL qualifier means the lowest possible value is found, disregarding the chart dimensions. For a chart with Customer as dimension, the TOTAL qualifier will ensure the minimum value across the full dataset is returned, instead of the minimum UnitSales for each customer.</td>
</tr>
<tr>
<td>Make the selection Customer B. <code>Min({1} TOTAL UnitSales)</code></td>
<td>40, independent of the selection made, because the Set Analysis expression <code>{1}</code> defines the set of records to be evaluated as ALL, no matter what selection is made.</td>
</tr>
</tbody>
</table>

Data used in examples:

```sql
ProductData:
LOAD *
inline [  
Customer|Product|UnitSales|UnitPrice  
Astrida|AA|4|16  
Astrida|AA|10|15  
Astrida|BB|9|9  
Betacab|BB|5|10  
Betacab|CC|2|20  
Betacab|DD|25  
Canutility|AA|8|15  
Canutility|CC|19  
] (delimiter is '|');
```

See also:
- `FirstSortedValue - chart function` (page 151)
- `RangeMin` (page 559)
Mode

Mode() returns the most commonly-occurring value, the mode value, of the aggregated data in the expression, as defined by a group by clause. The Mode() function can return numeric values as well as text values.

Syntax:

\[
\text{Mode ( expression )}
\]

Return data type: dual

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>Expression</td>
</tr>
</tbody>
</table>

Limitations:

If more than one value is equally commonly occurring, NULL is returned.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto to Custom, then deselect numerical and alphabetical sorting.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
</table>
| Temp:
  LOAD * inline [
  Customer|Product|OrderNumber|Unitsales|CustomerID
  Astrida|AA|1|10|1
  Astrida|AA|7|18|1
  Astrida|BB|4|9|1
  Astrida|CC|6|2|1
  Betacab|AA|5|4|2
  Betacab|BB|2|5|2
  Canutility|DD|3|8
  Canutility|CC
] (delimiter is '|');
| MyMostOftenSoldProduct |
| AA |
| because AA is the only product sold more than once. |

Mode - chart function

Mode() finds the most commonly-occurring value, the mode value, in the aggregated data. The Mode() function can process text values as well as numeric values.
## Functions in scripts and chart expressions

### Syntax:

**Mode** ([SetExpression] [TOTAL [<fld (,fld)>]] expr)

### Return data type:
dual

### Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

### Examples and results:

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>UnitSales</th>
<th>UnitPrice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Betacab</td>
<td>BB</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Betacab</td>
<td>CC</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Betacab</td>
<td>DD</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Canutility</td>
<td>AA</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Canutility</td>
<td>CC</td>
<td>-</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode(UnitPrice) Make the selection Customer A</td>
<td>15, because this is the most commonly-occurring value in UnitSales.</td>
</tr>
<tr>
<td></td>
<td>Returns NULL (-). No single value occurs more often than another.</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode(Product)</td>
<td>AA, because this is the most commonly occurring value in Product.</td>
</tr>
<tr>
<td>Make the selection Customer A</td>
<td>Returns NULL (-). No single value occurs more often than another.</td>
</tr>
<tr>
<td>Mode (TOTAL UnitPrice)</td>
<td>15, because the TOTAL qualifier means the most commonly occurring value is still 15, even disregarding the chart dimensions.</td>
</tr>
<tr>
<td>Make the selection Customer B. Mode)([1] TOTAL UnitPrice)</td>
<td>15, independent of the selection made, because the Set Analysis expression {1} defines the set of records to be evaluated as ALL, no matter what selection is made.</td>
</tr>
</tbody>
</table>

Data used in examples:

ProductData:
LOAD * inline [
Customer|Product|UnitSales|UnitPrice
Astrida|AA|4|16
Astrida|AA|10|15
Astrida|BB|9 |
Betacab|BB|5 |10
Betacab|CC|2 |20
Betacab|DD|25
Canutility|AA|8 |15
Canutility|CC|19
] (delimiter is '|');

See also:

- Avg - chart function (page 201)
- Median - chart function (page 232)

Only

**Only**() returns a value if there is one and only one possible result from the aggregated data. If records contain only one value then that value is returned, otherwise NULL is returned. Use the **group by** clause to evaluate over multiple records. The **Only**() function can return numeric and text values.

**Syntax:**

```
Only ( expression )
```

**Return data type:** dual

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>Expression</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto to Custom, then deselect numerical and alphabetical sorting.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp: LOAD * inline [ Customer</td>
<td>Product</td>
</tr>
</tbody>
</table>

Only - chart function

Only() returns a value if there is one and only one possible result from the aggregated data. For example, searching for the only product where the unit price =9 will return NULL if more than one product has a unit price of 9.

Syntax:

```
Only([SetExpression]) [TOTAL [<fld {,fld}>]] expr
```

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
</tbody>
</table>
Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

Use Only() when you want a NULL result if there are multiple possible values in the sample data.

Examples and results:

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>UnitSales</th>
<th>UnitPrice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Betacab</td>
<td>BB</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Betacab</td>
<td>CC</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Betacab</td>
<td>DD</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Canutility</td>
<td>AA</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Canutility</td>
<td>CC</td>
<td>-</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only({&lt;UnitPrice={9}&gt;})Product)</td>
<td>BB, because this is the only Product that has a UnitPrice of '9'.</td>
</tr>
<tr>
<td>Only({&lt;Product={DD}&gt;})Customer)</td>
<td>B, because the only Customer selling a Product called 'DD'.</td>
</tr>
<tr>
<td>Only({&lt;UnitPrice={20}&gt;})UnitSales)</td>
<td>The number of unitSales where UnitPrice is 20 is 2, because there is only one value of unitSales where the UnitPrice =20.</td>
</tr>
<tr>
<td>Only({&lt;UnitPrice={15}&gt;})UnitSales)</td>
<td>NULL, because there are two values of unitSales where the UnitPrice =15.</td>
</tr>
</tbody>
</table>

Data used in examples:

ProductData:
LOAD * inline [
Customer|Product|UnitSales|UnitPrice]
5 Functions in scripts and chart expressions

Astrida|AA|4|16
Astrida|AA|10|15
Astrida|BB|9|9
Betacab|BB|5|10
Betacab|CC|2|20
Betacab|DD|25
Canutility|AA|8|15
Canutility|CC|19
] (delimiter is '|');

Sum

Sum() calculates the total of the values aggregated in the expression, as defined by a group by clause.

Syntax:

```
sum ( [ distinct] expression)
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>distinct</td>
<td>If the word distinct occurs before the expression, all duplicates will be disregarded.</td>
</tr>
<tr>
<td>expr</td>
<td>Expression</td>
</tr>
<tr>
<td></td>
<td>The expression or field containing the data to be measured.</td>
</tr>
</tbody>
</table>

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto to Custom, then deselect numerical and alphabetical sorting.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp:</td>
<td>Customer</td>
</tr>
<tr>
<td>LOAD * inline [</td>
<td>Astrida</td>
</tr>
<tr>
<td>Customer</td>
<td>Product</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
</tr>
<tr>
<td>Astrida</td>
<td>CC</td>
</tr>
<tr>
<td>Betacab</td>
<td>AA</td>
</tr>
<tr>
<td>Betacab</td>
<td>BB</td>
</tr>
<tr>
<td>Betacab</td>
<td>DD</td>
</tr>
<tr>
<td>Canutility</td>
<td>DD</td>
</tr>
<tr>
<td>Canutility</td>
<td>CC</td>
</tr>
<tr>
<td>] (delimiter is '</td>
<td>');</td>
</tr>
<tr>
<td>Sum:</td>
<td>Astrida</td>
</tr>
<tr>
<td>LOAD Customer, Sum(UnitSales) as MySum Resident Temp Group By Customer;</td>
<td>Astrida</td>
</tr>
<tr>
<td></td>
<td>Betacab</td>
</tr>
<tr>
<td></td>
<td>Canutility</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

Sum - chart function

**Sum()** calculates the total of the values given by the expression or field across the aggregated data.

**Syntax:**

```
Sum({[SetExpression]} [DISTINCT] [TOTAL [<fld {,fld}>]] expr)
```

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
<tr>
<td>DISTINCT</td>
<td>If the word <strong>DISTINCT</strong> occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word <strong>TOTAL</strong> occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The <strong>TOTAL</strong> qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

**Examples and results:**

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>UnitSales</th>
<th>UnitPrice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Betacab</td>
<td>BB</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Betacab</td>
<td>CC</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>UnitSales</th>
<th>UnitPrice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betacab</td>
<td>DD</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Canutility</td>
<td>AA</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Canutility</td>
<td>CC</td>
<td>-</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Sum(UnitSales)</code></td>
<td>38. The total of the values in <code>UnitSales</code>.</td>
</tr>
<tr>
<td><code>Sum(UnitSales*UnitPrice)</code></td>
<td>505. The total of <code>UnitPrice</code> multiplied by <code>UnitSales</code> aggregated.</td>
</tr>
<tr>
<td><code>Sum (TOTAL UnitSales*UnitPrice)</code></td>
<td>505 for all rows in the table as well as the total, because the TOTAL qualifier means the sum is still 505, disregarding the chart dimensions.</td>
</tr>
<tr>
<td>Make the selection Customer B.</td>
<td>505, independent of the selection made, because the Set Analysis expression <code>{1}</code> defines the set of records to be evaluated as ALL, no matter what selection is made.</td>
</tr>
</tbody>
</table>

**Data used in examples:**

```
ProductData:
LOAD * inline [
    Customer|Product|UnitSales|UnitPrice
    Astrida|AA|4|16
    Astrida|AA|10|15
    Astrida|BB|9|9
    Betacab|BB|5|10
    Betacab|CC|2|20
    Betacab|DD|25
    Canutility|AA|8|15
    Canutility|CC|19
] (delimiter is '|');
```

**Counter aggregation functions**

Counter aggregation functions return various types of counts of an expression over a number of records in a data load script, or a number of values in a chart dimension.

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

**Counter aggregation functions in the data load script**

**Count**

`Count()` returns the number of values aggregated in expression, as defined by a `group by` clause.

`Count ([distinct] expression | * )`
5  Functions in scripts and chart expressions

**MissingCount()** returns the number of missing values aggregated in the expression, as defined by a `group by` clause.

```
MissingCount ([ distinct ] expression)
```

**NullCount**

**NullCount()** returns the number of NULL values aggregated in the expression, as defined by a `group by` clause.

```
NullCount ([ distinct ] expression)
```

**NumericCount**

**NumericCount()** returns the number of numeric values found in the expression, as defined by a `group by` clause.

```
NumericCount ([ distinct ] expression)
```

**TextCount**

**TextCount()** returns the number of field values that are non-numeric aggregated in the expression, as defined by a `group by` clause.

```
TextCount ([ distinct ] expression)
```

**Counter aggregation functions in chart expressions**

The following counter aggregation functions can be used in charts:

**Count**

**Count()** is used to aggregate the number of values, text and numeric, in each chart dimension.

```
Count - chart function{[[SetExpression] [DISTINCT] [TOTAL [<fld (,fld)>]]} expr
```

**MissingCount**

**MissingCount()** is used to aggregate the number of missing values in each chart dimension. Missing values are all non-numeric values.

```
MissingCount - chart function{[[SetExpression] [DISTINCT] [TOTAL [<fld (,fld)>]]} expr
```

**NullCount**

**NullCount()** is used to aggregate the number of NULL values in each chart dimension.

```
NullCount - chart function{[[SetExpression] [DISTINCT] [TOTAL [<fld (,fld)>]]} expr
```

**NumericCount**

**NumericCount()** aggregates the number of numeric values in each chart dimension.
5 Functions in scripts and chart expressions

**NumericCount - chart function**

```plaintext
NumericCount - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]} expr)
```

**TextCount**

`TextCount()` is used to aggregate the number of field values that are non-numeric in each chart dimension.

```plaintext
TextCount - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]} expr)
```

**Count**

`Count()` returns the number of values aggregated in expression, as defined by a `group by` clause.

**Syntax:**

```plaintext
Count([distinct] expr)
```

**Return data type:** integer

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>distinct</td>
<td>If the word <code>distinct</code> occurs before the expression, all duplicates are disregarded.</td>
</tr>
</tbody>
</table>

**Examples and results:**

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto to Custom, then deselect numerical and alphabetical sorting.
5  Functions in scripts and chart expressions

Example

<table>
<thead>
<tr>
<th>Temp:</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp: LOAD * inline [ Customer</td>
<td>Product</td>
</tr>
</tbody>
</table>

Count1:
LOAD Customer,Count(OrderNumber) as OrdersByCustomer Resident Temp Group By Customer;

Given that the Temp table is loaded as in the previous example:
TotalOrderNumber 10

Given that the Temp table is loaded as in the first example:
LOAD Count(distinct OrderNumber) as TotalOrdersNumber Resident Temp;
TotalOrderNumber 9
Because there are two values of OrderNumber with the same value, 1.

Count - chart function

Count() is used to aggregate the number of values, text and numeric, in each chart dimension.

Syntax:

Count({[SetExpression] [DISTINCT] [TOTAL [<fld{,<fld>}>]]} expr)

Return data type: integer

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
</tbody>
</table>
## 5 Functions in scripts and chart expressions

### Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTINCT</td>
<td>If the word <code>DISTINCT</code> occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word <code>TOTAL</code> occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions.</td>
</tr>
</tbody>
</table>

The `TOTAL` qualifier may be followed by a list of one or more field names within angle brackets `<fld>`. These field names should be a subset of the chart dimension variables.

### Examples and results:

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>OrderNumber</th>
<th>UnitSales</th>
<th>Unit Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>1</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>7</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>4</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Betacab</td>
<td>BB</td>
<td>6</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Betacab</td>
<td>CC</td>
<td>5</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Betacab</td>
<td>DD</td>
<td>1</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Canutility</td>
<td>AA</td>
<td>3</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Canutility</td>
<td>CC</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Divadip</td>
<td>AA</td>
<td>2</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Divadip</td>
<td>DD</td>
<td>3</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

The following examples assume that all customers are selected, except where stated.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>count(OrderNumber)</code></td>
<td>10, because there are 10 fields that could have a value for OrderNumber, and all records, even empty ones, are counted.</td>
</tr>
<tr>
<td><strong>Note:</strong></td>
<td>&quot;0&quot; counts as a value and not an empty cell. However if a measure aggregates to 0 for a dimension that dimension will not be included in charts.</td>
</tr>
<tr>
<td><code>Count (Customer)</code></td>
<td>10, because Count evaluates the number of occurrences in all fields.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count (DISTINCT [Customer])</td>
<td>4, because using the Distinct qualifier, Count only evaluates unique occurrences.</td>
</tr>
<tr>
<td>Given that customer Canutility is selected</td>
<td>0.2, because the expression returns the number of orders from the selected customer as a percentage of orders from all customers. In this case 2 / 10.</td>
</tr>
<tr>
<td>Given that customers Astrida and Canutility are selected</td>
<td>5, because that is the number of orders placed on products for the selected customers only and empty cells are counted.</td>
</tr>
</tbody>
</table>

Data used in examples:

Temp: LOAD * inline [  
Customer|Product|OrderNumber|UnitSales|UnitPrice  
Astrida|AA|1|4|16  
Astrida|AA|7|10|15  
Astrida|BB|4|9|9  
Betacab|CC|6|5|10  
Betacab|AA|5|2|20  
Betacab|BB|1|25|25  
Canutility|AA|3|8|15  
Canutility|CC|1|19  
Divadip|CC|2|4|16  
Divadip|DD|3|1|25  
] (delimiter is '|');

MissingCount

MissingCount() returns the number of missing values aggregated in the expression, as defined by a group by clause.

Syntax:

```
MissingCount ( [ distinct ] expr)
```

Return data type: integer

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>distinct</td>
<td>If the word distinct occurs before the expression, all duplicates are disregarded.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto to Custom, then deselect numerical and alphabetical sorting.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
</table>
| Temp:  
LOAD " inline [  
Customer|Product|OrderNumber|UnitSales|UnitPrice  
Astrida|AA|1|4|16  
Astrida|AA|7|10|15  
Astrida|BB|4|9|9  
Betacab|CC|6|5|10  
Betacab|AA|5|2|20  
Betacab|BB|||25  
Canutility|AA|||15  
Canutility|CC|||19  
Divadip|CC|2|4|16  
Divadip|DD|3|1|25  
] (delimiter is '|');  
MissCount1:  
LOAD Customer,MissingCount(OrderNumber) as  
MissingOrdersByCustomer Resident Temp Group By Customer;  
Load MissingCount(OrderNumber) as TotalMissingCount Resident Temp;  
Given that the Temp table is loaded as in the previous example:  
LOAD MissingCount(distinct OrderNumber) as  
TotalMissingCountDistinct Resident Temp; | Customer MissingOrdersByCustomer  
Astrida 0  
Betacab 1  
Canutility 2  
Divadip 0  
The second statement gives:  
TotalMissingCount  
3  
in a table with that dimension.  
TotalMissingCountDistinct  
1  
Because there is only oneOrderNumber one missing value. |

MissingCount - chart function

MissingCount() is used to aggregate the number of missing values in each chart dimension. Missing values are all non-numeric values.

Syntax:

```
MissingCount([SetExpression] [DISTINCT] [TOTAL [<fld (,fld)>]] expr)
```

Return data type: integer

Arguments:
## 5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>set_expression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
<tr>
<td>DISTINCT</td>
<td>If the word <strong>DISTINCT</strong> occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word <strong>TOTAL</strong> occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The <strong>TOTAL</strong> qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

### Examples and results:

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>OrderNumber</th>
<th>UnitSales</th>
<th>Unit Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>1</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>7</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>4</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Betacab</td>
<td>BB</td>
<td>6</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Betacab</td>
<td>CC</td>
<td>5</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Betacab</td>
<td>DD</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Canutility</td>
<td>AA</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Canutility</td>
<td>CC</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Divadip</td>
<td>AA</td>
<td>2</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Divadip</td>
<td>DD</td>
<td>3</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

### Example

<table>
<thead>
<tr>
<th>MissingCount ([OrderNumber])</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 because 3 of the 10 OrderNumber fields are empty</td>
</tr>
</tbody>
</table>

*"0" counts as a value and not an empty cell. However if a measure aggregates to 0 for a dimension that dimension will not be included in charts.*

---

Script Syntax and Chart Functions Guide - Qlik Sense, 1.1 174
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>MissingCount ([OrderNumber]) /MissingCount ({1}) Total [OrderNumber]</td>
<td>The expression returns the number of incomplete orders from the selected customer as a fraction of incomplete orders from all customers. There is a total of 3 missing values for OrderNumber for all customers. So, for each Customer that has a missing value for Product the result is 1/3.</td>
</tr>
</tbody>
</table>

Data used in example:

Temp:
LOAD * inline [ Customer|Product|OrderNumber|UnitSales|UnitPrice
Astrida|AA|1|4|16
Astrida|AA|7|10|15
Astrida|BB|4|9|9
Betacab|CC|6|5|10
Betacab|AA|5|2|20
Betacab|BB|||25
Canutility|AA|||15
Canutility|CC|||19
Divadip|CC|2|4|16
Divadip|DD|3|2|25 ] (delimiter is '|');

NullCount

**NullCount**() returns the number of NULL values aggregated in the expression, as defined by a **group by** clause.

Syntax:

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NullCount ( [ distinct ] expr)</td>
<td>Return data type: integer</td>
</tr>
</tbody>
</table>

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>distinct</td>
<td>If the word <strong>distinct</strong> occurs before the expression, all duplicates are disregarded.</td>
</tr>
</tbody>
</table>

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto to Custom, then deselect numerical and alphabetical sorting.
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set NULLINTERPRET = NULL; Temp: LOAD * inline [ Customer</td>
<td>Product</td>
</tr>
</tbody>
</table>

NullCount - chart function

**NullCount()** is used to aggregate the number of NULL values in each chart dimension.

**Syntax:**

```
NullCount({[SetExpression][DISTINCT] [TOTAL [<fld {,fld}>]]} expr)
```

**Return data type:** integer

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>set_expression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
<tr>
<td>DISTINCT</td>
<td>If the word <strong>DISTINCT</strong> occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word <strong>TOTAL</strong> occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The <strong>TOTAL</strong> qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

**Examples and results:**
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>NullCount (OrderNumber)</td>
<td>1 because we have introduced a null value using NullInterpret in the inline LOAD statement.</td>
</tr>
</tbody>
</table>

Data used in example:

```
Set NULLINTERPRET = NULL;
Temp:
LOAD * inline [ 
Customer|Product|OrderNumber|UnitSales|CustomerID 
Astrida|AA|1|10|1 
Astrida|AA|7|18|1 
Astrida|BB|4|9|1 
Astrida|CC|6|2|1 
Betacab|AA|5|4|2 
Betacab|BB|2|5|2 
Betacab|DD||| 
Canutility|AA|3|8| 
Canutility|CC|NULL|| ] (delimiter is '|');
Set NULLINTERPRET=;
```

NumericCount

`NumericCount()` returns the number of numeric values found in the expression, as defined by a `group by` clause.

Syntax:

```
NumericCount ( [ distinct ] expr)
```

Return data type: integer

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>distinct</td>
<td>If the word <code>distinct</code> occurs before the expression, all duplicates are disregarded.</td>
</tr>
</tbody>
</table>

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto to Custom, then deselect numerical and alphabetical sorting.
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
</table>
| Temp: LOAD * inline [Customer|Product|OrderNumber|UnitSales|UnitPrice
| Astrida|AA|1|4|16
| Astrida|AA|7|10|15
| Astrida|BB|4|9|9
| Betacab|CC|6|5|10
| Betacab|AA|5|2|20
| Betacab|BB||| 25
| Canutility|AA|||15
| Canutility|CC|||19
| Divadip|CC|2|4|16
| Divadip|DD|7|1|25 | (delimiter is '|');
| NumCount1: LOAD Customer,NumericCount(OrderNumber) as NumericCountByCustomer Resident Temp Group By Customer; | Customer NumericCountByCustomer
| Astrida 3
| Betacab 2
| Canutility 0
| Divadip 2 |
| LOAD NumericCount(OrderNumber) as TotalNumericCount Resident Temp;   | The second statement gives: TotalNumericCount 7 in a table with that dimension. |
| Given that the Temp table is loaded as in the previous example:       | TotalNumericCountDistinct 6 Because there is one OrderNumber that duplicates another, so the result is 6 that are not duplicates.. |
| LOAD NumericCount(distinct OrderNumber) as TotalNumericCountDistinct Resident Temp; | |

NumericCount - chart function

NumericCount() aggregates the number of numeric values in each chart dimension.

Syntax:

```
NumericCount({[SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]} expr)
```

Return data type: integer

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>set_expression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTINCT</td>
<td>If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fid&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>OrderNumber</th>
<th>UnitSales</th>
<th>Unit Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>1</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>7</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>4</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Betacab</td>
<td>BB</td>
<td>6</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Betacab</td>
<td>CC</td>
<td>5</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Betacab</td>
<td>DD</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Canutility</td>
<td>AA</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Canutility</td>
<td>CC</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Divadip</td>
<td>AA</td>
<td>2</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Divadip</td>
<td>DD</td>
<td>3</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

The following examples assume that all customers are selected, except where stated.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>NumericCount ([OrderNumber])</td>
<td>7 because three of the 10 fields in OrderNumber are empty.</td>
</tr>
<tr>
<td></td>
<td>&quot;0&quot; counts as a value and not an empty cell. However if a measure aggregates to 0 for a dimension that dimension will not be included in charts.</td>
</tr>
<tr>
<td>NumericCount ([Product])</td>
<td>0 because all product names are in text. Typically you could use this to check that no text fields have been given numeric content.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>NumericCount (DISTINCT [OrderNumber]) / Count (DISTINCT [OrderNumber])</td>
<td>Counts all the number of distinct numeric order numbers and divides it by the number of order numbers numeric and non-numeric. This will be 1 if all field values are numeric. Typically you could use this to check that all field values are numeric. In the example, there are 7 distinct numeric values for OrderNumber of 8 distinct numeric and non-numeric, so the expression returns 0.875.</td>
</tr>
</tbody>
</table>

Data used in example:

```sql
Temp:
LOAD * inline [ 
  Customer|Product|OrderNumber|UnitSales|UnitPrice
  Astrida|AA|1|4|16
  Astrida|AA|7|10|15
  Astrida|BB|4|9|9
  Betacab|CC|6|5|10
  Betacab|AA|5|2|20
  Betacab|BB|||25
  Canutility|AA|||15
  Canutility|CC|||19
  Divadip|CC|2|4|16
  Divadip|DD|3|2|25
] (delimiter is '|');
```

**TextCount()** returns the number of field values that are non-numeric aggregated in the expression, as defined by a **group by** clause.

**Syntax:**

<table>
<thead>
<tr>
<th>TextCount ([ distict ] expr)</th>
</tr>
</thead>
</table>

**Return data type:** integer

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>distinct</td>
<td>If the word <strong>distinct</strong> occurs before the expression, all duplicates are disregarded.</td>
</tr>
</tbody>
</table>

**Examples and results:**

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto to Custom, then deselect numerical and alphabetical sorting.
### Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp:</td>
<td>Customer ProductTextCount</td>
</tr>
<tr>
<td>LOAD * inline [</td>
<td>Astrida 3</td>
</tr>
<tr>
<td>Customer</td>
<td>Product</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
</tr>
<tr>
<td>Betacab</td>
<td>CC</td>
</tr>
<tr>
<td>Betacab</td>
<td>AA</td>
</tr>
<tr>
<td>Betacab</td>
<td>BB</td>
</tr>
<tr>
<td>Canutility</td>
<td>AA</td>
</tr>
<tr>
<td>Canutility</td>
<td>CC</td>
</tr>
<tr>
<td>Divadip</td>
<td>CC</td>
</tr>
<tr>
<td>Divadip</td>
<td>DD</td>
</tr>
<tr>
<td>] (delimiter is ' ');</td>
<td></td>
</tr>
<tr>
<td>TextCount1:</td>
<td></td>
</tr>
<tr>
<td>LOAD Customer,TextCount(Product) as ProductTextCount</td>
<td></td>
</tr>
<tr>
<td>Resident Temp Group By Customer;</td>
<td></td>
</tr>
<tr>
<td>Customer Astrida Astrida Canutility Divadip</td>
<td></td>
</tr>
<tr>
<td>OrderNumberTextCount 3 3 2 2</td>
<td></td>
</tr>
<tr>
<td>LOAD Customer,TextCount(OrderNumber) as OrderNumberTextCount</td>
<td></td>
</tr>
<tr>
<td>Resident Temp Group By Customer;</td>
<td></td>
</tr>
<tr>
<td>Customer Astrida Betacab Canutility Divadip</td>
<td></td>
</tr>
<tr>
<td>OrderNumberTextCount 0 1 2 0</td>
<td></td>
</tr>
</tbody>
</table>

### TextCount - chart function

TextCount() is used to aggregate the number of field values that are non-numeric in each chart dimension.

**Syntax:**

```
TextCount([SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]) expr)
```

**Return data type:** integer

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
<tr>
<td>DISTINCT</td>
<td>If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>OrderNumber</th>
<th>UnitSales</th>
<th>Unit Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>1</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>7</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>4</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Betacab</td>
<td>BB</td>
<td>6</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Betacab</td>
<td>CC</td>
<td>5</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Betacab</td>
<td>DD</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Canutility</td>
<td>AA</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Canutility</td>
<td>CC</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Divadip</td>
<td>AA</td>
<td>2</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Divadip</td>
<td>DD</td>
<td>3</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>TextCount ( [Product] )</td>
<td>10 because all of the 10 fields in Product are text.</td>
</tr>
<tr>
<td>TextCount ( [OrderNumber] )</td>
<td>3, because empty cells are counted. Typically, you would use this to check that no numeric fields have been given text values or are non-zero.</td>
</tr>
<tr>
<td>TextCount ( DISTINCT [Product] ) / Count ( [Product] )</td>
<td>Counts all the number of distinct text values of Product (4), and divides it by the total number of values in Product (10). The result is 0.4.</td>
</tr>
</tbody>
</table>

"0" counts as a value and not an empty cell. However if a measure aggregates to 0 for a dimension that dimension will not be included in charts. Empty cells are evaluated as being non text and are not counted by TextCount.
Data used in example:

```
Temp:
LOAD * inline [
    Customer|Product|OrderNumber|UnitSales|UnitPrice
    Astrida|AA|1|4|16
    Astrida|AA|7|1|15
    Astrida|BB|4|9|9
    Betacab|CC|6|5|10
    Betacab|AA|5|2|20
    Betacab|BB| || 25
    Canutility|AA| || 15
    Canutility|CC| || 19
    Divadip|CC|2|4|16
    Divadip|DD|3|1|25
] (delimiter is '|');
```

Financial aggregation functions

This section describes aggregation functions for financial operations regarding payments and cash flow.

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

Financial aggregation functions in the data load script

**IRR**

`IRR()` returns the aggregated internal rate of return for a series of cash flows represented by the numbers in the expression iterated over a number of records as defined by a group by clause.

```
IRR (expression)
```

**XIRR**

`XIRR()` returns the aggregated internal rate of return for a schedule of cash flows (that is not necessarily periodic) represented by paired numbers in `pmt` and `date` iterated over a number of records as defined by a group by clause. All payments are discounted based on a 365-day year.

```
XIRR (valueexpression, dateexpression )
```

**NPV**

`NPV()` returns the aggregated net present value of an investment based on a `discount_rate` per period and a series of future payments (negative values) and incomes (positive values), represented by the numbers in `value`, iterated over a number of records, as defined by a group by clause. The payments and incomes are assumed to occur at the end of each period.

```
NPV (rate, expression)
```

**XNPV**

`XNPV()` returns the aggregated net present value for a schedule of cashflows (not necessarily periodic)
5 Functions in scripts and chart expressions

represented by paired numbers in `pmt` and `date`, iterated over a number of records as defined by a group by clause. Rate is the interest rate per period. All payments are discounted based on a 365-day year.

\[
\text{XNPV} \ (\text{rate}, \text{valueexpression}, \text{dateexpression})
\]

Financial aggregation functions in chart expressions

These financial aggregation functions can be used in charts.

**IRR**

`IRR()` returns the aggregated internal rate of return for a series of cash flows represented by the numbers in the expression given by `value` iterated over the chart dimensions.

\[
\text{IRR} \ - \ \text{chart function}[\text{TOTAL} \ [<\text{fld} \ , \text{fld}>]] \ \text{value}
\]

**NPV**

`NPV()` returns the aggregated net present value of an investment based on a `discount_rate` per period and a series of future payments (negative values) and incomes (positive values,) represented by the numbers in `value`, iterated over the chart dimensions. The payments and incomes are assumed to occur at the end of each period.

\[
\text{NPV} \ - \ \text{chart function}([\text{TOTAL} \ [<\text{fld} \ , \text{fld}>]] \ \text{discount_rate}, \ \text{value})
\]

**XIRR**

`XIRR()` returns the aggregated internal rate of return for a schedule of cash flows (that is not necessarily periodic) represented by paired numbers in the expressions given by `pmt` and `date` iterated over the chart dimensions. All payments are discounted based on a 365-day year.

\[
\text{XIRR} \ - \ \text{chart function} \ (\text{page 190})([\text{TOTAL} \ [<\text{fld} \ , \text{fld}>]] \ \text{pmt}, \ \text{date})
\]

**XNPV**

`XNPV()` returns the aggregated net present value for a schedule of cash flows (not necessarily periodic) represented by paired numbers in the expressions given by `pmt` and `date` iterated over the chart dimensions. All payments are discounted based on a 365-day year.

\[
\text{XNPV} \ - \ \text{chart function}([\text{TOTAL} \ [<\text{fld} ,\text{fld}>]] \ \text{discount_rate}, \ \text{pmt}, \ \text{date})
\]

**IRR**

`IRR()` returns the aggregated internal rate of return for a series of cash flows represented by the numbers in the expression iterated over a number of records as defined by a group by clause.

These cash flows do not have to be even, as they would be for an annuity. However, the cash flows must occur at regular intervals, such as monthly or annually. The internal rate of return is the interest rate received for an investment consisting of payments (negative values) and income (positive values) that occur at regular periods. The function needs at least one positive and one negative value to calculate.

**Syntax:**

\[
\text{IRR} (\text{value})
\]

**Return data type:** numeric
5 Functions in scripts and chart expressions

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values are disregarded.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cashflow:  LOAD 2013 as Year, * inline [ Date</td>
<td>Discount</td>
</tr>
<tr>
<td>Cashflow1: LOAD Year,IRR(Payments) as IRR2013 Resident CashFlow Group By Year;</td>
<td></td>
</tr>
</tbody>
</table>

IRR - chart function

IRR() returns the aggregated internal rate of return for a series of cash flows represented by the numbers in the expression given by value iterated over the chart dimensions.

These cash flows do not have to be even, as they would be for an annuity. However, the cash flows must occur at regular intervals, such as monthly or annually. The internal rate of return is the interest rate received for an investment consisting of payments (negative values) and income (positive values) that occur at regular periods. The function needs at least one positive and one negative value to calculate.

Syntax:

```
IRR([TOTAL [<fld [,fld>]]] value)
```

Return data type: numeric

Arguments:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

Limitations:

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function Aggr, in combination with calculated dimensions.

Text values, NULL values and missing values are disregarded.

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRR (Payments)</td>
<td>0.1634</td>
</tr>
</tbody>
</table>

The payments are assumed to be periodic in nature, for example monthly.

The Date field is used in the XIRR example where payments can be non-periodical as long as you provide the dates on which payments were made.

Data used in examples::

Cashflow:
LOAD 2013 as Year, * inline [Date|Discount|Payments 2013-01-01|0.1|10000 2013-03-01|0.1|3000 2013-10-30|0.1|4200 2014-02-01|0.2|6800 ] (delimiter is '|');

See also:

- XIRR - chart function (page 190)
- Aggr - chart function (page 145)
NPV

NPV() returns the aggregated net present value of an investment based on a discount_rate per period and a series of future payments (negative values) and incomes (positive values), represented by the numbers in value, iterated over a number of records, as defined by a group by clause. The payments and incomes are assumed to occur at the end of each period.

Syntax:

NPV(discount_rate, value)

Return data type: numeric. The result has a default number format of money.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>discount_rate</td>
<td>discount_rate is the rate of discount over the length of the period.</td>
</tr>
<tr>
<td>value</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values are disregarded.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cashflow: LOAD 2013 as Year, * inline [ Date</td>
<td>Discount</td>
</tr>
<tr>
<td>Cashflow1: LOAD Year, NPV(0.2, Payments) as NPV1_2013 Resident Cashflow Group By Year;</td>
<td></td>
</tr>
</tbody>
</table>
Given that the Cashflow table is loaded as in the previous example:

```plaintext
LOAD Year, NPV(Discount, Payments) as NPV2_2013
Resident Cashflow Group By Year, Discount;
```

Note that the Group By clause sorts the results by Year and Discount. The first argument, discount_rate, is given as a field (Discount), rather than a specific number, and therefore, a second sorting criterion is required. A field can contain a different values, so the aggregated records must be sorted to allow for different values of Year and Discount.

### NPV - chart function

NPV() returns the aggregated net present value of an investment based on a discount_rate per period and a series of future payments (negative values) and incomes (positive values,) represented by the numbers in value, iterated over the chart dimensions. The payments and incomes are assumed to occur at the end of each period.

**Syntax:**

```plaintext
NPV([TOTAL [<fld[,fld]>]]) discount_rate, value)
```

**Return data type:** numeric The result has a default number format of money.

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>discount_rate</td>
<td><code>discount_rate</code> is the rate of discount over the length of the period.</td>
</tr>
<tr>
<td>value</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets. These field names should be a subset of the chart dimension variables. In this case, the calculation is made disregarding all chart dimension variables except those listed, that is, one value is returned for each combination of field values in the listed dimension fields. Also, fields that are not currently a dimension in a chart may be included in the list. This may be useful in the case of group dimensions, where the dimension fields are not fixed. Listing all of the variables in the group causes the function to work when the drill-down level changes.</td>
</tr>
</tbody>
</table>

Limitations:

discount_rate and value must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function Aggr, in combination with calculated dimensions.

Text values, NULL values and missing values are disregarded.

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPV(Discount, Payments)</td>
<td>-$540.12</td>
</tr>
</tbody>
</table>

Data used in examples::

Cashflow:
LOAD 2013 as Year, * inline [ Date|Discount|Payments 2013-01-01|0.1|10000 2013-03-01|0.1|3000 2013-10-30|0.1|4200 2014-02-01|0.2|6800 ] (delimiter is '|');

See also:

- XNPV - chart function (page 193)
- Aggr - chart function (page 145)
5 Functions in scripts and chart expressions

XIRR

XIRR() returns the aggregated internal rate of return for a schedule of cash flows (that is not necessarily periodic) represented by paired numbers in `pmt` and `date` iterated over a number of records as defined by a group by clause. All payments are discounted based on a 365-day year.

Syntax:

```
XIRR(pmt, date)
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmt</td>
<td>Payments. The expression or field containing the cash flows corresponding to the payment schedule given in <code>date</code>.</td>
</tr>
<tr>
<td>date</td>
<td>The expression or field containing the schedule of dates corresponding to the cash flow payments given in <code>pmt</code>.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair will result in the entire data-pair to be disregarded.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cashflow:</td>
<td>Year</td>
</tr>
<tr>
<td>LOAD 2013 as Year, * inline [ Date</td>
<td>Discount</td>
</tr>
<tr>
<td>Cashflow1:</td>
<td></td>
</tr>
<tr>
<td>LOAD Year,XIRR(Payments, Date) as XIRR2013 Resident Cashflow Group By Year;</td>
<td></td>
</tr>
</tbody>
</table>

XIRR - chart function

XIRR() returns the aggregated internal rate of return for a schedule of cash flows (that is not necessarily periodic) represented by paired numbers in the expressions given by `pmt` and `date` iterated over the chart dimensions. All payments are discounted based on a 365-day year.
5 Functions in scripts and chart expressions

Syntax:

XIRR([TOTAL [<fld {,fld}>]] pmt, date)

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmt</td>
<td>Payments. The expression or field containing the cash flows corresponding to the payment schedule given in date.</td>
</tr>
<tr>
<td>date</td>
<td>The expression or field containing the schedule of dates corresponding to the cash flow payments given in pmt.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions.</td>
</tr>
</tbody>
</table>

The TOTAL qualifier may be followed by a list of one or more field names within angle brackets <fld>. These field names should be a subset of the chart dimension variables.

Limitations:

pmt and date must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function Aggr, in combination with calculated dimensions.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>XIRR(Payments, Date)</td>
<td>0.5385</td>
</tr>
</tbody>
</table>

Data used in examples::

Cashflow:
LOAD 2013 as Year, * inline [
Date|Discount|Payments
2013-01-01|0.1|10000
2013-03-01|0.1|3000
2013-10-30|0.1|4200
2014-02-01|0.2|6800
] (delimiter is '|');
See also:

- *IRR* - chart function (page 185)
- *Aggr* - chart function (page 145)

**XNPV**

*XNPV()* returns the aggregated net present value for a schedule of cashflows (not necessarily periodic) represented by paired numbers in *pmt* and *date*, iterated over a number of records as defined by a group by clause. Rate is the interest rate per period. All payments are discounted based on a 365-day year.

**Syntax:**

```
XNPV(discount_rate, pmt, date)
```

*Return data type:* numeric. The result has a default number format of money.

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>discount_rate</td>
<td><em>discount_rate</em> is the rate of discount over the length of the period.</td>
</tr>
<tr>
<td>pmt</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>date</td>
<td>The expression or field containing the schedule of dates corresponding to the cash flow payments given in <em>pmt</em>.</td>
</tr>
</tbody>
</table>

**Limitations:**

Text values, NULL values and missing values in any or both pieces of a data-pair will result in the entire data-pair to be disregarded.

**Examples and results:**

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
</table>
| **Cashflow:**
  LOAD 2013 as Year, * inline [                  | Year                       |
  Date|Discount|Payments
  2013-01-01|0.1| -10000
  2013-03-01|0.1|3000
  2013-10-30|0.1|4200
  2014-02-01|0.2|6800
  ] (delimiter is '|');                          | XNPV1_2013                 |
|                                                | 2013                       |
|                                                | $2104.37                   |
| **Cashflow1:**
  LOAD Year, XNPV(0.2, Payments, Date) as XNPV1_2013 Resident Cashflow Group By Year; |                            |
| **Given that the Cashflow table is loaded as in the previous example:**
  LOAD Year, XNPV(Discount, Payments, Date) as XNPV2_2013 Resident Cashflow Group By Year, Discount;
  Note that the Group By clause sorts the results by Year and Discount. The first argument, discount_rate, is given as a field (Discount), rather than a specific number, and therefore, a second sorting criterion is required. A field can contain a different values, so the aggregated records must be sorted to allow for different values of Year and Discount. | Year | Discount | XNPV2_2013 |
|                                                | 2013 | 0.1      | -$3164.35 |
|                                                | 2013 | 0.2      | $6800.00  |

**XNPV - chart function**

*XNPV()* returns the aggregated net present value for a schedule of cash flows (not necessarily periodic) represented by paired numbers in the expressions given by *pmt* and *date* iterated over the chart dimensions. All payments are discounted based on a 365-day year.

**Syntax:**

```
XNPV([TOTAL [<fld{,fld}>]] discount_rate, pmt, date)
```

**Return data type:** numeric The result has a default number format of money.

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>discount_rate</td>
<td><em>discount_rate</em> is the rate of discount over the length of the period.</td>
</tr>
<tr>
<td>pmt</td>
<td>Payments. The expression or field containing the cash flows corresponding to the payment schedule given in <em>date</em>.</td>
</tr>
<tr>
<td>date</td>
<td>The expression or field containing the schedule of dates corresponding to the cash flow payments given in <em>pmt</em>.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>If the word <strong>TOTAL</strong> occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The <strong>TOTAL</strong> qualifier may be followed by a list of one or more field names within angle brackets <code>&lt;fld&gt;</code>. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

Limitations:

**discount_rate**, **pmt** and **date** must not contain aggregation functions, unless these inner aggregations contain the **TOTAL** or **ALL** qualifiers. For more advanced nested aggregations, use the advanced aggregation function **Aggr**, in combination with calculated dimensions.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>XNPV(Discount, Payments, Date)</td>
<td>-$3164.35</td>
</tr>
</tbody>
</table>

Data used in examples::

```plaintext
Cashflow:
LOAD 2013 as Year, # inline [
  Date|Discount|Payments
  2013-01-01|0.1|10000
  2013-03-01|0.1|3000
  2013-10-30|0.1|4200
  2014-02-01|0.2|6800
] (delimiter is '|');
```

See also:

- **NPV - chart function (page 188)**
- **Aggr - chart function (page 145)**

Statistical aggregation functions

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

Statistical aggregation functions in the data load script

The following statistical aggregation functions can be used in scripts.
5 Functions in scripts and chart expressions

Avg

Avg() finds the average value of the aggregated data in the expression over a number of records as defined by a group by clause.

Avg ([distinct] expression)

Correl

Correl() returns the aggregated correlation coefficient for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a group by clause.

Correl (x-expression, y-expression)

Fractile

Fractile() finds the value that corresponds to the fractile (quantile) of the aggregated data in the expression over a number of records as defined by a group by clause.

Fractile (expression, fractile)

Kurtosis

Kurtosis() returns the kurtosis of the data in the expression over a number of records as defined by a group by clause.

Kurtosis ([distinct] expression)

LINEST_B

LINEST_B() returns the aggregated b value (y-intercept) of a linear regression defined by the equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a group by clause.

LINEST_B (y-expression, x-expression [, y0 [, x0 ]])

LINEST_df

LINEST_DF() returns the aggregated degrees of freedom of a linear regression defined by the equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a group by clause.

LINEST_DF (y-expression, x-expression [, y0 [, x0 ]])

LINEST_f

This script function returns the aggregated F statistic ($r^2/(1-r^2)$) of a linear regression defined by the equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a group by clause.

LINEST_F (y-expression, x-expression [, y0 [, x0 ]])

LINEST_m

LINEST_M() returns the aggregated m value (slope) of a linear regression defined by the equation y=mx+b
for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a `group by` clause.

**LINEST_M**

(y-expression, x-expression [], y0 [], [x0 ])

**LINEST_r2**

`LINEST_R2()` returns the aggregated $r^2$ value (coefficient of determination) of a linear regression defined by the equation $y=mx+b$ for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a `group by` clause.

**LINEST_R2**

(y-expression, x-expression [], y0 [], [x0 ])

**LINEST_seb**

`LINEST_SEB()` returns the aggregated standard error of the $b$ value of a linear regression defined by the equation $y=mx+b$ for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a `group by` clause.

**LINEST_SEB**

(y-expression, x-expression [], y0 [], [x0 ])

**LINEST_sem**

`LINEST_SEM()` returns the aggregated standard error of the $m$ value of a linear regression defined by the equation $y=mx+b$ for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a `group by` clause.

**LINESTSEM**

(y-expression, x-expression [], y0 [], [x0 ])

**LINEST_sey**

`LINEST_SEY()` returns the aggregated standard error of the $y$ estimate of a linear regression defined by the equation $y=mx+b$ for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a `group by` clause.

**LINEST_SEY**

(y-expression, x-expression [], y0 [], [x0 ])

**LINEST_ssreg**

`LINEST_SSREG()` returns the aggregated regression sum of squares of a linear regression defined by the equation $y=mx+b$ for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a `group by` clause.

**LINEST_SSREG**

(y-expression, x-expression [], y0 [], [x0 ])

**LINEST_ssresid**

`LINEST_SSRESID()` returns the aggregated residual sum of squares of a linear regression defined by the equation $y=mx+b$ for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a `group by` clause.

**LINEST_SSRESID**

(y-expression, x-expression [], y0 [], [x0 ])

**Median**

`Median()` returns the aggregated median of the values in the expression over a number of records as defined
by a `group by` clause.

**Median** *(expression)*

**Skew**

Skew() returns the skewness of expression over a number of records as defined by a `group by` clause.

**Skew** *(distinct expression)*

**Stdev**

Stdev() returns the standard deviation of the values given by the expression over a number of records as defined by a `group by` clause.

**Stdev** *(distinct expression)*

**Sterr**

Sterr() returns the aggregated standard error (stdev/sqrt(n)) for a series of values represented by the expression iterated over a number of records as defined by a `group by` clause.

**Sterr** *(distinct expression)*

**STEYX**

STEYX() returns the aggregated standard error of the predicted y-value for each x-value in the regression for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a `group by` clause.

**STEYX** *(y-expression, x-expression)*

### Statistical aggregation functions in chart expressions

The following statistical aggregation functions can be used in charts.

**Avg**

Avg() returns the aggregated average of the expression or field iterated over the chart dimensions.

**Avg** - chart function(*{[SetExpression] [DISTINCT] [TOTAL [<fld{, fld}>]]} expr*)

**Correl**

Correl() returns the aggregated correlation coefficient for two data sets. The correlation function is a measure of the relationship between the data sets and is aggregated for (x,y) value pairs iterated over the chart dimensions.

**Correl** - chart function(*{[SetExpression] [TOTAL [<fld {, fld}>]]} value1, value2 *)

**Fractile**

Fractile() finds the value that corresponds to the fractile (quantile) of the aggregated data in the range given by the expression iterated over the chart dimensions.
### Fractile - chart function

Fractile - chart function(\([\text{SetExpression} \ [\text{TOTAL} \ [<\text{fld} \ , \ <\text{fld}>]\]] \ \text{expr}, \ \text{fraction}\))

Kurtosis

\text{Kurtosis}()\) finds the kurtosis of the range of data aggregated in the expression or field iterated over the chart dimensions.

\text{Kurtosis - chart function}(\([\text{SetExpression} \ [\text{DISTINCT} \ [\text{TOTAL} \ [<\text{fld} \ , \ <\text{fld}>]\]] \ \text{expr}\))

\text{LINEST}_b

\text{LINEST}_B()\) returns the aggregated \(b\) value (y-intercept) of a linear regression defined by the equation \(y=mx+b\) for a series of coordinates represented by paired numbers in the expressions given by the expressions \(x\_value\) and \(y\_value\), iterated over the chart dimensions.

\text{LINEST}_R2 - chart function(\([\text{SetExpression} \ [\text{TOTAL} \ [<\text{fld} \ , \ <\text{fld}>]\]] \ y\_value, \ x\_value, \ y0\_const [, x0\_const]\))

\text{LINEST}_df

\text{LINEST}_DF()\) returns the aggregated degrees of freedom of a linear regression defined by the equation \(y=mx+b\) for a series of coordinates represented by paired numbers given by \(x\_value\) and \(y\_value\), iterated over the chart dimensions.

\text{LINEST}_DF - chart function(\([\text{SetExpression} \ [\text{TOTAL} \ [<\text{fld} \ , \ <\text{fld}>]\]] \ y\_value, \ x\_value, \ y0\_const [, x0\_const]\))

\text{LINEST}_f

\text{LINEST}_F()\) returns the aggregated F statistic \((r2/(1-r2))\) of a linear regression defined by the equation \(y=mx+b\) for a series of coordinates represented by paired numbers given by \(x\_value\) and \(y\_value\), iterated over the chart dimensions.

\text{LINEST}_F - chart function(\([\text{SetExpression} \ [\text{TOTAL} \ [<\text{fld} \ , \ <\text{fld}>]\]] \ y\_value, \ x\_value, \ y0\_const [, x0\_const]\))

\text{LINEST}_m

\text{LINEST}_M()\) returns the aggregated \(m\) value (slope) of a linear regression defined by the equation \(y=mx+b\) for a series of coordinates represented by paired numbers given by the expressions \(x\_value\) and \(y\_value\), iterated over the chart dimensions.

\text{LINEST}_M - chart function(\([\text{SetExpression} \ [\text{TOTAL} \ [<\text{fld} \ , \ <\text{fld}>]\]] \ y\_value, \ x\_value, \ y0\_const [, x0\_const]\))

\text{LINEST}_r2

\text{LINEST}_R2()\) returns the aggregated \(r2\) value (coefficient of determination) of a linear regression defined by the equation \(y=mx+b\) for a series of coordinates represented by paired numbers given by the expressions \(x\_value\) and \(y\_value\), iterated over the chart dimensions.
5 Functions in scripts and chart expressions

**LINEST_R2** - chart function({[SetExpression] [TOTAL [<fld{,fld}>]] y_value, x_value[, y0_const[, x0_const]]})

**LINEST_seb**

**LINEST_SEB**() returns the aggregated standard error of the b value of a linear regression defined by the equation \( y = mx + b \) for a series of coordinates represented by paired numbers given by the expressions \( x_\text{value} \) and \( y_\text{value} \), iterated over the chart dimensions.

**LINEST_SEB** - chart function({[SetExpression] [TOTAL [<fld{,fld}>]] y_value, x_value[, y0 Const[, x0_const]]})

**LINEST_sem**

**LINEST_SEM**() returns the aggregated standard error of the m value of a linear regression defined by the equation \( y = mx + b \) for a series of coordinates represented by paired numbers given by the expressions \( x_\text{value} \) and \( y_\text{value} \), iterated over the chart dimensions.

**LINEST_SEM** - chart function({[set_expression][ distinct ] [total [<fld{,fld}>]] y-expression, x-expression [, y0 [, x0 ]]})

**LINEST_sey**

**LINEST_SEY**() returns the aggregated standard error of the \( y_\text{estimate} \) of a linear regression defined by the equation \( y = mx + b \) for a series of coordinates represented by paired numbers given by the expressions \( x_\text{value} \) and \( y_\text{value} \), iterated over the chart dimensions.

**LINEST_SEY** - chart function({[SetExpression] [TOTAL [<fld{,fld}>]] y_ value, x_value[, y0 const[, x0 const]]})

**LINEST_sssreg**

**LINEST_SSREG**() returns the aggregated regression sum of squares of a linear regression defined by the equation \( y = mx + b \) for a series of coordinates represented by paired numbers given by the expressions \( x_\text{value} \) and \( y_\text{value} \), iterated over the chart dimensions.

**LINEST_SSREG** - chart function({[SetExpression] [TOTAL [<fld{,fld}>]] y_ value, x_value[, y0 const[, x0 const]]})

**LINEST_sssresid**

**LINEST_SSRESID**() returns the aggregated residual sum of squares of a linear regression defined by the equation \( y = mx + b \) for a series of coordinates represented by paired numbers in the expressions given by \( x_\text{value} \) and \( y_\text{value} \), iterated over the chart dimensions.

**LINEST_SSRESID** - chart function({[SetExpression] [TOTAL [<fld{,fld}>]] y_ value, x_value[, y0 const[, x0 const]]})

**Median**

**Median**() returns the median value of the range of values aggregated in the expression iterated over the chart dimensions.

**Median** - chart function({[SetExpression] [TOTAL [<fld{, fld}>]] expr})
### 5 Functions in scripts and chart expressions

**Skew**

Skew() returns the aggregated skewness of the expression or field iterated over the chart dimensions.

\[
\text{Skew} - \text{chart function}(\text{[SetExpression] [DISTINCT] [TOTAL [<fld(, fld)>]]) expr}
\]

**Stdev**

Stdev() finds the standard deviation of the range of data aggregated in the expression or field iterated over the chart dimensions.

\[
\text{Stdev} - \text{chart function}(\text{[SetExpression] [DISTINCT] [TOTAL [<fld(, fld)>]]) expr}
\]

**Sterr**

Sterr() finds the value of the standard error of the mean, \(\text{stdev/sqrt(n)}\), for the series of values aggregated in the expression iterated over the chart dimensions.

\[
\text{Sterr} - \text{chart function}(\text{[SetExpression] [DISTINCT] [TOTAL [<fld(, fld)>]]) expr}
\]

**STEYX**

STEYX() returns the aggregated standard error when predicting y-values for each x-value in a linear regression given by a series of coordinates represented by paired numbers in the expressions given by \(y\_\text{value}\) and \(x\_\text{value}\).

\[
\text{STEYX} - \text{chart function}(\text{[SetExpression] [TOTAL [<fld(, fld)>]]) y\_value, x\_value}
\]

**Avg**

Avg() finds the average value of the aggregated data in the expression over a number of records as defined by a group by clause.

**Syntax:**

\[
\text{Avg}([\text{DISTINCT}] \text{ expr})
\]

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>DISTINCT</td>
<td>If the word distinct occurs before the expression, all duplicates will be disregarded.</td>
</tr>
</tbody>
</table>

**Examples and results:**

Script Syntax and Chart Functions Guide - Qlik Sense, 1.1
5 Functions in scripts and chart expressions

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

Example

Temp:
crosstable (Month, Sales) load * inline [
Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec
Astrida|46|60|70|13|78|20|45|65|78|12|78|22
Betacab|65|79|12|56|54|32|78|55|15
Canutility|77|68|91|24|68|57|36|44|90|67|27
Divadip|36|44|90|67|27|57|68|47|90|80|94
] (delimiter is ' | ');

Avg1:
LOAD Customer, Avg(Sales) as MyAverageSalesByCustomer
Resident Temp Group By Customer;

Given that the Temp table is loaded as in the previous example:

LOAD Customer,Avg(DISTINCT Sales) as MyAvgSalesDistinct
Resident Temp Group By Customer;

Result

Customer MyAverageSalesByCustomer
Astrida 48.916667
Betacab 44.916667
Canutility 56.916667
Divadip 63.083333

This can be checked in the sheet by creating a table including the measure:
Sum(Sales)/12

Avg - chart function

Avg() returns the aggregated average of the expression or field iterated over the chart dimensions.

Syntax:

```
Avg([[SetExpression]] [DISTINCT] [TOTAL [<fld[, fld>]]] expr)
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
<tr>
<td>DISTINCT</td>
<td>If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

Limitations:

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function Aggr, in combination with calculated dimensions.

Examples and results:

<table>
<thead>
<tr>
<th>Customer</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>46</td>
<td>60</td>
<td>70</td>
<td>13</td>
<td>78</td>
<td>20</td>
<td>45</td>
<td>65</td>
<td>78</td>
<td>12</td>
<td>78</td>
<td>22</td>
</tr>
<tr>
<td>Betacab</td>
<td>65</td>
<td>56</td>
<td>22</td>
<td>79</td>
<td>12</td>
<td>56</td>
<td>45</td>
<td>24</td>
<td>32</td>
<td>78</td>
<td>55</td>
<td>15</td>
</tr>
<tr>
<td>Canutility</td>
<td>77</td>
<td>68</td>
<td>34</td>
<td>91</td>
<td>24</td>
<td>68</td>
<td>57</td>
<td>36</td>
<td>44</td>
<td>90</td>
<td>67</td>
<td>27</td>
</tr>
<tr>
<td>Divadip</td>
<td>57</td>
<td>36</td>
<td>44</td>
<td>90</td>
<td>67</td>
<td>27</td>
<td>57</td>
<td>68</td>
<td>47</td>
<td>90</td>
<td>80</td>
<td>94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Customer</th>
<th>Sum([Sales])</th>
<th>Avg([Sales])</th>
<th>Avg(TOTAL [Sales])</th>
<th>Avg(DISTINCT [Sales])</th>
<th>Avg([1] TOTAL [Sales])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>2566</td>
<td>53.46</td>
<td>53.458333</td>
<td>51.862069</td>
<td>53.458333</td>
</tr>
<tr>
<td>Betacab</td>
<td>587</td>
<td>48.92</td>
<td>53.458333</td>
<td>43.1</td>
<td>53.458333</td>
</tr>
<tr>
<td>Canutility</td>
<td>539</td>
<td>44.92</td>
<td>53.458333</td>
<td>43.9090901</td>
<td>53.458333</td>
</tr>
<tr>
<td>Divadip</td>
<td>803</td>
<td>50.92</td>
<td>53.458333</td>
<td>55.9090901</td>
<td>53.458333</td>
</tr>
</tbody>
</table>

Example | Result |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg(Sales)</td>
<td>For a table including the dimension customer and the measure Avg([Sales]), if Totals are shown, the result is 2566.</td>
</tr>
<tr>
<td>Avg(TOTAL (Sales))</td>
<td>53.458333 for all values of customer, because the TOTAL qualifier means that dimensions are disregarded.</td>
</tr>
<tr>
<td>Avg(DISTINCT (Sales))</td>
<td>51.862069 for the total, because using the Distinct qualifier means only unique values in sales for each customer are evaluated.</td>
</tr>
</tbody>
</table>

Data used in examples:

Monthnames:
LOAD * INLINE [
Month, Monthnumber]
5 Functions in scripts and chart expressions

```plaintext
Jan, 1
Feb, 2
Mar, 3
Apr, 4
May, 5
Jun, 6
Jul, 7
Aug, 8
Sep, 9
Oct, 10
Nov, 11
Dec, 12
]

Sales2013:
crosstable (Month, Sales) LOAD * inline [
  Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec
Astrida|46|60|70|13|78|20|45|65|78|12|78|22
Betacab|65|56|22|79|12|56|45|24|32|78|55|15
Canutility|77|68|34|91|24|68|57|36|44|90|67|27
Divadip|57|36|44|90|67|27|57|68|47|90|80|94
] (delimiter is '|');
To get the months to sort in the correct order, when you create your visualizations, go to the Sorting section of the properties panel, select Month and mark the checkbox Sort by expression. In the expression box write Monthnumber.
```

See also:

- Aggr - chart function (page 145)

Correl

Correl() returns the aggregated correlation coefficient for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a group by clause.

Syntax:

```
Correl(value1, value2)
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value1, value2</td>
<td>The expressions or fields containing the two sample sets for which the correlation coefficient is to be measured.</td>
</tr>
</tbody>
</table>

Limitations:
5 Functions in scripts and chart expressions

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary: Load * as Grp; LOAD * inline [ &quot;Employee name&quot;</td>
<td>Gender</td>
</tr>
</tbody>
</table>

Correl - chart function

Correl() returns the aggregated correlation coefficient for two data sets. The correlation function is a measure of the relationship between the data sets and is aggregated for (x,y) value pairs iterated over the chart dimensions.

Syntax:

```
Correl([SetExpression]) [DISTINCT] [TOTAL [<fld[, fld]]] value1, value2
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value1, value2</td>
<td>The expressions or fields containing the two sample sets for which the correlation coefficient is to be measured.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
<tr>
<td>DISTINCT</td>
<td>If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

**Limitations:**

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function **Aggr**, in combination with calculated dimensions.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

**Examples and results:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>correl(Age, Salary)</td>
<td>For a table including the dimension Employee name and the measure correl(Age, Salary), the result is 0.9270611. The result is only displayed for the totals cell.</td>
</tr>
<tr>
<td>correl(TOTAL Age, Salary)</td>
<td>0.927. This and the following results are shown to three decimal places for readability.</td>
</tr>
<tr>
<td></td>
<td>If you create a filter panel with the dimension Gender, and make selections from it, you see the result 0.951 when Female is selected and 0.939 if Male is selected. This is because the selection excludes all results that do not belong to the other value of Gender.</td>
</tr>
<tr>
<td>correl({1} TOTAL Age, Salary)</td>
<td>0.927. Independent of selections. This is because the set expression {1} disregards all selections and dimensions.</td>
</tr>
<tr>
<td>correl(TOTAL &lt;Gender&gt; Age, Salary)</td>
<td>0.927 in the total cell, 0.939 for all values of Male, and 0.951 for all values of Female. This corresponds to the results from making the selections in a filter panel based on Gender.</td>
</tr>
</tbody>
</table>

**Data used in examples:**

```plaintext
Salary:
LOAD * inline [
```
See also:

- **Aggr-chart function (page 145)**
- **Avg-chart function (page 201)**
- **RangeCorrel (page 549)**

**Fractile**

Fractile() finds the value that corresponds to the fractile (quantile) of the aggregated data in the expression over a number of records as defined by a **group by** clause.

**Syntax:**

\[
\text{Fractile}(\text{expr}, \text{fraction})
\]

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>fraction</td>
<td>A number between 0 and 1 corresponding to the fractile (quantile expressed as a fraction) to be calculated.</td>
</tr>
</tbody>
</table>

**Examples and results:**

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table1: crosstable LOAD recno() as ID, * inline [Observation</td>
<td>Comparison 35</td>
</tr>
</tbody>
</table>

Fractile - chart function

Fractile() finds the value that corresponds to the fractile (quantile) of the aggregated data in the range given by the expression iterated over the chart dimensions.

Syntax:

```
Fractile([[SetExpression]] [DISTINCT] [TOTAL [<fld>, <fld>]] expr, fraction)
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>fraction</td>
<td>A number between 0 and 1 corresponding to the fractile (quantile expressed as a fraction) to be calculated.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
<tr>
<td>DISTINCT</td>
<td>If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

Limitations:

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function `Aggr`, in combination with calculated dimensions.

Examples and results:

<table>
<thead>
<tr>
<th>Customer</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>46</td>
<td>60</td>
<td>70</td>
<td>13</td>
<td>78</td>
<td>20</td>
<td>45</td>
<td>65</td>
<td>78</td>
<td>12</td>
<td>78</td>
<td>22</td>
</tr>
<tr>
<td>Betacab</td>
<td>65</td>
<td>56</td>
<td>22</td>
<td>79</td>
<td>12</td>
<td>56</td>
<td>45</td>
<td>24</td>
<td>32</td>
<td>78</td>
<td>55</td>
<td>15</td>
</tr>
<tr>
<td>Canutility</td>
<td>77</td>
<td>68</td>
<td>34</td>
<td>91</td>
<td>24</td>
<td>68</td>
<td>57</td>
<td>36</td>
<td>44</td>
<td>90</td>
<td>67</td>
<td>27</td>
</tr>
<tr>
<td>Divadip</td>
<td>57</td>
<td>36</td>
<td>44</td>
<td>90</td>
<td>67</td>
<td>27</td>
<td>57</td>
<td>68</td>
<td>47</td>
<td>90</td>
<td>80</td>
<td>94</td>
</tr>
</tbody>
</table>

Example | Result
--- | ---
Fractile (Sales, 0.75) | For a table including the dimension `Customer` and the measure `Fractile([Sales])`, if `Totals` are shown, the result is 71.75. This is the point in the distribution of values of `Sales` that 75% of the values fall beneath.
Fractile (TOTAL Sales, 0.75)) | 71.75 for all values of `Customer`, because the TOTAL qualifier means that dimensions are disregarded.
Fractile (DISTINCT Sales, 0.75) | 70 for the total, because using the DISTINCT qualifier means only unique values in `sales` for each `Customer` are evaluated.

Data used in examples:
5 Functions in scripts and chart expressions

Monthnames:
LOAD * INLINE [
  Month, Monthnumber
  Jan, 1
  Feb, 2
  Mar, 3
  Apr, 4
  May, 5
  Jun, 6
  Jul, 7
  Aug, 8
  Sep, 9
  Oct, 10
  Nov, 11
  Dec, 12
];
Sales2013:
crosstable (Month, Sales) LOAD * inline [
  Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec
  Astrida|46|60|70|13|78|20|45|65|78|12|78|22
  Betacab|65|56|22|79|12|56|45|24|32|78|55|15
  Canutility|77|68|34|91|24|68|57|36|44|90|67|27
  Divadip|57|36|44|90|67|27|57|68|47|90|80|94
] (delimiter is '|');

To get the months to sort in the correct order, when you create your visualizations, go to the Sorting section of the properties panel, select Month and mark the checkbox Sort by expression. In the expression box write Monthnumber.

See also:

- Aggr - chart function (page 145)

Kurtosis

Kurtosis() returns the kurtosis of the data in the expression over a number of records as defined by a group by clause.

Syntax:

Kurtosis([distinct ] expr )

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>distinct</td>
<td>If the word distinct occurs before the expression, all duplicates will be disregarded.</td>
</tr>
</tbody>
</table>

Examples and results:
Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

Table1:
crosstable LOAD recno() as ID, * inline [Observation|Comparison
35|2
40|27
12|38
15|31
21|1
14|19
46|1
10|34
28|3
48|1
16|2
30|3
32|2
48|1
31|2
22|1
12|3
39|29
19|37
25|2 ] (delimiter is '|');

Kurtosis1:
LOAD Type,
Kurtosis(Value) as MyKurtosis1,
Kurtosis(DISTINCT Value) as MyKurtosis2
Resident Table1
Group By Type;

In a table with the dimensions Type, MyKurtosis1,and MyKurtosis2, the results of the Kurtosis() calculations in the data load script are:
Type MyKurtosis1 MyKurtosis2
Comparison -1.1612957 -1.4982366
Observation -1.1148768 -0.93540144

5  Functions in scripts and chart expressions

Kurtosis - chart function

Kurtosis() finds the kurtosis of the range of data aggregated in the expression or field iterated over the chart dimensions.

Syntax:

\[
\text{Kurtosis}([[\text{SetExpression}]] [\text{DISTINCT}][\text{TOTAL} [<\text{fld}, \text{fld}>]]) \text{ expr}
\]

Return data type: numeric

Arguments:
## 5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
<tr>
<td>DISTINCT</td>
<td>If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

### Limitations:

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function Aggr, in combination with calculated dimensions.

### Examples and results:

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison</td>
<td>2 3 3 1 1 1 3 1 2 3 2 1 2 1 3 2 3 2</td>
</tr>
<tr>
<td>Observation</td>
<td>35 1 2 1 1 2 1 3 4 1 2 4 1 2 3 4 3 2 1 3 1 2</td>
</tr>
</tbody>
</table>

### Example | Result

| Kurtosis (value) | For a table including the dimension Type and the measure kurtosis(value), if Totals are shown for the table, and number formatting is set to 3 significant figures, the result is 1.252. For comparison it is 1.161 and for observation it is 1.115. |
| Kurtosis (TOTAL value) | 1.252 for all values of Type, because the TOTAL qualifier means that dimensions are disregarded. |

### Data used in examples:

Table1:
crosstable LOAD recno() as ID, * inline [  
| Observation|Comparison 35|2 |
5  Functions in scripts and chart expressions

```
40|27
12|38
15|31
21|1
14|19
46|1
10|34
28|3
48|1
16|2
30|3
32|2
48|1
16|2
31|2
22|1
12|3
39|29
19|37
25|2 ] (delimiter is '|');
```

See also:

- `Avg - chart function (page 201)`

**LINEST_B**

`LINEST_B()` returns the aggregated b value (y-intercept) of a linear regression defined by the equation \( y = mx + b \) for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a **group by** clause.

**Syntax:**

```
LINEST_B (y-value, x-value[, y0 [, x0 ]])
```

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_value</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>x_value</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
<tr>
<td>y(0), x(0)</td>
<td>An optional value y0 may be stated forcing the regression line to pass through the y-axis at a given point. By stating both y0 and x0 it is possible to force the regression line to pass through a single fixed coordinate. Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.</td>
</tr>
</tbody>
</table>

**Limitations:**

- Script Syntax and Chart Functions Guide - Qlik Sense, 1.1
5 Functions in scripts and chart expressions

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

- An example of how to use linest functions (page 246)

LINEST_B - chart function

`LINEST_B()` returns the aggregated b value (y-intercept) of a linear regression defined by the equation \( y = mx + b \) for a series of coordinates represented by paired numbers in the expressions given by the expressions \( x_{\text{value}} \) and \( y_{\text{value}} \), iterated over the chart dimensions.

Syntax:

```
LINEST_B([SetExpression]) [DISTINCT] [TOTAL [<fld>, <fld>]] y_{\text{value}}, x_{\text{value}} [, y_{0 \text{const}} [, x_{0 \text{const}}]]
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( y_{\text{value}} )</td>
<td>The expression or field containing the range of ( y )-values to be measured.</td>
</tr>
<tr>
<td>( x_{\text{value}} )</td>
<td>The expression or field containing the range of ( x )-values to be measured.</td>
</tr>
<tr>
<td>( y_{0 \text{const}}, x_{0 \text{const}} )</td>
<td>An optional value ( y_0 ) may be stated forcing the regression line to pass through the ( y )-axis at a given point. By stating both ( y_0 ) and ( x_0 ) it is possible to force the regression line to pass through a single fixed coordinate.</td>
</tr>
</tbody>
</table>

Unless both \( y_0 \) and \( x_0 \) are stated, the function requires at least two valid data-pairs to calculate. If \( y_0 \) and \( x_0 \) are stated, a single data pair will do.

SetExpression: By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.

DISTINCT: If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.

TOTAL: If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions.

The TOTAL qualifier may be followed by a list of one or more field names within angle brackets \(<\text{fld}>\). These field names should be a subset of the chart dimension variables.
5 Functions in scripts and chart expressions

Limitations:

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function Aggr, in combination with calculated dimensions.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

- An example of how to use linest functions (page 246)
- Avg - chart function (page 201)

LINEST_DF

LINEST_DF() returns the aggregated degrees of freedom of a linear regression defined by the equation \( y=mx+b \) for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a group by clause.

Syntax:

```plaintext
LINEST_DF (y-value, x-value[, y0 [, x0 ]])
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_value</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>x_value</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
<tr>
<td>y(0), x(0)</td>
<td>An optional value y0 may be stated forcing the regression line to pass through the y-axis at a given point. By stating both y0 and x0 it is possible to force the regression line to pass through a single fixed coordinate. Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.
5 Functions in scripts and chart expressions

See also:

- An example of how to use linest functions (page 246)

LINEST_DF - chart function

LINEST_DF() returns the aggregated degrees of freedom of a linear regression defined by the equation \( y = mx + b \) for a series of coordinates represented by paired numbers in the expressions given by \( x_{\text{value}} \) and \( y_{\text{value}} \), iterated over the chart dimensions.

Syntax:

\[
\text{LINEST} \_\text{DF}([\text{SetExpression}]\ [\text{DISTINCT}]\ [\text{TOTAL} \ [<\text{fld}, \text{fld}>]])\ y_{\text{value}},\ x_{\text{value}}\ ,\ y_{0}\_\text{const}\ [,\ x_{0}\_\text{const}]])
\]

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( y_{\text{value}} )</td>
<td>The expression or field containing the range of ( y )-values to be measured.</td>
</tr>
<tr>
<td>( x_{\text{value}} )</td>
<td>The expression or field containing the range of ( x )-values to be measured.</td>
</tr>
<tr>
<td>( y_{0},\ x_{0} )</td>
<td>An optional value ( y_{0} ) may be stated forcing the regression line to pass through the ( y )-axis at a given point. By stating both ( y_{0} ) and ( x_{0} ) it is possible to force the regression line to pass through a single fixed coordinate.</td>
</tr>
</tbody>
</table>

Unless both \( y_{0} \) and \( x_{0} \) are stated, the function requires at least two valid data-pairs to calculate. If \( y_{0} \) and \( x_{0} \) are stated, a single data pair will do.

SetExpression

By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.

DISTINCT

If the word \text{DISTINCT} occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.

TOTAL

If the word \text{TOTAL} occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions.

The \text{TOTAL} qualifier may be followed by a list of one or more field names within angle brackets \(<\text{fld}>\). These field names should be a subset of the chart dimension variables.

Limitations:
5 Functions in scripts and chart expressions

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function Aggr, in combination with calculated dimensions.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

☐ An example of how to use linest functions (page 246)
☐ Avg - chart function (page 201)

**LINEST_F**

This script function returns the aggregated F statistic \(r^2/(1-r^2)\) of a linear regression defined by the equation \(y=mx+b\) for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a group by clause.

**Syntax:**

```
LINEST_F (y-value, x-value[, y0 [, x0 ]])
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_value</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>x_value</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
<tr>
<td>y(0), x(0)</td>
<td>An optional value y0 may be stated forcing the regression line to pass through the y-axis at a given point. By stating both y0 and x0 it is possible to force the regression line to pass through a single fixed coordinate. Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.</td>
</tr>
</tbody>
</table>

**Limitations:**

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

☐ An example of how to use linest functions (page 246)
LINEST_F - chart function

LINEST_F() returns the aggregated F statistic \((\frac{r^2}{1-r^2})\) of a linear regression defined by the equation \(y = mx + b\) for a series of coordinates represented by paired numbers in the expressions given by \(x\_value\) and the \(y\_value\), iterated over the chart dimensions.

Syntax:

\[
\text{LINEST}_F([\text{SetExpression}]) \quad [\text{DISTINCT}] \quad [\text{TOTAL} \quad [<\text{fld}, \text{fld}>]] \quad y\_value, \ x\_value \quad [, \ y0\_const \quad [, \ x0\_const]]
\]

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_value)</td>
<td>The expression or field containing the range of (y)-values to be measured.</td>
</tr>
<tr>
<td>(x_value)</td>
<td>The expression or field containing the range of (x)-values to be measured.</td>
</tr>
<tr>
<td>(y0, x0)</td>
<td>An optional value (y0) may be stated forcing the regression line to pass through the (y)-axis at a given point. By stating both (y0) and (x0) it is possible to force the regression line to pass through a single fixed coordinate. Unless both (y0) and (x0) are stated, the function requires at least two valid data-pairs to calculate. If (y0) and (x0) are stated, a single data pair will do.</td>
</tr>
</tbody>
</table>

SetExpression | By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression. |

DISTINCT | If the word \textbf{DISTINCT} occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded. |

TOTAL | If the word \textbf{TOTAL} occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The \textbf{TOTAL} qualifier may be followed by a list of one or more field names within angle brackets \(<\text{fld}>\). These field names should be a subset of the chart dimension variables. |

Limitations:

The expression must not contain aggregation functions, unless these inner aggregations contain the \textbf{TOTAL} qualifier. For more advanced nested aggregations, use the advanced aggregation function \texttt{Aggr}, in combination with calculated dimensions.
5 Functions in scripts and chart expressions

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

- An example of how to use linest functions (page 246)
- Avg - chart function (page 201)

LINEST_M

`LINEST_M()` returns the aggregated m value (slope) of a linear regression defined by the equation \( y = mx + b \) for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a `group by` clause.

Syntax:

```
LINEST_M (y-value, x-value[, y0 [, x0 ]])
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_value</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>x_value</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
<tr>
<td>y(0), x(0)</td>
<td>An optional value y0 may be stated forcing the regression line to pass through the y-axis at a given point. By stating both y0 and x0 it is possible to force the regression line to pass through a single fixed coordinate.</td>
</tr>
</tbody>
</table>

Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

- An example of how to use linest functions (page 246)
LINEST_M - chart function

**LINEST_M()** returns the aggregated m value (slope) of a linear regression defined by the equation \( y=mx+b \) for a series of coordinates represented by paired numbers given by the expressions \( x\text{\_value} \) and \( y\text{\_value} \), iterated over the chart dimensions.

**Syntax:**

\[
\text{LINEST\_M([[[\text{SetExpression}]]] [\text{DISTINCT}] [\text{TOTAL } [<\text{fld}, \text{fld}>]] \ y\text{\_value}, \ x\text{\_value} [, \ y0\_const [, \ x0\_const]])}
\]

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( y\text{_value} )</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>( x\text{_value} )</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
<tr>
<td>( y0, x0 )</td>
<td>An optional value ( y0 ) may be stated forcing the regression line to pass through the y-axis at a given point. By stating both ( y0 ) and ( x0 ) it is possible to force the regression line to pass through a single fixed coordinate.</td>
</tr>
</tbody>
</table>

> Unless both \( y0 \) and \( x0 \) are stated, the function requires at least two valid data-pairs to calculate. If \( y0 \) and \( x0 \) are stated, a single data pair will do.

| SetExpression | By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression. |
| DISTINCT | If the word **DISTINCT** occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded. |
| TOTAL | If the word **TOTAL** occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The **TOTAL** qualifier may be followed by a list of one or more field names within angle brackets \(<\text{fld}>\). These field names should be a subset of the chart dimension variables. |

**Limitations:**

The expression must not contain aggregation functions, unless these inner aggregations contain the **TOTAL** qualifier. For more advanced nested aggregations, use the advanced aggregation function **Aggr**, in combination with calculated dimensions.
5 Functions in scripts and chart expressions

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

◇ An example of how to use linest functions (page 246)
◇ Avg - chart function (page 201)

LINEST_R2

LINEST_R2() returns the aggregated $r^2$ value (coefficient of determination) of a linear regression defined by the equation $y=mx+b$ for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a group by clause.

Syntax:

```
LINEST_R2 (y-value, x-value[, y0 [, x0 ]])
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_value</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>x_value</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
<tr>
<td>y(0), x(0)</td>
<td>An optional value y0 may be stated forcing the regression line to pass through the y-axis at a given point. By stating both y0 and x0 it is possible to force the regression line to pass through a single fixed coordinate. Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

◇ An example of how to use linest functions (page 246)
5 Functions in scripts and chart expressions

LINEST_R2 - chart function

LINEST_R2() returns the aggregated r2 value (coefficient of determination) of a linear regression defined by the equation \( y = mx + b \) for a series of coordinates represented by paired numbers given by the expressions \( x_{\text{value}} \) and \( y_{\text{value}} \), iterated over the chart dimensions.

Syntax:

\[
\text{LINEST}_R2(\text{[SetExpression]}\;\text{[DISTINCT]}\;\text{[TOTAL [\langle\text{fld},\text{fld}\rangle]\]}\;y_{\text{value}},\;x_{\text{value}}[,\;y_{0\;\text{const}},\;x_{0\;\text{const}}])
\]

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( y_{\text{value}} )</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>( x_{\text{value}} )</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
<tr>
<td>( y_{0}, x_{0} )</td>
<td>An optional value ( y_{0} ) may be stated forcing the regression line to pass through the y-axis at a given point. By stating both ( y_{0} ) and ( x_{0} ) it is possible to force the regression line to pass through a single fixed coordinate.</td>
</tr>
</tbody>
</table>

\( \text{Unless both } y_{0} \text{ and } x_{0} \text{ are stated, the function requires at least two valid data-pairs to calculate. If } y_{0} \text{ and } x_{0} \text{ are stated, a single data pair will do.} \)

| SetExpression | By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression. |
| DISTINCT | If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded. |
| TOTAL | If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets \(<\text{fld}>\). These field names should be a subset of the chart dimension variables. |

Limitations:

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function \textit{Aggr}, in combination with calculated dimensions.
5  Functions in scripts and chart expressions

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

- An example of how to use linest functions (page 246)
- Avg - chart function (page 201)

LINEST_SEB

LINEST_SEB() returns the aggregated standard error of the b value of a linear regression defined by the equation $y=mx+b$ for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a group by clause.

Syntax:

```
LINEST_SEB (y-value, x-value[, y0 [, x0 ]])
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_value</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>x_value</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
<tr>
<td>y(0), x(0)</td>
<td>An optional value y0 may be stated forcing the regression line to pass through the y-axis at a given point. By stating both y0 and x0 it is possible to force the regression line to pass through a single fixed coordinate. Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

- An example of how to use linest functions (page 246)

LINEST_SEB - chart function

LINEST_SEB() returns the aggregated standard error of the b value of a linear regression defined by the equation $y=mx+b$ for a series of coordinates represented by paired numbers given by the expressions `x_value` and `y_value`, iterated over the chart dimensions.
Functions in scripts and chart expressions

Syntax:

\[
\text{LINEST_SEB}([\{\text{SetExpression}\}] \ [\text{DISTINCT}] \ [\text{TOTAL} \ [\{f\text{l}d, f\text{l}d\}>]] \ y\_value, \ x\_value[, \ y_0\_const[, \ x_0\_const]])
\]

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_value</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>x_value</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
<tr>
<td>y0, x0</td>
<td>An optional value y0 may be stated forcing the regression line to pass through the y-axis at a given point. By stating both y0 and x0 it is possible to force the regression line to pass through a single fixed coordinate.</td>
</tr>
</tbody>
</table>

\[\text{Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.}\]

SetExpression | By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression. |
DISTINCT | If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded. |
TOTAL | If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. |

The TOTAL qualifier may be followed by a list of one or more field names within angle brackets \(<\text{fld}>\). These field names should be a subset of the chart dimension variables.

Limitations:

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function Aggr, in combination with calculated dimensions.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

- An example of how to use linest functions (page 246)
5 Functions in scripts and chart expressions

- Avg - chart function (page 201)

LINEST SEM

LINEST SEM() returns the aggregated standard error of the m value of a linear regression defined by the equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a group by clause.

Syntax:

```
LINEST SEM (y-value, x-value[, y0 [, x0 ]])
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_value</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>x_value</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
</tbody>
</table>
| y0, x0   | An optional value y0 may be stated forcing the regression line to pass through the y-axis at a given point. By stating both y0 and x0 it is possible to force the regression line to pass through a single fixed coordinate.  

Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to calculate. If y0 and x0 are stated, a single data pair will do. |

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

- An example of how to use linest functions (page 246)

LINEST SEM - chart function

LINEST SEM() returns the aggregated standard error of the m value of a linear regression defined by the equation y=mx+b for a series of coordinates represented by paired numbers given by the expressions x_value and y_value, iterated over the chart dimensions.

Syntax:

```
LINEST SEM([[SetExpression]] [DISTINCT] [TOTAL [<fld>, fld>]] y_value, x_value[, y0_const[, x0_const]])
```

Return data type: numeric
5 Functions in scripts and chart expressions

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_value</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>x_value</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
<tr>
<td>y0, x0</td>
<td>An optional value y0 may be stated forcing the regression line to pass through the y-axis at a given point. By stating both y0 and x0 it is possible to force the regression line to pass through a single fixed coordinate.</td>
</tr>
</tbody>
</table>

*Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.*

SetExpression By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions.

The TOTAL qualifier may be followed by a list of one or more field names within angle brackets <fld>. These field names should be a subset of the chart dimension variables.

Limitations:

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function Aggr, in combination with calculated dimensions.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

- An example of how to use linest functions (page 246)
- Avg - chart function (page 201)
5 Functions in scripts and chart expressions

LINEST_SEY

**LINEST_SEY()** returns the aggregated standard error of the y estimate of a linear regression defined by the equation \( y = mx + b \) for a series of coordinates represented by paired numbers in \( x \)-expression and \( y \)-expression iterated over a number of records as defined by a **group by** clause.

**Syntax:**

```
LINEST_SEY (y-value, x-value[, y0 [, x0 ]])
```

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_value</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>x_value</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
<tr>
<td>( y(0), x(0) )</td>
<td>An optional value ( y0 ) may be stated forcing the regression line to pass through the y-axis at a given point. By stating both ( y0 ) and ( x0 ) it is possible to force the regression line to pass through a single fixed coordinate. Unless both ( y0 ) and ( x0 ) are stated, the function requires at least two valid data-pairs to calculate. If ( y0 ) and ( x0 ) are stated, a single data pair will do.</td>
</tr>
</tbody>
</table>

**Limitations:**

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

**See also:**

- *An example of how to use linest functions (page 246)*

**LINEST_SEY** - chart function

**LINEST_SEY()** returns the aggregated standard error of the y estimate of a linear regression defined by the equation \( y = mx + b \) for a series of coordinates represented by paired numbers given by the expressions \( x \)-value and \( y \)-value, iterated over the chart dimensions.

**Syntax:**

```
LINEST_SEY([[SetExpression]] [DISTINCT] [TOTAL [<fld>, fld>]] y_value, x_value[, y0_const[, x0_const]])
```

**Return data type:** numeric

**Arguments:**
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_value</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>x_value</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
<tr>
<td>y0, x0</td>
<td>An optional value y0 may be stated forcing the regression line to pass through the y-axis at a given point. By stating both y0 and x0 it is possible to force the regression line to pass through a single fixed coordinate.</td>
</tr>
</tbody>
</table>

*Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.*

<table>
<thead>
<tr>
<th>SetExpression</th>
<th>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTINCT</td>
<td>If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions.</td>
</tr>
</tbody>
</table>

The TOTAL qualifier may be followed by a list of one or more field names within angle brackets <fld>. These field names should be a subset of the chart dimension variables.

Limitations:

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function Aggr, in combination with calculated dimensions.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

- An example of how to use linest functions (page 246)
- Avg - chart function (page 201)

LINEST_SSREG

LINEST_SSREG() returns the aggregated regression sum of squares of a linear regression defined by the equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a group by clause.

Syntax:
5 Functions in scripts and chart expressions

**LINEST_SSREG (y-value, x-value[, y0 [, x0 ]])**

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_value</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>x_value</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
<tr>
<td>y(0), x(0)</td>
<td>An optional value y0 may be stated forcing the regression line to pass through the y-axis at a given point. By stating both y0 and x0 it is possible to force the regression line to pass through a single fixed coordinate. Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

- An example of how to use linest functions (page 246)

**LINEST_SSREG - chart function**

**LINEST_SSREG()** returns the aggregated regression sum of squares of a linear regression defined by the equation \(y=mx+b\) for a series of coordinates represented by paired numbers given by the expressions \(x\_value\) and \(y\_value\), iterated over the chart dimensions.

Syntax:

**LINEST_SSREG([[SetExpression]] [DISTINCT] [TOTAL [<fld[, fld>]]] y\_value, x\_value[, y0\_const[, x0\_const]])**

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_value</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>x_value</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
</tbody>
</table>
Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y0, x0</td>
<td>An optional value y0 may be stated forcing the regression line to pass through the y-axis at a given point. By stating both y0 and x0 it is possible to force the regression line to pass through a single fixed coordinate.</td>
</tr>
</tbody>
</table>

Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.

SetExpression | By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression. |

DISTINCT     | If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded. |

TOTAL        | If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. |

The TOTAL qualifier may be followed by a list of one or more field names within angle brackets <fld>. These field names should be a subset of the chart dimension variables.

Limitations:

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function Aggr, in combination with calculated dimensions.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

- An example of how to use linest functions (page 246)
- Avg - chart function (page 201)

LINEST_SSRESID

LINEST_SSRESID() returns the aggregated residual sum of squares of a linear regression defined by the equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a group by clause.

Syntax:

```
LINEST_SSRESID (y-value, x-value[, y0 [, x0 ]])
```

Return data type: numeric
5 Functions in scripts and chart expressions

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_value</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>x_value</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
</tbody>
</table>
| y(0), x(0)| An optional value y0 may be stated forcing the regression line to pass through the y-axis at a given point. By stating both y0 and x0 it is possible to force the regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

- An example of how to use linest functions (page 246)

LINEST_SSRESID - chart function

LINEST_SSRESID() returns the aggregated residual sum of squares of a linear regression defined by the equation y=mx+b for a series of coordinates represented by paired numbers in the expressions given by x_value and y_value, iterated over the chart dimensions.

Syntax:

```plaintext
LINEST_SSRESID([SetExpression]] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_value[, y0_const[, x0_const]])
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_value</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>x_value</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y0, x0</td>
<td>An optional value y0 may be stated forcing the regression line to pass through the y-axis at a given point. By stating both y0 and x0 it is possible to force the regression line to pass through a single fixed coordinate. Unless both y0 and x0 are stated, the function requires at least two valid data-pairs to calculate. If y0 and x0 are stated, a single data pair will do.</td>
</tr>
</tbody>
</table>

SetExpression | By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression. |

DISTINCT | If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded. |

TOTAL | If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets <fld>. These field names should be a subset of the chart dimension variables. |

An optional value y0 may be stated forcing the regression line to pass through the y-axis at a given point. By stating both y0 and x0 it is possible to force the regression line to pass through a single fixed coordinate.

Limitations:

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function Aggr, in combination with calculated dimensions.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

See also:

- An example of how to use linest functions (page 246)
- Avg - chart function (page 201)

Median

Median() returns the aggregated median of the values in the expression over a number of records as defined by a group by clause.

Syntax:

```
Median(expr)
```
5 Functions in scripts and chart expressions

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
</tbody>
</table>

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table1:</td>
<td>In a table with the dimensions Type and MyMedian, the results of the Median() calculation in the data load script are:</td>
</tr>
<tr>
<td>crosstable LOAD recno() as ID, * inline [</td>
<td>Type MyMedian</td>
</tr>
<tr>
<td>Observation</td>
<td>Comparison</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Median1:</td>
<td>25</td>
</tr>
<tr>
<td>LOAD Type,</td>
<td>Median(Value) as MyMedian</td>
</tr>
<tr>
<td>Resident Table1 Group By Type;</td>
<td>MyMedian</td>
</tr>
<tr>
<td></td>
<td>Comparison 2.5</td>
</tr>
<tr>
<td></td>
<td>Observation 26.5</td>
</tr>
</tbody>
</table>

Median - chart function

Median() returns the median value of the range of values aggregated in the expression iterated over the chart dimensions.

Syntax:
5 Functions in scripts and chart expressions

\[ \text{Median}([\text{SetExpression}]) \ [\text{DISTINCT}] \ [\text{TOTAL} \ [<\text{fld}, \text{fld}>]] \ \text{expr} \]

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
<tr>
<td>DISTINCT</td>
<td>If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

Limitations:

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function Aggr, in combination with calculated dimensions.

Examples and results:

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison</td>
<td>2 3 3 1 1 1 3 3 1 2 3 2 1 2 1 3 2 3 2</td>
</tr>
<tr>
<td>Observation</td>
<td>35 4 1 1 2 1 4 1 2 4 1 3 3 4 3 2 1 3 3 1 2</td>
</tr>
</tbody>
</table>

Example | Result
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (value)</td>
<td>For a table including the dimension Type and the measure Median(value), if Totals are shown, the result is 19, for comparison it is 2.5 and for observation it is 26.5.</td>
</tr>
<tr>
<td>Median (TOTAL value))</td>
<td>19 for all values of Type, because the TOTAL qualifier means that dimensions are disregarded.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

Data used in examples:

Table1:
crosstable LOAD recno() as ID, * inline [Observation|Comparison
35|2
40|27
12|38
15|31
21|1
14|19
46|1
10|34
28|3
48|1
16|2
30|3
32|2
48|1
31|2
22|1
12|3
39|29
19|37
25|2 ] (delimiter is '|');

See also:

- Avg - chart function (page 201)

Skew

Skew() returns the skewness of expression over a number of records as defined by a group by clause.

Syntax:

Skew([ distinct] expr)

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>DISTINCT</td>
<td>If the word distinct occurs before the expression, all duplicates will be disregarded.</td>
</tr>
</tbody>
</table>

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table1: crosstable LOAD recno() as ID, * inline [ Observation</td>
<td>Comparison 35</td>
</tr>
<tr>
<td>Skew1: LOAD Type, Skew(Value) as MySkew Resident Table1 Group By Type;</td>
<td>Type MySkew</td>
</tr>
<tr>
<td></td>
<td>Comparison 0.86414768 Observation 0.32625351</td>
</tr>
</tbody>
</table>

Skew - chart function

Skew() returns the aggregated skewness of the expression or field iterated over the chart dimensions.

Syntax:

Skew([[SetExpression]] [DISTINCT] [TOTAL [<fld{, fld}>]] expr)

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
<tr>
<td>DISTINCT</td>
<td>If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

Limitations:

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function Aggr, in combination with calculated dimensions.

Examples and results:

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison</td>
<td>2 3 1 1 3 3 1 2 3 2 1 3 2 3 2</td>
</tr>
<tr>
<td>Observation</td>
<td>35 4 1 1 2 1 4 1 2 4 1 3 3 4 3 2 1 3 1 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>skew (value)</td>
<td>For a table including the dimension Type and the measure skew(value), if Totals are shown, and number formatting is set to 3 significant figures, the result is 0.235. For comparison it is 0.864, and for Observation 0.3265.</td>
</tr>
<tr>
<td>skew (TOTAL value))</td>
<td>0.235 for all values of Type, because the TOTAL qualifier means that dimensions are disregarded.</td>
</tr>
</tbody>
</table>

Data used in examples:

Table1:
crosstable LOAD recno() as ID, * inline [Observation|Comparison
35|2
40|27
12|38
15|31
21|1
14|19
46|1
10|34
28|3
48|1
5 Functions in scripts and chart expressions

16|2
30|3
32|2
48|1
31|2
22|1
12|3
39|29
19|37
25|2  ] (delimiter is '|');

See also:

- Avg - chart function (page 201)

Stdev

Stdev() returns the standard deviation of the values given by the expression over a number of records as defined by a **group by** clause.

Syntax:

```
Stdev([distinct] expr)
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>distinct</td>
<td>If the word <strong>distinct</strong> occurs before the expression, all duplicates will be disregarded.</td>
</tr>
</tbody>
</table>

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.
## Functions in scripts and chart expressions

### Example

| Table1: crosstable LOAD recno() as ID, * inline [Observation|Comparison 35|2 40|27 12|38 15|31 21|1 14|19 46|1 10|34 28|3 48|1 16|2 30|3 32|2 48|1 31|2 22|1 12|3 39|29 19|37 25|2 ] (delimiter is '|'); |
|---|---|
| Result | In a table with the dimensions type and MyStdev, the results of the Stdev() calculation in the data load script are: |
| Stdev1: LOAD Type, Stdev(Value) as MyStdev Resident Table1 Group By Type; | Type MyStdev Comparison 14.61245 Observation 12.50799 |

### Stdev - chart function

**Stdev**() finds the standard deviation of the range of data aggregated in the expression or field iterated over the chart dimensions.

**Syntax:**

```plaintext
Stdev([[[SetExpression]]] [DISTINCT] [TOTAL [<fld>, <fld>]]) expr
```

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTINCT</td>
<td>If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
</tbody>
</table>
| TOTAL    | If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions.  

The TOTAL qualifier may be followed by a list of one or more field names within angle brackets <fld>. These field names should be a subset of the chart dimension variables.

Limitations:

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function Aggr, in combination with calculated dimensions.

Examples and results:

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Observation</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Example   | Result |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>stdev (value)</td>
<td>For a table including the dimension Type and the measure stdev(value), if Totals are shown, the result is 15.475, for comparison it is 14.612 and for observation it is 12.508.</td>
</tr>
<tr>
<td>stdev (TOTAL value)</td>
<td>is 15.475 for all values of Type, because the TOTAL qualifier means that dimensions are disregarded.</td>
</tr>
</tbody>
</table>

Data used in examples:

Table1: crosstable LOAD recno() as ID, * inline [Observation|Comparison  
35|2  
40|27  
12|38  
15|31  
21|1  
14|19  
46|1  
10|34  

Script Syntax and Chart Functions Guide - Qlik Sense, 1.1  239
Functions in scripts and chart expressions

See also:

- Avg - chart function (page 201)
- STEYX - chart function (page 244)

**Sterr**

Sterr() returns the aggregated standard error (stdev/sqrt(n)) for a series of values represented by the expression iterated over a number of records as defined by a group by clause.

**Syntax:**

```
Sterr ([distinct] expr)
```

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>distinct</td>
<td>If the word distinct occurs before the expression, all duplicates will be disregarded.</td>
</tr>
</tbody>
</table>

**Limitations:**

Text values, NULL values and missing values are disregarded.

**Examples and results:**

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table1: crosstable LOAD recno() as ID, * inline [Observation, Comparison</td>
<td>In a table with the dimensions Type and MySterr, the results of the Sterr()</td>
</tr>
<tr>
<td>calculation in the data load script are:</td>
<td>calculation in the data load script are:</td>
</tr>
<tr>
<td>Type MySterr</td>
<td>Type MySterr</td>
</tr>
<tr>
<td>Comparison 3.2674431</td>
<td>Comparison 3.2674431</td>
</tr>
<tr>
<td>Observation 2.7968733</td>
<td>Observation 2.7968733</td>
</tr>
<tr>
<td>Sterr1: LOAD Type, Sterr(Value) as MySterr Resident Table1 Group By Type</td>
<td>Sterr1: LOAD Type, Sterr(Value) as MySterr Resident Table1 Group By Type</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sterr - chart function

**Sterr()** finds the value of the standard error of the mean, \((\text{stdev/sqrt(n)})\), for the series of values aggregated in the expression iterated over the chart dimensions.

**Syntax:**

\[
\text{Sterr}([\{\text{SetExpression}\}] \ [\text{DISTINCT}] \ [\text{TOTAL} \ [<\text{fld}, \text{fld}>]]) \ \text{expr}
\]

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTINCT</td>
<td>If the word <code>DISTINCT</code> occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word <code>TOTAL</code> occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions.</td>
</tr>
<tr>
<td></td>
<td>The <code>TOTAL</code> qualifier may be followed by a list of one or more field names within angle brackets <code>&lt;fld&gt;</code>. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

Limitations:

The expression must not contain aggregation functions, unless these inner aggregations contain the `TOTAL` qualifier. For more advanced nested aggregations, use the advanced aggregation function `Aggr`, in combination with calculated dimensions.

Text values, NULL values and missing values are disregarded.

Examples and results:

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison</td>
<td>2 2 3 3 1 1 1 3 3 1 2 3 2 1 2 1 3 2 3 2 9 7</td>
</tr>
<tr>
<td>Observation</td>
<td>35 4 1 1 2 1 4 1 2 4 1 3 3 4 3 2 1 3 1 2</td>
</tr>
</tbody>
</table>

**Example**  
**Result**

- `sterr (value)`  
  For a table including the dimension `Type` and the measure `sterr(value)`, if `Totals` are shown, the result is 2.447, for `comparison` it is 3.267 and for `observation` it is 2.797.

- `sterr (TOTAL value))`  
  2.447 for all values of `Type`, because the `TOTAL` qualifier means that dimensions are disregarded.

Data used in examples:

```
Table1:  
crosstable LOAD recno() as ID, * inline [  
observera|Comparison
35|2  
40|27  
12|38  
15|31  
21|1  
14|19
```
5 Functions in scripts and chart expressions

46|1
16|2
32|2
48|1
16|2
32|2
48|1
31|2
22|1
12|3
39|29
19|37
25|2 ] (delimiter is '|');

See also:

- Avg - chart function (page 201)
- STEYX - chart function (page 244)

STEYX

STEYX() returns the aggregated standard error of the predicted y-value for each x-value in the regression for a series of coordinates represented by paired numbers in x-expression and y-expression iterated over a number of records as defined by a group by clause.

Syntax:

```plaintext
STEYX (y-value, x-value)
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_value</td>
<td>The expression or field containing the range of y-values to be measured.</td>
</tr>
<tr>
<td>x_value</td>
<td>The expression or field containing the range of x-values to be measured.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trend:</td>
<td>In a table with the dimension mysteyx, the result of the STEYX() calculation in the data load script is 2.0714764.</td>
</tr>
<tr>
<td>Load *&lt;br&gt;as Grp;&lt;br&gt;LOAD * inline [Month</td>
<td>KnownY</td>
</tr>
</tbody>
</table>

**STEYX - chart function**

STEYX() returns the aggregated standard error when predicting y-values for each x-value in a linear regression given by a series of coordinates represented by paired numbers in the expressions given by y_value and x_value.

**Syntax:**

STEYX([[SetExpression]] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_value)

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_value</td>
<td>The expression or field containing the range of known y-values to be measured.</td>
</tr>
<tr>
<td>x_value</td>
<td>The expression or field containing the range of known x-values to be measured.</td>
</tr>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
<tr>
<td>DISTINCT</td>
<td>If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

Limitations:

The expression must not contain aggregation functions, unless these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced aggregation function Aggr, in combination with calculated dimensions.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire data-pair being disregarded.

Examples and results:

<table>
<thead>
<tr>
<th>Data series</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KnownX</td>
<td>17 16 14 11 10 8 7 6 5 5 5 4</td>
</tr>
<tr>
<td>KnownY</td>
<td>15 14 12 9 9 10 6 2 3 5 8 7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steyx(KnownY,KnownX)</td>
<td>2.071 (If number formatting is set to 3 decimal places.)</td>
</tr>
<tr>
<td>Steyx(TOTAL KnownY,KnownX))</td>
<td>2.071 across all dimensions, if no selections are made. 2.121 across all dimensions, if the selections, 4, 5, and 6 are made for KnownX, for example.</td>
</tr>
</tbody>
</table>

Data used in examples:

Trend:
LOAD * inline [ Month|KnownY|KnownX Jan|2|6 Feb|3|5 Mar|9|11 Apr|6|7 May|8|5 Jun|7|4 Jul|5|5 Aug|10|8 Sep|9|10 Oct|12|14 Nov|15|17 Dec|14|16 |
5  Functions in scripts and chart expressions

] (delimiter is '|');

See also:

- Avg - chart function (page 201)
- Sterr - chart function (page 241)

An example of how to use linest functions

The linest functions are used to find values associated with linear regression analysis. This section describes how to build visualizations using sample data to find the values of the linest functions available in Qlik Sense. The linest functions can be used in the data load script and in chart expressions.

Please refer to the individual linest chart function and script function topics for descriptions of syntax and arguments.

Loading the sample data

Do the following:

1. Create a new app.
2. In the data load editor, enter the following:
   T1:
   LOAD *, 1 as Grp;
   LOAD * inline [
   X | Y
   1 | 0
   2 | 1
   3 | 3
   4 | 8
   5 | 14
   6 | 20
   7 | 0
   8 | 50
   9 | 25
   10 | 60
   11 | 38
   12 | 19
   13 | 26
   14 | 143
   15 | 98
   16 | 27
   17 | 59
   18 | 78
   19 | 158
   20 | 279 ] (delimiter is '|');
   R1:
   LOAD
   Grp,
   linest_B(Y,X) as Linest_B,
   linest_DF(Y,X) as Linest_DF,
   linest_F(Y,X) as Linest_F,
   linest_M(Y,X) as Linest_M,
5 Functions in scripts and chart expressions

linest_R2(Y,X) as Linest_R2,
linest_SEB(Y,X,1,1) as Linest_SEB,
linest_SEM(Y,X) as Linest_SEM,
linest_SEY(Y,X) as Linest_SEY,
linest_SSREG(Y,X) as Linest_SSREG,
linest_SSRESID(Y,X) as Linest_SSRESID
resident T1 group by Grp;

3. Click ☑️ to load the data.

Displaying the results from the data load script calculations

1. Do the following:
   In the data load editor, click ☐️ to go to the app view, create a new sheet and open it.
2. Click ✎ Edit to edit the sheet.
3. From Charts add a table, and from Fields add the following as columns:
   - Linest_B
   - Linest_DF
   - Linest_F
   - Linest_M
   - Linest_R2
   - Linest_SEB
   - Linest_SEM
   - Linest_SEY
   - Linest_SSREG
   - Linest_SSRESID

The table containing the results of the linest calculations made in the data load script should look like this:

<table>
<thead>
<tr>
<th>Linest_B</th>
<th>Linest_DF</th>
<th>Linest_F</th>
<th>Linest_M</th>
<th>Linest_R2</th>
<th>Linest_SEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>-35.047</td>
<td>18</td>
<td>20.788</td>
<td>8.605</td>
<td>0.536</td>
<td>22.607</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linest_SEM</th>
<th>Linest_SEY</th>
<th>Linest_SSREG</th>
<th>Linest_SSRESID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.887</td>
<td>48.666</td>
<td>49235.014</td>
<td>42631.186</td>
</tr>
</tbody>
</table>

Creating the linest chart function visualizations

Do the following:

1. In the data load editor, click ☐️ to go to the app view, create a new sheet and open it.
2. Click ✎ Edit to edit the sheet.
3. From Charts add a line chart, and from Fields add X as a dimension and Sum(Y) as a measure.
   A line chart is create that represents the graph of X plotted against Y, from which the linest functions are calculated.
4. From Charts add a table with the following as a dimension:

```
valueList('Linest_b', 'Linest_df', 'Linest_f', 'Linest_m', 'Linest_r2', 'Linest_SEB', 'Linest_SEM', 'Linest_SEY', 'Linest_SSREG', 'Linest_SSRESID')
```

This uses the synthetic dimensions function to create labels for the dimensions with the names of the

linest functions. You can change the label to Linest functions to save space.

5. Add the following expression to the table as a measure:

```
Pick(Match(valueList('Linest_b', 'Linest_df', 'Linest_f', 'Linest_m', 'Linest_r2', 'Linest_SEB', 'Linest_SEM', 'Linest_SEY', 'Linest_SSREG', 'Linest_SSRESID'), 'Linest_b', 'Linest_df', 'Linest_f', 'Linest_m', 'Linest_r2', 'Linest_SEB', 'Linest_SEM', 'Linest_SEY', 'Linest_SSREG', 'Linest_SSRESID'), Linest_b(Y,X), Linest_df(Y,X), Linest_f(Y,X), Linest_m(Y,X), Linest_r2(Y,X), Linest_SEB(Y,X,1,1), Linest_SEM(Y,X), Linest_SEY(Y,X), Linest_SSREG(Y,X), Linest_SSRESID(Y,X))
```

This displays the value of the result of each linest function against the corresponding name in the synthetic dimension. The result of Linest_b(Y,X) is displayed next to linest_b, and so on.

### Result

<table>
<thead>
<tr>
<th>Linest functions</th>
<th>Linest function results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linest_b</td>
<td>-35.047</td>
</tr>
<tr>
<td>Linest_df</td>
<td>18</td>
</tr>
<tr>
<td>Linest_f</td>
<td>20.788</td>
</tr>
<tr>
<td>Linest_m</td>
<td>8.605</td>
</tr>
<tr>
<td>Linest_r2</td>
<td>0.536</td>
</tr>
<tr>
<td>Linest_SEB</td>
<td>22.607</td>
</tr>
<tr>
<td>Linest_SEM</td>
<td>1.887</td>
</tr>
<tr>
<td>Linest_SEY</td>
<td>48.666</td>
</tr>
<tr>
<td>Linest_SSREG</td>
<td>49235.014</td>
</tr>
<tr>
<td>Linest_SSRESID</td>
<td>42631.186</td>
</tr>
</tbody>
</table>

### Statistical test functions

This section describes functions for statistical tests, which are divided into three categories. The functions can be used in both the data load script and chart expressions, but the syntax differs.

#### Chi-2 test functions

Generally used in the study of qualitative variables. One can compare observed frequencies in a one-way frequency table with expected frequencies, or study the connection between two variables in a contingency table.
5 Functions in scripts and chart expressions

T-test functions
T-test functions are used for statistical examination of two population means. A two-sample t-test examines whether two samples are different and is commonly used when two normal distributions have unknown variances and when an experiment uses a small sample size.

Z-test functions
A statistical examination of two population means. A two-sample t-test examines whether two samples are different and is commonly used when two normal distributions have known variances and when an experiment uses a large sample size.

Chi2-test functions
Generally used in the study of qualitative variables. One can compare observed frequencies in a one-way frequency table with expected frequencies, or study the connection between two variables in a contingency table.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Chi2Test_ch2
Chi2Test_ch2() returns the aggregated chi^2-test value for one or two series of values.

Chi2Test_ch2(col, row, actual_value[, expected_value])

Chi2Test_df
Chi2Test_df() returns the aggregated chi^2-test df value (degrees of freedom) for one or two series of values.

Chi2Test_df(col, row, actual_value[, expected_value])

Chi2Test_p
Chi2Test_p() returns the aggregated chi^2-test p value (significance) for one or two series of values.

Chi2Test_p - chart function(col, row, actual_value[, expected_value])

See also:
- T-test functions (page 252)
- Z-test functions (page 286)

Chi2Test_ch2
Chi2Test_ch2() returns the aggregated chi^2-test value for one or two series of values.
5 Functions in scripts and chart expressions

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

- All Qlik Sense chi²-test functions have the same arguments.

**Syntax:**

`Chi2Test_ch2(col, row, actual_value[, expected_value])`

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>col, row</td>
<td>The specified column and row in the matrix of values being tested.</td>
</tr>
<tr>
<td>actual_value</td>
<td>The observed value of the data at the specified col and row.</td>
</tr>
<tr>
<td>expected_value</td>
<td>The expected value for the distribution at the specified col and row.</td>
</tr>
</tbody>
</table>

**Limitations:**

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

**Examples:**

Chi2Test_ch2( Grp, Grade, Count )
Chi2Test_ch2( Gender, Description, Observed, Expected )

**See also:**

- Examples of how to use chi2-test functions in charts (page 300)
- Examples of how to use chi2-test functions in the data load script (page 302)

Chi2Test_df

**Chi2Test_df()** returns the aggregated chi²-test df value (degrees of freedom) for one or two series of values.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.
All Qlik Sense chi²-test functions have the same arguments.

Syntax:

\texttt{Chi2Test\_df(col, row, actual\_value[, expected\_value])}

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{col, row}</td>
<td>The specified column and row in the matrix of values being tested.</td>
</tr>
<tr>
<td>\textit{actual_value}</td>
<td>The observed value of the data at the specified col and row.</td>
</tr>
<tr>
<td>\textit{expected_value}</td>
<td>The expected value for the distribution at the specified col and row.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

\begin{align*}
\text{Chi2Test\_df( Grp, Grade, Count )} \\
\text{Chi2Test\_df( Gender, Description, Observed, Expected )}
\end{align*}

See also:

- Examples of how to use chi2-test functions in charts (page 300)
- Examples of how to use chi2-test functions in the data load script (page 302)

\texttt{Chi2Test\_p - chart function}

\texttt{Chi2Test\_p()} returns the aggregated chi²-test p value (significance) for one or two series of values. The test can be done either on the values in \texttt{actual\_value}, testing for variations within the specified \texttt{col} and \texttt{row} matrix, or by comparing values in \texttt{actual\_value} with corresponding values in \texttt{expected\_value}, if specified.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

All Qlik Sense chi²-test functions have the same arguments.
5 Functions in scripts and chart expressions

Syntax:

Chi2Test_p(col, row, actual_value[, expected_value])

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>col, row</td>
<td>The specified column and row in the matrix of values being tested.</td>
</tr>
<tr>
<td>actual_value</td>
<td>The observed value of the data at the specified col and row.</td>
</tr>
<tr>
<td>expected_value</td>
<td>The expected value for the distribution at the specified col and row.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

Chi2Test_p( Grp, Grade, Count )
Chi2Test_p( Gender, Description, Observed, Expected )

See also:

- Examples of how to use chi2-test functions in charts (page 300)
- Examples of how to use chi2-test functions in the data load script (page 302)

T-test functions

T-test functions are used for statistical examination of two population means. A two-sample t-test examines whether two samples are different and is commonly used when two normal distributions have unknown variances and when an experiment uses a small sample size.

In the following sections, the t-test statistical test functions are grouped according to the sample student test that applies to each type of function.

See: Creating a typical t-test report (page 304)

Two independent samples t-tests

The following functions apply to two independent samples student's t-tests:

- ttest_conf

TTTest_conf returns the aggregated t-test confidence interval value for two independent samples.
5 Functions in scripts and chart expressions

\[ \text{TTest\_conf} \ ( \text{grp, value [, sig[, eq\_var]]}) \]

`ttest_df` returns the aggregated student's t-test value (degrees of freedom) for two independent series of values.

\[ \text{TTest\_df} \ (\text{grp, value [, eq\_var]}) \]

`ttest_dif` is a numeric function that returns the aggregated student's t-test mean difference for two independent series of values.

\[ \text{TTest\_dif} \ (\text{grp, value}) \]

`ttest_lower` returns the aggregated value for the lower end of the confidence interval for two independent series of values.

\[ \text{TTest\_lower} \ (\text{grp, value [, sig[, eq\_var]]}) \]

`ttest_sig` returns the aggregated student's t-test 2-tailed level of significance for two independent series of values.

\[ \text{TTest\_sig} \ (\text{grp, value [, eq\_var]}) \]

`ttest_sterr` returns the aggregated student's t-test standard error of the mean difference for two independent series of values.

\[ \text{TTest\_sterr} \ (\text{grp, value [, eq\_var]}) \]

`ttest_t` returns the aggregated t value for two independent series of values.

\[ \text{TTest\_t} \ (\text{grp, value [, eq\_var]}) \]

`ttest_upper` returns the aggregated value for the upper end of the confidence interval for two independent series of values.

\[ \text{TTest\_upper} \ (\text{grp, value [, sig[, eq\_var]]}) \]

Two independent weighted samples t-tests

The following functions to two independent samples student's t-tests where the input data series is given in weighted two-column format:

`ttestw_conf` returns the aggregated t value for two independent series of values.
5 Functions in scripts and chart expressions

\[ \text{TTestw\_conf (weight, grp, value [, sig[, eq\_var]]}) \]

\text{ttestw}\_df
\[ \text{TTestw\_df (weight, grp, value [, eq\_var])} \]
\text{ttestw}\_dif
\[ \text{TTestw\_dif (weight, grp, value)} \]
\text{ttestw}\_lower
\[ \text{TTestw\_lower (weight, grp, value [, sig[, eq\_var]]}) \]
\text{ttestw}\_sig
\[ \text{TTestw\_sig (weight, grp, value [, eq\_var])} \]
\text{ttestw}\_sterr
\[ \text{TTestw\_sterr (weight, grp, value [, eq\_var])} \]
\text{ttestw}\_t
\[ \text{TTestw\_t (weight, grp, value [, eq\_var])} \]
\text{ttestw}\_upper
\[ \text{TTestw\_upper (weight, grp, value [, sig[, eq\_var]]}) \]

### One sample t-tests

The following functions apply to one-sample student's t-tests:

\text{ttest1\_conf}
\[ \text{TTest1\_conf (value [, sig])} \]
\text{ttest1}\_df
5 Functions in scripts and chart expressions

TTest1_df() returns the aggregated student's t-test df value (degrees of freedom) for a series of values.

TTest1_df (value)

ttest1_df

TTest1_diff() returns the aggregated student's t-test mean difference for a series of values.

TTest1_diff (value)

ttest1_lower

TTest1_lower() returns the aggregated value for the lower end of the confidence interval for a series of values.

TTest1_lower (value [, sig])

ttest1_sig

TTest1_sig() returns the aggregated student's t-test 2-tailed level of significance for a series of values.

TTest1_sig (value)

ttest1_sterr

TTest1_sterr() returns the aggregated student's t-test standard error of the mean difference for a series of values.

TTest1_sterr (value)

ttest1_t

TTest1_t() returns the aggregated t value for a series of values.

TTest1_t (value)

TTest1_upper

TTest1_upper() returns the aggregated value for the upper end of the confidence interval for a series of values.

TTest1_upper (value [, sig])

One weighted sample t-tests
The following functions apply to one-sample student's t-tests where the input data series is given in weighted two-column format:

ttest1w_conf

TTest1w_conf() is a numeric function that returns the aggregated confidence interval value for a series of values.

TTest1w_conf (weight, value [, sig])

Ttest1w_df

TTest1w_df() returns the aggregated student's t-test df value (degrees of freedom) for a series of values.
5 Functions in scripts and chart expressions

TTest1w_df (weight, value)

\texttt{ttest1w_df} returns the aggregated student's t-test mean difference for a series of values.

TTest1w_df (weight, value)

TTest1w_df() returns the aggregated student's t-test mean difference for a series of values.

TTest1w_lower (weight, value [, sig])

\texttt{ttest1w_lower} returns the aggregated value for the lower end of the confidence interval for a series of values.

TTest1w_lower (weight, value [, sig])

TTest1w_lower() returns the aggregated value for the lower end of the confidence interval for a series of values.

TTest1w_sig (weight, value)

\texttt{ttest1w_sig} returns the aggregated student's t-test 2-tailed level of significance for a series of values.

TTest1w_sig (weight, value)

TTest1w_sig() returns the aggregated student's t-test 2-tailed level of significance for a series of values.

TTest1w_sterr (weight, value)

\texttt{ttest1w_sterr} returns the aggregated student's t-test standard error of the mean difference for a series of values.

TTest1w_sterr (weight, value)

TTest1w_sterr() returns the aggregated student's t-test standard error of the mean difference for a series of values.

TTest1w_t (weight, value)

\texttt{ttest1w_t} returns the aggregated t value for a series of values.

TTest1w_t (weight, value)

TTest1w_t() returns the aggregated t value for a series of values.

TTest1w_upper (weight, value [, sig])

\texttt{ttest1w_upper} returns the aggregated value for the upper end of the confidence interval for a series of values.

TTest1w_upper (weight, value [, sig])

TTest1w_upper() returns the aggregated value for the upper end of the confidence interval for a series of values.

TTest_conf

\texttt{TTest_conf} returns the aggregated t-test confidence interval value for two independent samples.

TTest_conf

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

\texttt{TTest_conf (grp, value [, sig [, eq_var]])}

Return data type: numeric

Arguments:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in group. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name Type.</td>
</tr>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If eq_var is specified as False (0), separate variances of the two samples will be assumed. If eq_var is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest_conf(Group, Value)
TTest_conf(Group, Value, Sig, false)

See also:

- Creating a typical t-test report (page 304)

TTest_df

TTest_df() returns the aggregated student's t-test value (degrees of freedom) for two independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

TTest_df (grp, value [, eq_var])

Return data type: numeric

Arguments:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in group. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name Type.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If eq_var is specified as False (0), separate variances of the two samples will be assumed. If eq_var is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest_df( Group, value )
TTest_df( Group, value, false )

See also:

Creating a typical t-test report (page 304)

TTTest_dif

TTTest_dif() is a numeric function that returns the aggregated student's t-test mean difference for two independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

TTTest_dif (grp, value [, eq_var] )

Return data type: numeric

Arguments:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in group. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name Type.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If eq_var is specified as False (0), separate variances of the two samples will be assumed. If eq_var is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest_dif( Group, Value )
TTest_dif( Group, Value, false )

See also:

Creating a typical t-test report (page 304)

TTest_lower

TTest_lower() returns the aggregated value for the lower end of the confidence interval for two independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

TTest_lower (grp, value [, sig [, eq_var]])

Arguments:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in <code>group</code>. If a field name for the sample values is not provided in the load script, the field will automatically be named <code>Value</code>.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name <code>Type</code>.</td>
</tr>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in <code>sig</code>. If omitted, <code>sig</code> is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If <code>eq_var</code> is specified as False (0), separate variances of the two samples will be assumed. If <code>eq_var</code> is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

**Limitations:**

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

**Examples:**

```
TTest_lower( Group, Value )
TTest_lower( Group, Value, Sig, false )
```

**See also:**

- Creating a typical t-test report (page 304)

**TTest_sig**

`TTest_sig()` returns the aggregated student's t-test 2-tailed level of significance for two independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

**Syntax:**

```
TTest_sig (grp, value [, eq_var])
```

**Return data type:** numeric

**Arguments:**
### Functions in scripts and chart expressions

#### TTest_sig

**TTest_sig** returns the aggregated student's t-test standard error of the mean difference for two independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

**Syntax:**

```
TTest_sterr (grp, value [, eq_var])
```

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in group. If a field name for the sample values is not provided in the load script, the field will automatically be named <strong>Value</strong>.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name <strong>Type</strong>.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If <strong>eq_var</strong> is specified as False (0), separate variances of the two samples will be assumed. If <strong>eq_var</strong> is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

**Limitations:**

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

**Examples:**

```
TTest_sig( Group, Value )
TTest_sig( Group, Value, false )
```

**See also:**

- Creating a typical t-test report (page 304)
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in group. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name Type.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If eq_var is specified as False (0), separate variances of the two samples will be assumed. If eq_var is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

\[ \text{TTest\_sterr( Group, Value )} \]
\[ \text{TTest\_sterr( Group, Value, false )} \]

See also:

Creating a typical t-test report (page 304)

TTest_t

TTest_t() returns the aggregated t value for two independent series of values.

This function applies to independent samples student’s t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

To be able to use this function you must load sample values in script using crosstable.

Syntax:

\[ \text{TTest\_t(grp, value[, eq\_var])} \]

Return data type: numeric

Arguments:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in group. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name Type.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If eq_var is specified as False (0), separate variances of the two samples will be assumed. If eq_var is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

Creating a typical t-test report (page 304)

TTest_upper

TTest_upper() returns the aggregated value for the upper end of the confidence interval for two independent series of values.

This function applies to independent samples student’s t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

TTest_upper (grp, value [, sig [, eq_var]])

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in group. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name Type.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If eq_var is specified as False (0), separate variances of the two samples will be assumed. If eq_var is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest_upper( Group, Value )
TTest_upper( Group, Value, sig, false )

See also:

Creating a typical t-test report (page 304)

TTestw_conf

TTestw_conf() returns the aggregated t value for two independent series of values.

This function applies to two independent samples student’s t-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

TTestw_conf (weight, grp, value [, sig [, eq_var]])

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in group. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>Each value in value can be counted one or more times according to a corresponding weight value in weight.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name Type.</td>
</tr>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If eq_var is specified as False (0), separate variances of the two samples will be assumed. If eq_var is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTestw_conf( Weight, Group, Value )
TTestw_conf( Weight, Group, Value, sig, false )

See also:

Creating a typical t-test report (page 304)

TTestw_df
TTestw_df() returns the aggregated student's t-test df value (degrees of freedom) for two independent series of values.

This function applies to two independent samples student's t-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

TTestw_df (weight, grp, value [, eq_var])

Return data type: numeric

Arguments:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>Each value in value can be counted one or more times according to a corresponding weight value in weight.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name Type.</td>
</tr>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in group. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If eq_var is specified as False (0), separate variances of the two samples will be assumed. If eq_var is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTestw_df( Weight, Group, Value )
TTestw_df( Weight, Group, Value, false )

See also:

- Creating a typical t-test report (page 304)

TTestw_dif

TTestw_dif() returns the aggregated student's t-test mean difference for two independent series of values.

This function applies to two independent samples student's t-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

TTestw_dif (weight, group, value)

Return data type: numeric

Arguments:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in group. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>weight</td>
<td>Each value in value can be counted one or more times according to a corresponding weight value in weight.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name Type.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

\[
\text{TTestw_{\text{dif}}( weight, Group, Value )}
\]
\[
\text{TTestw_{\text{dif}}( weight, Group, Value, false )}
\]

See also:

- Creating a typical t-test report (page 304)

\text{TTestw_{\text{lower}}}

\text{TTestw_{\text{lower}}()} returns the aggregated value for the lower end of the confidence interval for two independent series of values.

This function applies to two independent samples student's t-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

\[
\text{TTestw_{\text{lower}} (weight, grp, value [, sig [, eq_var]])}
\]

Return data type: numeric

Arguments:
Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>Each value in <code>value</code> can be counted one or more times according to a corresponding weight value in <code>weight</code>.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name <code>Type</code>.</td>
</tr>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in <code>group</code>. If a field name for the sample values is not provided in the load script, the field will automatically be named <code>Value</code>.</td>
</tr>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in <code>sig</code>. If omitted, <code>sig</code> is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If <code>eq_var</code> is specified as False (0), separate variances of the two samples will be assumed. If <code>eq_var</code> is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression `value` will result in the function returning NULL.

Examples:

```plaintext
TTestw_lower( Weight, Group, Value )
TTestw_lower( Weight, Group, Value, sig, false )
```

See also:

- Creating a typical t-test report (page 304)

**TTestw_sig**

`TTestw_sig()` returns the aggregated student’s t-test 2-tailed level of significance for two independent series of values.

This function applies to two independent samples student's t-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

```plaintext
TTestw_sig ( weight, grp, value [, eq_var] )
```

Return data type: numeric
5 Functions in scripts and chart expressions

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>Each value in value can be counted one or more times according to a corresponding weight value in weight.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name Type.</td>
</tr>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in group. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If eq_var is specified as False (0), separate variances of the two samples will be assumed. If eq_var is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTestw_sig( Weight, Group, Value )
TTestw_sig( Weight, Group, Value, false )

See also:

Creating a typical t-test report (page 304)

TTestw_sterr

TTestw_sterr() returns the aggregated student's t-test standard error of the mean difference for two independent series of values.

This function applies to two independent samples student's t-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

TTestw_sterr (weight, grp, value [, eq_var])

Return data type: numeric
5  Functions in scripts and chart expressions

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>Each value in value can be counted one or more times according to a corresponding weight value in weight.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name Type.</td>
</tr>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in group. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If eq_var is specified as False (0), separate variances of the two samples will be assumed. If eq_var is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTestw_sterr( Weight, Group, Value )
TTestw_sterr( Weight, Group, Value, false )

See also:

Creating a typical t-test report (page 304)

TTestw_t

TTestw_t() returns the aggregated t value for two independent series of values.

This function applies to two independent samples student's t-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

\texttt{ttestw\_t} \begin{tabular}{l} \texttt{(weight, grp, value [, eq\_var])} \end{tabular}

Return data type: numeric

Arguments:
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in <strong>group</strong>. If a field name for the sample values is not provided in the load script, the field will automatically be named <strong>Value</strong>.</td>
</tr>
<tr>
<td>weight</td>
<td>Each value in <strong>value</strong> can be counted one or more times according to a corresponding weight value in <strong>weight</strong>.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name <strong>Type</strong>.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If <strong>eq_var</strong> is specified as False (0), separate variances of the two samples will be assumed. If <strong>eq_var</strong> is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

**Limitations:**

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

**Examples:**

```plaintext
TTestw_t( Weight, Group, Value )
TTestw_t( Weight, Group, Value, false )
```

**See also:**

- Creating a typical t-test report (page 304)

**TTestw_upper**

**TTestw_upper()** returns the aggregated value for the upper end of the confidence interval for two independent series of values.

This function applies to two independent samples student's t-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

**Syntax:**

```plaintext
TTestw_upper( weight, grp, value [, sig [, eq_var]])
```

**Return data type:** numeric

**Arguments:**
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>Each value in value can be counted one or more times according to a corresponding weight value in weight.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name Type.</td>
</tr>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in group. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If eq_var is specified as False (0), separate variances of the two samples will be assumed. If eq_var is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTestw_upper( Weight, Group, Value )
TTestw_upper( Weight, Group, Value, sig, false )

See also:

Creating a typical t-test report (page 304)

TTest1_conf
TTest1_conf() returns the aggregated confidence interval value for a series of values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

TTest1_conf (value [, sig ])

Return data type: numeric

Arguments:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The samples to be evaluated. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

```
TTest1_conf( value )
TTest1_conf( value, 0.005 )
```

See also:

- Creating a typical t-test report (page 304)

**TTest1_df**

TTest1_df() returns the aggregated student's t-test df value (degrees of freedom) for a series of values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

```
TTest1_df (value)
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The samples to be evaluated. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
</tbody>
</table>

Limitations:
5 Functions in scripts and chart expressions

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

TTest1_df( value )

See also:

- Creating a typical t-test report (page 304)

TTest1_df

TTest1_df() returns the aggregated student's t-test mean difference for a series of values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

TTest1_df( value )

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The samples to be evaluated. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

TTest1_df( value )

See also:

- Creating a typical t-test report (page 304)
5 Functions in scripts and chart expressions

TTest1_lower

TTest1_lower() returns the aggregated value for the lower end of the confidence interval for a series of values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

TTest1_lower (value [, sig])

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The samples to be evaluated. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest1_lower( value )
TTest1_lower( value, 0.005 )

See also:

- Creating a typical t-test report (page 304)

TTest1_sig

TTest1_sig() returns the aggregated student's t-test 2-tailed level of significance for a series of values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.
5 Functions in scripts and chart expressions

Syntax:

TTest1_sig (value)

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The samples to be evaluated. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

TTest1_sig( value )

See also:

Creating a typical t-test report (page 304)

TTest1_sterr

TTest1_sterr() returns the aggregated student's t-test standard error of the mean difference for a series of values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

TTest1_sterr (value)

Return data type: numeric

Arguments:
Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The samples to be evaluated. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

\[ \text{TTest1\textunderscore sterr( value )} \]

See also:

- Creating a typical t-test report (page 304)

\[ \text{TTest1\textunderscore t} \]

\[ \text{TTest1\textunderscore t}(\text{value}) \]

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The samples to be evaluated. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:
5 Functions in scripts and chart expressions

TTest1_t( value )

TTest1_upper

TTest1_upper() returns the aggregated value for the upper end of the confidence interval for a series of values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

TTest1_upper (value [, sig])

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The samples to be evaluated. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest1_upper( value )
TTest1_upper( value, 0.005 )

See also:

Creating a typical t-test report (page 304)

TTest1w_conf

TTest1w_conf() is a numeric function that returns the aggregated confidence interval value for a series of values.

This function applies to one-sample student's t-tests where the input data series is given in weighted two-column format.
5 Functions in scripts and chart expressions

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

```
TTest1w_conf(weight, value [, sig])
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The samples to be evaluated. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>weight</td>
<td>Each value in value can be counted one or more times according to a corresponding weight value in weight.</td>
</tr>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

```
TTest1w_conf(Weight, Value)
TTest1w_conf(Weight, Value, 0.005)
```

See also:

- Creating a typical t-test report (page 304)

TTest1w_df

`TTest1w_df()` returns the aggregated student's t-test df value (degrees of freedom) for a series of values.

This function applies to one-sample student's t-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
5 Functions in scripts and chart expressions

**TTest1w_df (weight, value)**

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The samples to be evaluated. If a field name for the sample values is not provided in the load script, the field will automatically be named <code>Value</code>.</td>
</tr>
<tr>
<td>weight</td>
<td>Each value in <code>value</code> can be counted one or more times according to a corresponding weight value in <code>weight</code>.</td>
</tr>
</tbody>
</table>

**Limitations:**

Text values, NULL values and missing values in the expression `value` will result in the function returning NULL.

**Example:**

```
TTest1w_df( weight, Value )
```

**See also:**

- Creating a typical t-test report (page 304)

**TTest1w_dif**

`TTest1w_dif()` returns the aggregated student’s t-test mean difference for a series of values.

This function applies to one-sample student's t-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

**Syntax:**

```
TTest1w_dif (weight, value)
```

**Return data type:** numeric

**Arguments:**
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The samples to be evaluated. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>weight</td>
<td>Each value in value can be counted one or more times according to a corresponding weight value in weight.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

`TTest1w_dif( weight, Value )`

See also:

- Creating a typical t-test report (page 304)

`TTest1w_lower`

`TTest1w_lower()` returns the aggregated value for the lower end of the confidence interval for a series of values.

This function applies to one-sample student’s t-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

`TTest1w_lower (weight, value [, sig ])`

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The samples to be evaluated. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>weight</td>
<td>Each value in value can be counted one or more times according to a corresponding weight value in weight.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

TTest1w_lower( Weight, Value )
TTest1w_lower( Weight, Value, 0.005 )

See also:

Creating a typical t-test report (page 304)

TTest1w_sig

TTest1w_sig() returns the aggregated student's t-test 2-tailed level of significance for a series of values.

This function applies to one-sample student's t-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

TTest1w_sig (weight, value)

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The samples to be evaluated. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>weight</td>
<td>Each value in value can be counted one or more times according to a corresponding weight value in weight.</td>
</tr>
</tbody>
</table>

Limitations:
5 Functions in scripts and chart expressions

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

TTest1w_\_sig( weight, Value )

See also:

- Creating a typical t-test report (page 304)

TTest1w\_sterr

TTest1w\_sterr() returns the aggregated student's t-test standard error of the mean difference for a series of values.

This function applies to one-sample student's t-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

TTest1w\_sterr (weight, value)

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The samples to be evaluated. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>weight</td>
<td>Each value in value can be counted one or more times according to a corresponding weight value in weight.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

TTest1w\_sterr( Weight, Value )
See also:

- Creating a typical t-test report (page 304)

**TTest1w_t**

**TTest1w_t()** returns the aggregated t value for a series of values.

This function applies to one-sample student's t-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

**Syntax:**

```
TTest1w_t( weight, value)
```

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The samples to be evaluated. If a field name for the sample values is not provided in the load script, the field will automatically be named <strong>Value</strong>.</td>
</tr>
<tr>
<td>weight</td>
<td>Each value in <strong>value</strong> can be counted one or more times according to a corresponding weight value in <strong>weight</strong>.</td>
</tr>
</tbody>
</table>

**Limitations:**

Text values, NULL values and missing values in the expression **value** will result in the function returning NULL.

**Example:**

```
TTest1w_t( Weight, Value )
```

See also:

- Creating a typical t-test report (page 304)
5 Functions in scripts and chart expressions

**TTest1w_upper**

*TTest1w_upper*() returns the aggregated value for the upper end of the confidence interval for a series of values.

This function applies to one-sample student's t-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

**Syntax:**

```plaintext
TTest1w_upper(weight, value [, sig])
```

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The samples to be evaluated. If a field name for the sample values is not provided in the load script, the field will automatically be named <strong>Value</strong>.</td>
</tr>
<tr>
<td>weight</td>
<td>Each value in <strong>value</strong> can be counted one or more times according to a corresponding weight value in <strong>weight</strong>.</td>
</tr>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in <strong>sig</strong>. If omitted, <strong>sig</strong> is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
</tbody>
</table>

**Limitations:**

Text values, NULL values and missing values in the expression **value** will result in the function returning NULL.

**Examples:**

```plaintext
TTest1w_upper( Weight, Value )
TTest1w_upper( Weight, Value, 0.005 )
```

**See also:**

- *Creating a typical t-test report (page 304)*
5 Functions in scripts and chart expressions

Z-test functions
A statistical examination of two population means. A two sample z-test examines whether two samples are different and is commonly used when two normal distributions have known variances and when an experiment uses a large sample size.

The z-test statistical test functions are grouped according the type of input data series that applies to the function.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

See: Examples of how to use z-test functions (page 307)

One column format functions
The following functions apply to z-tests with simple input data series:

ztest_conf
ZTest_conf() returns the aggregated z value for a series of values.

\[
\text{ZTest_conf} \ (\text{value}, \ \text{sigma}, \ \text{sig})
\]

ztest_diff
ZTest_diff() returns the aggregated z-test mean difference for a series of values.

\[
\text{ZTest_diff} \ (\text{value}, \ \text{sigma})
\]

ztest_sig
ZTest_sig() returns the aggregated z-test 2-tailed level of significance for a series of values.

\[
\text{ZTest_sig} \ (\text{value}, \ \text{sigma})
\]

ztest_sterr
ZTest_sterr() returns the aggregated z-test standard error of the mean difference for a series of values.

\[
\text{ZTest_sterr} \ (\text{value}, \ \text{sigma})
\]

ztest_z
ZTest_z() returns the aggregated z value for a series of values.

\[
\text{ZTest_z} \ (\text{value}, \ \text{sigma})
\]

ztest_lower
ZTest_lower() returns the aggregated value for the lower end of the confidence interval for two independent series of values.

\[
\text{ZTest_lower} \ (\text{grp}, \ \text{value}, \ \text{sig}, \ \text{eq_var})
\]
ztest_upper

\texttt{ZTest\_upper()} returns the aggregated value for the upper end of the confidence interval for two independent series of values.

\texttt{ZTest\_upper (grp, value [, sig [, eq\_var]])}

**Weighted two-column format functions**

The following functions apply to z-tests where the input data series is given in weighted two-column format.

ztestw\_conf

\texttt{ZTestw\_conf()} returns the aggregated z confidence interval value for a series of values.

\texttt{ZTestw\_conf (weight, value [, sigma [, sig]])}

ztestw\_dif

\texttt{ZTestw\_dif()} returns the aggregated z-test mean difference for a series of values.

\texttt{ZTestw\_dif (weight, value [, sigma])}

ztestw\_lower

\texttt{ZTestw\_lower()} returns the aggregated value for the lower end of the confidence interval for two independent series of values.

\texttt{ZTestw\_lower (weight, value [, sigma])}

ztestw\_sig

\texttt{ZTestw\_sig()} returns the aggregated z-test 2-tailed level of significance for a series of values.

\texttt{ZTestw\_sig (weight, value [, sigma])}

ztestw\_sterr

\texttt{ZTestw\_sterr()} returns the aggregated z-test standard error of the mean difference for a series of values.

\texttt{ZTestw\_sterr (weight, value [, sigma])}

ztestw\_upper

\texttt{ZTestw\_upper()} returns the aggregated value for the upper end of the confidence interval for two independent series of values.

\texttt{ZTestw\_upper (weight, value [, sigma])}

ztestw\_z

\texttt{ZTestw\_z()} returns the aggregated z value for a series of values.

\texttt{ZTestw\_z (weight, value [, sigma])}

\texttt{ZTestw\_z()}

\texttt{ZTest\_z()} returns the aggregated z value for a series of values.
5 Functions in scripts and chart expressions

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

\[ \text{ZTest\_z(value[, sigma])} \]

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. A population mean of 0 is assumed. If you want the test to be performed around another mean, subtract that mean from the sample values.</td>
</tr>
<tr>
<td>sigma</td>
<td>If known, the standard deviation can be stated in \textit{sigma}. If \textit{sigma} is omitted the actual sample standard deviation will be used.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

\[ \text{ZTest\_z( Value-TestValue )} \]

See also:

- Examples of how to use z-test functions (page 307)

\[ \text{ZTest\_sig} \]

\[ \text{ZTest\_sig() returns the aggregated z-test 2-tailed level of significance for a series of values.} \]

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

\[ \text{ZTest\_sig(value[, sigma])} \]

Return data type: numeric

Arguments:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. A population mean of 0 is assumed. If you want the test to be performed around another mean, subtract that mean from the sample values.</td>
</tr>
<tr>
<td>sigma</td>
<td>If known, the standard deviation can be stated in sigma. If sigma is omitted the actual sample standard deviation will be used.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

ZTest_sig(value-TestValue)

See also:

- Examples of how to use z-test functions (page 307)

ZTest_dif

ZTest_dif() returns the aggregated z-test mean difference for a series of values.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

ZTest_dif(value[, sigma])

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. A population mean of 0 is assumed. If you want the test to be performed around another mean, subtract that mean from the sample values.</td>
</tr>
<tr>
<td>sigma</td>
<td>If known, the standard deviation can be stated in sigma. If sigma is omitted the actual sample standard deviation will be used.</td>
</tr>
</tbody>
</table>

Limitations:
Functions in scripts and chart expressions

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

\texttt{ZTest\_dif(Value-TestValue)}

See also:

- \textit{Examples of how to use z-test functions (page 307)}

\texttt{ZTest\_sterr()}

\texttt{ZTest\_sterr()} returns the aggregated z-test standard error of the mean difference for a series of values.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

\texttt{ZTest\_sterr(value[, sigma])}

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. A population mean of 0 is assumed. If you want the test to be performed around another mean, subtract that mean from the sample values.</td>
</tr>
<tr>
<td>sigma</td>
<td>If known, the standard deviation can be stated in \texttt{sigma}. If \texttt{sigma} is omitted the actual sample standard deviation will be used.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

\texttt{ZTest\_sterr(Value-TestValue)}

See also:

- \textit{Examples of how to use z-test functions (page 307)}
5 Functions in scripts and chart expressions

ZTest_conf

ZTest_conf() returns the aggregated z value for a series of values.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

\[ \text{ZTest}_\text{conf}(\text{value}, \sigma, \text{sig}) \]

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. A population mean of 0 is assumed. If you want the test to be performed around another mean, subtract that mean from the sample values.</td>
</tr>
<tr>
<td>sigma</td>
<td>If known, the standard deviation can be stated in sigma. If sigma is omitted the actual sample standard deviation will be used.</td>
</tr>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

\[ \text{ZTest}_\text{conf}(\text{value}-\text{TestValue}) \]

See also:

- Examples of how to use z-test functions (page 307)

ZTest_lower

ZTest_lower() returns the aggregated value for the lower end of the confidence interval for two independent series of values.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.
5 Functions in scripts and chart expressions

Syntax:

\[
\text{ZTest\_lower} \ (\text{grp, value [, sig [, eq\_var]]})
\]

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in group. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name Type.</td>
</tr>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If eq_var is specified as False (0), separate variances of the two samples will be assumed. If eq_var is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

\[
\begin{align*}
\text{ZTest\_lower} & (\text{Group, Value}) \\
\text{ZTest\_lower} & (\text{Group, Value, sig, false})
\end{align*}
\]

See also:

- Examples of how to use z-test functions (page 307)

ZTest\_upper

\[
\text{ZTest\_upper}()
\]

returns the aggregated value for the upper end of the confidence interval for two independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
5 Functions in scripts and chart expressions

ZTest_upper (grp, value [, sig [, eq_var]])

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in group. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name Type.</td>
</tr>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If eq_var is specified as False (0), separate variances of the two samples will be assumed. If eq_var is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

ZTest_upper( Group, Value )
ZTest_upper( Group, Value, sig, false )

See also:

- Examples of how to use z-test functions (page 307)

ZTestw_z
ZTestw_z() returns the aggregated z value for a series of values.

This function applies to z-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

ZTestw_z (weight, value [, sigma])

Return data type: numeric
5  Functions in scripts and chart expressions

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The values should be returned by value. A sample mean of 0 is assumed. If you want the test to be performed around another mean, subtract that value from the sample values.</td>
</tr>
<tr>
<td>weight</td>
<td>Each sample value in value can be counted one or more times according to a corresponding weight value in weight.</td>
</tr>
<tr>
<td>sigma</td>
<td>If known, the standard deviation can be stated in sigma. If sigma is omitted the actual sample standard deviation will be used.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

ZTestw_z( weight, value-TestValue)

See also:

- Examples of how to use z-test functions (page 307)

ZTestw_sig

ZTestw_sig() returns the aggregated z-test 2-tailed level of significance for a series of values.

This function applies to z-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

ZTestw_sig (weight, value [, sigma])

Return data type: numeric

Arguments:
### Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The values should be returned by value. A sample mean of 0 is assumed. If you want the test to be performed around another mean, subtract that value from the sample values.</td>
</tr>
<tr>
<td>weight</td>
<td>Each sample value in value can be counted one or more times according to a corresponding weight value in weight.</td>
</tr>
<tr>
<td>sigma</td>
<td>If known, the standard deviation can be stated in sigma. If sigma is omitted the actual sample standard deviation will be used.</td>
</tr>
</tbody>
</table>

**Limitations:**

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

**Example:**

\[
\text{ZTestw\_sig(weight, Value-TestValue)}
\]

**See also:**

- Examples of how to use z-test functions (page 307)

**ZTestw\_dif**

\[
\text{ZTestw\_dif}( \text{weight, value [, sigma]} )
\]

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The values should be returned by value. A sample mean of 0 is assumed. If you want the test to be performed around another mean, subtract that value from the sample values.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>Each sample value in value can be counted one or more times according to a corresponding weight value in weight.</td>
</tr>
<tr>
<td>sigma</td>
<td>If known, the standard deviation can be stated in sigma. If sigma is omitted the actual sample standard deviation will be used.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

\[
\text{ZTestw\_dif( weight, value-TestValue)}
\]

See also:

- Examples of how to use z-test functions (page 307)

ZTestw\_sterr

\(\text{ZTestw\_sterr()}\) returns the aggregated z-test standard error of the mean difference for a series of values.

This function applies to z-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

\[
\text{ZTestw\_sterr (weight, value [, sigma])}
\]

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The values should be returned by value. A sample mean of 0 is assumed. If you want the test to be performed around another mean, subtract that value from the sample values.</td>
</tr>
<tr>
<td>weight</td>
<td>Each sample value in value can be counted one or more times according to a corresponding weight value in weight.</td>
</tr>
<tr>
<td>sigma</td>
<td>If known, the standard deviation can be stated in sigma. If sigma is omitted the actual sample standard deviation will be used.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

\texttt{ZTestw\_sterr( Weight, Value-TestValue)}

See also:

- Examples of how to use z-test functions (page 307)

\texttt{ZTestw\_conf}

\texttt{ZTestw\_conf()} returns the aggregated z confidence interval value for a series of values.

This function applies to z-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

\texttt{ZTest\_conf(\textit{weight, value[, sigma[, sig]]})}

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. A population mean of 0 is assumed. If you want the test to be performed around another mean, subtract that mean from the sample values.</td>
</tr>
<tr>
<td>weight</td>
<td>Each sample value in \textit{value} can be counted one or more times according to a corresponding weight value in \textit{weight}.</td>
</tr>
<tr>
<td>sigma</td>
<td>If known, the standard deviation can be stated in \textit{sigma}. If \textit{sigma} is omitted the actual sample standard deviation will be used.</td>
</tr>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in \textit{sig}. If omitted, \textit{sig} is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
</tbody>
</table>

Limitations:
5 Functions in scripts and chart expressions

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Example:

ZTestw_conf( weight, Value-TestValue)

See also:

- Examples of how to use z-test functions (page 307)

ZTestw_lower

ZTestw_lower() returns the aggregated value for the lower end of the confidence interval for two independent series of values.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

ZTestw_lower (grp, value [, sig [, eq_var]])

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in group. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name Type.</td>
</tr>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If eq_var is specified as False (0), separate variances of the two samples will be assumed. If eq_var is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:
5 Functions in scripts and chart expressions

ZTestw_lower( Group, Value )
ZTestw_lower( Group, Value, sig, false )

See also:

- Examples of how to use z-test functions (page 307)

ZTestw_upper

ZTestw_upper() returns the aggregated value for the upper end of the confidence interval for two independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:

ZTestw_upper (grp, value [, sig [, eq_var]])

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The sample values to be evaluated. The sample values must be logically grouped as specified by exactly two values in group. If a field name for the sample values is not provided in the load script, the field will automatically be named Value.</td>
</tr>
<tr>
<td>grp</td>
<td>The field containing the names of each of the two sample groups. If a field name for the group is not provided in the load script, the field will automatically be given the name Type.</td>
</tr>
<tr>
<td>sig</td>
<td>The two-tailed level of significance can be specified in sig. If omitted, sig is set to 0.025, resulting in a 95% confidence interval.</td>
</tr>
<tr>
<td>eq_var</td>
<td>If eq_var is specified as False (0), separate variances of the two samples will be assumed. If eq_var is specified as True (1), equal variances between the samples will be assumed.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values in the expression value will result in the function returning NULL.

Examples:

ZTestw_upper( Group, Value )
ZTestw_upper( Group, Value, sig, false )
See also:

- Examples of how to use z-test functions (page 307)

Statistical test function examples

This section includes examples of statistical test functions as applied to charts and the data load script.

Examples of how to use chi2-test functions in charts

The chi2-test functions are used to find values associated with chi squared statistical analysis. This section describes how to build visualizations using sample data to find the values of the chi-squared distribution test functions available in Qlik Sense. Please refer to the individual chi2-test chart function topics for descriptions of syntax and arguments.

Loading the data for the samples

There are three sets of sample data describing three different statistical samples to be loaded into the script.

Do the following:

1. Create a new app.
2. In the data load, enter the following:

   ```plaintext
   // Sample_1 data is pre-aggregated... Note: make sure you set your DecimalSep='.' at the top of the script.
   Sample_1:
   LOAD * inline [
   Grp,Grade,Count
   I,A,15
   I,B,7
   I,C,9
   I,D,20
   I,E,26
   I,F,19
   II,A,10
   II,B,11
   II,C,7
   II,D,15
   II,E,21
   II,F,16
   ];
   // Sample_2 data is pre-aggregated: If raw data is used, it must be aggregated using count
   //...
   Sample_2:
   LOAD * inline [
   Sex,Opinion,OpCount
   1,2,58
   1,1,11
   1,0,10
   2,2,35
   2,1,25
   2,0,23 ] (delimiter is ',');
   // Sample_3a data is transformed using the crosstable statement...
   Sample_3a:
   ```
5 Functions in scripts and chart expressions

crosstable(Gender, Actual) LOAD Description, [Men (Actual)] as Men, [Women (Actual)] as Woman;
LOAD * inline [Men (Actual),Women (Actual),Description 58,35,Agree 11,25,Neutral 10,23,Disagree] (delimiter is ',');
// Sample_3b data is transformed using the crosstable statement...
Sample_3b: crosstable(Gender, Expected) LOAD Description, [Men (Expected)] as Men, [Women (Expected)] as Woman;
LOAD * inline [Men (Expected),Women (Expected),Description 45.35,47.65,Agree 17.56,18.44,Neutral 16.09,16.91,Disagree] (delimiter is ',');
// Sample_3a and Sample_3b will result in a (fairly harmless) Synthetic Key...

3. Click 🏷️ to load data.

Creating the chi2-test chart function visualizations

Example: Sample 1

Do the following:

1. In the data load editor, click 🎨 to go to the app view and then click the sheet you created before. The sheet view is opened.

2. Click ⌘ Edit to edit the sheet.

3. From Charts add a table, and from Fields add Grp, Grade, and Count as dimensions. This table shows the sample data.

4. Add another table with the following expression as a dimension:
   `valueList('p','df','chi2')`
   This uses the synthetic dimensions function to create labels for the dimensions with the names of the three chi2-test functions.

5. Add the following expression to the table as a measure:
   `IF(valueList('p','df','chi2')='p',chi2Test_p(Grp,Grade,Count),
    IF(valueList('p','df','chi2')='df',chi2Test_df(Grp,Grade,Count),
    chi2Test_chi2(Grp,Grade,Count)))`
   This has the effect of putting the resulting value of each chi2-test function in the table next to its associated synthetic dimension.

6. Set the Number formatting of the measure to Number and 3 Significant figures.

   In the expression for the measure, you could use the following expression instead: `Pick(Match(valueList('p','df','chi2'),'p','df','chi2'),
   chi2Test_p(Grp,Grade,Count),chi2Test_df(Grp,Grade,Count),chi2Test_chi2(Grp,Grade,Count))`

Result
The resulting table for the chi2-test functions for the Sample 1 data will contain the following values:

<table>
<thead>
<tr>
<th>p</th>
<th>df</th>
<th>Chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.820</td>
<td>5</td>
<td>2.21</td>
</tr>
</tbody>
</table>

**Example: Sample 2**

Do the following:

1. In the sheet you were editing in the example Sample 1, from **Charts** add a table, and from **Fields** add Sex, Opinion, and OpCount as dimensions.
2. Make a copy of the results table from Sample 1 using the **Copy** and **Paste** commands. Edit the expression in the measure and replace the arguments in all three chi2-test functions with the names of the fields used in the Sample 2 data, for example: \( \text{Chi2Test}_p(\text{Sex}, \text{Opinion}, \text{OpCount}) \).

**Result**

The resulting table for the chi2-test functions for the Sample 2 data will contain the following values:

<table>
<thead>
<tr>
<th>p</th>
<th>df</th>
<th>Chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000309</td>
<td>2</td>
<td>16.2</td>
</tr>
</tbody>
</table>

**Example: Sample 3**

Do the following:

1. Create two more tables in the same way as in the examples for Sample 1 and Sample 2 data. In the dimensions table, use the following fields as dimensions: Gender, Description, Actual, and Expected.
2. In the results table, use the names of the fields used in the Sample 3 data, for example: \( \text{Chi2Test}_p(\text{Gender}, \text{Description}, \text{Actual}, \text{Expected}) \).

**Result**

The resulting table for the chi2-test functions for the Sample 3 data will contain the following values:

<table>
<thead>
<tr>
<th>p</th>
<th>df</th>
<th>Chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000308</td>
<td>2</td>
<td>16.2</td>
</tr>
</tbody>
</table>

**Examples of how to use chi2-test functions in the data load script**

The chi2-test functions are used to find values associated with chi squared statistical analysis. This section describes how to use the chi-squared distribution test functions available in Qlik Sense in the data load script. Please refer to the individual chi2-test script function topics for descriptions of syntax and arguments.
This example uses a table containing the number of students achieving a grade (A-F) for two groups of students (I and II).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>15</td>
<td>7</td>
<td>9</td>
<td>20</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>II</td>
<td>10</td>
<td>11</td>
<td>7</td>
<td>15</td>
<td>21</td>
<td>16</td>
</tr>
</tbody>
</table>

**Loading the sample data**

Do the following:

1. Create a new app.
2. In the data load editor, enter the following:
   // Sample_1 data is pre-aggregated... Note: make sure you set your DecimalSep=',' at the top of the script.
   Sample_1:
   LOAD * inline [
   Grp,Grade,Count
   I,A,15
   I,B,7
   I,C,9
   I,D,20
   I,E,26
   I,F,19
   II,A,10
   II,B,11
   II,C,7
   II,D,15
   II,E,21
   II,F,16
   ];
3. Click to load data.

You have now loaded the sample data.

**Loading the chi2-test function values**

Now we will load the chi2-test values based on the sample data in a new table, grouped by Grp.

Do the following:

1. In the data load editor, add the following at the end of the script:
   // Sample_1 data is pre-aggregated... Note: make sure you set your DecimalSep=',' at the top of the script.
   Chi2_table:
   LOAD Grp,
   Chi2Test_chii2(Grp, Grade, Count) as chi2,
   Chi2Test_df(Grp, Grade, Count) as df,
   Chi2Test_p(Grp, Grade, Count) as p
   resident Sample_1 group by Grp;
2. Click to load data.

You have now loaded the chi2-test values in a table named Chi2_table.
5 Functions in scripts and chart expressions

Results
You can view the resulting chi2-test values in the data model viewer under Preview, they should look like this:

<table>
<thead>
<tr>
<th>Grp</th>
<th>chi2</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>16.00</td>
<td>5</td>
<td>0.007</td>
</tr>
<tr>
<td>II</td>
<td>9.40</td>
<td>5</td>
<td>0.094</td>
</tr>
</tbody>
</table>

Creating a typical t-test report
A typical student t-test report can include tables with Group Statistics and Independent Samples Test results. In the following sections we will build these tables using Qlik Sense t-test functions applied to two independent groups of samples, Observation and Comparison. The corresponding tables for these samples would look like this:

Group Statistics

<table>
<thead>
<tr>
<th>Type</th>
<th>N</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison</td>
<td>20</td>
<td>11.95</td>
<td>14.61245</td>
<td>3.2674431</td>
</tr>
<tr>
<td>Observation</td>
<td>20</td>
<td>27.15</td>
<td>12.507997</td>
<td>2.7968933</td>
</tr>
</tbody>
</table>

Independent Sample Test

<table>
<thead>
<tr>
<th></th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
<th>Mean Difference</th>
<th>Standard Error Difference</th>
<th>95% Confidence Interval of the Difference (Lower)</th>
<th>95% Confidence Interval of the Difference (Upper)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal Variance not Assumed</td>
<td>3.534</td>
<td>37.116717335823</td>
<td>0.001</td>
<td>15.2</td>
<td>4.30101</td>
<td>6.48625</td>
<td>23.9137</td>
</tr>
<tr>
<td>Equal Variance Assumed</td>
<td>3.534</td>
<td>38</td>
<td>0.001</td>
<td>15.2</td>
<td>4.30101</td>
<td>6.49306</td>
<td>23.9069</td>
</tr>
</tbody>
</table>

Loading the sample data
Do the following:
5 Functions in scripts and chart expressions

1. Create a new app with a new sheet and open that sheet.

2. Enter the following in the data load editor:
   ```ql
   Table1: crosstable LOAD recno() as ID, * inline {
       Observation|Comparison
       35|2
       40|27
       12|38
       15|31
       21|1
       14|19
       46|1
       10|34
       28|3
       48|1
       16|2
       30|3
       32|2
       48|1
       31|2
       22|1
       12|3
       39|29
       19|37
   } (delimiter is '|');
   ```
   In this load script, `recno()` is included because `crosstable` requires three arguments. So, `recno()` simply provides an extra argument, in this case an ID for each row. Without it, `Comparison` sample values would not be loaded.

3. Click to load data.

Creating the Group Statistics table
Do the following:

1. In the data load editor, click to go to app view, and then click the sheet you created before. This opens the sheet view.

2. Click to edit the sheet.

3. From Charts, add a table, and from Fields, add the following expressions as measures:

<table>
<thead>
<tr>
<th>Label</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Count(Value)</td>
</tr>
<tr>
<td>Mean</td>
<td>Avg(Value)</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>Stdev(Value)</td>
</tr>
<tr>
<td>Standard Error Mean</td>
<td>Sterr(Value)</td>
</tr>
</tbody>
</table>

4. Add Type as a dimension to the table.

5. Click Sorting and move Type to the top of the sorting list.
Result

A **Group Statistics** table for these samples would look like this:

<table>
<thead>
<tr>
<th>Type</th>
<th>N</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison</td>
<td>20</td>
<td>11.95</td>
<td>14.61245</td>
<td>3.267431</td>
</tr>
<tr>
<td>Observation</td>
<td>20</td>
<td>27.15</td>
<td>12.507997</td>
<td>2.7968933</td>
</tr>
</tbody>
</table>

**Creating the Two Independent Sample Student's T-test table**

Do the following:

1. Click ✏️ **Edit** to edit the sheet.
2. Add the following expression as a dimension to the table. `-valueList(Dual('Equal Variance not Assumed', 0), Dual('Equal Variance Assumed', 1))`
3. From **Charts** add a table with the following expressions as measures:

<table>
<thead>
<tr>
<th>Label</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>conf</td>
<td><code>if(valueList(Dual('Equal Variance not Assumed', 0), Dual('Equal Variance Assumed', 1)), TTest_conf(Type, Value), TTest_conf(Type, Value, 0))</code></td>
</tr>
<tr>
<td>t</td>
<td><code>if(valueList(Dual('Equal Variance not Assumed', 0), Dual('Equal Variance Assumed', 1)), TTest_t(Type, Value), TTest_t(Type, Value, 0))</code></td>
</tr>
<tr>
<td>df</td>
<td><code>if(valueList(Dual('Equal Variance not Assumed', 0), Dual('Equal Variance Assumed', 1)), TTest_df(Type, Value), TTest_df(Type, Value, 0))</code></td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td><code>if(valueList(Dual('Equal Variance not Assumed', 0), Dual('Equal Variance Assumed', 1)), TTest_sig(Type, Value), TTest_sig(Type, Value, 0))</code></td>
</tr>
<tr>
<td>Mean Difference</td>
<td><code>TTest_diff(Type, Value)</code></td>
</tr>
<tr>
<td>Standard Error Difference</td>
<td><code>if(valueList(Dual('Equal Variance not Assumed', 0), Dual('Equal Variance Assumed', 1)), TTest_sterr(Type, Value), TTest_sterr(Type, Value, 0))</code></td>
</tr>
<tr>
<td>95% Confidence Interval of the Difference (Lower)</td>
<td><code>if(valueList(Dual('Equal Variance not Assumed', 0), Dual('Equal Variance Assumed', 1)), TTest_lower(Type, Value,(1-(95)/100)/2), TTest_lower(Type, Value,(1-(95)/100)/2, 0))</code></td>
</tr>
<tr>
<td>95% Confidence Interval of the Difference (Upper)</td>
<td><code>if(valueList(Dual('Equal Variance not Assumed', 0), Dual('Equal Variance Assumed', 1)), TTest_upper(Type, Value,(1-(95)/100)/2), TTest_upper(Type, Value,(1-(95)/100)/2, 0))</code></td>
</tr>
</tbody>
</table>

**Result**

An **Independent Sample Test** table for these samples would look like this:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
<th>Mean Difference</th>
<th>Standard Error Difference</th>
<th>95% Confidence Interval of the Difference (Lower)</th>
<th>95% Confidence Interval of the Difference (Upper)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.53</td>
<td>4</td>
<td>0.001</td>
<td>15.2</td>
<td>4.30101</td>
<td>6.48625</td>
<td>23.9137</td>
</tr>
<tr>
<td>3.53</td>
<td>38</td>
<td>0.001</td>
<td>15.2</td>
<td>4.30101</td>
<td>6.49306</td>
<td>23.9069</td>
</tr>
</tbody>
</table>

Examples of how to use z-test functions

The z-test functions are used to find values associated with z-test statistical analysis for large data samples, usually greater than 30, and where the variance is known. This section describes how to build visualizations using sample data to find the values of the z-test functions available in Qlik Sense. Please refer to the individual z-test chart function topics for descriptions of syntax and arguments.

Loading the sample data

The sample data used here is the same as that used in the t-test function examples. The sample data size would normally be considered too small for z-test analysis, but is sufficient for the purposes of illustrating the use of the different z-test functions in Qlik Sense.

Do the following:

1. Create a new app with a new sheet and open that sheet.

   
   If you created an app for the t-test functions, you could use that and create a new sheet for these functions.

2. In the data load editor, enter the following:

   ```
   Table1: crosstable LOAD recno() as ID, * inline [ Observation|Comparison
   35|2
   40|27
   12|38
   15|31
   21|1
   14|19
   ```
Functions in scripts and chart expressions

46|1
10|34
28|3
48|1
16|2
30|3
32|2
48|1
31|2
22|1
12|3
39|29
19|37
25|2 ] (delimiter is '|');

In this load script, recno() is included because crosstable requires three arguments. So, recno() simply provides an extra argument, in this case an ID for each row. Without it, Comparison sample values would not be loaded.

3. Click to load data.

Creating z-test chart function visualizations

Do the following:

1. In the data load editor, click to go to app view, and then click the sheet you created when loading the data.
   The sheet view is opened.
2. Click Edit to edit the sheet.
3. From Charts add a table, and from Fields add Type as a dimension.
4. Add the following expressions to the table as measures.

<table>
<thead>
<tr>
<th>Label</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZTest Conf</td>
<td>ZTest_conf(Value)</td>
</tr>
<tr>
<td>ZTest Dif</td>
<td>ZTest_dif(Value)</td>
</tr>
<tr>
<td>ZTest Sig</td>
<td>ZTest_sig(Value)</td>
</tr>
<tr>
<td>ZTest Sterr</td>
<td>ZTest_sterr(Value)</td>
</tr>
<tr>
<td>ZTest Z</td>
<td>ZTest_z(Value)</td>
</tr>
</tbody>
</table>

You might wish to adjust the number formatting of the measures in order to see meaningful values. The table will be easier to read if you set number formatting on most of the measures to Number>Simple, instead of Auto. But for ZTest Sig, for example, use the number formatting: Custom, and then adjust the format pattern to # #.

Result

The resulting table for the z-test functions for the sample data will contain the following values:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Type</th>
<th>ZTestConf</th>
<th>ZTest Dif</th>
<th>ZTest Sig</th>
<th>ZTest Sterr</th>
<th>ZTest Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison</td>
<td>6.40</td>
<td>11.95</td>
<td>0.000123</td>
<td>3.27</td>
<td>3.66</td>
</tr>
<tr>
<td>Value</td>
<td>5.48</td>
<td>27.15</td>
<td>0.001</td>
<td>2.80</td>
<td>9.71</td>
</tr>
</tbody>
</table>

Creating z-test chart function visualizations

The z-test functions are for use when the input data series occurs in weighted two-column format. The expressions require a value for the argument weight. The examples here use the value 2 throughout, but you could use an expression, which would define a value for weight for each observation.

Examples and results:

Using the same sample data and number formatting as for the z-test functions, the resulting table for the z-testw functions will contain the following values:

<table>
<thead>
<tr>
<th>Type</th>
<th>ZTestw Conf</th>
<th>ZTestw Dif</th>
<th>ZTestw Sig</th>
<th>ZTestw Sterr</th>
<th>ZTestw Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison</td>
<td>3.53</td>
<td>2.95</td>
<td>5.27e-005</td>
<td>1.80</td>
<td>3.88</td>
</tr>
<tr>
<td>Value</td>
<td>2.97</td>
<td>34.25</td>
<td>0</td>
<td>4.52</td>
<td>20.49</td>
</tr>
</tbody>
</table>

String aggregation functions

This section describes string-related aggregation functions.

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

String aggregation functions in the data load script

**Concat**

`Concat()` is used to combine string values. The script function returns the aggregated string concatenation of all values of the expression iterated over a number of records as defined by a `group by` clause.

`Concat ([ distinct ] expression [, delimiter [, sort-weight]])`

**FirstValue**

`FirstValue()` returns the value that was loaded first from the records defined by the expression, sorted by a `group by` clause.

*This function is only available as a script function.*

`FirstValue (expression)`

**LastValue**
5 Functions in scripts and chart expressions

LastValue() returns the value that was loaded last from the records defined by the expression, sorted by a group by clause.

This function is only available as a script function.

<table>
<thead>
<tr>
<th>LastValue (expression)</th>
</tr>
</thead>
</table>

MaxString
MaxString() finds string values in the expression and returns the last text value sorted over a number of records, as defined by a group by clause.

<table>
<thead>
<tr>
<th>MaxString (expression)</th>
</tr>
</thead>
</table>

MinString
MinString() finds string values in the expression and returns the first text value sorted over a number of records, as defined by a group by clause.

<table>
<thead>
<tr>
<th>MinString (expression)</th>
</tr>
</thead>
</table>

String aggregation functions in charts

The following chart functions are available for aggregating strings in charts.

Concat
Concat() is used to combine string values. The function returns the aggregated string concatenation of all the values of the expression evaluated over each dimension.

<table>
<thead>
<tr>
<th>Concat - chart function([SetExpression] [DISTINCT] [TOTAL [&lt;fld[, fld&gt;]]] string[, delimiter[, sort_weight]])</th>
</tr>
</thead>
</table>

MaxString
MaxString() finds string values in the expression or field and returns the last text value in the text sort order.

<table>
<thead>
<tr>
<th>MaxString - chart function([[SetExpression] [TOTAL [&lt;fld[, fld&gt;]]] expr)</th>
</tr>
</thead>
</table>

MinString
MinString() finds string values in the expression or field and returns the first text value in the text sort order.

<table>
<thead>
<tr>
<th>MinString - chart function([[SetExpression] [TOTAL [&lt;fld [, fld&gt;]]] expr)</th>
</tr>
</thead>
</table>

Concat
Concat() is used to combine string values. The script function returns the aggregated string concatenation of all values of the expression iterated over a number of records as defined by a group by clause.

Syntax:

<table>
<thead>
<tr>
<th>Concat ([ distinct ] string [, delimiter [, sort-weight]])</th>
</tr>
</thead>
</table>

Return data type: string
5 Functions in scripts and chart expressions

Arguments:

The expression or field containing the string to be processed.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>The expression or field containing the string to be processed.</td>
</tr>
<tr>
<td>delimiter</td>
<td>Each value may be separated by the string found in delimiter.</td>
</tr>
<tr>
<td>sort-weight</td>
<td>The order of concatenation may be determined by the value of the dimension sort-weight, if present, with the string corresponding to the lowest value appearing first in the concatenation.</td>
</tr>
<tr>
<td>distinct</td>
<td>If the word distinct occurs before the expression, all duplicates are disregarded.</td>
</tr>
</tbody>
</table>

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>TeamData: LOAD * inline [ SalesGroup</td>
<td>Team</td>
</tr>
<tr>
<td>East</td>
<td>AlphaBetaDeltaGammaGamma</td>
</tr>
<tr>
<td>West</td>
<td>EpsilonEtaThetaZeta</td>
</tr>
<tr>
<td>Given that the TeamData table is loaded as in the previous example: LOAD SalesGroup, Concat(distinct Team,'-') as TeamConcat2 Resident TeamData Group By SalesGroup;</td>
<td>SalesGroup</td>
</tr>
<tr>
<td>East</td>
<td>Alpha-Beta-Delta-Gamma</td>
</tr>
<tr>
<td>West</td>
<td>Epsilon-Eta-Theta-Zeta</td>
</tr>
</tbody>
</table>
Functions in scripts and chart expressions

Example

Given that the `TeamData` table is loaded as in the previous example:

<table>
<thead>
<tr>
<th>Script Syntax</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>LOAD SalesGroup,Concat(distinct Team,'-',Amount) as TeamConcat2 Resident TeamData Group By SalesGroup;</code></td>
<td><code>Because the argument for sort-weight is added, the results are ordered by the value of the dimension Amount.</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SalesGroup</th>
<th>TeamConcat2</th>
</tr>
</thead>
<tbody>
<tr>
<td>East</td>
<td>Delta-Beta-Gamma-Alpha</td>
</tr>
<tr>
<td>West</td>
<td>Eta-Epsilon-Zeta-Theta</td>
</tr>
</tbody>
</table>

Concat - chart function

`Concat()` is used to combine string values. The function returns the aggregated string concatenation of all the values of the expression evaluated over each dimension.

Syntax:

```
Concat((SetExpression) [DISTINCT] [TOTAL [<fld[, fld>]]] string[, delimiter[, sort_weight]])
```

Return data type: string

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>The expression or field containing the string to be processed.</td>
</tr>
<tr>
<td>delimiter</td>
<td>Each value may be separated by the string found in delimiter.</td>
</tr>
<tr>
<td>sort-weight</td>
<td>The order of concatenation may be determined by the value of the dimension sort-weight, if present, with the string corresponding to the lowest value appearing first in the concatenation.</td>
</tr>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
<tr>
<td>DISTINCT</td>
<td>If the word DISTINCT occurs before the function arguments, duplicates resulting from the evaluation of the function arguments are disregarded.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

Examples and results:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>SalesGroup</th>
<th>Amount</th>
<th>Concat(Team)</th>
<th>Concat(TOTAL &lt;SalesGroup&gt; Team)</th>
</tr>
</thead>
<tbody>
<tr>
<td>East</td>
<td>25000</td>
<td>Alpha</td>
<td>AlphaBetaDeltaGammaGamma</td>
</tr>
<tr>
<td>East</td>
<td>20000</td>
<td>BetaGammaGamma</td>
<td>AlphaBetaDeltaGammaGamma</td>
</tr>
<tr>
<td>East</td>
<td>14000</td>
<td>Delta</td>
<td>AlphaBetaDeltaGammaGamma</td>
</tr>
<tr>
<td>West</td>
<td>17000</td>
<td>Epsilon</td>
<td>EpsilonEtaThetaZeta</td>
</tr>
<tr>
<td>West</td>
<td>14000</td>
<td>Eta</td>
<td>EpsilonEtaThetaZeta</td>
</tr>
<tr>
<td>West</td>
<td>23000</td>
<td>Theta</td>
<td>EpsilonEtaThetaZeta</td>
</tr>
<tr>
<td>West</td>
<td>19000</td>
<td>Zeta</td>
<td>EpsilonEtaThetaZeta</td>
</tr>
</tbody>
</table>

Example | Result
---|---
Concat(Team) | The table is constructed from the dimensions SalesGroup and Amount, and variations on the measure Concat(Team). Ignoring the Totals result, note that even though there is data for eight values of Team spread across two values of SalesGroup, the only result of the measure Concat(Team) that concatenates more than one Team string value in the table is the row containing the dimension Amount 20000, which gives the result BetaGammaGamma. This is because there are three values for the Amount 20000 in the input data. All other results remain unconcatenated when the measure is spanned across the dimensions because there is only one value of Team for each combination of SalesGroup and Amount.

Concat (DISTINCT Team, ',', ') | Beta, Gamma, because the DISTINCT qualifier means the duplicate Gamma result is disregarded. Also, the delimiter argument is defined as a comma followed by a space.

Concat (TOTAL <SalesGroup> Team) | All the string values for all values of Team are concatenated if the TOTAL qualifier is used. With the field selection <SalesGroup> specified, this divides the results into the two values of the dimension SalesGroup. For the SalesGroupEast, the results are AlphaBetaDeltaGammaGamma. For the SalesGroupWest, the results are EpsilonEtaThetaZeta.

Concat (TOTAL <SalesGroup> Team, ';', Amount) | By adding the argument for **sort-weight**: Amount, the results are ordered by the value of the dimension Amount. The results becomes DeltaBetaGammaGammaAlpha and EtaEpsilonZetaTheta.

Data used in example:

TeamData:

```sql
LOAD * inline [
  SalesGroup|Team|Date|Amount
  East|Gamma|01/05/2013|20000
  East|Gamma|02/05/2013|20000
  West|Zeta|01/06/2013|19000
  East|Alpha|01/07/2013|25000
];
```
5 Functions in scripts and chart expressions

East|Delta|01/08/2013|14000
West|Epsilon|01/09/2013|17000
West|Eta|01/10/2013|14000
East|Beta|01/11/2013|20000
West|Theta|01/12/2013|23000
] (delimiter is '|');

FirstValue
FirstValue() returns the value that was loaded first from the records defined by the expression, sorted by a group by clause.

This function is only available as a script function.

Syntax:

\[ \text{FirstValue} \left( \text{expr} \right) \]

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
</tbody>
</table>

Limitations:

If no text value is found, NULL is returned.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>TeamData: LOAD * inline [ SalesGroup</td>
<td>Team</td>
</tr>
</tbody>
</table>

LastValue

LastValue() returns the value that was loaded last from the records defined by the expression, sorted by a group by clause.

This function is only available as a script function.

Syntax:

LastValue ( expr )

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
</tbody>
</table>

Limitations:

If no text value is found, NULL is returned.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch from Auto to Custom, then deselect numerical and alphabetical sorting.
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>TeamData: LOAD * inline [ SalesGroup</td>
<td>Team</td>
</tr>
</tbody>
</table>

MaxString

MaxString() finds string values in the expression and returns the last text value sorted over a number of records, as defined by a group by clause.

Syntax:

MaxString( expr )

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
</tbody>
</table>

Limitations:

If no text value is found, NULL is returned.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.
5 Functions in scripts and chart expressions

### Example

**TeamData:**
```
LOAD * inline [
SalesGroup|Team|Date|Amount
East|Gamma|01/05/2013|20000
East|Gamma|02/05/2013|20000
West|Zeta|01/06/2013|19000
East|Alpha|01/07/2013|25000
East|Delta|01/08/2013|14000
West|Epsilon|01/09/2013|17000
West|Eta|01/10/2013|14000
East|Beta|01/11/2013|20000
West|Theta|01/12/2013|23000
] (delimiter is '|');
```

**Concat1:**
```
LOAD SalesGroup,MaxString(Team) as MaxString1 Resident TeamData Group By SalesGroup;
```

**Result**

<table>
<thead>
<tr>
<th>SalesGroup</th>
<th>MaxString1</th>
</tr>
</thead>
<tbody>
<tr>
<td>East</td>
<td>Gamma</td>
</tr>
<tr>
<td>West</td>
<td>Zeta</td>
</tr>
</tbody>
</table>

**Given that the TeamData table is loaded as in the previous example, and your data load script has the SET statement:**
```
SET DateFormat='DD/MM/YYYY';
```

**LOAD SalesGroup,MaxString(Date) as MaxString2 Resident TeamData Group By SalesGroup;**

**Result**

<table>
<thead>
<tr>
<th>SalesGroup</th>
<th>MaxString2</th>
</tr>
</thead>
<tbody>
<tr>
<td>East</td>
<td>01/11/2013</td>
</tr>
<tr>
<td>West</td>
<td>01/12/2013</td>
</tr>
</tbody>
</table>

### MaxString - chart function

**MaxString()** finds string values in the expression or field and returns the last text value in the text sort order.

**Syntax:**
```
MaxString([[SetExpression] [TOTAL [<fld{, fld}>]]] expr)
```

**Return data type:** dual

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

Limitations:

If the expression contains no values with a string representation NULL is returned.

Examples and results:

<table>
<thead>
<tr>
<th>SalesGroup</th>
<th>Amount</th>
<th>MaxString(Team)</th>
<th>MaxString(Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>East</td>
<td>14000</td>
<td>Delta</td>
<td>2013/08/01</td>
</tr>
<tr>
<td>East</td>
<td>20000</td>
<td>Gamma</td>
<td>2013/11/01</td>
</tr>
<tr>
<td>East</td>
<td>25000</td>
<td>Alpha</td>
<td>2013/07/01</td>
</tr>
<tr>
<td>West</td>
<td>14000</td>
<td>Eta</td>
<td>2013/10/01</td>
</tr>
<tr>
<td>West</td>
<td>17000</td>
<td>Epsilon</td>
<td>2013/09/01</td>
</tr>
<tr>
<td>West</td>
<td>19000</td>
<td>Zeta</td>
<td>2013/06/01</td>
</tr>
<tr>
<td>West</td>
<td>23000</td>
<td>Theta</td>
<td>2013/12/01</td>
</tr>
</tbody>
</table>

This table represents all values of the dimension Customer with corresponding Product values. In an actual table visualization on a sheet, there will be a row for each value of Customer and Product.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxString (Team)</td>
<td>There are three values of 20000 for the dimension Amount: two of Gamma (on different dates), and one of Beta. The result of the measure MaxString (Team) is therefore Gamma, because this is the highest value in the sorted strings.</td>
</tr>
<tr>
<td>MaxString (Date)</td>
<td>2013/11/01 is the greatest Date value of the three associated with the dimension Amount. This assumes your script has the SET statement SET DateFormat='YYYY-MM-DD';'</td>
</tr>
</tbody>
</table>

Data used in example:

TeamData:

LOAD * inline [ SalesGroup|Team|Date|Amount East|Gamma|01/05/2013|20000 East|Gamma|02/05/2013|20000 West|Zeta|01/06/2013|19000 East|Alpha|01/07/2013|25000 East|Delta|01/08/2013|14000 West|Epsilon|01/09/2013|17000 West|Eta|01/10/2013|14000 East|Beta|01/11/2013|20000 West|Theta|01/12/2013|23000 ] (delimiter is '|');
5  Functions in scripts and chart expressions

MinString

MaxString() finds string values in the expression and returns the first text value sorted over a number of records, as defined by a group by clause.

Syntax:

MinString ( expr )

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
</tbody>
</table>

Limitations:

If no text value is found, NULL is returned.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

Example | Result
------ | ----
TeamData:
LOAD * inline [{
  SalesGroup|Team|Date|Amount
  East|Gamma|01/05/2013|20000
  East|Gamma|02/05/2013|20000
  West|Zeta|01/06/2013|19000
  East|Alpha|01/07/2013|25000
  East|Delta|01/08/2013|14000
  West|Epsilon|01/09/2013|17000
  West|Eta|01/10/2013|14000
  East|Beta|01/11/2013|20000
  West|Theta|01/12/2013|23000
} (delimiter is '|'));

Concat1:
LOAD SalesGroup, MinString(Team) as MinString1 Resident TeamData Group By SalesGroup;

<table>
<thead>
<tr>
<th>SalesGroup</th>
<th>MinString1</th>
</tr>
</thead>
<tbody>
<tr>
<td>East</td>
<td>Alpha</td>
</tr>
<tr>
<td>West</td>
<td>Epsilon</td>
</tr>
</tbody>
</table>

Given that the TeamData table is loaded as in the previous example, and your data load script has the SET statement:

SET DateFormat='DD/MM/YYYY';

LOAD SalesGroup, MinString(Date) as MinString2 Resident TeamData Group By SalesGroup;

<table>
<thead>
<tr>
<th>SalesGroup</th>
<th>MinString2</th>
</tr>
</thead>
<tbody>
<tr>
<td>East</td>
<td>01/05/2013</td>
</tr>
<tr>
<td>West</td>
<td>01062/2013</td>
</tr>
</tbody>
</table>
MinString - chart function

**MinString()** finds string values in the expression or field and returns the first text value in the text sort order.

**Syntax:**

```plaintext
MinString([[SetExpression] [TOTAL [<fld {, fld}>]]] expr)
```

Return data type: dual

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>SetExpression</td>
<td>By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set analysis expression.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the word TOTAL occurs before the function arguments, the calculation is made over all possible values given the current selections, and not just those that pertain to the current dimensional value, that is, it disregards the chart dimensions. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

**Examples and results:**

<table>
<thead>
<tr>
<th>SalesGroup</th>
<th>Amount</th>
<th>MinString(Team)</th>
<th>MinString(Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>East</td>
<td>14000</td>
<td>Delta</td>
<td>2013/08/01</td>
</tr>
<tr>
<td>East</td>
<td>20000</td>
<td>Beta</td>
<td>2013/05/01</td>
</tr>
<tr>
<td>East</td>
<td>25000</td>
<td>Alpha</td>
<td>2013/07/01</td>
</tr>
<tr>
<td>West</td>
<td>14000</td>
<td>Eta</td>
<td>2013/10/01</td>
</tr>
<tr>
<td>West</td>
<td>17000</td>
<td>Epsilon</td>
<td>2013/09/01</td>
</tr>
<tr>
<td>West</td>
<td>19000</td>
<td>Zeta</td>
<td>2013/06/01</td>
</tr>
<tr>
<td>West</td>
<td>23000</td>
<td>Theta</td>
<td>2013/12/01</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>MinString (Team)</td>
<td>There are three values of 20000 for the dimension Amount: two of Gamma (on different dates), and one of Beta. The result of the measure MinString (Team) is therefore Beta, because this is the first value in the sorted strings.</td>
</tr>
<tr>
<td>MinString (Date)</td>
<td>2013/11/01 is the earliest Date value of the three associated with the dimension Amount. This assumes your script has the SET statement SET DateFormat='YYYY-MM-DD';</td>
</tr>
</tbody>
</table>

Data used in example:

TeamData:
LOAD * inline [SalesGroup|Team|Date|Amount
 East|Gamma|01/05/2013|20000
 East|Gamma|02/05/2013|20000
 West|Zeta|01/06/2013|19000
 East|Alpha|01/07/2013|25000
 East|Delta|01/08/2013|14000
 West|Epsilon|01/09/2013|17000
 West|Eta|01/10/2013|14000
 East|Beta|01/11/2013|20000
 West|Theta|01/12/2013|23000
] (delimiter is '|');

Synthetic dimension functions

A synthetic dimension is created in the app from values generated from the synthetic dimension functions and not directly from fields in the data model. When values generated by a synthetic dimension function are used in a chart as a calculated dimension, this creates a synthetic dimension. Synthetic dimensions allow you to create, for example, charts with dimensions with values arising from your data, that is, dynamic dimensions.

![Synthetic dimensions are not affected by selections.](image)

The following synthetic dimension functions can be used in charts.

**ValueList**

**ValueList()** returns a set of listed values, which, when used in a calculated dimension, will form a synthetic dimension.

**ValueList - chart function (v1 [, Expression])**

**ValueLoop**

**ValueLoop()** returns a set of iterated values which, when used in a calculated dimension, will form a synthetic dimension.

**ValueLoop - chart function (from [, to [, step ]])**
ValueList - chart function

ValueList() returns a set of listed values, which, when used in a calculated dimension, will form a synthetic dimension.

In charts with a synthetic dimension created with the ValueList function it is possible to reference the dimension value corresponding to a specific expression cell by restating the ValueList function with the same parameters in the chart expression. The function may of course be used anywhere in the layout, but apart from when used for synthetic dimensions it will only be meaningful inside an aggregation function.

Synthetic dimensions are not affected by selections.

Syntax:

ValueList(v1 {,...})

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td>Static value (usually a string, but can be a number).</td>
</tr>
<tr>
<td>{...}</td>
<td>Optional list of static values.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ValueList('Number of Orders', 'Average Order Size', 'Total Amount')</td>
<td>When used to create a dimension in a table, for example, this results in the three string values as row labels in the table. These can then be referenced in an expression.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>=IF( ValueList ('Number of Orders', 'Average Order Size', 'Total Amount') = 'Number of Orders', count (SaleID), IF( ValueList ('Number of Orders', 'Average Order Size', 'Total Amount') = 'Average Order Size', avg (Amount), sum (Amount) ))</td>
<td>This expression takes the values from the created dimension and references them in a nested IF statement as input to three aggregation functions:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ValueList()</th>
<th>Created dimension</th>
<th>Year</th>
<th>Added expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Orders</td>
<td>2012</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>Number of Orders</td>
<td>2013</td>
<td>7.00</td>
<td></td>
</tr>
<tr>
<td>Average Order Size</td>
<td>2012</td>
<td>13.20</td>
<td></td>
</tr>
<tr>
<td>Average Order Size</td>
<td>2013</td>
<td>15.43</td>
<td></td>
</tr>
<tr>
<td>Total Amount</td>
<td>2012</td>
<td>66.00</td>
<td></td>
</tr>
<tr>
<td>Total Amount</td>
<td>2013</td>
<td>108.00</td>
<td></td>
</tr>
</tbody>
</table>

Data used in examples:

SalesPeople:
LOAD * INLINE [
 SaleID|SalesPerson|Amount|Year
 1|1|12|2013
 2|1|23|2013
 3|1|17|2013
 4|2|9|2013
 5|2|14|2013
 6|2|29|2013
 7|2|4|2013
 8|1|15|2012
 9|1|16|2012
 10|2|11|2012
 11|2|17|2012
 12|2|7|2012
] (delimiter is '|');

ValueLoop - chart function

ValueLoop() returns a set of iterated values which, when used in a calculated dimension, will form a synthetic dimension.

The values generated will start with the from value and end with the to value including intermediate values in increments of step.
In charts with a synthetic dimension created with the `ValueLoop` function it is possible to reference the dimension value corresponding to a specific expression cell by restating the `ValueLoop` function with the same parameters in the chart expression. The function may of course be used anywhere in the layout, but apart from when used for synthetic dimensions it will only be meaningful inside an aggregation function.

Synthetic dimensions are not affected by selections.

Syntax:

```plaintext
ValueLoop(from [, to [, step ]])
```

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>from</td>
<td>Start value in the set of values to be generated.</td>
</tr>
<tr>
<td>to</td>
<td>End value in the set of values to be generated.</td>
</tr>
<tr>
<td>step</td>
<td>Size of increment between values.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ValueLoop(1, 10)</code></td>
<td>This creates a dimension in a table, for example, that can be used for purposes such as numbered labeling. The example here results in values numbered 1 to 10. These values can then be referenced in an expression.</td>
</tr>
<tr>
<td><code>ValueLoop(2, 10, 2)</code></td>
<td>This example results in values numbered 2, 4, 6, 8, and 10 because the argument step has a value of 2.</td>
</tr>
</tbody>
</table>

Nested aggregations

You may come across situations where you need to apply an aggregation to the result of another aggregation. This is referred to as nesting aggregations.

As a general rule, it is not allowed to nest aggregations in a Qlik Sense chart expression. Nesting is only allowed if you:

- Use the `TOTAL` qualifier in the inner aggregation function.

No more than 100 levels of nesting is allowed.
5 Functions in scripts and chart expressions

Nested aggregations with the TOTAL qualifier

Example:

You want to calculate the sum of the field Sales, but only include transactions with an OrderDate equal to the last year. The last year can be obtained via the aggregation function Max(TOTAL Year(OrderDate)).

The following aggregation would return the desired result:

\[ \text{Sum(If(Year(OrderDate)=Max(TOTAL Year(OrderDate)), Sales))} \]

The inclusion of the TOTAL qualifier is absolutely necessary for this kind of nesting to be accepted by Qlik Sense, but then again also necessary for the desired comparison. This type of nesting need is quite common and is a good practice.

See also:

- Aggr - chart function (page 145)

5.2 Color functions

These functions can be used in expressions associated with setting and evaluating the color properties of chart objects, as well as in data load scripts.

Qlik Sense supports the color functions qliktechblue and qliktechgray for backwards compatibility reasons, but use of them is not recommended.

**ARGB**

ARGB() is used in expressions to set or evaluate the color properties of a chart object, where the color is defined by a red component \( r \), a green component \( g \), and a blue component \( b \), with an alpha factor (opacity) of \( \alpha \).

\[ \text{ARGB}(\alpha, r, g, b) \]

**HSL**

HSL() is used in expressions to set or evaluate the color properties of a chart object, where the color is defined by values of hue, saturation, and luminosity between 0 and 255.

\[ \text{HSL}(\text{hue}, \text{saturation}, \text{luminosity}) \]

**RGB**

RGB() is used in expressions to set or evaluate the color properties of a chart object, where the color is defined by a red component \( r \), a green component \( g \), and a blue component \( b \).
Functions in scripts and chart expressions

**RGB** \((r, g, b)\)

Color

**Color()** is used in expressions to return the color representation of color number \(n\) in the relevant chart palette. The color representation is a dual value where the text representation comes in the form of \(\text{RGB}(r, g, b)\) where \(r\), \(g\) and \(b\) are numbers between 0 and 255 representing the red, green and blue color value respectively. The number representation is an integer representing the red, green and blue components.

**Color** \((n)\)

Colormix1

**Colormix1()** is used in expressions to return an RGB color representation from a two color gradient, based on a value between 0 and 1.

**Colormix1** \((\text{Value} , \text{ColorZero} , \text{ColorOne})\)

- Value is a real number between 0 and 1.
  - If Value = 0 the first color is returned.
  - If Value = 1 the second color is returned.
  - If 0 < Value < 1 the appropriate intermediate shading is returned.

ColorZero is a valid RGB color representation for the color to be associated with the low end of the interval.

ColorOne is a valid RGB color representation for the color to be associated with the high end of the interval.

Colormix2

**Colormix2()** is used in expressions to return an RGB color representation from a two color gradient, based on a value between -1 and 1, with the possibility to specify an intermediate color for the center (0) position.

**Colormix2** \((\text{Value} ,\text{ColorMinusOne} , \text{ColorOne}[, \text{ColorZero}])\)

- Value is a real number between -1 and 1.
  - If Value = -1 the first color is returned.
  - If Value = 1 the second color is returned.
  - If -1 < Value < 1 the appropriate intermediate shading is returned.

ColorMinusOne is a valid RGB color representation for the color to be associated with the low end of the interval.

ColorOne is a valid RGB color representation for the color to be associated with the high end of the interval.

ColorZero is an optional valid RGB color representation for the color to be associated with the center of the interval.

SysColor

**SysColor()** returns the RGB color representation for the Windows system color \(nr\), where \(nr\) corresponds to the parameter to the Windows API function **GetSysColor(nr)**.

**SysColor** \((nr)\)

ColorMapHue
5 Functions in scripts and chart expressions

**ColorMapHue()** returns the color representation of a color from a colormap that varies the hue component of the HSV color model. The colormap starts with red, passes through yellow, green, cyan, blue, magenta, and returns to red. x must be specified as a value between 0 and 1.

<table>
<thead>
<tr>
<th>ColorMapHue (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ColorMapJet</td>
</tr>
</tbody>
</table>

**ColorMapJet()** returns the color representation of a color from a colormap that starts with blue, passes through cyan, yellow and orange, and returns to red. x must be specified as a value between 0 and 1.

<table>
<thead>
<tr>
<th>ColorMapJet (x)</th>
</tr>
</thead>
</table>

**Pre-defined color functions**

The following functions can be used in expressions for pre-defined colors. Each function returns an RGB color representation.

Optionally a parameter for alpha factor can be given, in which case an ARGB color representation is returned. An alpha factor of 0 corresponds to full transparency, and an alpha factor of 255 corresponds to full opacity.

<table>
<thead>
<tr>
<th>Color function</th>
<th>RGB value</th>
</tr>
</thead>
<tbody>
<tr>
<td>black ([alpha])</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>blue([alpha])</td>
<td>(0,0,128)</td>
</tr>
<tr>
<td>brown([alpha])</td>
<td>(128,128,0)</td>
</tr>
<tr>
<td>cyan([alpha])</td>
<td>(0,128,128)</td>
</tr>
<tr>
<td>darkgray([alpha])</td>
<td>(128,128,128)</td>
</tr>
<tr>
<td>green([alpha])</td>
<td>(0,128,0)</td>
</tr>
<tr>
<td>lightblue([alpha])</td>
<td>(0,0,255)</td>
</tr>
<tr>
<td>lightcyan([alpha])</td>
<td>(0,255,255)</td>
</tr>
<tr>
<td>lightgray([alpha])</td>
<td>(192,192,192)</td>
</tr>
<tr>
<td>lightgreen([alpha])</td>
<td>(0,255,0)</td>
</tr>
<tr>
<td>lightmagenta([alpha])</td>
<td>(255,0,255)</td>
</tr>
<tr>
<td>lightred([alpha])</td>
<td>(255,0,0)</td>
</tr>
<tr>
<td>magenta([alpha])</td>
<td>(128,0,128)</td>
</tr>
<tr>
<td>red([alpha])</td>
<td>(128,0,0)</td>
</tr>
<tr>
<td>white([alpha])</td>
<td>(255,255,255)</td>
</tr>
<tr>
<td>yellow([alpha])</td>
<td>(255,255,0)</td>
</tr>
</tbody>
</table>

**Examples and results:**
Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue()</td>
<td>RGB(0,0,128)</td>
</tr>
<tr>
<td>blue(128)</td>
<td>ARGB(128,0,0,128)</td>
</tr>
</tbody>
</table>

**ARGB**

**ARGB()** is used in expressions to set or evaluate the color properties of a chart object, where the color is defined by a red component \( r \), a green component \( g \), and a blue component \( b \), with an alpha factor (opacity) of \( \alpha \).

**Syntax:**

\[
\text{ARGB}(\alpha, r, g, b)
\]

**Return data type:** dual

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \alpha )</td>
<td>Transparency value in the range 0 - 255. 0 corresponds to full transparency and 255 corresponds to full opacity.</td>
</tr>
<tr>
<td>( r, g, b )</td>
<td>Red, green, and blue component values. A color component of 0 corresponds to no contribution and one of 255 to full contribution.</td>
</tr>
</tbody>
</table>

*All arguments must be expressions that resolve to integers in the range 0 to 255.*

If interpreting the numeric component and formatting it in hexadecimal notation, the values of the color components are easier to see. For example, light green has the number 4278255360, which in hexadecimal notation is FF00FF00. The first two positions ‘FF’ (255) denote the \( \alpha \) factor. The next two positions ‘00’ denote the amount of \textbf{red}, the next two positions ‘FF’ denote the amount of \textbf{green} and the final two positions ‘00’ denote the amount of \textbf{blue}.

**RGB**

**RGB()** is used in expressions to set or evaluate the color properties of a chart object, where the color is defined by a red component \( r \), a green component \( g \), and a blue component \( b \).

**Syntax:**

\[
\text{RGB}(r, g, b)
\]

**Return data type:** dual

**Arguments:**
5. Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r, g, b</td>
<td>Red, green, and blue component values. A color component of 0 corresponds to no contribution and one of 255 to full contribution.</td>
</tr>
</tbody>
</table>

All arguments must be expressions that resolve to integers in the range 0 to 255.

If interpreting the numeric component and formatting it in hexadecimal notation, the values of the color components are easier to see. For example, light green has the number 4 278 255 360, which in hexadecimal notation is FF00FF00. The first two positions ‘FF’ (255) denote the alpha factor. In the functions RGB and HSL, this is always ‘FF’ (opaque). The next two positions ‘00’ denote the amount of red, the next two positions ‘FF’ denote the amount of green and the final two positions ‘00’ denote the amount of blue.

HSL

HSL() is used in expressions to set or evaluate the color properties of a chart object, where the color is defined by values of hue, saturation, and luminosity between 0 and 255.

Syntax:

```
HSL (hue, saturation, luminosity)
```

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hue, saturation, luminosity</td>
<td>hue, saturation, and luminosity component values. A value of 0 corresponds to no contribution and one of 255 to full contribution.</td>
</tr>
</tbody>
</table>

All arguments must be expressions that resolve to integers in the range 0 to 255.

If interpreting the numeric component and formatting it in hexadecimal notation, the values of the color components are easier to see. For example, light green has the number 4 286 080 100, which in hexadecimal notation is FF786464. The first two positions ‘FF’ (255) denote the alpha factor. In the functions RGB and HSL, this is always ‘FF’ (opaque). The next two positions ‘78’ denote hue component, the next two positions ‘64’ denote the saturation, and the final two positions ‘64’ denote the luminosity, component.

5.3 Conditional functions

The conditional functions all evaluate a condition and then return different answers depending on the condition value. The functions can be used in the data load script and in chart expressions.
Conditional functions overview

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

**alt**

The *alt* function returns the first of the parameters that has a valid number representation. If no such match is found, the last parameter will be returned. Any number of parameters can be used.

```
alt (case1[, case2, case3, ...], else)
```

**class**

The *class* function assigns the first parameter to a class interval. The result is a dual value with a<=x<b as the textual value, where a and b are the upper and lower limits of the bin, and the lower bound as numeric value.

```
class (expression, interval [, label [, offset]])
```

**if**

The *if* function returns a value depending on whether the condition provided with the function evaluates as True or False.

```
if (condition, then, else)
```

**match**

The *match* function compares the first parameter with all the following ones and returns the number of expression that matches. The comparison is case sensitive.

```
match (str, expr1[, expr2,...exprN])
```

**mixmatch**

The *mixmatch* function compares the first parameter with all the following ones and returns the number of expression that matches. The comparison is case insensitive.

```
mixmatch (str, expr1[, expr2,...exprN])
```

**pick**

The pick function returns the n:th expression in the list.

```
pick (n, expr1[, expr2,...exprN])
```

**wildmatch**

The *wildmatch* function compares the first parameter with all the following ones and returns the number of expression that matches. It permits the use of wildcard characters ( * and ? ) in the comparison strings. The comparison is case insensitive.

```
wildmatch (str, expr1[, expr2,...exprN])
```
alt

The **alt** function returns the first of the parameters that has a valid number representation. If no such match is found, the last parameter will be returned. Any number of parameters can be used.

**Syntax:**

```
alt(case1[, case2, case3, ...], else)
```

The alt function is often used with number or date interpretation functions. This way, Qlik Sense can test different date formats in a prioritized order. It can also be used to handle NULL values in numerical expressions.

**Examples and results:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>alt(date#, 'YYYY/MM/DD'), date#, date#, 'No valid date')</td>
<td>This expression will test if the field date contains a date according to any of the three specified date formats. If so, it will return a dual value containing the original string and a valid number representation of a date. If no match is found, the text 'No valid date' will be returned (without any valid number representation).</td>
</tr>
<tr>
<td>alt(Sales,0) + alt(Margin,0)</td>
<td>This expression adds the fields Sales and Margin, replacing any missing value (NULL) with a 0.</td>
</tr>
</tbody>
</table>

class

The **class** function assigns the first parameter to a class interval. The result is a dual value with a\( \leq x < b \) as the textual value, where a and b are the upper and lower limits of the bin, and the lower bound as numeric value.

**Syntax:**

```
class(expression, interval [, , label [, , offset ]])
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interval</td>
<td>A number that specifies the bin width.</td>
</tr>
<tr>
<td>label</td>
<td>An arbitrary string that can replace the 'x' in the result text.</td>
</tr>
<tr>
<td>offset</td>
<td>A number that can be used as offset from the default starting point of the classification. The default starting point is normally 0.</td>
</tr>
</tbody>
</table>

**Examples and results:**
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>class( var, 10 ) with var = 23</code></td>
<td>returns '20&lt;=x&lt;30'</td>
</tr>
<tr>
<td><code>class( var, 5, 'value' ) with var = 23</code></td>
<td>returns '20&lt;= value &lt;25'</td>
</tr>
<tr>
<td><code>class( var, 10, 'x', 5 ) with var = 23</code></td>
<td>returns '15&lt;=x&lt;25'</td>
</tr>
</tbody>
</table>

Example data load script:
In this example, we load a table containing name and age of people. We want to add a field that classifies each person according to an age group with a ten year interval. The source table looks like this:

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>25</td>
</tr>
<tr>
<td>Karen</td>
<td>42</td>
</tr>
<tr>
<td>Yoshi</td>
<td>53</td>
</tr>
</tbody>
</table>

To add the age group classification field, you can add a preceding load statement using the `class` function. In this example, we load the source table using inline data.

```
LOAD *,
class(Age, 10, 'age') As Agegroup;
LOAD * INLINE
[ Age, Name
  25, John
  42, Karen
  53, Yoshi];
```

The resulting data that is loaded looks like this:

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Agegroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>25</td>
<td>20 &lt;= age &lt; 30</td>
</tr>
<tr>
<td>Karen</td>
<td>42</td>
<td>40 &lt;= age &lt; 50</td>
</tr>
<tr>
<td>Yoshi</td>
<td>53</td>
<td>50 &lt;= age &lt; 60</td>
</tr>
</tbody>
</table>

if
The `if` function returns a value depending on whether the condition provided with the function evaluates as True or False.

Syntax:

```plaintext
if(condition, then, else)
```
5 Functions in scripts and chart expressions

The if function has three parameters, condition, then and else, which are all expressions. The two other ones, then and else, can be of any type.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>condition</td>
<td>Expression that is interpreted logically.</td>
</tr>
<tr>
<td>then</td>
<td>Expression that can be of any type. If the condition is True, then the if function returns the value of the then expression.</td>
</tr>
<tr>
<td>else</td>
<td>Expression that can be of any type. If the condition is False, then the if function returns the value of the else expression.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>if( Amount&gt;= 0, 'Ok', 'Alarm')</td>
<td>This expression will test if the amount is a positive number (0 or larger) and return 'OK' if it is. If the amount is less than 0, 'Alarm' is returned.</td>
</tr>
</tbody>
</table>

match

The match function compares the first parameter with all the following ones and returns the number of expression that matches. The comparison is case sensitive.

Syntax:

```
match( str, expr1 [, expr2,...exprN ])
```

If you want to use case insensitive comparison, use the mixmatch function. If you want to use case insensitive comparison and wildcards, use the wildmatch function.

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>match( M, 'Jan','Feb','Mar')</td>
<td>returns 2 if M = Feb. returns 0 if M = Apr or Jan.</td>
</tr>
</tbody>
</table>

mixmatch

The mixmatch function compares the first parameter with all the following ones and returns the number of expression that matches. The comparison is case insensitive.

Syntax:
mixmatch( str, expr1 [ , expr2,...exprN ])

If you want to use case sensitive comparison, use the match function. If you want to use case insensitive comparison and wildcards, use the wildmatch function.

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>mixmatch( M, 'Jan','Feb','Mar')</td>
<td>returns 1 if M = jan</td>
</tr>
</tbody>
</table>

pick

The pick function returns the $n$:th expression in the list.

Syntax:

pick(n, expr1[ , expr2,...exprN])

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$n$ is an integer between 1 and N.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>pick( N, 'A','B',4, 6 )</td>
<td>returns 'B' if N = 2</td>
</tr>
<tr>
<td></td>
<td>returns 4 if N = 3</td>
</tr>
</tbody>
</table>

wildmatch

The wildmatch function compares the first parameter with all the following ones and returns the number of expression that matches. It permits the use of wildcard characters ( * and ?) in the comparison strings. The comparison is case insensitive.

Syntax:

wildmatch( str, expr1 [ , expr2,...exprN ])

If you want to use comparison without wildcards, use the match or mixmatch functions.

Examples and results:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>wildmatch( M, 'ja*', 'fe?', 'mar')</td>
<td>returns 1 if M = January</td>
</tr>
<tr>
<td></td>
<td>returns 2 if M = fex</td>
</tr>
</tbody>
</table>

5.4 Counter functions

This section describes functions related to record counters during LOAD statement evaluation in the data load script. The only function that can be used in chart expressions is `RowNo()`.

Some counter functions do not have any parameters, but the trailing parentheses are however still required.

Counter functions overview

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

**autonumber**

This script function returns a unique integer value for each distinct evaluated value of *expression* encountered during the script execution. This function can be used e.g. for creating a compact memory representation of a complex key.

`autonumber(expression[, AutoID])`

**autonumberhash128**

This script function calculates a 128-bit hash of the combined input expression values and returns a unique integer value for each distinct hash value encountered during the script execution. This function can be used for example for creating a compact memory representation of a complex key.

`autonumberhash128(expression[, expression])`

**autonumberhash256**

This script function calculates a 256-bit hash of the combined input expression values and returns a unique integer value for each distinct hash value encountered during the script execution. This function can be used e.g. for creating a compact memory representation of a complex key.

This function is only available as a script function.

`autonumberhash256(expression[, expression])`

**fieldvaluecount**

This script function returns the number of distinct values in a field. *fieldname* must be given as a string (for example a quoted literal).

`fieldvaluecount(fieldname)`

**IterNo**

This script function returns an integer indicating for which time one single record is evaluated in a LOAD statement.
Functions in scripts and chart expressions

statement with a `while` clause. The first iteration has number 1. The `IterNo` function is only meaningful if used together with a `while` clause.

`IterNo ( )`

`RecNo`
This script function returns an integer for the number of the currently read row of the current table. The first record is number 1.

`RecNo ( )`

`RowNo` - script function
This function returns an integer for the position of the current row in the resulting Qlik Sense internal table. The first row is number 1.

`RowNo ( )`

`RowNo` - chart function
`RowNo()` returns the number of the current row within the current column segment in a table. For bitmap charts, `RowNo()` returns the number of the current row within the chart's straight table equivalent.

`RowNo - chart function([TOTAL])`

`autonumber`
This script function returns a unique integer value for each distinct evaluated value of `expression` encountered during the script execution. This function can be used e.g. for creating a compact memory representation of a complex key.

You can only connect `autonumber` keys that have been generated in the same data load, as the integer is generated according to the order the table is read. If you need to use keys that are persistent between data loads, independent of source data sorting, you should use the `hash128`, `hash160` or `hash256` functions.

Syntax:

`autonumber(expression[, AutoID])`

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoID</td>
<td>In order to create multiple counter instances if the <code>autonumber</code> function is used on different keys within the script, the optional parameter <code>AutoID</code> can be used for naming each counter.</td>
</tr>
</tbody>
</table>

Example: Creating a composite key
In this example we create a composite key using the `autonumber` function to conserve memory. The example is brief for demonstration purpose, but would be meaningful with a table containing a large number of rows.

### RegionSales:

#### RegionSales:

```
LOAD *,
AutoNumber(Region&Year&Month) as RYMkey;
```

#### LOAD * INLINE

```
[ Region, Year, Month, Sales
  North, 2014, May, 245
  North, 2014, May, 347
  North, 2014, June, 127
  South, 2014, June, 645
  South, 2013, May, 367
  South, 2013, May, 221
];
```

The resulting table looks like this:

<table>
<thead>
<tr>
<th>Region</th>
<th>Year</th>
<th>Month</th>
<th>Sales</th>
<th>RYMkey</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>2014</td>
<td>May</td>
<td>245</td>
<td>1</td>
</tr>
<tr>
<td>North</td>
<td>2014</td>
<td>May</td>
<td>347</td>
<td>1</td>
</tr>
<tr>
<td>North</td>
<td>2014</td>
<td>June</td>
<td>127</td>
<td>2</td>
</tr>
<tr>
<td>South</td>
<td>2014</td>
<td>June</td>
<td>645</td>
<td>3</td>
</tr>
<tr>
<td>South</td>
<td>2013</td>
<td>May</td>
<td>367</td>
<td>4</td>
</tr>
<tr>
<td>South</td>
<td>2013</td>
<td>May</td>
<td>221</td>
<td>4</td>
</tr>
</tbody>
</table>
In this example you can refer to the RYMkey, for example 1, instead of the string 'North2014May' if you need to link to another table.

Now we load a source table of costs in a similar way. The Region, Year and Month fields are excluded in the preceding load to avoid creating a synthetic key, we are already creating a composite key with the **autonumber** function, linking the tables.

RegionCosts:
LOAD Costs,
  Autonumber(Region&Year&Month) as RYMkey;

LOAD * INLINE
[ Region, Year, Month, Costs
  South, 2013, May, 167
  North, 2014, May, 56
  North, 2014, June, 199
  South, 2014, June, 64
  South, 2013, May, 172
  South, 2013, May, 126
 ];

Now we can add a table visualization to a sheet, and add the Region, Year and Month fields, as well as Sum measures for the sales and the costs. The table will look like this:

<table>
<thead>
<tr>
<th>Region</th>
<th>Year</th>
<th>Month</th>
<th>Sum([Sales])</th>
<th>Sum([Costs])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1952</td>
<td>784</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>2014</td>
<td>June</td>
<td>127</td>
<td>199</td>
</tr>
<tr>
<td>North</td>
<td>2014</td>
<td>May</td>
<td>592</td>
<td>56</td>
</tr>
<tr>
<td>South</td>
<td>2014</td>
<td>June</td>
<td>645</td>
<td>64</td>
</tr>
<tr>
<td>South</td>
<td>2013</td>
<td>May</td>
<td>588</td>
<td>465</td>
</tr>
</tbody>
</table>

See also:

- [autonumberhash128](page 338)
- [autonumberhash256](page 341)

**autonumberhash128**

This script function calculates a 128-bit hash of the combined input expression values and the returns a unique integer value for each distinct hash value encountered during the script execution. This function can be used for example for creating a compact memory representation of a complex key.
5 Functions in scripts and chart expressions

You can only connect `autonumberhash128` keys that have been generated in the same data load, as the integer is generated according to the order the table is read. If you need to use keys that are persistent between data loads, independent of source data sorting, you should use the `hash128`, `hash160` or `hash256` functions.

Syntax:

```
autonumberhash128(expression {, expression})
```

Example: Creating a composite key

In this example we create a composite key using the `autonumberhash128` function to conserve memory. The example is brief for demonstration purpose, but would be meaningful with a table containing a large number of rows.

<table>
<thead>
<tr>
<th>Region</th>
<th>Year</th>
<th>Month</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>2014</td>
<td>May</td>
<td>245</td>
</tr>
<tr>
<td>North</td>
<td>2014</td>
<td>May</td>
<td>347</td>
</tr>
<tr>
<td>North</td>
<td>2014</td>
<td>June</td>
<td>127</td>
</tr>
<tr>
<td>South</td>
<td>2014</td>
<td>June</td>
<td>645</td>
</tr>
<tr>
<td>South</td>
<td>2013</td>
<td>May</td>
<td>367</td>
</tr>
<tr>
<td>South</td>
<td>2013</td>
<td>May</td>
<td>221</td>
</tr>
</tbody>
</table>

The source data is loaded using inline data. Then we add a preceding load which creates a composite key from the Region, Year and Month fields.

```
RegionSales:
LOAD *
  AutonumberHash128(Region, Year, Month) as RYMkey;
```

```
LOAD * INLINE
  [ Region, Year, Month, Sales
  North, 2014, May, 245
  North, 2014, May, 347
  North, 2014, June, 127
  South, 2014, June, 645
  South, 2013, May, 367
  South, 2013, May, 221
 ];
```

The resulting table looks like this:
In this example you can refer to the RYMkey, for example 1, instead of the string 'North2014May' if you need to link to another table.

Now we load a source table of costs in a similar way. The Region, Year and Month fields are excluded in the preceding load to avoid creating a synthetic key, we are already creating a composite key with the \texttt{autonumberhash128} function, linking the tables.

\begin{verbatim}
RegionCosts:
LOAD Costs,
AutoNumberHash128(Region, Year, Month) as RYMkey;
\end{verbatim}

\begin{verbatim}
LOAD * INLINE
[ Region, Year, Month, Costs
South, 2013, May, 167
North, 2014, May, 56
North, 2014, June, 199
South, 2014, June, 64
South, 2013, May, 172
South, 2013, May, 126
];
\end{verbatim}

Now we can add a table visualization to a sheet, and add the Region, Year and Month fields, as well as Sum measures for the sales and the costs. the table will look like this:

<table>
<thead>
<tr>
<th>Region</th>
<th>Year</th>
<th>Month</th>
<th>Sum([Sales])</th>
<th>Sum([Costs])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>1952</td>
<td>784</td>
</tr>
<tr>
<td>North</td>
<td>2014</td>
<td>June</td>
<td>127</td>
<td>199</td>
</tr>
<tr>
<td>North</td>
<td>2014</td>
<td>May</td>
<td>592</td>
<td>56</td>
</tr>
<tr>
<td>South</td>
<td>2014</td>
<td>June</td>
<td>645</td>
<td>64</td>
</tr>
<tr>
<td>South</td>
<td>2013</td>
<td>May</td>
<td>588</td>
<td>465</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

See also:

- autonumberhash256 (page 341)
- autonumber (page 336)

autonumberhash256

This script function calculates a 256-bit hash of the combined input expression values and returns a unique integer value for each distinct hash value encountered during the script execution. This function can be used e.g. for creating a compact memory representation of a complex key.

You can only connect autonumberhash256 keys that have been generated in the same data load, as the integer is generated according to the order the table is read. If you need to use keys that are persistent between data loads, independent of source data sorting, you should use the hash128, hash160 or hash256 functions.

Syntax:

autonumberhash256(expression {, expression})

Example: Creating a composite key

In this example we create a composite key using the autonumberhash256 function to conserve memory. The example is brief for demonstration purpose, but would be meaningful with a table containing a large number of rows.

<table>
<thead>
<tr>
<th>Region</th>
<th>Year</th>
<th>Month</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>2014</td>
<td>May</td>
<td>245</td>
</tr>
<tr>
<td>North</td>
<td>2014</td>
<td>May</td>
<td>347</td>
</tr>
<tr>
<td>North</td>
<td>2014</td>
<td>June</td>
<td>127</td>
</tr>
<tr>
<td>South</td>
<td>2014</td>
<td>June</td>
<td>645</td>
</tr>
<tr>
<td>South</td>
<td>2013</td>
<td>May</td>
<td>367</td>
</tr>
<tr>
<td>South</td>
<td>2013</td>
<td>May</td>
<td>221</td>
</tr>
</tbody>
</table>

The source data is loaded using inline data. Then we add a preceding load which creates a composite key from the Region, Year and Month fields.

RegionSales:
LOAD *
,
5 Functions in scripts and chart expressions

AutoNumberHash256(Region, Year, Month) as RYMkey;

LOAD * INLINE
[ Region, Year, Month, Sales
North, 2014, May, 245
North, 2014, May, 347
North, 2014, June, 127
South, 2014, June, 645
South, 2013, May, 367
South, 2013, May, 221 ];

The resulting table looks like this:

<table>
<thead>
<tr>
<th>Region</th>
<th>Year</th>
<th>Month</th>
<th>Sales</th>
<th>RYMkey</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>2014</td>
<td>May</td>
<td>245</td>
<td>1</td>
</tr>
<tr>
<td>North</td>
<td>2014</td>
<td>May</td>
<td>347</td>
<td>1</td>
</tr>
<tr>
<td>North</td>
<td>2014</td>
<td>June</td>
<td>127</td>
<td>2</td>
</tr>
<tr>
<td>South</td>
<td>2014</td>
<td>June</td>
<td>645</td>
<td>3</td>
</tr>
<tr>
<td>South</td>
<td>2013</td>
<td>May</td>
<td>367</td>
<td>4</td>
</tr>
<tr>
<td>South</td>
<td>2013</td>
<td>May</td>
<td>221</td>
<td>4</td>
</tr>
</tbody>
</table>

In this example you can refer to the RYMkey, for example 1, instead of the string 'North2014May' if you need to link to another table.

Now we load a source table of costs in a similar way. The Region, Year and Month fields are excluded in the preceding load to avoid creating a synthetic key, we are already creating a composite key with the autonumberhash256 function, linking the tables.

RegionCosts:
LOAD Costs,
AutoNumberHash256(Region, Year, Month) as RYMkey;

LOAD * INLINE
[ Region, Year, Month, Costs
South, 2013, May, 167
North, 2014, May, 56
North, 2014, June, 199
South, 2014, June, 64
South, 2013, May, 172
South, 2013, May, 126 ];

Now we can add a table visualization to a sheet, and add the Region, Year and Month fields, as well as Sum measures for the sales and the costs. the table will look like this:
Functions in scripts and chart expressions

5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Region</th>
<th>Year</th>
<th>Month</th>
<th>Sum([Sales])</th>
<th>Sum([Costs])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>1952</td>
<td>784</td>
</tr>
<tr>
<td>North</td>
<td>2014</td>
<td>June</td>
<td>127</td>
<td>199</td>
</tr>
<tr>
<td>North</td>
<td>2014</td>
<td>May</td>
<td>592</td>
<td>56</td>
</tr>
<tr>
<td>South</td>
<td>2014</td>
<td>June</td>
<td>645</td>
<td>64</td>
</tr>
<tr>
<td>South</td>
<td>2013</td>
<td>May</td>
<td>588</td>
<td>465</td>
</tr>
</tbody>
</table>

See also:

- autonumberhash128 (page 338)
- autonumber (page 336)

**fieldvaluecount**

This script function returns the number of distinct values in a field. `fieldname` must be given as a string (for example a quoted literal).

**Syntax:**

```plaintext
fieldvaluecount(fieldname)
```

**Example:**

In this example the number of regions is counted and stored in the RegionCount variable. This value, 2 in this case, can then be used for further transformations where you need to know the number of existing regions.

```plaintext
LOAD * INLINE
[ Region, Year, Month, Sales
  South, 2014, June, 645
  North, 2014, May, 245
  North, 2014, May, 347
  North, 2014, June, 127
  South, 2013, May, 367
  South, 2013, July, 221 ];

Let RegionCount = FieldValueCount('Region');
```

**IterNo**

This script function returns an integer indicating for which time one single record is evaluated in a `LOAD` statement with a `while` clause. The first iteration has number 1. The `IterNo` function is only meaningful if used together with a `while` clause.

**Syntax:**

```plaintext
IterNo
```
5  Functions in scripts and chart expressions

**IterNo( )**

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOAD</td>
<td>This LOAD statement will generate one record per date within the range defined by <code>StartDate</code> and <code>EndDate</code>.</td>
</tr>
<tr>
<td>IterNo() as Day,</td>
<td>In this example, the resulting table will look like this:</td>
</tr>
<tr>
<td>Date( StartDate + IterNo() - 1 ) as Date</td>
<td></td>
</tr>
<tr>
<td>while StartDate + IterNo() - 1 &lt;= EndDate;</td>
<td></td>
</tr>
<tr>
<td>LOAD * INLINE</td>
<td></td>
</tr>
<tr>
<td>[StartDate, EndDate</td>
<td></td>
</tr>
<tr>
<td>2014-01-22, 2014-01-26</td>
<td></td>
</tr>
<tr>
<td>];</td>
<td></td>
</tr>
</tbody>
</table>

**RecNo**

This script functions returns an integer for the number of the currently read row of the current table. The first record is number 1.

**Syntax:**

```sql
RecNo( )
```

In contrast to `RowNo()`, which counts rows in the resulting Qlik Sense table, `RecNo()`, counts the records in the raw data table and is reset when a raw data table is concatenated to another.

**Example: Data load script**

Raw data table load:

```
Tab1: LOAD * INLINE
[A, B
1, aa
2, cc
3, ee];
```

```
Tab2: LOAD * INLINE
[C, D
5, xx
4, yy
6, zz];
```
5 Functions in scripts and chart expressions

Loading record and row numbers for selected rows:

QTab:
LOAD *,
RecNo(),
RowNo()
resident Tab1 where A<>2;

LOAD
C as A,
D as B,
RecNo(),
RowNo()
resident Tab2 where A<>5;

//we don't need the source tables anymore, so we drop them
Drop tables Tab1, Tab2;

The resulting Qlik Sense internal table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>RecNo()</th>
<th>RowNo()</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>aa</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>ee</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>yy</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>zz</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

RowNo

This function returns an integer for the position of the current row in the resulting Qlik Sense internal table. The first row is number 1.

Syntax:

RowNo ([TOTAL])

In contrast to RecNo(), which counts the records in the raw data table, the RowNo() function does not count records that are excluded by where clauses and is not reset when a raw data table is concatenated to another.

If you use preceding load, that is, a number of stacked LOAD statements reading from the same table, you can only use RowNo() in the top LOAD statement. If you use RowNo() in subsequent LOAD statements, 0 is returned.

Example: Data load script

Raw data table load:
Tab1:
LOAD * INLINE
[A, B
1, aa
2, cc
3, ee];

Tab2:
LOAD * INLINE
[C, D
5, xx
4, yy
6, zz];

Loading record and row numbers for selected rows:

QTab:
LOAD *, RecNO( ), RowNO( ) resident Tab1 where A<>2;

LOAD
C as A,
D as B,
RecNO( ),
RowNO( )
resident Tab2 where A<>5;

//we don't need the source tables anymore, so we drop them
Drop tables Tab1, Tab2;

The resulting Qlik Sense internal table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>RecNo()</th>
<th>RowNo()</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aa</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>ee</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>yy</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>zz</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

RowNo - chart function

RowNo() returns the number of the current row within the current column segment in a table. For bitmap charts, RowNo() returns the number of the current row within the chart's straight table equivalent.

If the table or table equivalent has multiple vertical dimensions, the current column segment will include only rows with the same values as the current row in all dimension columns, except for the column showing the last dimension in the inter-field sort order.

Syntax:

RowNo([TOTAL])
Return data type: integer

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current column segment is always equal to the entire column. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

Limitations:

Examples and results:

<table>
<thead>
<tr>
<th>Customer</th>
<th>UnitSales</th>
<th>Row in Segment</th>
<th>Row Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Astrida</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Astrida</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Betacab</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Betacab</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Betacab</td>
<td>25</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Canutility</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Canutility</td>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Divadip</td>
<td>4</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Divadip</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

Examples

Create a visualization consisting of a table with the dimensions Customer, UnitSales, and add \texttt{rowno( )} and \texttt{rowno(Total)} as measures labeled Row in Segment and Row Number.

Results

The Row in Segment column shows the results 1,2,3 for the column segment containing the values of UnitSales for customer Astrida. The row numbering then begins at 1 again for the next column segment, which is Betacab.

The Row Number column disregards the dimensions can be used to count the rows in the table.
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the expression: IF( RowNo() = 1, 0, UnitSales / Above( UnitSales ) ) as a measure.</td>
<td>This expression returns 0 for the first row in each column segment, so the column will show: 0, 2.25, 1.1111111, 0, 2.5, 5, 0, 2.375, 0, and 4.</td>
</tr>
</tbody>
</table>

Data used in examples:

Temp:
LOAD * inline [
Customer|Product|OrderNumber|UnitSales|UnitPrice
Astrida|AA|1|4|16
Astrida|AA|7|10|15
Astrida|BB|4|9|9
Betacab|CC|6|5|10
Betacab|AA|5|2|20
Betacab|BB|1|25|25
Canutility|AA|3|8|15
Canutility|CC|1|19
Divadip|CC|2|4|16
Divadip|DD|3|1|25
] (delimiter is '|');

See also:

- Above - chart function (page 500)

5.5 Date and time functions

Qlik Sense date and time functions are used to transform and convert date and time values. All functions can be used in both the data load script and in chart expressions.

Functions are based on a date-time serial number that equals the number of days since December 30, 1899. The integer value represents the day and the fractional value represents the time of the day.

Qlik Sense uses the numerical value of the parameter, so a number is valid as a parameter also when it is not formatted as a date or a time. If the parameter does not correspond to numerical value, for example, because it is a string, then Qlik Sense attempts to interpret the string according to the date and time environment variables.

If the time format used in the parameter does not correspond to the one set in the environment variables, Qlik Sense will not be able to make a correct interpretation. To resolve this, either change the settings or use an interpretation function.

In the examples for each function, the default time and date formats hh:mm:ss and YYYY-MM-DD (ISO 8601) are assumed.
5 Functions in scripts and chart expressions

Date and time functions overview
Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

Integer expressions of time

**second**
This function returns an integer representing the second when the fraction of the `expression` is interpreted as a time according to the standard number interpretation.

```
second (expression)
```

**minute**
This function returns an integer representing the minute when the fraction of the `expression` is interpreted as a time according to the standard number interpretation.

```
minute (expression)
```

**hour**
This function returns an integer representing the hour when the fraction of the `expression` is interpreted as a time according to the standard number interpretation.

```
hour (expression)
```

**day**
This function returns an integer representing the day when the fraction of the `expression` is interpreted as a date according to the standard number interpretation.

```
day (expression)
```

**week**
This function returns an integer representing the week number according to ISO 8601. The week number is calculated from the date interpretation of the expression, according to the standard number interpretation.

```
week (expression)
```

**month**
This function returns a dual value with a month name as defined in the environment variable `MonthNames` and an integer between 1-12. The month is calculated from the date interpretation of the expression, according to the standard number interpretation.

```
month (expression)
```

**year**
This function returns an integer representing the year when the `expression` is interpreted as a date according to the standard number interpretation.
5  Functions in scripts and chart expressions

**year (expression)**

**weekyear**
This function returns the year to which the week number belongs according to ISO 8601. The week number ranges between 1 and approximately 52.

**weekyear (expression)**

**weekday**
This function returns a dual value with: A day name as defined in the environment variable DayNames. An integer between 0-6 corresponding to the nominal day of the week (0-6).

**weekday (date)**

**Timestamp functions**

**now**
This function returns a timestamp of the current time from the system clock.

**now {{ timer_mode}}**

**today**
This function returns the current date from the system clock.

**today {{timer_mode}}**

**LocalTime**
This function returns a timestamp of the current time from the system clock for a specified time zone.

**localtime {{timezone [, ignoreDST ]}}**

**Make functions**

**makedate**
This function returns a date calculated from the year YYYY, the month MM and the day DD.

**makedate (YYYY [, MM [, DD ]])**

**makeweekdate**
This function returns a date calculated from the year YYYY, the week WW and the day-of-week D.

**makeweekdate (YYYY [, WW [, D ]])**

**maketime**
This function returns a time calculated from the hour hh, the minute mm, and the second ss.

**maketime (hh [, mm [, ss [, fff ] ]])**

**Other date functions**

**AddMonths**
### Functions in scripts and chart expressions

This function returns the date occurring \( n \) months after `startdate` or, if \( n \) is negative, the date occurring \( n \) months before `startdate`.

**AddMonths**

This function returns the date occurring \( n \) months after `startdate` or, if \( n \) is negative, the date occurring \( n \) months before `startdate`.

**AddYears**

This function returns the date occurring \( n \) years after `startdate` or, if \( n \) is negative, the date occurring \( n \) years before `startdate`.

**YearToDate**

This function finds if the input date falls within the year of the date the script was last loaded, and returns True if it does, False if it does not.

**Timezone functions**

**TimeZone**

This function returns the name of the current time zone, as defined in Windows.

**GMT**

This function returns the current Greenwich Mean Time, as derived from the system clock and Windows time settings.

**UTC**

Returns the current Coordinated Universal Time.

**Daylightsaving**

Returns the current adjustment for daylight saving time, as defined in Windows.

**ConvertToLocalTime**

Converts a UTC or GMT timestamp to local time as a dual value. The place can be any of a number of cities, places and time zones around the world.

**SetTimeFunctions**

**SetDateYear**

This function returns a timestamp based on the input `timestamp` but with the year replaced with `year`. 

---

### AddMonths

\[
\text{addmonths} \left( \text{startdate}, n, [ \text{mode} ] \right)
\]

### AddYears

\[
\text{addyears} \left( \text{startdate}, n \right)
\]

### YearToDate

\[
\text{yearToDate} \left( \text{date}, [ \text{yearoffset}, \text{firstmonth}, \text{todaydate} ] \right)
\]

### Timezone

\[
\text{timezone} \left( \right)
\]

### GMT

\[
\text{GMT} \left( \right)
\]

### UTC

\[
\text{UTC} \left( \right)
\]

### Daylightsaving

\[
\text{daylightsaving} \left( \right)
\]

### ConvertToLocalTime

\[
\text{convertToLocalTime} \left( \text{timestamp}, [ \text{place}, \text{ignoredst=false} ] \right)
\]

### SetDateYear

\[
\text{setdateyear} \left( \text{timestamp}, \text{year} \right)
\]
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>setdateyear</td>
<td>Returns a timestamp based on the input <code>timestamp</code> but with the year replaced with <code>year</code> and the month replaced with <code>month</code></td>
</tr>
<tr>
<td>setdateyearmonth</td>
<td></td>
</tr>
<tr>
<td>inyear</td>
<td>This function returns True if <code>timestamp</code> lies inside the year containing <code>base_date</code>.</td>
</tr>
<tr>
<td>inyear</td>
<td></td>
</tr>
<tr>
<td>inyeardate</td>
<td>This function returns True if <code>timestamp</code> lies inside the part of year containing <code>base_date</code> up until and including the last millisecond of <code>base_date</code>.</td>
</tr>
<tr>
<td>inyeardate</td>
<td></td>
</tr>
<tr>
<td>inquarter</td>
<td>This function returns True if <code>timestamp</code> lies inside the quarter containing <code>base_date</code>.</td>
</tr>
<tr>
<td>inquarter</td>
<td></td>
</tr>
<tr>
<td>inquarterdate</td>
<td>This function returns True if <code>timestamp</code> lies inside the part of the quarter containing <code>base_date</code> up until and including the last millisecond of <code>base_date</code>.</td>
</tr>
<tr>
<td>inquarterdate</td>
<td></td>
</tr>
<tr>
<td>inmonth</td>
<td>This function returns True if <code>timestamp</code> lies inside the month containing <code>base_date</code>.</td>
</tr>
<tr>
<td>inmonth</td>
<td></td>
</tr>
<tr>
<td>inmonthdate</td>
<td>Returns True if <code>date</code> lies inside the part of month containing <code>basedate</code> up until and including the last millisecond of <code>basedate</code>.</td>
</tr>
<tr>
<td>inmonthdate</td>
<td></td>
</tr>
<tr>
<td>inmonths</td>
<td>This function finds if a timestamp falls within the same month, bi-month, quarter, tertial, or half-year as a base date. It is also possible to find if the timestamp falls within a previous or following time period.</td>
</tr>
<tr>
<td>inmonths</td>
<td></td>
</tr>
<tr>
<td>inmonthstodate</td>
<td></td>
</tr>
</tbody>
</table>
This function finds if a timestamp falls within the part a period of the month, bi-month, quarter, tertial, or half-year up to and including the last millisecond of base\_date. It is also possible to find if the timestamp falls within a previous or following time period.

```plaintext
inmonthstodate (n, date, basedate, shift [, first_month_of_year = 1])
```

inweek
This function returns True if timestamp lies inside the week containing base\_date.

```plaintext
inweek (date, basedate, shift [, weekstart])
```

inweektodate
This function returns True if timestamp lies inside the part of week containing base\_date up until and including the last millisecond of base\_date.

```plaintext
inweektodate (date, basedate, shift [, weekstart])
```

inlunarweek
This function finds if timestamp lies inside the lunar week containing base\_date. Lunar weeks in Qlik Sense are defined by counting 1 January as the first day of the week.

```plaintext
inlunarweek (date, basedate, shift [, weekstart])
```

inlunarweektodate
This function finds if timestamp lies inside the part of the lunar week up to and including the last millisecond of base\_date. Lunar weeks in Qlik Sense are defined by counting 1 January as the first day of the week.

```plaintext
inlunarweektodate (date, basedate, shift [, weekstart])
```

inday
This function returns True if timestamp lies inside the day containing base\_timestamp.

```plaintext
inday (timestamp, basetimestamp, shift [, daystart])
```

indaytotime
This function returns True if timestamp lies inside the part of day containing base\_timestamp up until and including the exact millisecond of base\_timestamp.

```plaintext
indaytotime (timestamp, basetimestamp, shift [, daystart])
```

Start ... end functions

yearstart
This function returns a value corresponding to a timestamp of the first millisecond of the first day of the year containing date. The default output format will be the DateFormat set in the script.

```plaintext
yearstart (date [, shift = 0 [, first_month_of_year = 1]])
```

yearend
This function returns a value corresponding to a timestamp of the last millisecond of the last day of the year containing date. The default output format will be the DateFormat set in the script.

```plaintext
yearend (date [, shift = 0 [, first_month_of_year = 1]])
```
5  Functions in scripts and chart expressions

containing date. The default output format will be the DateFormat set in the script.

yearend ( date [, shift = 0 [, first_month_of_year = 1]])

yearname
This function returns a four-digit year as display value with an underlying numeric value corresponding to a
timestamp of the first millisecond of the first day of the year containing date.

yearname (date [, shift = 0 [, first_month_of_year = 1]] )

quarterstart
This function returns a value corresponding to a timestamp of the first millisecond of the quarter containing
date. The default output format will be the DateFormat set in the script.

quarterstart (date [, shift = 0 [, first_month_of_year = 1]])

quarterend
This function returns a value corresponding to a timestamp of the last millisecond of the quarter containing
date. The default output format will be the DateFormat set in the script.

quarterend (date [, shift = 0 [, first_month_of_year = 1]])

quartername
This function returns a display value showing the months of the quarter (formatted according to the
MonthNames script variable) and year with an underlying numeric value corresponding to a timestamp of
the first millisecond of the first day of the quarter.

quartername (date [, shift = 0 [, first_month_of_year = 1]])

monthstart
This function returns a value corresponding to a timestamp of the first millisecond of the first day of the
month containing date. The default output format will be the DateFormat set in the script.

monthstart (date [, shift = 0])

monthend
This function returns a value corresponding to a timestamp of the last millisecond of the last day of the month
containing date. The default output format will be the DateFormat set in the script.

monthend (date [, shift = 0])

monthname
This function returns a display value showing the month (formatted according to the MonthNames script
variable) and year with an underlying numeric value corresponding to a timestamp of the first millisecond of
the first day of the month.

monthname (date [, shift = 0])

monthsstart
This function returns a value corresponding to the timestamp of the first millisecond of the month, bi-month,
quarter, tertial, or half-year containing a base date. It is also possible to find the timestamp for a previous or following time period.

```plaintext
monthsstart (n, date [, shift = 0 [, first_month_of_year = 1]])
```

```plaintext
monthsend
This function returns a value corresponding to a timestamp of the last millisecond of the month, bi-month, quarter, tertial, or half-year containing a base date. It is also possible to find the timestamp for a previous or following time period.

```plaintext
monthsend (n, date [, shift = 0 [, first_month_of_year = 1]])
```

```plaintext
monthsname
This function returns a display value representing the range of the months of the period (formatted according to the MonthNames script variable) as well as the year. The underlying numeric value corresponds to a timestamp of the first millisecond of the month, bi-month, quarter, tertial, or half-year containing a base date.

```plaintext
monthsname (n, date [, shift = 0 [, first_month_of_year = 1]])
```

```plaintext
weekstart
This function returns a value corresponding to a timestamp of the first millisecond of the first day (Monday) of the calendar week containing date. The default output format is the DateFormat set in the script.

```plaintext
weekstart (date [, shift = 0 [, weekoffset = 0]])
```

```plaintext
weekend
This function returns a value corresponding to a timestamp of the last millisecond of the last day (Sunday) of the calendar week containing date The default output format will be the DateFormat set in the script.

```plaintext
weekend (date [, shift = 0 [, weekoffset = 0]])
```

```plaintext
weekname
This function returns a value showing the year and week number with an underlying numeric value corresponding to a timestamp of the first millisecond of the first day of the week containing date.

```plaintext
weekname (date [, shift = 0 [, weekoffset = 0]])
```

```plaintext
lunarweekstart
This function returns a value corresponding to a timestamp of the first millisecond of the lunar week containing date. Lunar weeks in Qlik Sense are defined by counting 1 January as the first day of the week.

```plaintext
lunarweekstart (date [, shift = 0 [, weekoffset = 0]])
```

```plaintext
lunarweekend
This function returns a value corresponding to a timestamp of the last millisecond of the lunar week containing date. Lunar weeks in Qlik Sense are defined by counting 1 January as the first day of the week.

```plaintext
lunarweekend (date [, shift = 0 [, weekoffset = 0]])
```

```plaintext
lunarweekname
```
This function returns a display value showing the year and lunar week number corresponding to a timestamp of the first millisecond of the first day of the lunar week containing date. Lunar weeks in Qlik Sense are defined by counting 1 January as the first day of the week.

lunarweekname (date [, shift = 0 [,weekoffset = 0]])

daystart
This function returns a value corresponding to a timestamp with the first millisecond of the day contained in time. The default output format will be the TimestampFormat set in the script.

daystart (timestamp [, shift = 0 [, dayoffset = 0]])

dayend
This function returns a value corresponding to a timestamp of the final millisecond of the day contained in time. The default output format will be the TimestampFormat set in the script.

dayend (timestamp [, shift = 0 [, dayoffset = 0]])

dayname
This function returns a value showing the date with an underlying numeric value corresponding to a timestamp of the first millisecond of the day containing time.

dayname (timestamp [, shift = 0 [, dayoffset = 0]])

Day numbering functions

age
The age function returns the age at the time of timestamp (in completed years) of somebody born on date_of_birth.

age (timestamp, date_of_birth)

networkdays
The networkdays function returns the number of working days (Monday-Friday) between and including start_date and end_date taking into account any optionally listed holiday.

networkdays (start:date, end_date {, holiday})

firstworkdate
The firstworkdate function returns the latest starting date to achieve no_of_workdays (Monday-Friday) ending no later than end_date taking into account any optionally listed holidays. end_date and holiday should be valid dates or timestamps.

firstworkdate (end_date, no_of_workdays {, holiday} )

lastworkdate
The lastworkdate function returns the earliest ending date to achieve no_of_workdays (Monday-Friday) if starting at start_date taking into account any optionally listed holiday. start_date and holiday should be
valid dates or timestamps.

lastworkdate (start_date, no_of_workdays \(, \) holiday)

daynumberofyear
This function calculates the day number of the year in which a timestamp falls. The calculation is made from the first millisecond of the first day of the year, but the first month can be offset.

daynumberofyear (date[,firstmonth])

daynumberofquarter
This function calculates the day number of the quarter in which a timestamp falls.

daynumberofquarter (date[,firstmonth])

addmonths
This function returns the date occurring \( n \) months after \( \text{startdate} \) or, if \( n \) is negative, the date occurring \( n \) months before \( \text{startdate} \).

Syntax:

\[
\text{AddMonths}(\text{startdate}, n , [ , mode])
\]

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>startdate</td>
<td>The start date as a time stamp, for example '2012-10-12'.</td>
</tr>
<tr>
<td>n</td>
<td>Number of months as a positive or negative integer.</td>
</tr>
<tr>
<td>mode</td>
<td>( \text{mode} ) specifies if the month is added relative to the beginning of the month or relative to the end of the month. If the input date is the 28th or above and ( \text{mode} ) is set to 1, the function will return a date which is the same distance from the end of the month as the input date. Default mode is 0.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>addmonths ('2003-01-29',3)</td>
<td>returns '2003-04-29'</td>
</tr>
<tr>
<td>addmonths ('2003-01-29',3,0)</td>
<td>returns '2003-04-29'</td>
</tr>
<tr>
<td>addmonths ('2003-01-29',3,1)</td>
<td>returns '2003-04-28'</td>
</tr>
<tr>
<td>addmonths ('2003-01-29',1,0)</td>
<td>returns '2003-02-28'</td>
</tr>
<tr>
<td>addmonths ('2003-01-29',1,1)</td>
<td>returns '2003-02-26'</td>
</tr>
<tr>
<td>addmonths ('2003-02-28',1,0)</td>
<td>returns '2003-03-28'</td>
</tr>
<tr>
<td>addmonths ('2003-02-28',1,1)</td>
<td>returns '2003-03-31'</td>
</tr>
</tbody>
</table>
addyears

This function returns the date occurring \( n \) years after \texttt{startdate} or, if \( n \) is negative, the date occurring \( n \) years before \texttt{startdate}.

**Syntax:**

\texttt{AddYears(startdate, n)}

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{startdate}</td>
<td>The start date as a time stamp, for example '2012-10-12'.</td>
</tr>
<tr>
<td>\texttt{n}</td>
<td>Number of years as a positive or negative integer.</td>
</tr>
</tbody>
</table>

**Examples and results:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{addyears ('2010-01-29', 3)}</td>
<td>returns '2013-01-29'</td>
</tr>
<tr>
<td>\texttt{addyears ('2010-01-29', -1)}</td>
<td>returns '2009-01-29'</td>
</tr>
</tbody>
</table>

**age**

The \texttt{age} function returns the age at the time of \texttt{timestamp} (in completed years) of somebody born on \texttt{date_of_birth}.

**Syntax:**

\texttt{age(timestamp, date_of_birth)}

Can be an expression.

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{timestamp}</td>
<td>The timestamp, or expression resolving to a timestamp, up to which to calculate the completed number of years.</td>
</tr>
<tr>
<td>\texttt{date_of_birth}</td>
<td>Date of birth of the person whose age is being calculated. Can be an expression.</td>
</tr>
</tbody>
</table>

**Examples and results:**

These examples use the date format DD/MM/YYYY. The date format is specified in the \texttt{SET DateFormat} statement at the top of your data load script. Change the format in the examples to suit your requirements.
## 5 Functions in scripts and chart expressions

### Example

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>age('25/01/2014', '29/10/2012')</td>
<td>Returns 1.</td>
</tr>
<tr>
<td>age('29/10/2014', '29/10/2012')</td>
<td>Returns 2.</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

```sql
Employess:
LOAD * INLINE [
Member|DateOfBirth
John|28/03/1989
Linda|10/12/1990
Steve|5/2/1992
Birg|31/3/1993
Raj|19/5/1994
Prita|15/9/1994
Su|11/12/1994
Goran|2/3/1995
Sunny|14/5/1996
Ajoa|13/6/1996
Daphne|7/7/1998
Biffy|4/8/2000
] (delimiter is |);
DoBTable:
Load *,
age(LocalTime(),DateOfBirth) As Age
Resident Employees;
Drop table Employees;
```

### converttolocaltime

Converts a UTC or GMT timestamp to local time as a dual value. The place can be any of a number of cities, places and time zones around the world.

**Syntax:**

```sql
ConvertToLocalTime(timestamp [, place [, ignore_dst=false]])
```

Also GMT, GMT-01:00, GMT+04:00 etc. are valid places.

The resulting time is adjusted for daylight-saving time, unless the third parameter is set to True.

### Valid places and time zones

<table>
<thead>
<tr>
<th>Abu Dhabi</th>
<th>Central America</th>
<th>Kabul</th>
<th>Nairobi</th>
<th>Sydney</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
# Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Valid places and time zones</th>
<th>Adelaide</th>
<th>Central Time (US &amp; Canada)</th>
<th>Kamchatka</th>
<th>New Caledonia</th>
<th>Taipei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>Chennai</td>
<td>Karachi</td>
<td>New Delhi</td>
<td>Tallinn</td>
<td></td>
</tr>
<tr>
<td>Amsterdam</td>
<td>Chihuahua</td>
<td>Kathmandu</td>
<td>Newfoundland</td>
<td>Tashkent</td>
<td></td>
</tr>
<tr>
<td>Arizona</td>
<td>Chongqing</td>
<td>Kolkata</td>
<td>Novosibirsk</td>
<td>Tbilisi</td>
<td></td>
</tr>
<tr>
<td>Astana</td>
<td>Copenhagen</td>
<td>Krasnoyarsk</td>
<td>Nuku'alofa</td>
<td>Tehran</td>
<td></td>
</tr>
<tr>
<td>Athens</td>
<td>Darwin</td>
<td>Kuala Lumpur</td>
<td>Osaka</td>
<td>Tokyo</td>
<td></td>
</tr>
<tr>
<td>Atlantic Time (Canada)</td>
<td>Dhaka</td>
<td>Kuwait</td>
<td>Pacific Time (US &amp; Canada)</td>
<td>Urumqi</td>
<td></td>
</tr>
<tr>
<td>Auckland</td>
<td>Eastern Time (US &amp; Canada)</td>
<td>Kyiv</td>
<td>Paris</td>
<td>Warsaw</td>
<td></td>
</tr>
<tr>
<td>Azores</td>
<td>Edinburgh</td>
<td>La Paz</td>
<td>Perth</td>
<td>Wellington</td>
<td></td>
</tr>
<tr>
<td>Baghdad</td>
<td>Ekaterinburg</td>
<td>Lima</td>
<td>Port Moresby</td>
<td>West Central Africa</td>
<td></td>
</tr>
<tr>
<td>Baku</td>
<td>Fiji</td>
<td>Lisbon</td>
<td>Prague</td>
<td>Vienna</td>
<td></td>
</tr>
<tr>
<td>Bangkok</td>
<td>Georgetown</td>
<td>Ljubljana</td>
<td>Pretoria</td>
<td>Vilnius</td>
<td></td>
</tr>
<tr>
<td>Beijing</td>
<td>Greenland</td>
<td>London</td>
<td>Quito</td>
<td>Vladivostok</td>
<td></td>
</tr>
<tr>
<td>Belgrade</td>
<td>Greenwich Mean Time : Dublin</td>
<td>Madrid</td>
<td>Riga</td>
<td>Volgograd</td>
<td></td>
</tr>
<tr>
<td>Berlin</td>
<td>Guadalajara</td>
<td>Magadan</td>
<td>Riyadh</td>
<td>Yakutsk</td>
<td></td>
</tr>
<tr>
<td>Bratislava</td>
<td>Guam</td>
<td>Mazatlan</td>
<td>Rome</td>
<td>Yerevan</td>
<td></td>
</tr>
<tr>
<td>Bogota</td>
<td>Hanoi</td>
<td>Melbourne</td>
<td>Samoa</td>
<td>Zagreb</td>
<td></td>
</tr>
<tr>
<td>Brasilia</td>
<td>Harare</td>
<td>Mexico City</td>
<td>Santiago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brussels</td>
<td>Hobart</td>
<td>Karachi</td>
<td>Saskatchewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bucharest</td>
<td>Hong Kong</td>
<td>Kathmandu</td>
<td>Seoul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budapest</td>
<td>Indiana (East)</td>
<td>Kolkata</td>
<td>Singapore</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Valid places and time zones</th>
<th>Buenos Aires</th>
<th>International Date Line West</th>
<th>Monrovia</th>
<th>Skopje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cairo</td>
<td>Irkutsk</td>
<td>Monterrey</td>
<td>Sofia</td>
<td></td>
</tr>
<tr>
<td>Canberra</td>
<td>Islamabad</td>
<td>Moscow</td>
<td>Solomon Is.</td>
<td></td>
</tr>
<tr>
<td>Cape Verde Is.</td>
<td>Istanbul</td>
<td>Mountain Time (US &amp; Canada)</td>
<td>Sri Jayawardenepura</td>
<td></td>
</tr>
<tr>
<td>Caracas</td>
<td>Jakarta</td>
<td>Mumbai</td>
<td>St. Petersburg</td>
<td></td>
</tr>
<tr>
<td>Casablanca</td>
<td>Jerusalem</td>
<td>Muscat</td>
<td>Stockholm</td>
<td></td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConvertToLocalTime('2007-11-10 23:59:00','Paris')</td>
<td>Returns '2007-11-11 00:59:00' and the corresponding internal timestamp representation.</td>
</tr>
<tr>
<td>ConvertToLocalTime(UTC(), 'GMT-05:00')</td>
<td>Returns the time for the North American east coast, for example, New York.</td>
</tr>
<tr>
<td>ConvertToLocalTime(UTC(), 'GMT-05:00', True)</td>
<td>Returns the time for the North American east coast, for example, New York, without daylight-saving time adjustment.</td>
</tr>
</tbody>
</table>

**day**

This function returns an integer representing the day when the fraction of the *expression* is interpreted as a date according to the standard number interpretation.

**Syntax:**

day(expression)

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>day( '1971-10-12' )</td>
<td>returns 12</td>
</tr>
<tr>
<td>day( '35648' )</td>
<td>returns 6, because 35648 = 1997-08-06</td>
</tr>
</tbody>
</table>
dayend

This function returns a value corresponding to a timestamp of the final millisecond of the day contained in time. The default output format will be the TimestampFormat set in the script.

Syntax:

\[
\text{DayEnd}(\text{time}[, \ [\text{period\_no}[,, \text{day\_start}]]])
\]

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>The timestamp to evaluate.</td>
</tr>
<tr>
<td>period_no</td>
<td>period_no is an integer, or expression that resolves to an integer, where the value 0 indicates the day that contains time. Negative values in period_no indicate preceding days and positive values indicate succeeding days.</td>
</tr>
<tr>
<td>day_start</td>
<td>To specify days not starting at midnight, indicate an offset as a fraction of a day in day_start. For example, 0.125 to denote 3 AM.</td>
</tr>
</tbody>
</table>

Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>dayend('25/01/2013 16:45', 0, 0.5)</td>
<td>Returns 26/01/2013 11:59:59.</td>
</tr>
</tbody>
</table>
### Example

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example finds the timestamp that marks the end of the day after each invoice date in the table.

```qlik
TempTable:
LOAD RecNo() as InvID, * Inline [ InvDate
28/03/2012
10/12/2012
5/2/2013
31/3/2013
19/5/2013
15/9/2013
11/12/2013
2/3/2014
14/5/2014
13/6/2014
7/7/2014
4/8/2014
];

InvoiceData:
LOAD *, DayEnd(InvDate, 1) AS DEnd
Resident TempTable;
Drop table TempTable;
```

### Result

The resulting table contains the original dates and a column with the return value of the dayend() function. You can display the full timestamp by specifying the formatting in the properties panel.

<table>
<thead>
<tr>
<th>InvDate</th>
<th>DEnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>29/03/2012 23:59:59</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>11/12/2012 23:59:59</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>07/02/2013 23:59:59</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>01/04/2013 23:59:59</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>20/05/2013 23:59:59</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>16/09/2013 23:59:59</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>12/12/2013 23:59:59</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>03/03/2014 23:59:59</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>15/05/2014 23:59:59</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>14/06/2014 23:59:59</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>08/07/2014 23:59:59</td>
</tr>
</tbody>
</table>

---

**daylightsaving**

Returns the current adjustment for daylight saving time, as defined in Windows.

**Syntax:**

```qlik
daylightsaving( )
```

**Example:**

```
daylightsaving( )
```

**dayname**

This function returns a value showing the date with an underlying numeric value corresponding to a timestamp of the first millisecond of the day containing `time`.

**Syntax:**

```qlik
DayName(time[, period_no [, day_start]])
```
## 5 Functions in scripts and chart expressions

**Return data type:** dual

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>The timestamp to evaluate.</td>
</tr>
<tr>
<td>period_no</td>
<td>period_no is an integer, or expression that resolves to an integer, where the value 0 indicates the day that contains time. Negative values in period_no indicate preceding days and positive values indicate succeeding days.</td>
</tr>
<tr>
<td>day_start</td>
<td>To specify days not starting at midnight, indicate an offset as a fraction of a day in day_start. For example, 0.125 to denote 3 AM.</td>
</tr>
</tbody>
</table>

**Examples and results:**

These examples use the date format DD/MM/YYYY. The date format is specified in the **SET DateFormat** statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>dayname('25/01/2013 16:45')</td>
<td>Returns 25/01/2013.</td>
</tr>
<tr>
<td>dayname('25/01/2013 16:45', -1)</td>
<td>Returns 24/01/2013.</td>
</tr>
</tbody>
</table>
| dayname('25/01/2013 16:45', 0, 0.5) | Returns 25/01/2013.  
Displaying the full timestamp shows the underlying numeric value corresponds to '25/01/2013 12:00:00.000. |
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result. In this example, the day name is created from the timestamp that marks the beginning of the day after each invoice date in the table.</td>
<td>The resulting table contains the original dates and a column with the return value of the dayname() function. You can display the full timestamp by specifying the formatting in the properties panel.</td>
</tr>
<tr>
<td>TempTable: LOAD RecNo() as InvID, InvDate Inline [ 28/03/2012 10/12/2012 5/2/2013 31/3/2013 19/5/2013 15/9/2013 11/12/2013 2/3/2014 14/5/2014 13/6/2014 7/7/2014 4/8/2014 ]; InvoiceData: LOAD *, DayName(InvDate, 1) AS DName Resident TempTable; Drop table TempTable;</td>
<td>InvDate</td>
</tr>
<tr>
<td>28/03/2012</td>
<td>29/03/2012 00:00:00</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>11/12/2012 00:00:00</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>07/02/2013 00:00:00</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>01/04/2013 00:00:00</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>20/05/2013 00:00:00</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>16/09/2013 00:00:00</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>12/12/2013 00:00:00</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>03/03/2014 00:00:00</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>15/05/2014 00:00:00</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>14/06/2014 00:00:00</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>08/07/2014 00:00:00</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>05/08/2014 00:00:00</td>
</tr>
</tbody>
</table>

daynumberofquarter

This function calculates the day number of the quarter in which a timestamp falls.

Syntax:

\[
\text{DayNumberOfQuarter}(\text{timestamp[,start\_tmonth]})
\]

Return data type: integer

The function always uses years based on 366 days.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td>start_month</td>
<td>By specifying a start_month between 2 and 12 (1, if omitted), the beginning of the year may be moved forward to the first day of any month. For example, if you want to work with a fiscal year starting March 1, specify start_month = 3.</td>
</tr>
</tbody>
</table>
Examples and results:
These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>DayNumberOfQuarter('12/09/2014')</td>
<td>Returns 74, the day number of the current quarter.</td>
</tr>
<tr>
<td>DayNumberOfQuarter('12/09/2014',3)</td>
<td>Returns 12, the day number of the current quarter. In this case, the first quarter starts with March (because start_month is specified as 3). This means that the current quarter is the third quarter, which started on September 1.</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

ProjectTable:
LOAD recno() as InvID, INLINE [StartDate 28/03/2014 10/12/2014 5/2/2015 31/3/2015 19/5/2015 15/9/2015 ]; NrDays:
Load *, DayNumberOfQuarter(StartDate,4) As DayNrQtr Resident ProjectTable;
Drop table ProjectTable;

The resulting table shows the returned values of DayNumberOfQuarter for each of the records in the table.

<table>
<thead>
<tr>
<th>InvID</th>
<th>StartDate</th>
<th>DayNrQtr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28/03/2014</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>10/12/2014</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>5/2/2015</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>31/3/2015</td>
<td>91</td>
</tr>
<tr>
<td>5</td>
<td>19/5/2015</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>15/9/2015</td>
<td>77</td>
</tr>
</tbody>
</table>

dayNumberOfYear
This function calculates the day number of the year in which a timestamp falls. The calculation is made from the first millisecond of the first day of the year, but the first month can be offset.

Syntax:

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DayNumberOfYear(timestamp[,start_month])</td>
<td>Return data type: integer</td>
</tr>
</tbody>
</table>

The function always uses years based on 366 days.

Arguments:
### Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td>start_month</td>
<td>By specifying a start_month between 2 and 12 (1, if omitted), the beginning of the year may be moved forward to the first day of any month. For example, if you want to work with a fiscal year starting March 1, specify start_month = 3.</td>
</tr>
</tbody>
</table>

Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>DayNumberOfYear('12/09/2014')</td>
<td>Returns 256, the day number counted from the first of the year.</td>
</tr>
<tr>
<td>DayNumberOfYear('12/09/2014',3)</td>
<td>Returns 196, the number of the day, as counted from 1 March.</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

```sql
ProjectTable:
LOAD recno() as InvID, INLINE [ StartDate 28/03/2014 10/12/2014 5/2/2015 31/3/2015 19/5/2015 15/9/2015 ];
NrDays: Load *, DayNumberOfYear(StartDate,4) As DayNrYear Resident ProjectTable;
Drop table ProjectTable;
```

The resulting table shows the returned values of DayNumberOfYear for each of the records in the table.

<table>
<thead>
<tr>
<th>InvID</th>
<th>StartDate</th>
<th>DayNrYear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28/03/2014</td>
<td>363</td>
</tr>
<tr>
<td>2</td>
<td>10/12/2014</td>
<td>254</td>
</tr>
<tr>
<td>3</td>
<td>5/2/2015</td>
<td>311</td>
</tr>
<tr>
<td>4</td>
<td>31/3/2015</td>
<td>366</td>
</tr>
<tr>
<td>5</td>
<td>19/5/2015</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>15/9/2015</td>
<td>168</td>
</tr>
</tbody>
</table>

### daystart

This function returns a value corresponding to a timestamp with the first millisecond of the day contained in time. The default output format will be the TimestampFormat set in the script.

**Syntax:**

```sql
DayStart(time[, [period_no[, day_start]]])
```

**Return data type:** dual

**Arguments:**
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>The timestamp to evaluate.</td>
</tr>
<tr>
<td>period_no</td>
<td>period_no is an integer, or expression that resolves to an integer, where</td>
</tr>
<tr>
<td></td>
<td>the value 0 indicates the day that contains time. Negative values in period_</td>
</tr>
<tr>
<td></td>
<td>no indicate preceding days and positive values indicate succeeding days.</td>
</tr>
<tr>
<td>day_start</td>
<td>To specify days not starting at midnight, indicate an offset as a fraction</td>
</tr>
<tr>
<td></td>
<td>of a day in day_start. For example, 0.125 to denote 3 AM.</td>
</tr>
</tbody>
</table>

Examples and results:
These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>daystart('25/01/2013 16:45')</td>
<td>Returns 25/01/2013 00:00:00.</td>
</tr>
<tr>
<td>daystart('25/01/2013 16:45', -1)</td>
<td>Returns 24/01/2013 00:00:00.</td>
</tr>
<tr>
<td>daystart('25/01/2013 16:45', 0, 0.5)</td>
<td>Returns 25/01/2013 12:00:00.</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example finds the timestamp that marks the beginning of the day after each invoice date in the table.

TempTable:
LOAD RecNo() as InvID, * Inline [ InvDate
28/03/2012
10/12/2012
5/2/2013
31/3/2013
19/5/2013
15/9/2013
11/12/2013
2/3/2014
14/5/2014
13/6/2014
7/7/2014
4/8/2014 ];

InvoiceData:
LOAD *,
DayStart(InvDate, 1) AS DStart
Resident TempTable;
Drop table TempTable;

The resulting table contains the original dates and a column with the return value of the daystart() function. You can display the full timestamp by specifying the formatting in the properties panel.

<table>
<thead>
<tr>
<th>InvDate</th>
<th>DStart</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>29/03/2012 00:00:00</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>11/12/2012 00:00:00</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>01/04/2013 00:00:00</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>20/05/2013 00:00:00</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>16/09/2013 00:00:00</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>12/12/2013 00:00:00</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>03/03/2014 00:00:00</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>15/05/2014 00:00:00</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>14/06/2014 00:00:00</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>08/07/2014 00:00:00</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>05/08/2014 00:00:00</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

firstworkdate

The firstworkdate function returns the latest starting date to achieve no_of_workdays (Monday-Friday) ending no later than end_date taking into account any optionally listed holidays. end_date and holiday should be valid dates or timestamps.

Syntax:

```
firstworkdate(end_date, no_of_workdays [, holiday] )
```

Return data type: integer

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>end_date</td>
<td>The timestamp of end date to evaluate.</td>
</tr>
<tr>
<td>no_of_workdays</td>
<td>The number of working days to achieve.</td>
</tr>
<tr>
<td>holiday</td>
<td>Holiday periods to exclude from working days. A holiday period is stated as a start date and an end date, separated by commas.</td>
</tr>
</tbody>
</table>

Example: '25/12/2013', '26/12/2013'

You can exclude more than one holiday period, separated by commas.

Example: '25/12/2013', '26/12/2013', '31/12/2013', '01/01/2014'

Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>firstworkdate ('29/12/2014', 9)</td>
<td>Returns '17/12/2014.</td>
</tr>
<tr>
<td>firstworkdate ('29/12/2014', 9, '25/12/2014', '26/12/2014')</td>
<td>Returns 15/12/2014 because a holiday period of two days is taken into account.</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.</td>
<td></td>
</tr>
</tbody>
</table>

ProjectTable:
LOAD *, recno() as InvID, INLINE [EndDate
28/03/2015
10/12/2015
5/2/2016
31/3/2016
19/5/2016
15/9/2016
]; NrDays:
Load *, FirstWorkDate(EndDate,120) As StartDate
Resident ProjectTable;
Drop table ProjectTable;

The resulting table shows the returned values of FirstWorkDate for each of the records in the table.

<table>
<thead>
<tr>
<th>InvID</th>
<th>EndDate</th>
<th>StartDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28/03/2015</td>
<td>13/10/2014</td>
</tr>
<tr>
<td>2</td>
<td>10/12/2015</td>
<td>26/06/2015</td>
</tr>
<tr>
<td>3</td>
<td>5/2/2016</td>
<td>24/08/2015</td>
</tr>
<tr>
<td>4</td>
<td>31/3/2016</td>
<td>16/10/2015</td>
</tr>
<tr>
<td>5</td>
<td>19/5/2016</td>
<td>04/12/2015</td>
</tr>
<tr>
<td>6</td>
<td>15/9/2016</td>
<td>01/04/2016</td>
</tr>
</tbody>
</table>

GMT
This function returns the current Greenwich Mean Time, as derived from the system clock and Windows time settings.

Syntax:

`GMT()`

Example:

`gmt()`

hour
This function returns an integer representing the hour when the fraction of the `expression` is interpreted as a time according to the standard number interpretation.

Syntax:

`hour(expression)`

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>hour( '09:14:36' )</td>
<td>returns 9</td>
</tr>
<tr>
<td>hour( '0.5555' )</td>
<td>returns 13 (Because 0.5555 = 13:19:55)</td>
</tr>
</tbody>
</table>

Script Syntax and Chart Functions Guide - Qlik Sense, 1.1  370
5 Functions in scripts and chart expressions

inday
This function returns True if timestamp lies inside the day containing base_timestamp.

Syntax:

\[ \text{InDay} \ (\text{timestamp}, \ \text{base\_timestamp}, \ \text{period\_no}[\text{, day\_start}]) \]

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>The date and time that you want to compare with base_timestamp.</td>
</tr>
<tr>
<td>base_timestamp</td>
<td>Date and time that is used to evaluate the timestamp.</td>
</tr>
<tr>
<td>period_no</td>
<td>The day can be offset by period_no. period_no is an integer, where the value 0 indicates the day which contains base_timestamp. Negative values in period_no indicate preceding days and positive values indicate succeeding days.</td>
</tr>
<tr>
<td>day_start</td>
<td>If you want to work with days not starting midnight, indicate an offset as a fraction of a day in day_start. For example, 0.125 to denote 3 AM.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>inday ('12/01/2006 12:23:00', '12/01/2006 00:00:00', 0)</td>
<td>Returns True</td>
</tr>
<tr>
<td>inday ('12/01/2006 12:23:00', '13/01/2006 00:00', 0)</td>
<td>Returns False</td>
</tr>
<tr>
<td>inday ('12/01/2006 12:23:00', '12/01/2006 00:00:00', -1)</td>
<td>Returns False</td>
</tr>
<tr>
<td>inday ('11/01/2006 12:23:00', '12/01/2006 00:00:00', -1)</td>
<td>Returns True</td>
</tr>
<tr>
<td>inday ('12/01/2006 12:23:00', '12/01/2006 00:00:00', 0, 0.5)</td>
<td>Returns False</td>
</tr>
<tr>
<td>inday ('12/01/2006 11:23:00', '12/01/2006 00:00:00', 0, 0.5)</td>
<td>Returns True</td>
</tr>
</tbody>
</table>
Example

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example checks if an invoice date falls at any time in the day starting with the base_timestamp.

TempTable:
LOAD RecNo() as InvID, * Inline [
  InvTime
  28/03/2012
  10/12/2012
  5/2/2013
  31/3/2013
  19/5/2013
  15/9/2013
  11/12/2013
  2/3/2014
  14/5/2014
  13/6/2014
  7/7/2014
  4/8/2014
];

InvoiceData:
LOAD *,
  InDay(InvTime, '28/03/2013 00:00:00', 0, 4) AS InDayEx
Resident TempTable;
Drop table TempTable;

<table>
<thead>
<tr>
<th>InvTime</th>
<th>InDayEx</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>-1 (True)</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>0 (False)</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>0 (False)</td>
</tr>
</tbody>
</table>

indaytotime

This function returns True if timestamp lies inside the part of day containing base_timestamp up until and including the exact millisecond of base_timestamp.

Syntax:

InDayToTime (timestamp, base_timestamp, period_no[, day_start])

Arguments:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>The date and time that you want to compare with base_timestamp.</td>
</tr>
<tr>
<td>base_timestamp</td>
<td>Date and time that is used to evaluate the timestamp.</td>
</tr>
<tr>
<td>period_no</td>
<td>The day can be offset by period_no. period_no is an integer, where the value 0 indicates the day which contains base_timestamp. Negative values in period_no indicate preceding days and positive values indicate succeeding days.</td>
</tr>
<tr>
<td>day_start</td>
<td>If you want to work with days not starting midnight, indicate an offset as a fraction of a day in day_start. For example, 0.125 to denote 3 AM.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>indaytotime ('12/01/2006 12:23:00', '12/01/2006 23:59:00', 0)</td>
<td>Returns True</td>
</tr>
<tr>
<td>indaytotime ('12/01/2006 12:23:00', '12/01/2006 00:00:00', 0)</td>
<td>Returns False</td>
</tr>
<tr>
<td>indaytotime ('11/01/2006 12:23:00', '12/01/2006 23:59:00', -1)</td>
<td>Returns True</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example checks if an invoice timestamp falls before 17:00:00 on the day starting with the base_timestamp.

```csharp
TempTable:
LOAD RecNo() as InvID, * Inline [
InvTime
28/03/2012
10/12/2012
5/2/2013
31/3/2013
19/5/2013
15/9/2013
11/12/2013
2/3/2014
14/5/2014
13/6/2014
7/7/2014
4/8/2014
];

InvoiceData:
LOAD *
, InDayToTime(InvTime, '28/03/2013 17:00:00', 0, 4) AS InDayExTT
Resident TempTable;
Drop table TempTable;
```

The resulting table contains the original dates and a column with the return value of the indaytotime() function.

<table>
<thead>
<tr>
<th>InvTime</th>
<th>InDayExTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>-1 (True)</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>0 (False)</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>0 (False)</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

inlunarweek

This function finds if timestamp lies inside the lunar week containing base_date. Lunar weeks in Qlik Sense are defined by counting 1 January as the first day of the week.

Syntax:

\[ \text{InLunarWeek} (\text{timestamp}, \text{base}\_\text{date}, \text{period}\_\text{no}[, \text{first}\_\text{week}\_\text{day}]) \]

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>The date that you want to compare with base_date.</td>
</tr>
<tr>
<td>base_date</td>
<td>Date that is used to evaluate the lunar week.</td>
</tr>
<tr>
<td>period_no</td>
<td>The lunar week can be offset by period_no. period_no is an integer, where the value 0 indicates the lunar week which contains base_date. Negative values in period_no indicate preceding lunar weeks and positive values indicate succeeding lunar weeks.</td>
</tr>
<tr>
<td>first_week_day</td>
<td>An offset that may be greater than or less than zero. This changes the beginning of the year by the specified number of days and/or fractions of a day.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>inlunarweek('12/01/2013', '14/01/2013', 0)</td>
<td>Returns True. Because the value of timestamp, 12/01/2013 falls in the week 08/01/2013 to 14/01/2013.</td>
</tr>
<tr>
<td>inlunarweek('12/01/2013', '07/01/2013', 0)</td>
<td>Returns False. Because the base_date 07/01/2013 is in the lunar week defined as 01/01/2013 to 07/01/2013.</td>
</tr>
<tr>
<td>inlunarweek('12/01/2013', '14/01/2013', -1)</td>
<td>Returns False. Because specifying a value of period_no as -1 shifts the week to the previous week, 01/01/2013 to 07/01/2013.</td>
</tr>
<tr>
<td>inlunarweek('07/01/2013', '14/01/2013', -1)</td>
<td>Returns True. In comparison with the previous example, the timestamp is in the week after taking into account the shift backwards.</td>
</tr>
<tr>
<td>inlunarweek('11/01/2006', '08/01/2006', 0, 3)</td>
<td>Returns False. Because specifying a value for first_week_day as 3 means the start of the year is calculated from 04/01/2013, and so the value of base_date falls in the first week, and the value of timestamp falls in the week 11/01/2013 to 17/01/2013.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result. This example checks if an invoice date falls in the week shifted from the value of base_date by four weeks.</td>
<td>The resulting table contains the original dates and a column with the return value of the inlunarweek() function. The function returns True for the value of InvDate5/2/2013 because the value of base_date, 11/01/2013, is shifted by four weeks, and so falls in the week 5/02/2013 to 11/02/2013.</td>
</tr>
</tbody>
</table>

```
TempTable:
LOAD RecNo() as InvID, * Inline [InvDate
28/03/2012
10/12/2012
5/2/2013
31/3/2013
19/5/2013
15/9/2013
11/12/2013
2/3/2014
14/5/2014
13/6/2014
7/7/2014
4/8/2014 ];
InvoiceData:
LOAD *,
InLunarWeek(InvDate, '11/01/2013', 4) AS InLWeekPlus4
Resident TempTable;
Drop table TempTable;
```

### inlunarweektodate

This function finds if `timestamp` lies inside the part of the lunar week up to and including the last millisecond of `base_date`. Lunar weeks in Qlik Sense are defined by counting 1 January as the first day of the week.

**Syntax:**

```
InLunarWeekToDate (timestamp, base_date, period_no [, first_week_day])
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>The date that you want to compare with <code>base_date</code>.</td>
</tr>
<tr>
<td>base_date</td>
<td>Date that is used to evaluate the lunar week.</td>
</tr>
</tbody>
</table>
### Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>period_no</code></td>
<td>The lunar week can be offset by <code>period_no</code>. <code>period_no</code> is an integer, where the value 0 indicates the lunar week which contains <code>base_date</code>. Negative values in <code>period_no</code> indicate preceding lunar weeks and positive values indicate succeeding lunar weeks.</td>
</tr>
<tr>
<td><code>week_start</code></td>
<td>An offset that may be greater than or less than zero. This changes the beginning of the year by the specified number of days and/or fractions of a day.</td>
</tr>
</tbody>
</table>

#### Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>inlunarweektodate('12/01/2013', '13/01/2013', 0)</code></td>
<td>Returns True. Because the value of timestamp, 12/01/2013 falls in the part of the week 08/01/2013 to 13/01/2013.</td>
</tr>
<tr>
<td><code>inlunarweektodate('12/01/2013', '11/01/2013', 0)</code></td>
<td>Returns False. Because the value of timestamp is later than the value <code>base_date</code> even though the two dates are in the same lunar week before 12/01/2012.</td>
</tr>
<tr>
<td><code>inlunarweektodate('12/01/2006', '05/01/2006', 1)</code></td>
<td>Returns True. Specifying a value of 1 for <code>period_no</code> shifts the <code>base_date</code> forward one week, so the value of timestamp falls in the part of the lunar week.</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result. This example checks if an invoice date falls in the part of the week shifted from the value of base_date by four weeks.</td>
<td></td>
</tr>
<tr>
<td>The resulting table contains the original dates and a column with the return value of the inlunarweek() function. The function returns True for the value of InvDate5/2/2013 because the value of base_date, 11/01/2013, is shifted by four weeks, and so falls in the part of the week 5/02/2013 to 07/02/2013.</td>
<td></td>
</tr>
</tbody>
</table>

```
TempTable:
LOAD RecNo() as InvID, * Inline [ InvDate
28/03/2012
10/12/2012
5/2/2013
31/3/2013
19/5/2013
15/9/2013
11/12/2013
2/3/2014
14/5/2014
13/6/2014
7/7/2014
4/8/2014
];
InvoiceData:
LOAD *, InLunarWeekToDate(InvDate, '07/01/2013', 4) AS InLWeek2DPlus4
Resident TempTable;
Drop table TempTable;
```

```
InvDate      InLWeek2DPlus4
28/03/2012   0 (False)
10/12/2012   0 (False)
5/2/2013     -1 (True)
31/3/2013    0 (False)
19/5/2013    0 (False)
15/9/2013    0 (False)
11/12/2013   0 (False)
2/3/2014     0 (False)
14/5/2014    0 (False)
13/6/2014    0 (False)
7/7/2014     0 (False)
4/8/2014     0 (False)
```

inmonth

This function returns True if timestamp lies inside the month containing base_date.

Syntax:

```
InMonth (timestamp, base_date, period_no)
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>The date that you want to compare with base_date.</td>
</tr>
<tr>
<td>base_date</td>
<td>Date that is used to evaluate the month.</td>
</tr>
<tr>
<td>period_no</td>
<td>The month can be offset by period_no. period_no is an integer, where the value 0 indicates the month which contains base_date. Negative values in period_no indicate preceding months and positive values indicate succeeding months.</td>
</tr>
</tbody>
</table>
### 5 Functions in scripts and chart expressions

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>inmonth ('25/01/2013', '01/01/2013', 0)</code></td>
<td>Returns True</td>
</tr>
<tr>
<td><code>inmonth('25/01/2013', '01/04/2013', 0)</code></td>
<td>Returns False</td>
</tr>
<tr>
<td><code>inmonth ('25/01/2013', '01/01/2013', -1)</code></td>
<td>Returns False</td>
</tr>
<tr>
<td><code>inmonth ('25/12/2012', '01/01/2013', -1)</code></td>
<td>Returns True</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example checks if an invoice date falls at any time in the fourth month after the month in base_date, by specifying period_no as 4.

```plaintext
TempTable:
LOAD RecNo() as InvID, * Inline [
  InvDate
  28/03/2012
  10/12/2012
  5/2/2013
  31/3/2013
  19/5/2013
  15/9/2013
  11/12/2013
  2/3/2014
  14/5/2014
  13/6/2014
  7/7/2014
  4/8/2014
];

InvoiceData:
LOAD *,
  InMonth(InvDate, '31/01/2013', 0, 4) AS InMthPlus4
Resident TempTable;
Drop table TempTable;
```

**inmonths**

This function finds if a timestamp falls within the same month, bi-month, quarter, tertial, or half-year as a base date. It is also possible to find if the timestamp falls within a previous or following time period.

**Syntax:**

```
InMonths(n_months, timestamp, base_date, period_no [, first_month_of_year])
```

**Return data type:** Boolean

**Arguments:**
## 5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_months</td>
<td>The number of months that defines the period. An integer or expression that resolves to an integer that must be one of: 1 (equivalent to the inmonth() function), 2 (bi-month), 3 (equivalent to the inquarter() function), 4 (tertial), or 6 (half year).</td>
</tr>
<tr>
<td>timestamp</td>
<td>The date that you want to compare with base_date.</td>
</tr>
<tr>
<td>base_date</td>
<td>Date that is used to evaluate the period.</td>
</tr>
<tr>
<td>period_no</td>
<td>The period can be offset by period_no, an integer, or expression resolving to an integer, where the value 0 indicates the period that contains base_date. Negative values in period_no indicate preceding periods and positive values indicate succeeding periods.</td>
</tr>
<tr>
<td>first_month_of_year</td>
<td>If you want to work with (fiscal) years not starting in January, indicate a value between 2 and 12 in first_month_of_year.</td>
</tr>
</tbody>
</table>

### Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>inmonths(4, '25/01/2013', '25/04/2013', 0)</td>
<td>Returns True. Because the value of timestamp, 25/01/2013, lies within the four-month period 01/01/2013 to 30/04/2013, in which the value of base_date, 25/04/2013 lies.</td>
</tr>
<tr>
<td>inmonths(4, '25/04/2013', '24/04/2013', 0)</td>
<td>Returns False. Because 25/04/2013 is outside the same period as the previous example.</td>
</tr>
<tr>
<td>inmonths(4, '25/11/2012', '01/02/2013', -1)</td>
<td>Returns True. Because the value of period_no, -1, shifts the search period back one period of four months (the value of n-months), which makes the search period 01/09/2012 to 31/12/2012.</td>
</tr>
<tr>
<td>inmonths( 4, '25/05/2006', '01/03/2006', 0, 3)</td>
<td>Returns True. Because the value of first_month_of_year is set to 3, which makes the search period 01/03/2006 to 30/07/2006 instead of 01/01/2006 to 30/04/2006.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result. This example checks if the invoice date in the table falls in the bi-month period that includes the base_date shifted forwards by one bi-month period (by specifying period_no as 1).</td>
<td>The resulting table contains the original dates and a column with the return value of the <code>InMonths()</code> function. The search period is 01/03/2013 to 30/04/2013, because the value of base_date is shifted forwards two months from the value in the function (11/02/2013).</td>
</tr>
<tr>
<td>TempTable: LOAD RecNo() as InvID, * Inline [ InvDate 28/03/2012 10/12/2012 5/2/2013 31/3/2013 19/5/2013 15/9/2013 11/12/2013 2/3/2014 14/5/2014 13/6/2014 7/7/2014 4/8/2014 ]; InvoiceData: LOAD *, <code>InMonths(2, InvDate, '11/02/2013', 1)</code> AS InMthsPlus1 Resident TempTable; Drop table TempTable;</td>
<td>InvDate InMthsPlus1 28/03/2012 0 (False) 10/12/2012 0 (False) 5/2/2013 0 (False) 31/3/2013 -1 (True) 19/5/2013 0 (False) 15/9/2013 0 (False) 11/12/2013 0 (False) 2/3/2014 0 (False) 14/5/2014 0 (False) 13/6/2014 0 (False) 7/7/2014 0 (False) 4/8/2014 0 (False)</td>
</tr>
</tbody>
</table>

inmonthstodate

This function finds if a timestamp falls within the part a period of the month, bi-month, quarter, tertial, or half-year up to and including the last millisecond of base_date. It is also possible to find if the timestamp falls within a previous or following time period.

Syntax:

```plaintext
InMonths (n_months, timestamp, base_date, period_no[, first_month_of_year])
```

Arguments:
## Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_months</td>
<td>The number of months that defines the period. An integer or expression that resolves to an integer that must be one of: 1 (equivalent to the inmonth() function), 2 (bi-month), 3 (equivalent to the inquarter() function), 4 (tertial), or 6 (half year).</td>
</tr>
<tr>
<td>timestamp</td>
<td>The date that you want to compare with base_date.</td>
</tr>
<tr>
<td>base_date</td>
<td>Date that is used to evaluate the period.</td>
</tr>
<tr>
<td>period_no</td>
<td>The period can be offset by period_no, an integer, or expression resolving to an integer, where the value 0 indicates the period that contains base_date. Negative values in period_no indicate preceding periods and positive values indicate succeeding periods.</td>
</tr>
<tr>
<td>first_month_of_year</td>
<td>If you want to work with (fiscal) years not starting in January, indicate a value between 2 and 12 in first_month_of_year.</td>
</tr>
</tbody>
</table>

### Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>inmonthstodate(4, '25/01/2013', '25/04/2013', 0)</td>
<td>Returns True. Because the value of timestamp, 25/01/2013, lies within the four-month period 01/01/2013 up to the end of 25/04/2013, in which the value of base_date, 25/04/2013 lies.</td>
</tr>
<tr>
<td>inmonthstodate(4, '26/04/2013', '25/04/2006', 0)</td>
<td>Returns False. Because 26/04/2013 is outside the same period as the previous example.</td>
</tr>
<tr>
<td>inmonthstodate(4, '25/09/2005', '01/02/2006', -1)</td>
<td>Returns True. Because the value of period_no, -1, shifts the search period back one period of four months (the value of n-months), which makes the search period 01/09/2012 to 01/02/2012.</td>
</tr>
<tr>
<td>inmonthstodate(4, '25/04/2006', '01/06/2006', 0, 3)</td>
<td>Returns True. Because the value of first_month_of_year is set to 3, which makes the search period 01/03/2006 to 01/06/2006 instead of 01/05/2006 to 01/06/2006.</td>
</tr>
</tbody>
</table>
## Functions in scripts and chart expressions

### Example

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example checks if the invoice date in the table falls in the part of the bi-month period up to and including the base_date shifted forwards by four bi-month periods (by specifying period_no as 4).

```plaintext
TempTable: LOAD RecNo() as InvID, * Inline [
    InvDate
    28/03/2012
    10/12/2012
    5/2/2013
    31/3/2013
    19/5/2013
    15/9/2013
    11/12/2013
    2/3/2014
    14/5/2014
    13/6/2014
    7/7/2014
    4/8/2014
];

InvoiceData: LOAD *, InMonthsToDate(2, InvDate, '15/02/2013', 4) AS InMths2DPlus4
Resident TempTable;
Drop table TempTable;
```

### Result

The resulting table contains the original dates and a column with the return value of the InMonths() function.

The search period is 01/09/2013 to 15/10/2013, because the value of base_date is shifted forwards eight months from the value in the function (15/02/2013).

<table>
<thead>
<tr>
<th>InvDate</th>
<th>InMths2DPlus4</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>0 (False)</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>0 (False)</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>-1 (True)</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>0 (False)</td>
</tr>
</tbody>
</table>

### inmonthtodate

Returns True if date lies inside the part of month containing base_date up until and including the last millisecond of base_date.

**Syntax:**

`InMonthToDate (timestamp, base_date, period_no)`

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>The date that you want to compare with base_date.</td>
</tr>
<tr>
<td>base_date</td>
<td>Date that is used to evaluate the month.</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>period_no</td>
<td>The month can be offset by period_no. period_no is an integer, where the value 0 indicates the month which contains base_date. Negative values in period_no indicate preceding months and positive values indicate succeeding months.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>inmonthtodate ('25/01/2013', '25/01/2013', 0)</td>
<td>Returns True</td>
</tr>
<tr>
<td>inmonthtodate ('25/01/2013', '24/01/2013', 0)</td>
<td>Returns False</td>
</tr>
<tr>
<td>inmonthtodate ('25/01/2013', '28/02/2013', -1)</td>
<td>Returns True</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

By specifying period_no as 4, this example checks if an invoice date falls in the fourth month after the month in base_date but before the end of the day specified in base_date.

TempTable:
LOAD RecNo() as InvID, * Inline [
  InvDate,
  28/03/2012,
  10/12/2012,
  5/2/2013,
  31/3/2013,
  19/5/2013,
  15/9/2013,
  11/12/2013,
  2/3/2014,
  14/5/2014,
  13/6/2014,
  7/7/2014,
  4/8/2014
];

InvoiceData:
LOAD * ,
InMonthToDate(InvDate, '31/01/2013', 0, 4) AS InMthPlus42D
Resident TempTable;
Drop table TempTable;

inquarter

This function returns True if timestamp lies inside the quarter containing base_date.

Syntax:

**InQuarter** (timestamp, base_date, period_no[, first_month_of_year])

Arguments:
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamps</td>
<td>The date that you want to compare with base_date.</td>
</tr>
<tr>
<td>base_date</td>
<td>Date that is used to evaluate the quarter.</td>
</tr>
<tr>
<td>period_no</td>
<td>The quarter can be offset by period_no. period_no is an integer, where the value 0 indicates the quarter which contains base_date. Negative values in period_no indicate preceding quarters and positive values indicate succeeding quarters.</td>
</tr>
<tr>
<td>first_month_of_year</td>
<td>If you want to work with (fiscal) years not starting in January, indicate a value between 2 and 12 in first_month_of_year.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>inquarter ('25/01/2013', '01/01/2013', 0)</td>
<td>Returns True</td>
</tr>
<tr>
<td>inquarter ('25/01/2013', '01/04/2013', 0)</td>
<td>Returns False</td>
</tr>
<tr>
<td>inquarter ('25/01/2013', '01/01/2013', -1)</td>
<td>Returns False</td>
</tr>
<tr>
<td>inquarter ('25/12/2012', '01/01/2013', -1)</td>
<td>Returns True</td>
</tr>
<tr>
<td>inquarter ('25/01/2013', '01/03/2013', 0, 3)</td>
<td>Returns False</td>
</tr>
<tr>
<td>inquarter ('25/03/2013', '01/03/2013', 0, 3)</td>
<td>Returns True</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

Example

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example checks if an invoice date falls in the fourth quarter of the fiscal year specified by setting the value of first_month_of_year to 4, and having the base_date 31/01/2013.

TempTable:
LOAD RecNo() as InvID, * Inline [
    InvDate
28/03/2012
10/12/2012
5/2/2013
31/3/2013
19/5/2013
15/9/2013
11/12/2013
2/3/2014
14/5/2014
13/6/2014
7/7/2014
4/8/2014
];

InvoiceData:
LOAD *,
InQuarter(InvDate, '31/01/2013', 0, 4) AS Qtr4FinYr1213
Resident TempTable;
Drop table TempTable;

<table>
<thead>
<tr>
<th>InvDate</th>
<th>Qtr4Fin1213</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>0 (False)</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>0 (False)</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>-1 (True)</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>-1 (True)</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>0 (False)</td>
</tr>
</tbody>
</table>

inquarterodate

This function returns True if timestamp lies inside the part of the quarter containing base_date up until and including the last millisecond of base_date.

Syntax:

InQuarterToDate (timestamp, base_date, period_no [, first_month_of_year])

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>The date that you want to compare with base_date.</td>
</tr>
<tr>
<td>base_date</td>
<td>Date that is used to evaluate the quarter.</td>
</tr>
<tr>
<td>period_no</td>
<td>The quarter can be offset by period_no. period_no is an integer, where the</td>
</tr>
<tr>
<td></td>
<td>value 0 indicates the quarter which contains base_date. Negative values in</td>
</tr>
<tr>
<td></td>
<td>period_no indicate preceding quarters and positive values indicate succeeding</td>
</tr>
<tr>
<td></td>
<td>quarters.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_month_of_year</td>
<td>If you want to work with (fiscal) years not starting in January, indicate a value between 2 and 12 in first_month_of_year.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>inquartertodate (‘25/01/2013’, ‘25/01/2013’, 0)</td>
<td>Returns True</td>
</tr>
<tr>
<td>inquartertodate ( 25/01/2013’, ’24/01/2013’, 0)</td>
<td>Returns False</td>
</tr>
<tr>
<td>inquartertodate (’25/01/2012’, ’01/02/2013’, -1)</td>
<td>Returns True</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example checks if an invoice date falls in a fiscal year specified by setting the value of first_month_of_year to 4, and in the fourth quarter, before the end of 28/02/2013.

TempTable:

InvoiceData:
LOAD *, InQuarterToDate(InvDate, '28/02/2013', 0, 4) AS Qtr42Date Resident TempTable;
Drop table TempTable;

The resulting table contains the original dates and a column with the return value of the inquartertodate() function.

<table>
<thead>
<tr>
<th>InvDate</th>
<th>Qtr42Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>0 (False)</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>0 (False)</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>-1 (True)</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>0 (False)</td>
</tr>
</tbody>
</table>

inweek

This function returns True if timestamp lies inside the week containing base_date.

Syntax:

\texttt{InWeek (timestamp, base_date, period_no[, first_week_day])}

Arguments:
### Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>The date that you want to compare with base_date.</td>
</tr>
<tr>
<td>base_date</td>
<td>Date that is used to evaluate the week.</td>
</tr>
<tr>
<td>period_no</td>
<td>The week can be offset by period_no. period_no is an integer, where the value 0 indicates the week which contains base_date. Negative values in period_no indicate preceding weeks and positive values indicate succeeding weeks.</td>
</tr>
<tr>
<td>first_week_day</td>
<td>By default, the first day of the week is Monday, starting at midnight between Sunday and Monday. To indicate the week starting on another day, specify an offset in first_week_day. This may be given as a whole number of days and/or fractions of a day.</td>
</tr>
</tbody>
</table>

**Examples and results:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>inweek ('12/01/2006', '14/01/2006', 0)</td>
<td>Returns True</td>
</tr>
<tr>
<td>inweek ('12/01/2006', '20/01/2006', 0)</td>
<td>Returns False</td>
</tr>
<tr>
<td>inweek ('12/01/2006', '14/01/2006', -1)</td>
<td>Returns False</td>
</tr>
<tr>
<td>inweek ('07/01/2006', '14/01/2006', -1)</td>
<td>Returns True</td>
</tr>
<tr>
<td>inweek ('12/01/2006', '09/01/2006', 0, 3)</td>
<td>Returns False, because first_week_day is specified as 3 (Thursday), which makes 12/01/2006 the first day of the week following the week containing 09/01/2006.</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the example script to your app and run it.  Then add, at least,</td>
<td>The resulting table contains the original dates and a column with the</td>
</tr>
<tr>
<td>the fields listed in the results column to a sheet in your app to see</td>
<td>return value of the inweek() function.</td>
</tr>
<tr>
<td>the result.</td>
<td>The InvDate 5/2/2013 falls within the week that is four weeks after</td>
</tr>
<tr>
<td></td>
<td>the base_date: 11/1/2013.</td>
</tr>
<tr>
<td>This example checks if an invoice date falls at any time in the fourth</td>
<td></td>
</tr>
<tr>
<td>week after the week in base_date, by specifying period_no as 4.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>TempTable: LOAD RecNo() as InvID, * Inline [</td>
<td></td>
</tr>
<tr>
<td>InvDate 28/03/2012 10/12/2012 5/2/2013 31/3/2013 19/5/2013 15/9/2013</td>
<td></td>
</tr>
<tr>
<td>InvoiceData: LOAD *, Inweek(InvDate, '11/01/2013', 4) AS InWeekPlus4</td>
<td></td>
</tr>
<tr>
<td>Resident TempTable;</td>
<td></td>
</tr>
<tr>
<td>Drop table TempTable;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>inweektodate</td>
<td></td>
</tr>
<tr>
<td>This function returns True if timestamp lies inside the part of week</td>
<td></td>
</tr>
<tr>
<td>containing base_date up until and including the last millisecond of</td>
<td></td>
</tr>
<tr>
<td>base_date.</td>
<td></td>
</tr>
</tbody>
</table>

Syntax:

```
InWeekToDate (timestamp, base_date, period_no [, first_week_day])
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>The date that you want to compare with base_date.</td>
</tr>
<tr>
<td>base_date</td>
<td>Date that is used to evaluate the week.</td>
</tr>
</tbody>
</table>
## Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>period_no</td>
<td>The week can be offset by <code>period_no</code>. <code>period_no</code> is an integer, where the value 0 indicates the week which contains <code>base_date</code>. Negative values in <code>period_no</code> indicate preceding weeks and positive values indicate succeeding weeks.</td>
</tr>
<tr>
<td>first_week_day</td>
<td>By default, the first day of the week is Monday, starting at midnight between Sunday and Monday. To indicate the week starting on another day, specify an offset in <code>first_week_day</code>. This may be given as a whole number of days and/or fractions of a day.</td>
</tr>
</tbody>
</table>

### Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>inweektodate ('12/01/2006', '12/01/2006', 0)</code></td>
<td>Returns True</td>
</tr>
<tr>
<td><code>inweektodate ('12/01/2006', '11/01/2006', 0)</code></td>
<td>Returns False</td>
</tr>
<tr>
<td><code>inweektodate ('12/01/2006', '18/01/2006', -1)</code></td>
<td>Returns False&lt;br&gt;Because <code>period_no</code> is specified as -1, the effective data that timestamp is measured against is 11/01/2006.</td>
</tr>
<tr>
<td><code>inweektodate ('11/01/2006', '12/01/2006', 0, 3)</code></td>
<td>Returns False&lt;br&gt;Because <code>first_week_day</code> is specified as 3 (Thursday), which makes 12/01/2006 the first day of the week following the week containing 12/01/2006.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

### Example

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example checks if an invoice date falls during the fourth week after the week in base_date, by specifying period_no as 4, but before the value of base_date.

```ql
TempTable:
LOAD RecNo() as InvID, * Inline [ InvDate
28/03/2012
10/12/2012
5/2/2013
31/3/2013
19/5/2013
15/9/2013
11/12/2013
2/3/2014
14/5/2014
13/6/2014
7/7/2014
4/8/2014
];
InvoiceData:
LOAD *,
InWeekToDate(InvDate, '11/01/2013', 4) AS InWeek2DPlus4
Resident TempTable;
Drop table TempTable;
```

### Result

The resulting table contains the original dates and a column with the return value of the inweek () function.

<table>
<thead>
<tr>
<th>InvDate</th>
<th>InWeek2DPlus4</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>0 (False)</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>0 (False)</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>-1 (True)</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>0 (False)</td>
</tr>
</tbody>
</table>

### inyear

This function returns True if `timestamp` lies inside the year containing `base_date`.

**Syntax:**

```
InYear (timestamp, base_date, period_no [, first_month_of_year])
```

**Return data type:** Boolean

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>timestamp</code></td>
<td>The date that you want to compare with <code>base_date</code>.</td>
</tr>
<tr>
<td><code>base_date</code></td>
<td>Date that is used to evaluate the year.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>period_no</td>
<td>The year can be offset by <code>period_no</code>. <code>period_no</code> is an integer, where the value 0 indicates the year that contains <code>base_date</code>. Negative values in <code>period_no</code> indicate preceding years, and positive values indicate succeeding years.</td>
</tr>
<tr>
<td>first_month_of_year</td>
<td>If you want to work with (fiscal) years not starting in January, indicate a value between 2 and 12 in <code>first_month_of_year</code>.</td>
</tr>
</tbody>
</table>

Examples and results:
These examples use the date format DD/MM/YYYY. The date format is specified in the `SET DateFormat` statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>inyear ('25/01/2013', '01/01/2013', 0)</code></td>
<td>Returns True</td>
</tr>
<tr>
<td><code>inyear ('25/01/2012', '01/01/2013', 0)</code></td>
<td>Returns False</td>
</tr>
<tr>
<td><code>inyear ('25/01/2013', '01/01/2013', -1)</code></td>
<td>Returns False</td>
</tr>
<tr>
<td><code>inyear ('25/01/2012', '01/01/2013', -1)</code></td>
<td>Returns True</td>
</tr>
<tr>
<td><code>inyear ('25/01/2013', '01/01/2013', 0, 3)</code></td>
<td>Returns False The value of base_date and first_month_of_year specify that timestamp must fall within 01/03/2012 and 28/02/2013</td>
</tr>
<tr>
<td><code>inyear ('25/03/2013', '2013/07/01', 0, 3)</code></td>
<td>Returns True</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result. This example checks if an invoice date falls in the fiscal year specified by setting the value of first_month_of_year to 4, and having the base_date between 1/4/2012 and 31/03/2013.</td>
<td>The resulting table contains the original dates and a column with the return value of the inyear() function.</td>
</tr>
<tr>
<td>TempTable: LOAD RecNo() as InvID, * Inline [</td>
<td>InvDate</td>
</tr>
<tr>
<td>InvDate 28/03/2012</td>
<td>28/03/2012</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>10/12/2012</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>5/2/2013</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>31/3/2013</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>19/5/2013</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>15/9/2013</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>11/12/2013</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>2/3/2014</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>14/5/2014</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>13/6/2014</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>7/7/2014</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>4/8/2014</td>
</tr>
<tr>
<td>Test if InvDate is in the financial year 1/04/2012 to 31/03/2013:</td>
<td></td>
</tr>
<tr>
<td>InvoiceData: LOAD *, InYear(InvDate, '31/01/2013', 0, 4) AS FinYr1213 Resident TempTable; Drop table TempTable;</td>
<td></td>
</tr>
</tbody>
</table>

inyearToDate

This function returns True if timestamp lies inside the part of year containing base_date up until and including the last millisecond of base_date.

**Syntax:**

`InYearToDate (timestamp, base_date, period_no[, first_month_of_year])`

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>The date that you want to compare with base_date.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>base_date</td>
<td>Date that is used to evaluate the year.</td>
</tr>
<tr>
<td>period_no</td>
<td>The year can be offset by <strong>period_no</strong>. <strong>period_no</strong> is an integer, where the value 0 indicates the year that contains <strong>base_date</strong>. Negative values in <strong>period_no</strong> indicate preceding years, and positive values indicate succeeding years.</td>
</tr>
<tr>
<td>first_month_of_year</td>
<td>If you want to work with (fiscal) years not starting in January, indicate a value between 2 and 12 in <strong>first_month_of_year</strong>.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>inyeartodate ('2013/01/25', '2013/02/01', 0)</code></td>
<td>Returns True</td>
</tr>
<tr>
<td><code>inyeartodate ('2012/01/25', '2013/01/01', 0)</code></td>
<td>Returns False</td>
</tr>
<tr>
<td><code>inyeartodate ('2012/01/25', '2013/02/01', -1)</code></td>
<td>Returns True</td>
</tr>
</tbody>
</table>
| `inyeartodate ('2012/11/25', '2013/01/31', 0, 4)` | Returns True  
The value of timestamp falls inside the fiscal year beginning in the fourth month and before the value of base_date. |
| `inyeartodate ('2013/3/31', '2013/01/31', 0, 4)` | Returns False  
Compared with the previous example, the value of timestamp is still inside the fiscal year, but it is after the value of base_date, so it falls outside the part of the year. |
## Functions in scripts and chart expressions

### Example

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example checks if an invoice date falls in a fiscal year specified by setting the value of `first_month_of_year` to 4, and in the part of the year before the end of 31/01/2013.

```qlik
TempTable: LOAD RecNo() as InvID, Inline [ InvDate 28/03/2012 10/12/2012 5/2/2013 31/3/2013 19/5/2013 15/9/2013 11/12/2013 2/3/2014 14/5/2014 13/6/2014 7/7/2014 4/8/2014 ];
InvoiceData: LOAD *, InYearToDate(InvDate, '31/01/2013', 0, 4) AS FinYr2Date Resident TempTable; Drop table TempTable;
```

<table>
<thead>
<tr>
<th>InvDate</th>
<th>FinYr2Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>0 (False)</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>-1 (True)</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>0 (False)</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>0 (False)</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>0 (False)</td>
</tr>
</tbody>
</table>

### lastworkdate

The `lastworkdate` function returns the earliest ending date to achieve `no_of_workdays` (Monday-Friday) if starting at `start_date` taking into account any optionally listed `holiday`. `start_date` and `holiday` should be valid dates or timestamps.

**Syntax:**

```
lastworkdate(start_date, no_of_workdays [, holiday])
```

**Return data type:** integer

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start_date</td>
<td>The timestamp of start date to evaluate.</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no_of_workdays</td>
<td>The number of working days to achieve.</td>
</tr>
<tr>
<td>holiday</td>
<td>Holiday periods to exclude from working days. A holiday period is stated as a start date and an end date, separated by commas.</td>
</tr>
</tbody>
</table>

**Example:** '25/12/2013', '26/12/2013'

You can exclude more than one holiday period, separated by commas.

**Example:** '25/12/2013', '26/12/2013', '31/12/2013', '01/01/2014'

Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>lastworkdate ('19/12/2014', 9)</td>
<td>Returns '31/12/2014'</td>
</tr>
<tr>
<td>lastworkdate ('19/12/2014', 9, '2014-12-25', '2014-12-26')</td>
<td>Returns '02/01/2015' as a holiday period of two days is taken into account.</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

```
ProjectTable:
LOAD *,, recno() as InvID, INLINE [StartDate 28/03/2014 10/12/2014 5/2/2015 31/3/2015 19/5/2015 15/9/2015 ]; NrDays: Load *,, LastWorkDate(StartDate,120) As EndDate Resident ProjectTable; Drop table ProjectTable;
```

The resulting table shows the returned values of LastWorkDate for each of the records in the table.

<table>
<thead>
<tr>
<th>InvID</th>
<th>StartDate</th>
<th>EndDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28/03/2014</td>
<td>11/09/2014</td>
</tr>
<tr>
<td>2</td>
<td>10/12/2014</td>
<td>26/05/2015</td>
</tr>
<tr>
<td>3</td>
<td>5/2/2015</td>
<td>27/07/2015</td>
</tr>
<tr>
<td>4</td>
<td>31/3/2015</td>
<td>14/09/2015</td>
</tr>
<tr>
<td>5</td>
<td>19/5/2015</td>
<td>02/11/2015</td>
</tr>
<tr>
<td>6</td>
<td>15/9/2015</td>
<td>29/02/2016</td>
</tr>
</tbody>
</table>

**localtime**

This function returns a timestamp of the current time from the system clock for a specified time zone.

**Syntax:**

```
5 Functions in scripts and chart expressions

**LocalTime([timezone [, ignoreDST ]])**

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timezone</td>
<td>The timezone is specified as a string containing any of the geographical places listed under Time Zone in the Windows Control Panel for Date and Time or as a string in the form 'GMT+hh:mm'. If no time zone is specified the local time will be returned.</td>
</tr>
<tr>
<td>ignoreDST</td>
<td>If ignoreDST is -1 (True) daylight savings time will be ignored.</td>
</tr>
</tbody>
</table>

**Examples and results:**

The examples below are based on the function being called on 2014-10-22 12:54:47 local time, with the local time zone being GMT+01:00.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>localtime ()</td>
<td>Returns the local time 2014-10-22 12:54:47.</td>
</tr>
<tr>
<td>localtime ('GMT+02:00')</td>
<td>Returns the local time in the timezone of GMT+02:00, 2014-10-22 13:54:47.</td>
</tr>
<tr>
<td>localtime ('Paris','-1')</td>
<td>Returns the local time in Paris with daylight savings time ignored, 2014-10-22 11:54:47.</td>
</tr>
</tbody>
</table>

**lunarweekend**

This function returns a value corresponding to a timestamp of the last millisecond of the lunar week containing date. Lunar weeks in Qlik Sense are defined by counting 1 January as the first day of the week.

**Syntax:**

```
LunarweekEnd(date[, period_no[, first_week_day]])
```

**Return data type:** dual

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>The date to evaluate.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>period_no</td>
<td>period_no is an integer or expression resolving to an integer, where the value 0 indicates the lunar week which contains date. Negative values in period_no indicate preceding lunar weeks and positive values indicate succeeding lunar weeks.</td>
</tr>
<tr>
<td>first_week_day</td>
<td>An offset that may be greater than or less than zero. This changes the beginning of the year by the specified number of days and/or fractions of a day.</td>
</tr>
</tbody>
</table>

Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the **SET DateFormat** statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>lunarweekend('12/01/2013')</code></td>
<td>Returns 14/01/2013 23:59:59.</td>
</tr>
<tr>
<td><code>lunarweekend('12/01/2013', 0, 1)</code></td>
<td>Returns 15/01/2013 23:59:59.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

Example

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example finds the final day of the lunar week of each invoice date in the table, where the date is shifted by one week by specifying period_no as 1.

TempTable:
LOAD RecNo() as InvID, * Inline [
InvDate
28/03/2012
10/12/2012
5/2/2013
31/3/2013
19/5/2013
15/9/2013
11/12/2013
2/3/2014
14/5/2014
13/6/2014
7/7/2014
4/8/2014
];

InvoiceData:
LOAD *,
LunarWeekEnd(InvDate, 1) AS LWkEnd
Resident TempTable;
Drop table TempTable;

Result

The resulting table contains the original dates and a column with the return value of the lunarweekend() function. You can display the full timestamp by specifying the formatting in the properties panel.

<table>
<thead>
<tr>
<th>InvDate</th>
<th>LWkEnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>07/04/2012</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>22/12/2012</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>18/02/2013</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>08/04/2013</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>27/05/2013</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>23/09/2013</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>23/12/2013</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>11/03/2014</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>27/05/2014</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>24/06/2014</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>15/07/2014</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>12/08/2014</td>
</tr>
</tbody>
</table>

lunarweekname

This function returns a display value showing the year and lunar week number corresponding to a timestamp of the first millisecond of the first day of the lunar week containing date. Lunar weeks in Qlik Sense are defined by counting 1 January as the first day of the week.

Syntax:

LunarWeekName(date [, period_no[, first_week_day]])

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>The date to evaluate.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>period_no</code></td>
<td><code>period_no</code> is an integer or expression resolving to an integer, where the value 0 indicates the lunar week which contains <code>date</code>. Negative values in <code>period_no</code> indicate preceding lunar weeks and positive values indicate succeeding lunar weeks.</td>
</tr>
<tr>
<td><code>first_week_day</code></td>
<td>An offset that may be greater than or less than zero. This changes the beginning of the year by the specified number of days and/or fractions of a day.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>lunarweekname('12/01/2013')</code></td>
<td>Returns 2006/02.</td>
</tr>
<tr>
<td><code>lunarweekname('12/01/2013', -1)</code></td>
<td>Returns 2006/01.</td>
</tr>
<tr>
<td><code>lunarweekname('12/01/2013', 0, 1)</code></td>
<td>Returns 2006/02.</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

In this example, for each invoice date in the table, the lunar week name is created from the year in which the week lies and its associated lunar week number, shifted one week by specifying `period_no` as 1.

```
TempTable:
LOAD RecNo() as InvID, * Inline [ InvDate
28/03/2012
10/12/2012
5/2/2013
31/3/2013
19/5/2013
15/9/2013
11/12/2013
2/3/2014
14/5/2014
13/6/2014
7/7/2014
4/8/2014 ];

InvoiceData:
LOAD *,
LunarWeekName(InvDate, 1) AS LwkName
Resident TempTable;
Drop table TempTable;
```

The resulting table contains the original dates and a column with the return value of the `lunarweekname()` function. You can display the full timestamp by specifying the formatting in the properties panel.

<table>
<thead>
<tr>
<th>InvDate</th>
<th>LwkName</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>2012/14</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>2012/51</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>2013/07</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>2013/14</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>2013/21</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>2013/38</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>2013/51</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>2014/10</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>2014/21</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>2014/25</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>2014/28</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>2014/32</td>
</tr>
</tbody>
</table>
lunarweekstart

This function returns a value corresponding to a timestamp of the first millisecond of the lunar week containing `date`. Lunar weeks in Qlik Sense are defined by counting 1 January as the first day of the week.

Syntax:

```
LunarweekStart(date[, period_no[, first_week_day]])
```

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>date</code></td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td><code>period_no</code></td>
<td><code>period_no</code> is an integer or expression resolving to an integer, where the value 0 indicates the lunar week which contains <code>date</code>. Negative values in <code>period_no</code> indicate preceding lunar weeks and positive values indicate succeeding lunar weeks.</td>
</tr>
<tr>
<td><code>first_week_day</code></td>
<td>An offset that may be greater than or less than zero. This changes the beginning of the year by the specified number of days and/or fractions of a day.</td>
</tr>
</tbody>
</table>

Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the `SET DateFormat` statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>lunarweekstart('12/01/2013')</td>
<td>Returns 08/01/2013.</td>
</tr>
<tr>
<td>lunarweekstart('12/01/2013', -1)</td>
<td>Returns 01/01/2013.</td>
</tr>
<tr>
<td>lunarweekstart('12/01/2013', 0, 1)</td>
<td>Returns 09/01/2013. Because the offset specified by setting <code>first_week_day</code> to 1 means the beginning of the year is changed to 02/01/2013.</td>
</tr>
</tbody>
</table>
Example

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example finds the first day of the lunar week of each invoice date in the table, where the date is shifted by one week by specifying period_no as 1.

TempTable:

InvoiceData:
LOAD *, LunarWeekStart(InvDate, 1) AS LWkStart Resident TempTable;
Drop table TempTable;

Result

The resulting table contains the original dates and a column with the return value of the lunarweekstart() function. You can display the full timestamp by specifying the formatting in the properties panel.

<table>
<thead>
<tr>
<th>InvDate</th>
<th>LWkStart</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>01/04/2012</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>16/12/2012</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>12/02/2013</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>02/04/2013</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>21/05/2013</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>17/09/2013</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>17/12/2013</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>05/03/2014</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>21/05/2014</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>18/06/2014</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>09/07/2014</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>06/08/2014</td>
</tr>
</tbody>
</table>

makedate

This function returns a date calculated from the year YYYY, the month MM and the day DD.

Syntax:

MakeDate(YYYY [ , MM [ , DD ] ])

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YYYY</td>
<td>The year as an integer.</td>
</tr>
<tr>
<td>MM</td>
<td>The month as an integer. If no month is stated, 1 (January) is assumed.</td>
</tr>
<tr>
<td>DD</td>
<td>The day as an integer. If no day is stated, 1 (the 1:st) is assumed.</td>
</tr>
</tbody>
</table>

Examples and results:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>makedate(2012)</td>
<td>returns 2012-01-01</td>
</tr>
<tr>
<td>makedate(12)</td>
<td>returns 2012-01-01</td>
</tr>
<tr>
<td>makedate(2012,12)</td>
<td>returns 2012-12-01</td>
</tr>
<tr>
<td>makedate(2012,2,14)</td>
<td>returns 2012-02-14</td>
</tr>
</tbody>
</table>

maketime

This function returns a time calculated from the hour **hh**, the minute **mm**, and the second **ss**.

**Syntax:**

\[
\text{MakeTime}(hh [, mm [, ss ]])
\]

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hh</td>
<td>The hour as an integer.</td>
</tr>
<tr>
<td>mm</td>
<td>The minute as an integer.</td>
</tr>
<tr>
<td></td>
<td>If no minute is stated, 00 is assumed.</td>
</tr>
<tr>
<td>ss</td>
<td>The second as an integer.</td>
</tr>
<tr>
<td></td>
<td>If no second is stated, 00 is assumed.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>maketime(22)</td>
<td>returns 22:00:00</td>
</tr>
<tr>
<td>maketime(22, 17)</td>
<td>returns 22:17:00</td>
</tr>
<tr>
<td>maketime(22, 17, 52)</td>
<td>returns 22:17:52</td>
</tr>
</tbody>
</table>

makeweekdate

This function returns a date calculated from the year **YYYY**, the week **WW** and the day-of-week **D**.

**Syntax:**

\[
\text{MakeWeekDate}(YYYY [, WW [, D ]])
\]

**Arguments:**
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YYYY</td>
<td>The year as an integer.</td>
</tr>
<tr>
<td>WW</td>
<td>The week as an integer.</td>
</tr>
<tr>
<td>D</td>
<td>The day-of-week as an integer.</td>
</tr>
<tr>
<td></td>
<td>If no day-of-week is stated, 0 (Monday) is assumed.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>makeweekdate(2014, 6, 6)</td>
<td>returns 2014-02-09</td>
</tr>
<tr>
<td>makeweekdate(2014, 6, 1)</td>
<td>returns 2014-02-04</td>
</tr>
<tr>
<td>makeweekdate(2014, 6)</td>
<td>returns 2014-02-03 (weekday 0 is assumed)</td>
</tr>
</tbody>
</table>

**minute**

This function returns an integer representing the minute when the fraction of the `expression` is interpreted as a time according to the standard number interpretation.

**Syntax:**

\[ \text{minute}(\text{expression}) \]

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>minute ('09:14:36')</td>
<td>returns 14</td>
</tr>
<tr>
<td>minute ('0.5555')</td>
<td>returns 19 ( Because 0.5555 = 13:19:55 )</td>
</tr>
</tbody>
</table>

**month**

This function returns a dual value with a month name as defined in the environment variable `MonthNames` and an integer between 1-12. The month is calculated from the date interpretation of the expression, according to the standard number interpretation.

**Syntax:**

\[ \text{month}(\text{expression}) \]

Examples and results:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>month( '2012-10-12' )</td>
<td>returns Oct</td>
</tr>
<tr>
<td>month( '35648' )</td>
<td>returns Aug, because 35648 = 1997-08-06</td>
</tr>
</tbody>
</table>

**monthend**

This function returns a value corresponding to a timestamp of the last millisecond of the last day of the month containing date. The default output format will be the **DateFormat** set in the script.

**Syntax:**

```plaintext
MonthEnd(date[, period_no])
```

**Return data type:** dual

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td>period_no</td>
<td>period_no is an integer, which, if 0 or omitted, indicates the month that contains date. Negative values in period_no indicate preceding months and positive values indicate succeeding months.</td>
</tr>
</tbody>
</table>

**Examples and results:**

These examples use the date format DD/MM/YYYY. The date format is specified in the **SET DateFormat** statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>monthend('19/02/2012')</td>
<td>Returns 29/02/2012 23:59:59.</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result. This example finds the first day in the quarter of each invoice date in the table, where the month in the base_date is offset by specifying period_no as 4.</td>
<td></td>
</tr>
<tr>
<td>The resulting table contains the original dates and a column with the return value of the monthend() function. You can display the full timestamp by specifying the formatting in the properties panel.</td>
<td></td>
</tr>
</tbody>
</table>

TempTable:
LOAD RecNo() as InvID, * Inline [InvDate
28/03/2012
10/12/2012
5/2/2013
31/3/2013
19/5/2013
15/9/2013
11/12/2013
2/3/2014
14/5/2014
13/6/2014
7/7/2014
4/8/2014
];

InvoiceData:
LOAD *, MonthEnd(InvDate, 4) as MthEnd
Resident TempTable;
Drop table TempTable;

monthname

This function returns a display value showing the month (formatted according to the MonthNames script variable) and year with an underlying numeric value corresponding to a timestamp of the first millisecond of the first day of the month.

Syntax:

\[ \text{MonthName}(\text{date}, \text{period\_no}) \]

Return data type: dual

Arguments:
### Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td>period_no</td>
<td>period_no is an integer, which, if 0 or omitted, indicates the month that contains date. Negative values in period_no indicate preceding months and positive values indicate succeeding months.</td>
</tr>
</tbody>
</table>

**Examples and results:**

These examples use the date format DD/MM/YYYY. The date format is specified in the **SET DateFormat** statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>monthname('19/10/2013')</td>
<td>Returns Oct 2013. Because in this and the other examples, the <strong>SET Monthnames</strong> statement is set to Jan;Feb;Mar, and so on.</td>
</tr>
<tr>
<td>monthname('19/10/2013', -1)</td>
<td>Returns Sep 2013.</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

In this example, for each invoice date in the table, the month name is created from the month name shifted four months from base_date, and from the year.

```qlik
TempTable:
LOAD RecNo() as InvID, * Inline [
InvDate
28/03/2012
10/12/2012
5/2/2013
31/3/2013
19/5/2013
15/9/2013
11/12/2013
2/3/2014
14/5/2014
13/6/2014
7/7/2014
4/8/2014
];

InvoiceData:
LOAD *,
MonthName(InvDate, 4) AS MthName
Resident TempTable;
Drop table TempTable;
```

The resulting table contains the original dates and a column with the return value of the monthname() function. In

<table>
<thead>
<tr>
<th>InvDate</th>
<th>MthName</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>Jul 2012</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>Apr 2013</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>Jun 2013</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>Jul 2013</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>Sep 2013</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>Jan 2014</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>Apr 2014</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>Jul 2014</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>Sep 2014</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>Oct 2014</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>Nov 2014</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>Dec 2014</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

monthsend
This function returns a value corresponding to a timestamp of the last millisecond of the month, bi-month, quarter, tertial, or half-year containing a base date. It is also possible to find the timestamp for a previous or following time period.

Syntax:

`Monthsend(n_month, date[, period_no [, first_month_of_year]])`

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_months</td>
<td>The number of months that defines the period. An integer or expression that resolves to an integer that must be one of: 1 (equivalent to the inmonth() function), 2 (bi-month), 3 (equivalent to the inquarter() function), 4 (tertial), or 6 (half year).</td>
</tr>
<tr>
<td>date</td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td>period_no</td>
<td>The period can be offset by <code>period_no</code>, an integer, or expression resolving to an integer, where the value 0 indicates the period that contains <code>base_date</code>. Negative values in <code>period_no</code> indicate preceding periods and positive values indicate succeeding periods.</td>
</tr>
<tr>
<td>first_month_of_year</td>
<td>If you want to work with (fiscal) years not starting in January, indicate a value between 2 and 12 in <code>first_month_of_year</code>.</td>
</tr>
</tbody>
</table>

Examples and results:
These examples use the date format DD/MM/YYYY. The date format is specified in the `SET DateFormat` statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>monthsend(4, '19/07/2013')</code></td>
<td>Returns 31/08/2013.</td>
</tr>
<tr>
<td><code>monthsend(4, '19/10/2013', 0, 2)</code></td>
<td>Returns 31/01/2014. Because the start of the year becomes month 2.</td>
</tr>
</tbody>
</table>
# Functions in scripts and chart expressions

## Example

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example finds the end of the final day of bi-month period for each invoice date, shifted forwards by one bi-month period.

```plaintext
TempTable:
LOAD RecNo() as InvID, * Inline [
  InvDate
  28/03/2012
  10/12/2012
  5/2/2013
  31/3/2013
  19/5/2013
  15/9/2013
  11/12/2013
  2/3/2014
  14/5/2014
  13/6/2014
  7/7/2014
  4/8/2014
];

InvoiceData:
LOAD *,
  MonthsEnd(2, InvDate, 1) AS BiMthsEnd
Resident TempTable;
Drop table TempTable;
```

<table>
<thead>
<tr>
<th>InvDate</th>
<th>BiMthsEnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>30/06/2012</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>28/02/2013</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>30/04/2013</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>30/04/2013</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>31/08/2013</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>31/12/2013</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>28/02/2014</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>30/06/2014</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>31/08/2014</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>31/08/2014</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>31/10/2014</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>31/10/2014</td>
</tr>
</tbody>
</table>

## monthsname

This function returns a display value representing the range of the months of the period (formatted according to the MonthNames script variable) as well as the year. The underlying numeric value corresponds to a timestamp of the first millisecond of the month, bi-month, quarter, tertial, or half-year containing a base date.

**Syntax:**

```plaintext
MonthsName(n_months, date[, period_no[, first_month_of_year]])
```

**Return data type:** dual

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_months</td>
<td>The number of months that defines the period. An integer or expression that resolves to an integer that must be one of: 1 (equivalent to the inmonth() function), 2 (bi-month), 3 (equivalent to the inquarter() function), 4 (tertial), or 6 (half year).</td>
</tr>
<tr>
<td>date</td>
<td>The date to evaluate.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>period_no</td>
<td>The period can be offset by period_no, an integer, or expression resolving to an integer, where the value 0 indicates the period that contains base_date. Negative values in period_no indicate preceding periods and positive values indicate succeeding periods.</td>
</tr>
<tr>
<td>first_month_of_year</td>
<td>If you want to work with (fiscal) years not starting in January, indicate a value between 2 and 12 in first_month_of_year.</td>
</tr>
</tbody>
</table>

Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>monthsname(4, '19/10/2013')</td>
<td>Returns 'Sep-Dec 2013. Because in this and the other examples, the SET Monthnames statement is set to Jan;Feb;Mar, and so on.</td>
</tr>
<tr>
<td>monthsname(4, '19/10/2013', 0, 2)</td>
<td>Returns Oct-Jan 2014. Because the year is specified to begin in month 2, therefore the four-month period ends on the first month of the following year.</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the example script to your app and run it. Then add, at least,</td>
<td>The resulting table contains the original dates and a column with the</td>
</tr>
<tr>
<td>the fields listed in the results column to a sheet in your app to</td>
<td>return value of the monthsname() function.</td>
</tr>
<tr>
<td>see the result.</td>
<td></td>
</tr>
<tr>
<td>In this example, for each invoice date in the table, the months</td>
<td></td>
</tr>
<tr>
<td>name is created from the range of months in the bi-month period, and</td>
<td></td>
</tr>
<tr>
<td>from the year. The range is offset by 4x2 months by specifying period_</td>
<td></td>
</tr>
<tr>
<td>_no as 4.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>TempTable: LOAD RecNo() as InvID, * Inline [</td>
<td></td>
</tr>
<tr>
<td>InvDate 28/03/2012 10/12/2012 5/2/2013 31/3/2013 19/5/2013 15/9/2013</td>
<td></td>
</tr>
<tr>
<td>InvoiceData: LOAD *, MonthsName(2, InvDate, 4) AS MthsName Resident</td>
<td></td>
</tr>
<tr>
<td>TempTable; Drop table TempTable;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>monthsstart</td>
<td></td>
</tr>
<tr>
<td>This function returns a value corresponding to the timestamp of the</td>
<td></td>
</tr>
<tr>
<td>first millisecond of the month, bi-month, quarter, tertial, or half-</td>
<td></td>
</tr>
<tr>
<td>year containing a base date. It is also possible to find the timestamp</td>
<td></td>
</tr>
<tr>
<td>for a previous or following time period.</td>
<td></td>
</tr>
<tr>
<td>Syntax:</td>
<td></td>
</tr>
<tr>
<td><strong>MonthsStart</strong>(n_months, date[, period_no [, first_month_of_year]])</td>
<td></td>
</tr>
<tr>
<td>Return data type: dual</td>
<td></td>
</tr>
<tr>
<td>Arguments:</td>
<td></td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_months</td>
<td>The number of months that defines the period. An integer or expression that resolves to an integer that must be one of: 1 (equivalent to the inmonth() function), 2 (bi-month), 3 (equivalent to the inquarter() function), 4 (tertial), or 6 (half year).</td>
</tr>
<tr>
<td>date</td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td>period_no</td>
<td>The period can be offset by period_no, an integer, or expression resolving to an integer, where the value 0 indicates the period that contains base_date. Negative values in period_no indicate preceding periods and positive values indicate succeeding periods.</td>
</tr>
<tr>
<td>first_month_of_year</td>
<td>If you want to work with (fiscal) years not starting in January, indicate a value between 2 and 12 in first_month_of_year.</td>
</tr>
</tbody>
</table>

Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>monthsstart(4, '19/10/2013', -1)</td>
<td>Returns 01/05/2013.</td>
</tr>
<tr>
<td>monthsstart(4, '19/10/2013', 0, 2 )</td>
<td>Returns 01/10/2013. Because the start of the year becomes month 2.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.</td>
</tr>
<tr>
<td>This example finds the first day of the bi-month period for each invoice date, shifted forwards by one bi-month period.</td>
</tr>
</tbody>
</table>

TempTable:

InvoiceData:
LOAD *,
MonthsStart(2, InvDate, 1) AS BiMthsStart Resident TempTable;
Drop table TempTable;

<table>
<thead>
<tr>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The resulting table contains the original dates and a column with the return value of the MonthsStart() function.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>InvDate</th>
<th>BiMthsStart</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>01/05/2012</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>01/01/2013</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>01/03/2013</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>01/05/2013</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>01/07/2013</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>01/11/2013</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>01/01/2014</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>01/05/2014</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>01/07/2014</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>01/07/2014</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>01/09/2014</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>01/09/2014</td>
</tr>
</tbody>
</table>

monthstart

This function returns a value corresponding to a timestamp of the first millisecond of the first day of the month containing date. The default output format will be the DateFormat set in the script.

Syntax:

MonthStart (date[, period_no])

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td>period_no</td>
<td>period_no is an integer, which, if 0 or omitted, indicates the month that contains date. Negative values in period_no indicate preceding months and positive values indicate succeeding months.</td>
</tr>
</tbody>
</table>

Examples and results:
5 Functions in scripts and chart expressions

These examples use the date format DD/MM/YYYY. The date format is specified in the `SET DateFormat` statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>monthstart('19/10/2001')</code></td>
<td>Returns 01/10/2001.</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example finds the first day in the month of each invoice date in the table, where the base_date is shifted by four months by specifying period_no as 4.

```
TempTable:
LOAD RecNo() as InvID, * Inline [
  InvDate
  28/03/2012
  10/12/2012
  5/2/2013
  31/3/2013
  19/5/2013
  15/9/2013
  11/12/2013
  2/3/2014
  14/5/2014
  13/6/2014
  7/7/2014
  4/8/2014
];

InvoiceData:
LOAD *,
  MonthStart(InvDate, 4) AS MthStart
Resident TempTable;
Drop table TempTable;
```

The resulting table contains the original dates and a column with the return value of the `monthstart()` function. You can display the full timestamp by specifying the formatting in the properties panel.

<table>
<thead>
<tr>
<th>InvDate</th>
<th>MthStart</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>01/07/2012</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>01/04/2013</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>01/06/2013</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>01/07/2013</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>01/09/2013</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>01/01/2014</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>01/04/2014</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>01/07/2014</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>01/09/2014</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>01/10/2014</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>01/11/2014</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>01/12/2014</td>
</tr>
</tbody>
</table>

networkdays

The `networkdays` function returns the number of working days (Monday-Friday) between and including `start_date` and `end_date` taking into account any optionally listed `holiday`.

**Syntax:**

```
networkdays (start_date, end_date [, holiday])
```

**Return data type:** integer

**Arguments:**

- `start_date` (required)
- `end_date` (required)
- `holiday` (optional)
## Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start_date</td>
<td>The timestamp of start date to evaluate.</td>
</tr>
<tr>
<td>end_date</td>
<td>The timestamp of end date to evaluate.</td>
</tr>
<tr>
<td>holiday</td>
<td>Holiday periods to exclude from working days. A holiday period is stated as a start date and an end date, separated by commas.</td>
</tr>
</tbody>
</table>

**Example:** '25/12/2013', '26/12/2013'

You can exclude more than one holiday period, separated by commas.

**Example:** '25/12/2013', '26/12/2013', '31/12/2013', '01/01/2014'

### Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the **SET DateFormat** statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>networkdays ('19/12/2013', '07/01/2014')</td>
<td>Returns 14. This example does not take holidays into account.</td>
</tr>
<tr>
<td>networkdays ('19/12/2013', '07/01/2014', '25/12/2013', '26/12/2013')</td>
<td>Returns 12. This example takes the holiday 25/12/2013 to 26/12/2013 into account.</td>
</tr>
<tr>
<td>networkdays ('19/12/2013', '07/01/2014', '25/12/2013', '26/12/2013', '31/12/2013', '01/01/2014')</td>
<td>Returns 10. This example takes two holiday periods into account.</td>
</tr>
</tbody>
</table>
Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

```qlik
PayTable:
Load *, NetworkDays(InvRec,InvPaid) As PaidDays Resident PayTable;
Drop table PayTable;
```

The resulting table shows the returned values of NetworkDays for each of the records in the table.

<table>
<thead>
<tr>
<th>InvID</th>
<th>InvRec</th>
<th>InvPaid</th>
<th>PaidDays</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28/03/2012</td>
<td>28/04/2012</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>10/12/2012</td>
<td>01/01/2013</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>5/2/2013</td>
<td>5/3/2013</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>31/3/2013</td>
<td>01/5/2013</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>19/5/2013</td>
<td>12/6/2013</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>15/9/2013</td>
<td>6/10/2013</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>11/12/2013</td>
<td>12/01/2014</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>2/3/2014</td>
<td>2/4/2014</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>14/5/2014</td>
<td>14/6/2014</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>13/6/2014</td>
<td>14/7/2014</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>7/7/2014</td>
<td>14/8/2014</td>
<td>29</td>
</tr>
</tbody>
</table>

### NOW

This function returns a timestamp of the current time from the system clock.

**Syntax:**

```qlik
now([ timer_mode])
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timer_mode</td>
<td>Can have the following values: 0 (time at last finished data load) 1 (time at function call) 2 (time when the app was opened)</td>
</tr>
</tbody>
</table>

*If you use the function in a data load script, `timer_mode=0` will result in the time of the last finished data load, while `timer_mode=1` will give the time of the function call in the current data load.*
5 Functions in scripts and chart expressions

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>now(0)</td>
<td>Returns the time when the last data load completed.</td>
</tr>
</tbody>
</table>
| now(1)  | - When used in a visualization expression, this returns the time of the function call.  
         | - When used in a data load script, this returns the time of the function call in the current data load. |
| now(2)  | Returns the time when the app was opened. |

quarterend

This function returns a value corresponding to a timestamp of the last millisecond of the quarter containing date. The default output format will be the DateFormat set in the script.

Syntax:

```
QuarterEnd(date[, period_no[, first_month_of_year]])
```

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td>period_no</td>
<td>period_no is an integer, where the value 0 indicates the quarter which contains date. Negative values in period_no indicate preceding quarters and positive values indicate succeeding quarters.</td>
</tr>
<tr>
<td>first_month_of_year</td>
<td>If you want to work with (fiscal) years not starting in January, indicate a value between 2 and 12 in first_month_of_year.</td>
</tr>
</tbody>
</table>

Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example finds the first day in the quarter of each invoice date in the table, where the first month in the year is specified as month 3.

TempTable:
LOAD RecNo() as InvID, " Inline [ InvDate
28/03/2012
10/12/2012
5/2/2013
31/3/2013
19/5/2013
15/9/2013
11/12/2013
2/3/2014
14/5/2014
13/6/2014
7/7/2014
4/8/2014 ];
InvoiceData:
LOAD *, QuarterEnd(InvDate, 0, 3) AS QtrEnd
Resident TempTable;
Drop table TempTable;

The resulting table contains the original dates and a column with the return value of the quarterend() function. You can display the full timestamp by specifying the formatting in the properties panel.

<table>
<thead>
<tr>
<th>InvDate</th>
<th>QtrEnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>31/05/2012</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>28/02/2013</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>28/02/2013</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>31/05/2013</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>31/05/2013</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>30/11/2013</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>28/02/2014</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>31/05/2014</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>31/05/2014</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>31/08/2014</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>31/08/2014</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>31/08/2014</td>
</tr>
</tbody>
</table>

quartername
This function returns a display value showing the months of the quarter (formatted according to the MonthNames script variable) and year with an underlying numeric value corresponding to a timestamp of the first millisecond of the first day of the quarter.

Syntax:
```
QuarterName(date[, period_no[, first_month_of_year]])
```

Return data type: dual

Arguments:
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td>period_no</td>
<td>period_no is an integer, where the value 0 indicates the quarter which contains date. Negative values in period_no indicate preceding quarters and positive values indicate succeeding quarters.</td>
</tr>
<tr>
<td>first_month_of_year</td>
<td>If you want to work with (fiscal) years not starting in January, indicate a value between 2 and 12 in first_month_of_year.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>quartername('29/10/2013', 0, 3)</td>
<td>Returns Sep-Nov 2013.</td>
</tr>
</tbody>
</table>
## Functions in scripts and chart expressions

### Example

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

In this example, for each invoice date in the table, the quarter name is created from the month name taken from base_date, and from the year, where the first month in the year is specified as month 4.

```plaintext
TempTable:
LOAD RecNo() as InvID, * Inline [
  InvDate
  28/03/2012
  10/12/2012
  5/2/2013
  31/3/2013
  19/5/2013
  15/9/2013
  11/12/2013
  2/3/2014
  14/5/2014
  13/6/2014
  7/7/2014
  4/8/2014
];

InvoiceData:
LOAD *,
QuarterName(InvDate, 0, 4) AS QtrName
Resident TempTable;
Drop table TempTable;
```

### Result

The resulting table contains the original dates and a column with the return value of the quartername() function.

<table>
<thead>
<tr>
<th>InvDate</th>
<th>QtrName</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>Jan-Mar 2011</td>
</tr>
<tr>
<td></td>
<td>Because this reflects the fiscal year starting in 2011.</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>Oct-Dec 2012</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>Jan-Mar 2012</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>Jan-Mar 2012</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>Apr-Jun 2013</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>Jul-Sep 2013</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>Oct-Dec 2013</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>Jan-Mar 2013</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>Apr-Jun 2014</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>Apr-Jun 2014</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>Jul-Sep 2014</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>Jul-Sep 2014</td>
</tr>
</tbody>
</table>

Because this reflects the fiscal year starting in 2011.
quarterstart

This function returns a value corresponding to a timestamp of the first millisecond of the quarter containing date. The default output format will be the DateFormat set in the script.

Syntax:

```
QuarterStart(date[, period_no[, first_month_of_yea]])
```

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td>period_no</td>
<td>period_no is an integer, where the value 0 indicates the quarter which contains date. Negative values in period_no indicate preceding quarters and positive values indicate succeeding quarters.</td>
</tr>
<tr>
<td>first_month_of_year</td>
<td>If you want to work with (fiscal) years not starting in January, indicate a value between 2 and 12 in first_month_of_year.</td>
</tr>
</tbody>
</table>

Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>quarterstart('29/10/2005')</td>
<td>Returns 01/10/2005.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.</td>
<td>The resulting table contains the original dates and a column with the return value of the quarterstart() function. You can display the full timestamp by specifying the formatting in the properties panel.</td>
</tr>
<tr>
<td>This example finds the first day in the quarter of each invoice date in the table, where the first month in the year is specified as month 3.</td>
<td></td>
</tr>
<tr>
<td>TempTable: LOAD RecNo() as InvID, * Inline [ InvDate 28/03/2012 10/12/2012 5/2/2013 31/3/2013 19/5/2013 15/9/2013 11/12/2013 2/3/2014 14/5/2014 13/6/2014 7/7/2014 4/8/2014 ]; InvoiceData: LOAD *, QuarterStart(InvDate, 0, 3) AS QtrStart Resident TempTable; Drop table TempTable;</td>
<td>InvDate  QtrStart 28/03/2012 01/03/2012 10/12/2012 01/12/2012 5/2/2013 01/12/2012 31/3/2013 01/03/2013 19/5/2013 01/03/2013 15/9/2013 01/09/2013 11/12/2013 01/12/2013 2/3/2014 01/03/2014 14/5/2014 01/03/2014 13/6/2014 01/06/2014 7/7/2014 01/06/2014 4/8/2014 01/06/2014</td>
</tr>
</tbody>
</table>

**second**

This function returns an integer representing the second when the fraction of the expression is interpreted as a time according to the standard number interpretation.

**Syntax:**

```
second (expression)
```

**Examples and results:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>second( '09:14:36' )</td>
<td>returns 36</td>
</tr>
<tr>
<td>second( '0.5555' )</td>
<td>returns 55 (Because 0.5555 = 13:19:55 )</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

setdateyear

This function returns a timestamp based on the input timestamp but with the year replaced with year.

Syntax:

\textbf{setdateyear (timestamp, year)}

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>A standard Qlik Sense timestamp (often just a date).</td>
</tr>
<tr>
<td>year</td>
<td>A four-digit year.</td>
</tr>
</tbody>
</table>

Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>setdateyear ('29/10/2005', 2013)</td>
<td>Returns '29/102013'</td>
</tr>
<tr>
<td>setdateyear ('29/10/2005 04:26', 20013)</td>
<td>Returns '29//10/20013 04:26' To see the time part of the timestamp in a visualization, you must set the number formatting to Date and choose a value for Formatting that display time values.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.</td>
<td>The resulting table contains the original dates and a column in which the year has been set to 2013.</td>
</tr>
</tbody>
</table>

setdateyearmonth

Returns a timestamp based on the input timestamp but with the year replaced with year and the month replaced with month.

Syntax:

SetDateYearMonth (timestamp, year, month)

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>A standard Qlik Sense timestamp (often just a date).</td>
</tr>
<tr>
<td>year</td>
<td>A four-digit year.</td>
</tr>
<tr>
<td>month</td>
<td>A one- or two-digit month.</td>
</tr>
</tbody>
</table>

Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat statement at the top of your data load script. Change the format in the examples to suit your requirements.
### Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>setdateyearmonth ('29/10/2005', 2013, 3)</code></td>
<td>Returns '29/03/2013'</td>
</tr>
<tr>
<td><code>setdateyearmonth ('29/10/2005 04:26', 2013, 3)</code></td>
<td>Returns '29/03/2013 04:26' To see the time part of the timestamp in a visualization, you must set the number formatting to Date and choose a value for Formatting that display time values.</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

```plaintext
SetYearMonth:
Load *,
SetDateYearMonth(testdates, 2013) as NewYearMonth
Inline [{
    testdates
    1/1/2012
    10/12/2012
    1/5/2013
    2/1/2013
    19/5/2013
    15/9/2013
    11/12/2013
    2/3/2014
    14/5/2014
    13/6/2014
    7/7/2014
    4/8/2014
}];
```

The resulting table contains the original dates and a column in which the year has be set to 2013.

<table>
<thead>
<tr>
<th>testdates</th>
<th>NewYearMonth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/11/2012</td>
<td>1/3/2013</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>10/3/2013</td>
</tr>
<tr>
<td>2/1/2013</td>
<td>2/3/2013</td>
</tr>
<tr>
<td>1/5/2013</td>
<td>1/3/2013</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>19/3/2013</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>15/3/2013</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>11/3/2013</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>2/3/2013</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>14/3/2013</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>13/3/2013</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>7/3/2013</td>
</tr>
</tbody>
</table>

### timezone

This function returns the name of the current time zone, as defined in Windows.

**Syntax:**

```plaintext
TimeZone( )
```

**Example:**

```plaintext
timezone( )
```

### today

This function returns the current date from the system clock.

**Syntax:**

```plaintext
today([ timer_mode])
```
5  Functions in scripts and chart expressions

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timer_mode</td>
<td>Can have the following values:</td>
</tr>
<tr>
<td></td>
<td>0 (day of last finished data load)</td>
</tr>
<tr>
<td></td>
<td>1 (day of function call)</td>
</tr>
<tr>
<td></td>
<td>2 (day when the app was opened)</td>
</tr>
</tbody>
</table>

If you use the function in a data load script, `timer_mode=0` will result in the
day of the last finished data load, while `timer_mode=1` will give the day of the
current data load.

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Today( 0)</td>
<td>Returns the day of the last finished data load.</td>
</tr>
<tr>
<td>Today( 1)</td>
<td>When used in a visualization expression, this returns the day of the function call.</td>
</tr>
<tr>
<td></td>
<td>When used in a data load script, this returns the day when the current data load started.</td>
</tr>
<tr>
<td>Today( 2)</td>
<td>Returns the day when the app was opened.</td>
</tr>
</tbody>
</table>

UTC

Returns the current Coordinated Universal Time.

Syntax:

```
UTC ( )
```

Example:

```
utc( )
```

week

This function returns an integer representing the week number according to ISO 8601. The week number is calculated from the date interpretation of the expression, according to the standard number interpretation.

Syntax:

```
week(expression)
```

Examples and results:
5 Functions in scripts and chart expressions

### Example

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>week( '2012-10-12' )</code></td>
<td>returns 44</td>
</tr>
<tr>
<td><code>week( '35648' )</code></td>
<td>returns 32, because 35648 = 1997-08-06</td>
</tr>
</tbody>
</table>

### weekday

This function returns a dual value with:

- A day name as defined in the environment variable `DayNames`.
- An integer between 0-6 corresponding to the nominal day of the week (0-6).

#### Syntax:

```plaintext
weekday(date [, weekstart=0])
```

#### Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td>weekstart</td>
<td>If you don't specify <code>weekstart</code>, the value of variable <code>FirstWeekDay</code> will be used as the first day of the week. If you want to use another day as the first day of the week, set <code>weekstart</code> to:</td>
</tr>
<tr>
<td></td>
<td>0 for Monday</td>
</tr>
<tr>
<td></td>
<td>1 for Tuesday</td>
</tr>
<tr>
<td></td>
<td>2 for Wednesday</td>
</tr>
<tr>
<td></td>
<td>3 for Thursday</td>
</tr>
<tr>
<td></td>
<td>4 for Friday</td>
</tr>
<tr>
<td></td>
<td>5 for Saturday</td>
</tr>
<tr>
<td></td>
<td>6 for Sunday</td>
</tr>
</tbody>
</table>

The integer returned by the function will now use the first day of the week that you set with `weekstart` as base (0).

See: `FirstWeekDay (page 121)`

#### Examples and results:

Unless it is stated specifically, `FirstWeekDay` is set to 0 in these examples.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>weekday( '1971-10-12' )</code></td>
<td>returns 'Tue' and 1</td>
</tr>
</tbody>
</table>
## Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>weekday('1971-10-12', 6)</td>
<td>returns 'Tue' and 2.</td>
</tr>
<tr>
<td></td>
<td>In this example we use Sunday (6) as the first day of the week.</td>
</tr>
<tr>
<td>SET FirstWeekDay = 6;</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>weekday('1971-10-12')</td>
<td>returns 'Tue' and 2.</td>
</tr>
</tbody>
</table>

### weekend

This function returns a value corresponding to a timestamp of the last millisecond of the last day (Sunday) of the calendar week containing `date`. The default output format will be the `DateFormat` set in the script.

#### Syntax:

```plaintext
WeekEnd(date [, period_no[, first_week_day]])
```

#### Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td>period_no</td>
<td><code>shift</code> is an integer, where the value 0 indicates the week which contains <code>date</code>. Negative values in <code>shift</code> indicate preceding weeks and positive values indicate succeeding weeks.</td>
</tr>
<tr>
<td>first_week_day</td>
<td>Specifies the day on which the week starts. If omitted, the value of variable <code>FirstWeekDay</code> is used.</td>
</tr>
</tbody>
</table>

The possible values `first_week_day` are:

- 0 for Monday
- 1 for Tuesday
- 2 for Wednesday
- 3 for Thursday
- 4 for Friday
- 5 for Saturday
- 6 for Sunday

See: `FirstWeekDay` (page 121)

### Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the `SET DateFormat` statement at the top of your data load script. Change the format in the examples to suit your requirements.
### Functions in scripts and chart expressions

#### Example

<table>
<thead>
<tr>
<th>Function</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>weekend('10/01/2013', 0, 1)</code></td>
<td>Returns 14/01/2013 23:59:59.</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example finds the final day in the week following the week of each invoice date in the table.

```
TempTable:
LOAD RecNo() as InvID, * Inline [ 
  InvDate 
  28/03/2012 
  10/12/2012 
  5/2/2013 
  31/3/2013 
  19/5/2013 
  15/9/2013 
  11/12/2013 
  2/3/2014 
  14/5/2014 
  13/6/2014 
  7/7/2014 
  4/8/2014 ];

InvoiceData:
LOAD *, 
  Weekend(InvDate, 1) AS WkEnd 
Resident TempTable;
Drop table TempTable;
```

#### Weekname

This function returns a value showing the year and week number with an underlying numeric value corresponding to a timestamp of the first millisecond of the first day of the week containing `date`.

**Syntax:**

```qlik
WeekName(date[, period_no[, first_week_day]])
```

**Arguments:**
## 5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>date</strong></td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td><strong>period_no</strong> shift</td>
<td>is an integer, where the value 0 indicates the week which contains date. Negative values in shift indicate preceding weeks and positive values indicate succeeding weeks.</td>
</tr>
<tr>
<td><strong>first_week_day</strong></td>
<td>Specifies the day on which the week starts. If omitted, the value of variable FirstWeekDay is used. The possible values first_week_day are:</td>
</tr>
<tr>
<td></td>
<td>0 for Monday</td>
</tr>
<tr>
<td></td>
<td>1 for Tuesday</td>
</tr>
<tr>
<td></td>
<td>2 for Wednesday</td>
</tr>
<tr>
<td></td>
<td>3 for Thursday</td>
</tr>
<tr>
<td></td>
<td>4 for Friday</td>
</tr>
<tr>
<td></td>
<td>5 for Saturday</td>
</tr>
<tr>
<td></td>
<td>6 for Sunday</td>
</tr>
</tbody>
</table>

See: FirstWeekDay (page 121)

### Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>weekname('12/01/20013')</code></td>
<td>Returns 2013/02.</td>
</tr>
<tr>
<td><code>weekname('12/01/20013', -1)</code></td>
<td>Returns 2013/01.</td>
</tr>
<tr>
<td><code>weekname('12/01/20013', 0, 1)</code></td>
<td>Returns '2013/02.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result. In this example, for each invoice date in the table, the week name is created from the year in which the week lies and its associated week number, shifted one week by specifying period_no as 1.</td>
<td>The resulting table contains the original dates and a column with the return value of the \texttt{weekname()} function. You can display the full timestamp by specifying the formatting in the properties panel.</td>
</tr>
</tbody>
</table>

\begin{verbatim}
TempTable:
LOAD RecNo() as InvID, * Inline [
  InvDate
  28/03/2012
  10/12/2012
  5/2/2013
  31/3/2013
  19/5/2013
  15/9/2013
  11/12/2013
  2/3/2014
  14/5/2014
  13/6/2014
  7/7/2014
  4/8/2014
];

InvoiceData:
LOAD *,
  WeekName(InvDate, 1) AS WkName
Resident TempTable;
Drop table TempTable;
\end{verbatim}

weekstart

This function returns a value corresponding to a timestamp of the first millisecond of the first day (Monday) of the calendar week containing \texttt{date}. The default output format is the \texttt{DateFormat} set in the script.

\textbf{Syntax:}

\texttt{WeekStart(date [, period_no[, first_week_day]])}

\textbf{Return data type:} dual

\textbf{Arguments:}
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td>period_no shift</td>
<td>is an integer, where the value 0 indicates the week which contains date. Negative values in shift indicate preceding weeks and positive values indicate succeeding weeks.</td>
</tr>
</tbody>
</table>
| first_week_day | Specifies the day on which the week starts. If omitted, the value of variable FirstWeekDay is used. 

The possible values first_week_day are:

- 0 for Monday
- 1 for Tuesday
- 2 for Wednesday
- 3 for Thursday
- 4 for Friday
- 5 for Saturday
- 6 for Sunday

See: FirstWeekDay (page 121)

Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>weekstart('12/01/2013')</td>
<td>Returns 07/01/2013.</td>
</tr>
<tr>
<td>weekstart('12/01/2013', -1 )</td>
<td>Returns 31/11/2012.</td>
</tr>
<tr>
<td>weekstart('12/01/2013', 0, 1)</td>
<td>Returns 08/01/2013.</td>
</tr>
</tbody>
</table>
### 5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result. This example finds the first day of the week following the week of each invoice date in the table.</td>
<td>The resulting table contains the original dates and a column with the return value of the weekstart() function. You can display the full timestamp by specifying the formatting in the properties panel.</td>
</tr>
</tbody>
</table>
| **TempTable:**
LOAD RecNo() as InvID, * Inline [InvDate
28/03/2012
10/12/2012
5/2/2013
31/3/2013
19/5/2013
15/9/2013
11/12/2013
2/3/2014
14/5/2014
13/6/2014
7/7/2014
4/8/2014 ];

**InvoiceData:**
LOAD *,
WeekStart(InvDate, 1) AS WkStart
Resident TempTable;
Drop table TempTable; | InvDate WkStart
28/03/2012 02/04/2012
10/12/2012 17/12/2012
5/2/2013 11/02/2013
31/3/2013 01/04/2013
19/5/2013 20/05/2013
15/9/2013 16/09/2013
11/12/2013 16/12/2013
2/3/2014 03/03/2014
14/5/2014 19/05/2014
13/6/2014 16/06/2014
7/7/2014 14/07/2014
4/8/2014 11/08/2014 |

## weekyear

This function returns the year to which the week number belongs according to ISO 8601. The week number ranges between 1 and approximately 52.

### Syntax:

`weekyear(expression)`

### Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>weekyear( '1996-12-30' )</code></td>
<td>returns 1997, because week 1 of 1998 starts on 1996-12-30</td>
</tr>
<tr>
<td><code>weekyear( '1997-01-02' )</code></td>
<td>returns 1997</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

### Example

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>weekyear('1997-12-28')</td>
<td>returns 1997</td>
</tr>
<tr>
<td>weekyear('1997-12-30')</td>
<td>returns 1998, because week 1 of 1998 starts on 1997-12-29</td>
</tr>
<tr>
<td>weekyear('1999-01-02')</td>
<td>returns 1998, because week 53 of 1998 ends on 1999-01-03</td>
</tr>
</tbody>
</table>

### Limitations:

Some years, week #1 starts in December, e.g. December 1997. Other years start with week #53 of previous year, e.g. January 1999. For those few days when the week number belongs to another year, the functions `year` and `weekyear` will return different values.

### year

This function returns an integer representing the year when the expression is interpreted as a date according to the standard number interpretation.

**Syntax:**

```plaintext
year(expression)
```

**Examples and results:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>year('2012-10-12')</td>
<td>returns 2012</td>
</tr>
<tr>
<td>year('35648')</td>
<td>returns 1997, because 35648 = 1997-08-06</td>
</tr>
</tbody>
</table>

### yearend

This function returns a value corresponding to a timestamp of the last millisecond of the last day of the year containing date. The default output format will be the `DateFormat` set in the script.

**Syntax:**

```plaintext
YearEnd(date[, period_no[, first_month_of_year = 1]])
```

**Return data type:** dual

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td>period_no</td>
<td><code>period_no</code> is an integer, where the value 0 indicates the year which contains <code>date</code>. Negative values in <code>period_no</code> indicate preceding years and positive values indicate succeeding years.</td>
</tr>
</tbody>
</table>
Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_month_of_year</td>
<td>If you want to work with (fiscal) years not starting in January, indicate a value between 2 and 12 in first_month_of_year.</td>
</tr>
</tbody>
</table>

Examples and results:
These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>yearend ('19/10/2001', 0, 4)</td>
<td>Returns 31/03/2002 23:59:59.</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example finds the final day in the year of each invoice date in the table, where the first month in the year is specified as month 4.

TempTable:
LOAD RecNo() as InvID, * Inline [InvDate
28/03/2012
10/12/2012
5/2/2013
31/3/2013
19/5/2013
15/9/2013
11/12/2013
2/3/2014
14/5/2014
13/6/2014
7/7/2014
4/8/2014 ];

InvoiceData:
LOAD *,
YearEnd(InvDate, 0, 4) AS YrEnd
Resident TempTable;
Drop table TempTable;

The resulting table contains the original dates and a column with the return value of the yearend() function. You can display the full timestamp by specifying the formatting in the properties panel.

InvDate      YrEnd
28/03/2012    31/03/2011
10/12/2012    31/03/2012
5/2/2013      31/03/2013
31/3/2013     31/03/2013
19/5/2013     31/03/2014
15/9/2013     31/03/2014
11/12/2013    31/03/2014
2/3/2014      31/03/2014
14/5/2014     31/03/2015
13/6/2014     31/03/2015
7/7/2014      31/03/2015
4/8/2014      31/03/2015
yearname

This function returns a four-digit year as display value with an underlying numeric value corresponding to a
timestamp of the first millisecond of the first day of the year containing date.

Syntax:

```
YearName(date[, period_no[, first_month_of_year]] )
```

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td>period_no</td>
<td>period_no is an integer, where the value 0 indicates the year which contains date. Negative values in period_no indicate preceding years and positive values indicate succeeding years.</td>
</tr>
<tr>
<td>first_month_of_year</td>
<td>If you want to work with (fiscal) years not starting in January, indicate a value between 2 and 12 in first_month_of_year. The display value will then be a string showing two years.</td>
</tr>
</tbody>
</table>

Examples and results:

These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat
statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>yearname ( '19/10/2001', 0, 4)</td>
<td>Returns '2001-2002.</td>
</tr>
</tbody>
</table>
## Functions in scripts and chart expressions

### Example

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example creates a four-plus-four digit name for the years in which each invoice date in the table is found. This is because the first month in the year is specified as month 4.

```plaintext
TempTable:
LOAD RecNo() as InvID, * Inline [ 
  InvDate
  28/03/2012
  10/12/2012
  5/2/2013
  31/3/2013
  19/5/2013
  15/9/2013
  11/12/2013
  2/3/2014
  14/5/2014
  13/6/2014
  7/7/2014
  4/8/2014
 ];

InvoiceData:
LOAD *, 
YearName(InvDate, 0, 4) AS YrName
Resident TempTable;
Drop table TempTable;
```

<table>
<thead>
<tr>
<th>InvDate</th>
<th>YrName</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>2011-2012</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>2012-2013</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>2012-2013</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>2012-2013</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>2013-2014</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>2013-2014</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>2013-2014</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>2013-2014</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>2014-2015</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>2014-2015</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>2014-2015</td>
</tr>
</tbody>
</table>

### yearstart

This function returns a value corresponding to a timestamp of the first millisecond of the first day of the year containing `date`. The default output format will be the `DateFormat` set in the script.

**Syntax:**

```plaintext
YearStart(date[, period_no[, first_month_of_year]])
```
5 Functions in scripts and chart expressions

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>The date to evaluate.</td>
</tr>
<tr>
<td>period_no</td>
<td>period_no is an integer, where the value 0 indicates the year which contains date. Negative values in period_no indicate preceding years and positive values indicate succeeding years.</td>
</tr>
<tr>
<td>first_month_of_year</td>
<td>If you want to work with (fiscal) years not starting in January, indicate a value between 2 and 12 in first_month_of_year.</td>
</tr>
</tbody>
</table>

Examples and results:
These examples use the date format DD/MM/YYYY. The date format is specified in the SET DateFormat statement at the top of your data load script. Change the format in the examples to suit your requirements.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>yearstart ('19/10/2001')</td>
<td>Returns 01/01/2001.</td>
</tr>
<tr>
<td>yearstart ('19/10/2001', -1)</td>
<td>Returns 01/01/2000.</td>
</tr>
<tr>
<td>yearstart ('19/10/2001', 0, 4)</td>
<td>Returns 01/04/2001.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

Example
Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

This example finds the first day in the year of each invoice date in the table, where the first month in the year is specified as month 4.

TempTable:
LOAD RecNo() as InvID, InvDate
28/03/2012
10/12/2012
5/2/2013
31/3/2013
19/5/2013
15/9/2013
11/12/2013
2/3/2014
14/5/2014
13/6/2014
7/7/2014
4/8/2014
 ];

InvoiceData:
LOAD *,
YearStart(InvDate, 0, 4) AS YrStart
Resident TempTable;
Drop table TempTable;

Result
The resulting table contains the original dates and a column with the return value of the yearstart() function. You can display the full timestamp by specifying the formatting in the properties panel.

<table>
<thead>
<tr>
<th>InvDate</th>
<th>YrStart</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2012</td>
<td>01/04/2011</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>01/04/2012</td>
</tr>
<tr>
<td>5/2/2013</td>
<td>01/04/2012</td>
</tr>
<tr>
<td>31/3/2013</td>
<td>01/04/2012</td>
</tr>
<tr>
<td>19/5/2013</td>
<td>01/04/2013</td>
</tr>
<tr>
<td>15/9/2013</td>
<td>01/04/2013</td>
</tr>
<tr>
<td>11/12/2013</td>
<td>01/04/2013</td>
</tr>
<tr>
<td>2/3/2014</td>
<td>01/04/2013</td>
</tr>
<tr>
<td>14/5/2014</td>
<td>01/04/2014</td>
</tr>
<tr>
<td>13/6/2014</td>
<td>01/04/2014</td>
</tr>
<tr>
<td>7/7/2014</td>
<td>01/04/2014</td>
</tr>
<tr>
<td>4/8/2014</td>
<td>01/04/2014</td>
</tr>
</tbody>
</table>

yeartodate
This function finds if the input date falls within the year of the date the script was last loaded, and returns True if it does, False if it does not.

Syntax:

```
YearToDate(date [, yearoffset [, firstmonth [, todaydate] ] ] )
```

If none of the optional parameters are used, the year to date means any date within one calendar year from January 1 up to and including the date of the last script execution.

Arguments:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>The date to evaluate as a timestamp, for example '2012-10-12'.</td>
</tr>
<tr>
<td>yearoffset</td>
<td>By specifying a yearoffset, yeartodate returns True for the same period in another year. A negative yearoffset indicates a previous year, a positive offset a future year. The most recent year-to-date is achieved by specifying yearoffset = -1. If omitted, 0 is assumed.</td>
</tr>
<tr>
<td>firstmonth</td>
<td>By specifying a firstmonth between 1 and 12 (1 if omitted) the beginning of the year may be moved forward to the first day of any month. For example, if you want to work with a fiscal year beginning on May 1, specify firstmonth = 5.</td>
</tr>
<tr>
<td>todaydate</td>
<td>By specifying a todaydate (timestamp of the last script execution if omitted) it is possible to move the day used as the upper boundary of the period.</td>
</tr>
</tbody>
</table>

Examples and results:
The following examples assume last reload time = 2011-11-18

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>yeartodate( '2010-11-18')</td>
<td>returns False</td>
</tr>
<tr>
<td>yeartodate( '2011-02-01')</td>
<td>returns True</td>
</tr>
<tr>
<td>yeartodate( '2011-11-18')</td>
<td>returns True</td>
</tr>
<tr>
<td>yeartodate( '2011-11-19')</td>
<td>returns False</td>
</tr>
<tr>
<td>yeartodate( '2011-11-19', 0, 1, '2011-12-31')</td>
<td>returns True</td>
</tr>
<tr>
<td>yeartodate( '2010-11-18', -1)</td>
<td>returns True</td>
</tr>
<tr>
<td>yeartodate( '2011-11-18', -1)</td>
<td>returns False</td>
</tr>
<tr>
<td>yeartodate( '2011-04-30', 0, 5)</td>
<td>returns False</td>
</tr>
<tr>
<td>yeartodate( '2011-05-01', 0, 5)</td>
<td>returns True</td>
</tr>
</tbody>
</table>

5.6 Exponential and logarithmic functions

This section describes functions related to exponential and logarithmic calculations. All functions can be used in both the data load script and in chart expressions.

In the functions below, the parameters are expressions where x and y should be interpreted as real valued numbers.

exp
The natural exponential function, e^x, using the natural logarithm e as base. The result is a positive number.

\[ \text{exp}(x) \]

Examples and results:
5 Functions in scripts and chart expressions

exp(3) returns 20.085.

log
The natural logarithm of x. The function is only defined if \( x > 0 \). The result is a number.

\[
\log(x) 
\]

Examples and results:

\( \log(3) \) returns 1.0986

log10
The common logarithm (base 10) of x. The function is only defined if \( x > 0 \). The result is a number.

\[
\log_{10}(x) 
\]

Examples and results:

\( \log_{10}(3) \) returns 0.4771

pow
Returns x to the power of y. The result is a number.

\[
pow(x, y) 
\]

Examples and results:

\( pow(3, 3) \) returns 27

sqr
\( x \) squared (\( x \) to the power of 2). The result is a number.

\[
sqr(x) 
\]

Examples and results:

\( \text{sqr}(3) \) returns 9

sqrt
Square root of \( x \). The function is only defined if \( x \geq 0 \). The result is a positive number.

\[
sqrt(x) 
\]

Examples and results:

\( \text{sqrt}(3) \) returns 1.732
5 Functions in scripts and chart expressions

Exponential and logarithmic functions
This section describes functions related to exponential and logarithmic calculations. All functions can be used in both the data load script and in chart expressions.

In the functions below, the parameters are expressions where x and y should be interpreted as real valued numbers.

**exp**
The natural exponential function, \( e^x \), using the natural logarithm \( e \) as base. The result is a positive number.

**Examples and results:**

\texttt{exp(3)} returns 20.085.

**log**
The natural logarithm of \( x \). The function is only defined if \( x > 0 \). The result is a number.

**Examples and results:**

\texttt{log(3)} returns 1.0986

**log10**
The common logarithm (base 10) of \( x \). The function is only defined if \( x > 0 \). The result is a number.

**Examples and results:**

\texttt{log10(3)} returns 0.4771

**pow**
Returns \( x \) to the power of \( y \). The result is a number.

**Examples and results:**

\texttt{pow(3, 3)} returns 27

**sqr**
\( x \) squared (\( x \) to the power of 2). The result is a number.
5 Functions in scripts and chart expressions

Examples and results:

\[ \text{sqr}(3) \text{ returns } 9 \]

\textbf{sqrt}

Square root of \( x \). The function is only defined if \( x \geq 0 \). The result is a positive number.

\[ \text{sqr}(x) \]

Examples and results:

\[ \text{sqr}(3) \text{ returns } 1.732 \]

5.7 Field functions

These functions can only be used in chart expressions.

Field functions either return integers or strings identifying different aspects of field selections.

Count functions

\textbf{GetSelectedCount}

\texttt{GetSelectedCount()} finds the number of selected (green) values in a field.

\[ \text{GetSelectedCount - chart function } (\text{field_name} [, \text{include_excluded}]) \]

\texttt{GetAlternativeCount}

\texttt{GetAlternativeCount()}is used to find the number of alternative (light gray) values in the identified field.

\[ \text{GetAlternativeCount - chart function } (\text{field_name}) \]

\texttt{GetPossibleCount}

\texttt{GetPossibleCount()} is used to find the number of possible values in the identified field. If the identified field includes selections, then the selected (green) fields are counted. Otherwise associated (white) values are counted.

\[ \text{GetPossibleCount - chart function}(\text{field_name}) \]

\texttt{GetExcludedCount}

\texttt{GetExcludedCount()} finds the number of excluded (dark gray) values in the identified field.

\[ \text{GetExcludedCount - chart function}(\text{page 445})(\text{field_name}) \]

\texttt{GetNotSelectedCount}

This chart function returns the number of not-selected values in the field named \texttt{fieldname}. The field must be in and-mode for this function to be relevant.
5 Functions in scripts and chart expressions

GetNotSelectedCount - chart function(fieldname [, includeexcluded=false])

Field and selection functions

GetCurrentSelections

GetCurrentSelections() returns the current selections in the app.

GetCurrentSelections - chart function([record_sep [,tag_sep [,value_sep [,max_values]]]])

GetFieldSelections

GetFieldSelections() returns a string with the current selections in a field.

GetFieldSelections - chart function ( field_name [, value_sep [, max_values]])

GetAlternativeCount - chart function

GetAlternativeCount() is used to find the number of alternative (light gray) values in the identified field.

Syntax:

GetAlternativeCount (field_name)

Return data type: integer

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>field_name</td>
<td>The field containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

Examples and results:

The following example uses two fields loaded to different filter panes, one for First name name and one for Initials.

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given that John is selected in First name.</td>
<td>4 as there are 4 unique and excluded (gray) values in First name.</td>
</tr>
<tr>
<td>GetAlternativeCount ([First name])</td>
<td></td>
</tr>
<tr>
<td>Given that John and Peter are selected.</td>
<td>3 as there are 3 unique and excluded (gray) values in First name.</td>
</tr>
<tr>
<td>GetAlternativeCount ([First name])</td>
<td></td>
</tr>
<tr>
<td>Given that no values are selected in First name.</td>
<td>0 as there are no selections.</td>
</tr>
<tr>
<td>GetAlternativeCount ([First name])</td>
<td></td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

Data used in example:

Initials:
LOAD * inline ["First name"|Initials|"Has cellphone"
John|JA|Yes
Sue|SB|Yes
Mark|MC|No
Peter|PD|No
Jane|JE|Yes
Peter|PF|Yes ] (delimiter is ' | ');

GetCurrentSelections - chart function

GetCurrentSelections() returns the current selections in the app.

If options are used you will need to specify record_sep. To specify a new line set record_sep to chr(13)&chr(10).

If all but two, or all but one, values, are selected, the format 'NOT x,y' or 'NOT y' will be used respectively. If you select all values and the count of all values is greater than max_values, the text ALL will be returned.

Syntax:

GetCurrentSelections ( [record_sep [,tag_sep [,value_sep [,max_values]]]] )

Return data type: string

Arguments:

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>record_sep</td>
<td>Separator to be put between field records. The default is &lt;CR&gt;&lt;LF&gt; meaning a new line.</td>
</tr>
<tr>
<td>tag_sep</td>
<td>Separator to be put between the field name tag and the field values. The default is ':'</td>
</tr>
<tr>
<td>value_sep</td>
<td>The separator to be put between field values. The default is ';'</td>
</tr>
<tr>
<td>max_values</td>
<td>The maximum number of field values to be individually listed. When a larger number of values is selected, the format 'x of y values' will be used instead. The default is 6.</td>
</tr>
</tbody>
</table>

Examples and results:

The following example uses two fields loaded to different filter panes, one for First name name and one for Initials.

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given that John is selected in First name.</td>
<td>'First name: John'</td>
</tr>
<tr>
<td>GetCurrentSelections ()</td>
<td></td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

### Examples

| Given that **John** and **Peter** are selected in **First name**. | GetCurrentSelections () | 'First name: John, Peter' |
| Given that **John** is selected in **First name** and **JA** is selected in **Initials**. | GetCurrentSelections () | 'First name: John; Peter Initials: JA' |
| Given that **John** is selected in **First name** and **JA** is selected in **Initials**. | GetCurrentSelections ( chr(13)&chr(10), '=' ) | 'First name = John Initials = JA' |
| Given that you have selected all names except Sue in **First name** and no selections in **Initials**. | =GetCurrentSelections(chr(13)&chr(10),',','-',3) | 'First name=NOT Sue' |

### Data used in example:

```plaintext
Initials:
LOAD * inline [ "First name"|Initials|"Has cellphone"
John|JA|Yes
Sue|SB|Yes
Mark|MC|No
Peter|PD|No
Jane|JE|Yes
Peter|PF|Yes ] (delimiter is '|');
```

### GetExcludedCount - chart function

**GetExcludedCount**() finds the number of excluded (dark gray) values in the identified field.

**Syntax:**

```
GetExcludedCount (field_name)
```

**Return data type:** string

**Limitations:**

**GetExcludedCount**() only evaluates for fields with associated values, that is, fields without selections. For fields with selections **GetExcludedCount**() will return 0.

**Arguments:**

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>field_name</td>
<td>The field containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

### Examples and results:
5 Functions in scripts and chart expressions

The following example uses two fields loaded to different filter panes, one for First name name and one for Initials.

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given that John is selected in First name.</td>
<td>5 as there are 5 excluded (gray) values in Initials. The sixth cell (JA) will be white as it is associated with the selection John in First name.</td>
</tr>
<tr>
<td>GetExcludedCount ([Initials])</td>
<td></td>
</tr>
<tr>
<td>Given that John and Peter are selected.</td>
<td>3 as Peter is associated with 2 values in Initials.</td>
</tr>
<tr>
<td>GetExcludedCount ([Initials])</td>
<td></td>
</tr>
<tr>
<td>Given that no values are selected in First name.</td>
<td>0 as there are no selections.</td>
</tr>
<tr>
<td>GetExcludedCount ([Initials])</td>
<td></td>
</tr>
<tr>
<td>Given that John is selected in First name.</td>
<td>0 as GetExcludedCount() only evaluates for fields with associated values, that is, fields without selections.</td>
</tr>
<tr>
<td>GetExcludedCount ([First name])</td>
<td></td>
</tr>
</tbody>
</table>

Data used in example:

Initials:
LOAD * inline [
"First name"|Initials|"Has cellphone"
John|JA|Yes
Sue|SB|Yes
Mark|MC|No
Peter|PD|No
Jane|JE|Yes
Peter|PF|Yes ] (delimiter is '|');

GetFieldSelections - chart function

GetFieldSelections() returns a string with the current selections in a field.

If all but two, or all but one of the values are selected, the format 'NOT x,y' or 'NOT y' will be used respectively. If you select all values and the count of all values is greater than max_values, the text ALL will be returned.

Syntax:

GetFieldSelections ( field_name [, value_sep [, max_values]])

Return data type: string
Arguments:

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>field_name</td>
<td>The field containing the range of data to be measured.</td>
</tr>
<tr>
<td>value_sep</td>
<td>The separator to be put between field values. The default is ','.</td>
</tr>
<tr>
<td>max_values</td>
<td>The maximum number of field values to be individually listed. When a larger number of values is selected, the format 'x of y values' will be used instead. The default is 6.</td>
</tr>
</tbody>
</table>

Examples and results:

The following example uses two fields loaded to different filter panes, one for First name name and one for Initials.

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given that John is selected in First name.</td>
<td>'John'</td>
</tr>
<tr>
<td>GetFieldSelections ([[First name]])</td>
<td></td>
</tr>
<tr>
<td>Given that John and Peter are selected.</td>
<td>'John, Peter'</td>
</tr>
<tr>
<td>GetFieldSelections ([[First name]])</td>
<td></td>
</tr>
<tr>
<td>Given that John and Peter are selected.</td>
<td>'John; Peter'</td>
</tr>
<tr>
<td>GetFieldSelections ([[First name]], '; ')</td>
<td></td>
</tr>
<tr>
<td>Given that John, Sue, Mark are selected in First name.</td>
<td>'NOT Jane; Peter', because the value 2 is stated as the value of the max_values argument. Otherwise, the result would have been John; Sue; Mark.</td>
</tr>
<tr>
<td>GetFieldSelections ([[First name]], ';', 2)</td>
<td></td>
</tr>
</tbody>
</table>

Data used in example:

Initials:
LOAD * inline [ "First name"|Initials|"Has cellphone" 
John|JA|Yes
Sue|SB|Yes
Mark|MC |No
Peter|PD|No
Jane|JE|Yes
GetNotSelectedCount - chart function

This chart function returns the number of not-selected values in the field named `fieldname`. The field must be in and-mode for this function to be relevant.

**Syntax:**

```javascript
GetNotSelectedCount(fieldname [, includeexcluded=false])
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fieldname</code></td>
<td>The name of the field to be evaluated.</td>
</tr>
<tr>
<td><code>includeexcluded</code></td>
<td>If <code>includeexcluded</code> is stated as True, the count will include selected values which are excluded by selections in another field.</td>
</tr>
</tbody>
</table>

**Examples:**

```javascript
GetNotSelectedCount( Country )
GetNotSelectedCount( Country, true )
```

GetPossibleCount - chart function

`GetPossibleCount()` is used to find the number of possible values in the identified field. If the identified field includes selections, then the selected (green) fields are counted. Otherwise associated (white) values are counted.

For fields with selections, `GetPossibleCount()` returns the number of selected (green) fields.

**Return data type:** integer

**Syntax:**

```javascript
GetPossibleCount (field_name)
```

**Arguments:**

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>field_name</code></td>
<td>The field containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

**Examples and results:**

The following example uses two fields loaded to different filter panes, one for First name name and one for Initials.
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given that <strong>John</strong> is selected in <strong>First name</strong>.</td>
<td>1 as there is 1 value in Initials associated with the selection, <strong>John</strong>, in <strong>First name</strong>.</td>
</tr>
<tr>
<td>GetPossibleCount ([Initials])</td>
<td></td>
</tr>
<tr>
<td>Given that <strong>John</strong> is selected in <strong>First name</strong>.</td>
<td>1 as there is 1 selection, <strong>John</strong>, in <strong>First name</strong>.</td>
</tr>
<tr>
<td>GetPossibleCount ([First name])</td>
<td></td>
</tr>
<tr>
<td>Given that <strong>Peter</strong> is selected in <strong>First name</strong>.</td>
<td>2 as Peter is associated with 2 values in <strong>Initials</strong>.</td>
</tr>
<tr>
<td>GetPossibleCount ([Initials])</td>
<td></td>
</tr>
<tr>
<td>Given that no values are selected in <strong>First name</strong>.</td>
<td>5 as there are no selections and there are 5 unique values in <strong>First name</strong>.</td>
</tr>
<tr>
<td>GetPossibleCount ([First name])</td>
<td></td>
</tr>
<tr>
<td>Given that no values are selected in <strong>First name</strong>.</td>
<td>6 as there are no selections and there are 6 unique values in <strong>Initials</strong>.</td>
</tr>
<tr>
<td>GetPossibleCount ([Initials])</td>
<td></td>
</tr>
</tbody>
</table>

Data used in example:

```
Initials:
LOAD * inline [ "First name"|Initials|"Has cellphone"
John|JA|Yes
Sue|SB|Yes
Mark|MC |No
Peter|PD|No
Jane|JE|Yes
Peter|PF|Yes ] (delimiter is '|');
```

**GetSelectedCount - chart function**

GetSelectedCount() finds the number of selected (green) values in a field.

**Syntax:**

```
GetSelectedCount (field_name [, include_excluded])
```

**Return data type:** integer

**Arguments:**
5 Functions in scripts and chart expressions

### Arguments

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>field_name</td>
<td>The field containing the range of data to be measured.</td>
</tr>
<tr>
<td>include_excluded</td>
<td>If set to True(), the count will include selected values, which are currently excluded by selections in other fields. If False or omitted, these values will not be included.</td>
</tr>
</tbody>
</table>

### Examples and results:

The following example uses three fields loaded to different filter panes, one for First name name, one for Initials and one for Has cellphone.

### Examples

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given that <strong>John</strong> is selected in <strong>First name</strong>.</td>
<td>1 as one value is selected in <strong>First name</strong>.</td>
</tr>
<tr>
<td><code>getSelectedCount ([First name])</code></td>
<td></td>
</tr>
<tr>
<td>Given that <strong>John</strong> is selected in <strong>First name</strong>.</td>
<td>0 as no values are selected in <strong>Initials</strong>.</td>
</tr>
<tr>
<td><code>getSelectedCount ([Initials])</code></td>
<td></td>
</tr>
<tr>
<td>With no selections in <strong>First name</strong>, select all values in <strong>Initials</strong> and after that select the value <strong>Yes</strong> in <strong>Has cellphone</strong>.</td>
<td>6. Although selections with <strong>Initials</strong>MC and PD have <strong>Has cellphone</strong> set to <strong>No</strong>, the result is still 6, because the argument include_excluded is set to True().</td>
</tr>
<tr>
<td><code>getSelectedCount ([Initials])</code></td>
<td></td>
</tr>
</tbody>
</table>

### Data used in example:

**Initials:**

```
LOAD * inline [  
  "First name"|Initials|"Has cellphone"  
  John|JA|Yes  
  Sue|SB|Yes  
  Mark|MC|No  
  Peter|PD|No  
  Jane|JE|Yes  
  Peter|PF|Yes ] (delimiter is '|');
```

### 5.8 File functions

The file functions (only available in script expressions) return information about the table file which is currently being read. These functions will return NULL for all data sources except table files (exception: `ConnectString()`).

### File functions overview

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

### Attribute
This script function returns the value of the meta tags of different media files as text. The following file formats are supported: MP3, WMA, WMV, PNG and JPG. If the file `filename` does not exist, is not a supported file format or does not contain a meta tag named `attributename`, NULL will be returned.

**Attribute (filename, attributename)**

**ConnectString**
The `ConnectString()` function returns the name of the active data connection for ODBC or OLE DB connections. The function returns an empty string if no `connect` statement has been executed, or after a `disconnect` statement.

**FileBaseName**
The `FileBaseName` function returns a string containing the name of the table file currently being read, without path or extension.

**FileDir**
The `FileDir` function returns a string containing the path to the directory of the table file currently being read.

**FileExtension**
The `FileExtension` function returns a string containing the extension of the table file currently being read.

**FileName**
The `FileName` function returns a string containing the name of the table file currently being read, without path but including the extension.

**FilePath**
The `FilePath` function returns a string containing the full path to the table file currently being read.

**FileSize**
The `FileSize` function returns an integer containing the size in bytes of the file `filename` or, if no `filename` is specified, of the table file currently being read.

**FileTime**
The `FileTime` function returns a timestamp for the date and time of the last modification of the file `filename`. If no `filename` is specified, the function will refer to the currently read table file.
5 Functions in scripts and chart expressions

**FileTime (filename)**

**GetFolderPath**
The `GetFolderPath` function returns the value of the Microsoft WindowsSHGetFolderPath function and returns the path. For example, **MyMusic**. Note that the function does not use the spaces seen in Windows Explorer.

**GetFolderPath ()**

**QvdCreateTime**
This script function returns the XML-header time stamp from a QVD file, if any is present, otherwise it returns NULL.

**QvdCreateTime (filename)**

**QvdFieldName**
This script function returns the name of field number `fieldno`, if it exists in a QVD file (otherwise NULL).

**QvdFieldName (filename, fieldno)**

**QvdNoOfFields**
This script function returns the number of fields in a QVD file.

**QvdNoOfFields (filename)**

**QvdNoOfRecords**
This script function returns the number of records currently in a QVD file.

**QvdNoOfRecords (filename)**

**QvdTableName**
This script function returns the name of the table stored in a QVD file.

**QvdTableName (filename)**

**Attribute**
This script function returns the value of the meta tags of different media files as text. The following file formats are supported: MP3, WMA, WMV, PNG and JPG. If the file `filename` does not exist, is not a supported file format or does not contain a meta tag named `attributename`, NULL will be returned.

**Syntax:**

`Attribute (filename, attributename)`

A large number of meta tags can be read. The examples in this topic show which tags can be read for the respective supported file types.
5 Functions in scripts and chart expressions

You can only read meta tags saved in the file according to the relevant specification, for example ID2v3 for MP3 files or EXIF for JPG files, not meta information saved in the Windows File Explorer.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The name of a media file including path, if needed, as a folder data connection.</td>
</tr>
<tr>
<td>attributename</td>
<td>The name of a meta tag.</td>
</tr>
</tbody>
</table>

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

- absolute
  Example: c:\data

- relative to the Qlik Sense app working directory.
  Example: data

The examples use the GetFolderPath function to find the paths to media files. As GetFolderPath is only supported in legacy mode, you need to replace the references to GetFolderPath with a lib:// data connection path.

See: File system access restriction (page 612)

Example 1: MP3 files

This script reads all possible MP3 meta tags in folder MyMusic.

// Script to read MP3 meta tags
for each vExt in 'mp3'
for each vFoundFile in filelist( GetFolderPath('MyMusic') & '\*.\' & vExt )
FileList:
LOAD FileLongName,
    subfield(FileLongName,'\',-1) as FileShortName,
    num(FileSize(FileLongName),'### ### ###',',',') as FileSize,
    FileTime(FileLongName) as FileTime,
    // ID3v1.0 and ID3v1.1 tags
    Attribute(FileLongName, 'Title') as Title,
    Attribute(FileLongName, 'Artist') as Artist,
    Attribute(FileLongName, 'Album') as Album,
    Attribute(FileLongName, 'Year') as Year,
    Attribute(FileLongName, 'Comment') as Comment,
    Attribute(FileLongName, 'Track') as Track,
    Attribute(FileLongName, 'Genre') as Genre,
5 Functions in scripts and chart expressions

// ID3v2.3 tags
Attribute(FileLongName, 'AENC') as AENC, // Audio encryption
Attribute(FileLongName, 'APIC') as APIC, // Attached picture
Attribute(FileLongName, 'COMM') as COMM, // Comments
Attribute(FileLongName, 'COMR') as COMR, // Commercial frame
Attribute(FileLongName, 'ENCR') as ENCR, // Encryption method registration
Attribute(FileLongName, 'EQUA') as EQUA, // Equalization
Attribute(FileLongName, 'ETCO') as ETCO, // Event timing codes
Attribute(FileLongName, 'GEOB') as GEOB, // General encapsulated object
Attribute(FileLongName, 'GRID') as GRID, // Group identification registration
Attribute(FileLongName, 'IPLS') as IPLS, // Involved people list
Attribute(FileLongName, 'LINK') as LINK, // Linked information
Attribute(FileLongName, 'MCDI') as MCDI, // Music CD identifier
Attribute(FileLongName, 'MLLT') as MLLT, // MPEG location lookup table
Attribute(FileLongName, 'OWNE') as OWN, // Ownership frame
Attribute(FileLongName, 'PRIV') as PRIV, // Private frame
Attribute(FileLongName, 'PCNT') as PCNT, // Play counter
Attribute(FileLongName, 'POPM') as POPM, // Popularimeter
Attribute(FileLongName, 'POSS') as POSS, // Position synchronisation frame
Attribute(FileLongName, 'RBUF') as RBUF, // Recommended buffer size
Attribute(FileLongName, 'RVAD') as RVAD, // Relative volume adjustment
Attribute(FileLongName, 'RVRB') as RVRB, // Reverb
Attribute(FileLongName, 'SYLT') as SYLT, // Synchronized lyric/text
Attribute(FileLongName, 'SYTC') as SYTC, // Synchronized tempo codes
Attribute(FileLongName, 'TALB') as TALB, // Album/Movie/Show title
Attribute(FileLongName, 'TBPM') as TBPM, // BPM (beats per minute)
Attribute(FileLongName, 'TCOM') as TCOM, // Composer
Attribute(FileLongName, 'TCON') as TCON, // Content type
Attribute(FileLongName, 'TCOP') as TCOP, // Copyright message
Attribute(FileLongName, 'TDAT') as TDAT, // Date
Attribute(FileLongName, 'TDDY') as TDLY, // Playlist delay
Attribute(FileLongName, 'TENC') as TENC, // Encoded by
Attribute(FileLongName, 'TEXT') as TEXT, // Lyricist/Text writer
Attribute(FileLongName, 'TFLT') as TFLT, // File type
Attribute(FileLongName, 'TIME') as TIME, // Time
Attribute(FileLongName, 'TIT1') as TIT1, // Content group description
Attribute(FileLongName, 'TIT2') as TIT2, // Title/songname/content description
Attribute(FileLongName, 'TIT3') as TIT3, // Subtitle/Description refinement
Attribute(FileLongName, 'TKLY') as TKEY, // Initial key
Attribute(FileLongName, 'TLAN') as TLAN, // Language(s)
Attribute(FileLongName, 'TLEN') as TLEN, // Length
Attribute(FileLongName, 'TMED') as TMED, // Media type
Attribute(FileLongName, 'TOAL') as TOAL, // Original album/movie/show title
Attribute(FileLongName, 'TOFN') as TOFN, // Original filename
Attribute(FileLongName, 'TGLY') as TGLY, // Original lyricist(s)/text writer(s)
Attribute(FileLongName, 'TOPE') as TOPE, // Original artist(s)/performer(s)
Attribute(FileLongName, 'TORI') as TORI, // Original release year
Attribute(FileLongName, 'TOWN') as TOWN, // File owner/licensee
Attribute(FileLongName, 'TPE1') as TPE1, // Lead performer(s)/Soloist(s)
Attribute(FileLongName, 'TPE2') as TPE2, // Band/orchestra/accompaniment
Attribute(FileLongName, 'TPE3') as TPE3, // Conductor/performer refinement
Attribute(FileLongName, 'TPE4') as TPE4, // Interpreted, remixed, or otherwise modified by
Attribute(FileLongName, 'TPOS') as TPOS, // Part of a set
Attribute(FileLongName, 'TPUB') as TPUB, // Publisher
Attribute(FileLongName, 'TRCK') as TRCK, // Track number/Position in set
Attribute(FileLongName, 'TRDA') as TRDA, // Recording dates
Attribute(FileLongName, 'TRS') as TRSN, // Internet radio station name
Attribute(FileLongName, 'TRSO') as TRSO, // Internet radio station owner
Attribute(FileLongName, 'TSIZ') as TSIZ, // Size
Attribute(FileLongName, 'TSRC') as TSRC, // ISRC (international standard recording code)
Attribute(FileLongName, 'TSSE') as TSSE, // Software/Hardware and settings used for encoding
Attribute(FileLongName, 'TYER') as TYER, // Year
Attribute(FileLongName, 'TXXX') as TXXX, // user defined text information frame
Attribute(FileLongName, 'UFID') as UFID, // Unique file identifier
Attribute(FileLongName, 'USER') as USER, // Terms of use
Attribute(FileLongName, 'USLT') as USLT, // Unsynchronized lyric/text transcription
Attribute(FileLongName, 'WCOM') as WCOM, // Commercial information
Attribute(FileLongName, 'WCOP') as WCOP, // Copyright/Legal information
Attribute(FileLongName, 'WQTA') as WQTA, // Official audio file webpage
Attribute(FileLongName, 'WQTB') as WQTB, // Official artist/performer webpage
Attribute(FileLongName, 'WQTC') as WQTC, // Official internet radio station homepage
Attribute(FileLongName, 'WPAY') as WPAY, // Payment
Attribute(FileLongName, 'WPUF') as WPUF, // Publishers official webpage
Attribute(FileLongName, 'WXXX') as WXXX; // user defined URL link frame

LOAD @1:n as FileLongName Inline "$|vFoundFile|" (fix, no labels);
Next vFoundFile
Next vExt

Example 2: JPEG

This script reads all possible EXIF meta tags from JPG files in folder MyPictures.

// Script to read JPEG Exif meta tags
for each vExt in 'jpg', 'jpeg', 'jpe', 'jfif', 'jfi'
for each vFoundFile in filelist( GetFolderPath('MyPictures') & '\*.\*.vExt )
Filelist:
LOAD FileLongName,
  subfield(FileLongName,'\','-1') as FileShortName,
  num(FileSize(FileLongName),'# ### ### ##', ',', ') as FileSize,
  FileTime(FileLongName) as FileTime,
  // ************** Exif Main (IFD0) Attributes **************
  Attribute(FileLongName, 'ImageWidth') as ImageWidth,
  Attribute(FileLongName, 'ImageLength') as ImageLength,
  Attribute(FileLongName, 'BitsPerSample') as BitsPerSample,
  Attribute(FileLongName, 'Compression') as Compression,
  // examples: 0=uncompressed, 2=CCITT 3=CCITT 4=CCITT 4,
  // 5=LZW, 6=JPEG (old style), 7=JPEG, 8=Deflate, 32773=PackBits RLE,
  Attribute(FileLongName, 'PhotometricInterpretation') as PhotometricInterpretation,
  // examples: 0=WhiteIsZero, 1=BlackIsZero, 2=Palette, 3=Paletted, 4=GreyScale,
  Attribute(FileLongName, 'ImageDescription') as ImageDescription,
  Attribute(FileLongName, 'Make') as Make,
  Attribute(FileLongName, 'Model') as Model,
  Attribute(FileLongName, 'StripOffsets') as StripOffsets,
  Attribute(FileLongName, 'Orientation') as Orientation,
  // examples: 1=TopLeft, 2=TopRight, 3=BottomRight, 4=BottomLeft,
  // 5=LeftTop, 6=RightTop, 7=RightBottom, 8=LeftBottom,
  Attribute(FileLongName, 'SamplesPerPixel') as SamplesPerPixel,
  Attribute(FileLongName, 'RowsPerStrip') as RowsPerStrip,
  Attribute(FileLongName, 'StripByteCounts') as StripByteCounts,
  Attribute(FileLongName, 'XResolution') as XResolution,
5 Functions in scripts and chart expressions

Attribute(FileLongName, 'YResolution') as YResolution,
Attribute(FileLongName, 'PlanarConfiguration') as PlanarConfiguration,
// examples: 1=chunky format, 2=planar format,
Attribute(FileLongName, 'ResolutionUnit') as ResolutionUnit,
// examples: 1=m, 2=cm, 3=mm,
Attribute(FileLongName, 'TransferFunction') as TransferFunction,
Attribute(FileLongName, 'Software') as Software,
Attribute(FileLongName, 'DateTime') as DateTime,
Attribute(FileLongName, 'Artist') as Artist,
Attribute(FileLongName, 'HostComputer') as HostComputer,
Attribute(FileLongName, 'WhitePoint') as WhitePoint,
Attribute(FileLongName, 'PrimaryChromaticities') as PrimaryChromaticities,
Attribute(FileLongName, 'YCbCrCoefficients') as YCbCrCoefficients,
Attribute(FileLongName, 'YCbCrSubSampling') as YCbCrSubSampling,
Attribute(FileLongName, 'YCbCrPositioning') as YCbCrPositioning,
// examples: 1=co-sited, 2=co-sited,
Attribute(FileLongName, 'ReferenceBlackWhite') as ReferenceBlackWhite,
Attribute(FileLongName, 'Rating') as Rating,
Attribute(FileLongName, 'RatingPercent') as RatingPercent,
Attribute(FileLongName, 'ThumbnailFormat') as ThumbnailFormat,
// examples: 1=Raw Rgb, 1=Jpeg,
Attribute(FileLongName, 'Copyright') as Copyright,
Attribute(FileLongName, 'ExposureTime') as ExposureTime,
Attribute(FileLongName, 'FNumber') as FNumber,
Attribute(FileLongName, 'ExposureProgram') as ExposureProgram,
// examples: 1=Not defined, 1=Manual, 2=Normal program, 3=Aperture priority, 4=Shutter
priority,
// 5=Creative program, 6=Action program, 7=Portrait mode, 8=Landscape mode, 9=Bulb,
Attribute(FileLongName, 'ISOSpeedRatings') as ISOSpeedRatings,
Attribute(FileLongName, 'TimezoneOffset') as TimezoneOffset,
Attribute(FileLongName, 'SensitivityType') as SensitivityType,
// examples: 0=Unknown, 1=Standard output sensitivity (SOS), 2=Recommended exposure index
(REI),
// 3=ISO speed, 4=Standard output sensitivity (SOS) and Recommended exposure index (REI),
// 5=Standard output sensitivity (SOS) and ISO Speed, 6=Recommended exposure index (REI) and ISO
Speed,
// 7=Standard output sensitivity (SOS) and Recommended exposure index (REI) and ISO speed,
Attribute(FileLongName, 'ExifVersion') as ExifVersion,
Attribute(FileLongName, 'DateTimeOriginal') as DateTimeOriginal,
Attribute(FileLongName, 'DateTimeDigitized') as DateTimeDigitized,
Attribute(FileLongName, 'ComponentsConfiguration') as ComponentsConfiguration,
// examples: 1=Y, 2=Cb, 3=Cr, 4=R, 5=G, 6=B,
Attribute(FileLongName, 'CompressedBitsPerPixel') as CompressedBitsPerPixel,
Attribute(FileLongName, 'ShutterSpeedValue') as ShutterSpeedValue,
Attribute(FileLongName, 'ApertureValue') as ApertureValue,
Attribute(FileLongName, 'BrightnessValue') as BrightnessValue, // examples: -1=Unknown,
Attribute(FileLongName, 'ExposureBiasValue') as ExposureBiasValue,
Attribute(FileLongName, 'MaxApertureValue') as MaxApertureValue,
Attribute(FileLongName, 'SubjectDistance') as SubjectDistance,
// examples: 0=Unknown, -1=Infinity,
Attribute(FileLongName, 'MeteringMode') as MeteringMode,
// examples: 0=Unknown, 1=Average, 2=CenterWeightedAverage, 3=Spot,
// 4=MultiSpot, 5=Pattern, 6=Partial, 255=Other,
Attribute(FileLongName, 'LightSource') as LightSource,
// examples: 0=Unknown, 1=Daylight, 2=Fluorescent, 3=Tungsten, 4=Flash, 9=Fine weather,
// 10=Cloudy weather, 11=Shade, 12=Daylight fluorescent,
// 13=Day white fluorescent, 14=Cool white fluorescent,
5 Functions in scripts and chart expressions

// 15=white fluorescent, 17=standard light A, 18=standard light B, 19=standard light C,
// 20=daylight, 21=d65, 22=d75, 23=fluorescent, 24=iso studio tungsten, 25=other light source,
Attribute(FileName, 'Flash') as Flash,
Attribute(FileName, 'FocalLength') as FocalLength,
Attribute(FileName, 'SubjectArea') as SubjectArea,
Attribute(FileName, 'MakerNote') as MakerNote,
Attribute(FileName, 'UserComment') as UserComment,
Attribute(FileName, 'SubsecTime') as SubsecTime,
Attribute(FileName, 'SubsecTimeOriginal') as SubsecTimeOriginal,
Attribute(FileName, 'SubsecTimeDigitized') as SubsecTimeDigitized,
Attribute(FileName, 'XPTitle') as XPTitle,
Attribute(FileName, 'XPComment') as XPComment,
Attribute(FileName, 'XPAuthor') as XPAuthor,
Attribute(FileName, 'XPKeywords') as XPKeywords,
Attribute(FileName, 'XPSource') as XPSource,
Attribute(FileName, 'FlashpixVersion') as FlashpixVersion,
Attribute(FileName, 'ColorSpace') as ColorSpace, // examples: 1=sRGB, 65535=Uncalibrated,
Attribute(FileName, 'PixelXDimension') as PixelXDimension,
Attribute(FileName, 'PixelYDimension') as PixelYDimension,
Attribute(FileName, 'RelatedSoundFile') as RelatedSoundFile,
Attribute(FileName, 'FocalPlaneXResolution') as FocalPlaneXResolution,
Attribute(FileName, 'FocalPlaneYResolution') as FocalPlaneYResolution,
Attribute(FileName, 'FocalPlaneResolutionUnit') as FocalPlaneResolutionUnit,
Attribute(FileName, 'SceneType') as SceneType,
Attribute(FileName, 'SceneCaptureType') as SceneCaptureType,
Attribute(FileName, 'GainControl') as GainControl,
Attribute(FileName, 'SceneType') as SceneType,
Attribute(FileName, 'SceneCaptureType') as SceneCaptureType,
Attribute(FileName, 'GainControl') as GainControl,
Attribute(FileName, 'Contrast') as Contrast,
Attribute(FileName, 'Saturation') as Saturation,
Attribute(FileName, 'Sharpness') as Sharpness,
Attribute(FileName, 'SubjectDistanceRange') as SubjectDistanceRange,
Attribute(FileName, 'ImageUniqueID') as ImageUniqueID,
5 Functions in scripts and chart expressions

```plaintext
LOAD @1:n as FileLongName Inline "$(vFoundFile)" (fix, no labels);
Next vFoundFile
Next vExt

Example 3: Windows media files
```
5 Functions in scripts and chart expressions

This script reads all possible WMA/WMV ASF meta tags in folder MyMusic.

/ Script to read WMA/WMV ASF meta tags
for each vExt in 'asf', 'wma', 'wmv'
for each vFoundFile in filelist( GetFolderPath('MyMusic') & '\*.\& vExt )
FileList:
LOAD FileLongName,
   subfield(FileLongName, '\',-1) as FileShortName,
   num(FileSize(FileLongName), '# ### ###',',',' ') as FileSize,
   FileTime(FileLongName) as FileTime,
   Attribute(FileLongName, 'Title') as Title,
   Attribute(FileLongName, 'Author') as Author,
   Attribute(FileLongName, 'Copyright') as Copyright,
   Attribute(FileLongName, 'Description') as Description,
   Attribute(FileLongName, 'Rating') as Rating,
   Attribute(FileLongName, 'PlayDuration') as PlayDuration,
   Attribute(FileLongName, 'MaximumBitrate') as MaximumBitrate,
   Attribute(FileLongName, 'WMFSDKVersion') as WMFSDKVersion,
   Attribute(FileLongName, 'WMFSDKNeeded') as WMFSDKNeeded,
   Attribute(FileLongName, 'IsVBR') as IsVBR,
   Attribute(FileLongName, 'ASFLeakyBucketPairs') as ASFLeakyBucketPairs,
   Attribute(FileLongName, 'PeakValue') as PeakValue,
   Attribute(FileLongName, 'AverageLevel') as AverageLevel;
LOAD @1:n as FileLongName Inline "$(vFoundFile)") (fix, no labels);
Next vFoundFile
Next vExt

Example 4: PNG

This script reads all possible PNG meta tags in folder MyPictures.

// Script to read PNG meta tags
for each vExt in 'png'
for each vFoundFile in filelist( GetFolderPath('MyPictures') & '\*.\& vExt )
FileList:
LOAD FileLongName,
   subfield(FileLongName, '\',-1) as FileShortName,
   num(FileSize(FileLongName), '# ### ###',',',' ') as FileSize,
   FileTime(FileLongName) as FileTime,
   Attribute(FileLongName, 'Comment') as Comment,
   Attribute(FileLongName, 'Creation Time') as Creation_Time,
   Attribute(FileLongName, 'Source') as Source,
   Attribute(FileLongName, 'Title') as Title,
   Attribute(FileLongName, 'Software') as Software,
   Attribute(FileLongName, 'Author') as Author,
   Attribute(FileLongName, 'Description') as Description,
   Attribute(FileLongName, 'Copyright') as Copyright;
LOAD @1:n as FileLongName Inline "$vFoundFile") (fix, no labels);
Next vFoundFile
Next vExt

Script Syntax and Chart Functions Guide - Qlik Sense, 1.1 459
ConnectString
The `ConnectString()` function returns the name of the active data connection for ODBC or OLE DB connections. The function returns an empty string if no `connect` statement has been executed, or after a `disconnect` statement.

**Syntax:**

```
ConnectString()
```

**Examples and results:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>LIB CONNECT TO 'Tutorial ODBC';</code>&lt;br&gt;<code>ConnectString:</code>&lt;br&gt;<code>Load ConnectString() as ConnectString</code>&lt;br&gt;<code>AutoGenerate 1;</code></td>
<td>Returns 'Tutorial ODBC' in field ConnectString.&lt;br&gt;This examples assumes that you have an available data connection called Tutorial ODBC.</td>
</tr>
</tbody>
</table>

FileStream
The `FileBasename` function returns a string containing the name of the table file currently being read, without path or extension.

**Syntax:**

```
FileStream()
```

**Examples and results:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>LOAD * , FileBasename() as X from C:\User\Files\abc.txt</code></td>
<td>Will return 'abc' in field X in each record read.</td>
</tr>
</tbody>
</table>

FileDir
The `FileDir` function returns a string containing the path to the directory of the table file currently being read.

**Syntax:**

```
FileDir()
```

This function supports only folder data connections in standard mode.

**Examples and results:**

---

5  Functions in scripts and chart expressions
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load *, opendir() as X from C:\UserFiles\abc.txt</td>
<td>Will return 'C:\UserFiles' in field X in each record read.</td>
</tr>
</tbody>
</table>

**FileName**

The **FileName** function returns a string containing the name of the table file currently being read, without path but including the extension.

**Syntax:**

\[\text{FileName}()\]

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOAD *, FileName() as X from C:\UserFiles\abc.txt</td>
<td>Will return 'abc.txt' in field X in each record read.</td>
</tr>
</tbody>
</table>

**FilePath**

The **FilePath** function returns a string containing the full path to the table file currently being read.

**Syntax:**

\[\text{FilePath}()\]

*This function supports only folder data connections in standard mode.*

Examples and results:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load *, FilePath( ) as X from C:\UserFiles\abc.txt</td>
<td>Will return 'C:\UserFiles\abc.txt' in field X in each record read.</td>
</tr>
</tbody>
</table>

FileSize

The **FileSize** function returns an integer containing the size in bytes of the file filename or, if no filename is specified, of the table file currently being read.

**Syntax:**

FileSize([filename])

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The name of a file, if necessary including path, as a folder or web file data connection. If you don't specify a file name, the table file currently being read is used.</td>
</tr>
</tbody>
</table>

**Example:** '\lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

- absolute
  - Example: c:\data\
- relative to the Qlik Sense app working directory.
  - Example: data\
- URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.
  - Example: http://www.qlik.com

**Examples and results:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOAD *, FileSize( ) as X from abc.txt;</td>
<td>Will return the size of the specified file (abc.txt) as an integer in field X in each record read.</td>
</tr>
<tr>
<td>FileSize( 'lib://MyData/xyz.xls' )</td>
<td>Will return the size of the file xyz.xls.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

FileTime
The **FileTime** function returns a timestamp for the date and time of the last modification of the file filename. If no filename is specified, the function will refer to the currently read table file.

**Syntax:**
```
FileTime([ filename ])
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The name of a file, if necessary including path, as a folder or web file data connection.</td>
</tr>
</tbody>
</table>

**Example:** 'lib://Table Files/

In legacy scripting mode, the following path formats are also supported:

- absolute
  
  **Example:** c:\data\  

- relative to the Qlik Sense app working directory.
  
  **Example:** data\  

- URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.
  
  **Example:** http://www.qlik.com

**Examples and results:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOAD *, FileTime( ) as X from abc.txt;</td>
<td>Will return the date and time of the last modification of the file (abc.txt) as a timestamp in field X in each record read.</td>
</tr>
<tr>
<td>FileTime('xyz.xls')</td>
<td>Will return the timestamp of the last modification of the file xyz.xls.</td>
</tr>
</tbody>
</table>

GetFolderPath
The **GetFolderPath** function returns the value of the Microsoft WindowsSHGetFolderPath function and returns the path. For example, **MyMusic**. Note that the function does not use the spaces seen in Windows Explorer.

*This function is not supported in standard mode.*
5 Functions in scripts and chart expressions

Syntax:

GetFolderPath()

Examples:

This script loads three common folder paths in a table.

LOAD
    GetFolderPath('Music') as MyMusic,
    GetFolderPath('MyPictures') as MyPictures,
    GetFolderPath('Windows') as Windows
AutoGenerate 1;

QvdCreateTime

This script function returns the XML-header time stamp from a QVD file, if any is present, otherwise it returns NULL.

Syntax:

QvdCreateTime(filename)

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The name of a QVD file, if necessary including path, as a folder or web data connection.</td>
</tr>
</tbody>
</table>

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

- absolute
  
  Example: c:\data\ |

- relative to the Qlik Sense app working directory.
  
  Example: data\ |

- URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.
  
  Example: http://www.qlik.com

Example:

QvdCreateTime('MyFile.qvd')
QvdCreateTime('C:\MyDir\MyFile.qvd')
QvdCreateTime('lib://data\MyFile.qvd')
5  Functions in scripts and chart expressions

QvdFieldName

This script function returns the name of field number fieldno, if it exists in a QVD file (otherwise NULL).

Syntax:

```
QvdFieldName(filename, fieldno)
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The name of a QVD file, if necessary including path, as a folder or web data connection.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> 'lib://Table Files/'</td>
</tr>
<tr>
<td></td>
<td>In legacy scripting mode, the following path formats are also supported:</td>
</tr>
<tr>
<td></td>
<td>- absolute</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> c:\data\</td>
</tr>
<tr>
<td></td>
<td>- relative to the Qlik Sense app working directory.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> data\</td>
</tr>
<tr>
<td></td>
<td>- URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> <a href="http://www.qlik.com">http://www.qlik.com</a></td>
</tr>
<tr>
<td>fieldno</td>
<td>The number of the field (0 based) within the table contained in the QVD file.</td>
</tr>
</tbody>
</table>

Examples:

```
QvdFieldName('MyFile.qvd', 3)
QvdFieldName('C:\MyDir\MyFile.qvd', 5)
QvdFieldName('lib://data\MyFile.qvd', 5)
```

QvdNoOfFields

This script function returns the number of fields in a QVD file.

Syntax:

```
QvdNoOfFields(filename)
```

Arguments:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| filename | The name of a QVD file, if necessary including path, as a folder or web data connection.  

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

- **absolute**  
  Example: `c:\data\`

- relative to the Qlik Sense app working directory.
  Example: `data\`

- URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.
  Example: `http://www.qlik.com`

Examples:

QvdNoOfFields ('MyFile.qvd')
QvdNoOfFields ('C:\MyDir\MyFile.qvd')
QvdNoOfFields ('lib://data\MyFile.qvd')

**QvdNoOfRecords**

This script function returns the number of records currently in a QVD file.

**Syntax:**

QvdNoOfRecords(filename)

**Arguments:**
### 5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The name of a QVD file, if necessary including path, as a folder or web data connection.</td>
</tr>
<tr>
<td></td>
<td><strong>Example: 'lib://Table Files/'</strong></td>
</tr>
<tr>
<td></td>
<td>In legacy scripting mode, the following path formats are also supported:</td>
</tr>
<tr>
<td></td>
<td>- absolute</td>
</tr>
<tr>
<td></td>
<td>*<em>Example: c:\data*</em></td>
</tr>
<tr>
<td></td>
<td>- relative to the Qlik Sense app working directory.</td>
</tr>
<tr>
<td></td>
<td>*<em>Example: data*</em></td>
</tr>
<tr>
<td></td>
<td>- URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.</td>
</tr>
<tr>
<td></td>
<td><strong>Example: <a href="http://www.qlik.com">http://www.qlik.com</a></strong></td>
</tr>
</tbody>
</table>

**Examples:**

```
QvdNoOfRecords ('MyFile.qvd')
QvdNoOfRecords ('C:\MyDir\MyFile.qvd')
QvdNoOfRecords ('lib://data\MyFile.qvd')
```

**QvdTableName**

This script function returns the name of the table stored in a QVD file.

**Syntax:**

```
QvdTableName(filename)
```

**Arguments:**
## Functions in scripts and chart expressions

### Argument | Description
---|---
filename | The name of a QVD file, if necessary including path, as a folder or web data connection.

**Example: 'lib://Table Files/*

In legacy scripting mode, the following path formats are also supported:

- absolute

  **Example: c:\data\**

- relative to the Qlik Sense app working directory.

  **Example: data/**

- URL address (HTTP or FTP), pointing to a location on the Internet or an intranet.

  **Example: http://www.qlik.com

### Examples:

QvdTableName ('MyFile.qvd')
QvdTableName ('C:\MyDir\MyFile.qvd')
QvdTableName ('lib://data\MyFile.qvd')

## 5.9 Financial functions

Financial functions can be used in the data load script and in chart expressions to calculate payments and interest rates.

For all the arguments, cash that is paid out is represented by negative numbers. Cash received is represented by positive numbers.

Listed here are the arguments that are used in the financial functions (excepting the ones beginning with `range`).

> For all financial functions it is vital that you are consistent when specifying units for **rate** and **nper**. If monthly payments are made on a five-year loan at 6% annual interest, use 0.005 (6%/12) for **rate** and 60 (5*12) for **nper**. If annual payments are made on the same loan, use 6% for **rate** and 5 for **nper**.

### Financial functions overview

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

**FV**
5 Functions in scripts and chart expressions

This function returns the future value of an investment based on periodic, constant payments and a constant interest rate. The result has a default number format of money.

\[
\text{FV}(\text{rate}, \text{nper}, \text{pmt}[, \text{pv}[,, \text{type}]])
\]

nPer
This function returns the number of periods for an investment based on periodic, constant payments and a constant interest rate.

\[
\text{nPer}(\text{rate}, \text{pmt}, \text{pv}[, \text{fv}[,, \text{type}]]
\]

Pmt
This function returns the payment for a loan based on periodic, constant payments and a constant interest rate. The result has a default number format of money.

\[
\text{Pmt}(\text{rate}, \text{nper}, \text{pv}[, \text{fv}[,, \text{type}]]
\]

PV
This function returns the present value of an investment. The result has a default number format of money.

\[
\text{PV}(\text{rate}, \text{nper}, \text{pmt}[, \text{fv}[,, \text{type}]]
\]

Rate
This function returns the interest rate per period on annuity. The result has a default number format of Fix two decimals and %.

\[
\text{Rate}(\text{nper}, \text{pmt}, \text{pv}[, \text{fv}[,, \text{type}]]
\]

BlackAndSchole
The Black and Scholes model is a mathematical model for financial market derivative instruments. The formula calculates the theoretical value of an option. In Qlik Sense, the \text{BlackAndSchole} function returns the value according to the Black and Scholes unmodified formula (European style options).

\[
\text{BlackAndSchole}(\text{strike}, \text{time_left}, \text{underlying_price}, \text{vol}, \text{risk_free_rate}, \text{type})
\]

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>strike</td>
<td>The future purchase price of the stock.</td>
</tr>
<tr>
<td>time_left</td>
<td>The number of time periods remaining.</td>
</tr>
<tr>
<td>underlying_price</td>
<td>The current value of the stock.</td>
</tr>
<tr>
<td>vol</td>
<td>The volatility in % per time period.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>risk_free_rate</td>
<td>The risk-free rate in % per time period.</td>
</tr>
</tbody>
</table>
| type           | The type of option: 'c', 'call' or any non-zero numeric value for call options
                       | 'p', 'put' or 0 for put options.                                             |

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlackAndSchole(130, 4, 68.5, 0.4, 0.04, 'call')</td>
<td>Returns 11.245</td>
</tr>
</tbody>
</table>

This calculates the theoretical price of an option to buy a share that is worth 68.5 today, at a value of 130 in 4 years. A volatility of 40% per year and a risk-free interest rate of 4% is assumed.

FV

This function returns the future value of an investment based on periodic, constant payments and a constant interest rate. The result has a default number format of money.

Syntax:

\[
FV(rate, nper, pmt [,pv [, , type ]])
\]

Return data type: numeric. The result has a default number format of money.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate</td>
<td>The interest rate per period.</td>
</tr>
<tr>
<td>nper</td>
<td>The total number of payment periods in an annuity.</td>
</tr>
<tr>
<td>pmt</td>
<td>The payment made each period. It cannot change over the life of the annuity. If pmt is omitted, the pv argument must be included. A payment is stated as a negative number, for example, -20.</td>
</tr>
<tr>
<td>pv</td>
<td>The present value, or lump-sum amount, that a series of future payments is worth right now. If pv is omitted, it is assumed to be 0 (zero) and the pmt argument must be included.</td>
</tr>
<tr>
<td>fv</td>
<td>The future value, or cash balance, you want to attain after the last payment is made. If fv is omitted, it is assumed to be 0.</td>
</tr>
<tr>
<td>type</td>
<td>Should be 0 if payments are due at the end of the period and 1 if payments are due at the beginning of the period. If type is omitted, it is assumed to be 0.</td>
</tr>
</tbody>
</table>

Examples and results:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>You are paying a new household appliance by 36 monthly installments of $20. The interest rate is 6% per annum. The bill comes at the end of every month. What is the total invested, when the last bill has been paid?</td>
<td>FV(0.005, 36, -20)  Returns $786.72</td>
</tr>
</tbody>
</table>

**nPer**

This function returns the number of periods for an investment based on periodic, constant payments and a constant interest rate.

**Syntax:**

\[ \text{nPer}(\text{rate}, \text{pmt}, \text{pv}[,\text{fv}[,\text{type}]])) \]

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate</td>
<td>The interest rate per period.</td>
</tr>
<tr>
<td>nper</td>
<td>The total number of payment periods in an annuity.</td>
</tr>
<tr>
<td>pmt</td>
<td>The payment made each period. It cannot change over the life of the annuity. If pmt is omitted, the pv argument must be included. A payment is stated as a negative number, for example, -20.</td>
</tr>
<tr>
<td>pv</td>
<td>The present value, or lump-sum amount, that a series of future payments is worth right now. If pv is omitted, it is assumed to be 0 (zero) and the pmt argument must be included.</td>
</tr>
<tr>
<td>fv</td>
<td>The future value, or cash balance, you want to attain after the last payment is made. If fv is omitted, it is assumed to be 0.</td>
</tr>
<tr>
<td>type</td>
<td>Should be 0 if payments are due at the end of the period and 1 if payments are due at the beginning of the period. If type is omitted, it is assumed to be 0.</td>
</tr>
</tbody>
</table>

**Examples and results:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>You want to sell a household appliance by monthly installments of $20. The interest rate is 6% per annum. The bill comes at the end of every month. How many periods are required if the value of the money received after the last bill has been paid should equal $800?</td>
<td>nPer(0.005, -20, 0, 800) Returns 36.56</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

Pmt

This function returns the payment for a loan based on periodic, constant payments and a constant interest rate. The result has a default number format of money.

\[ \text{Pmt}(\text{rate}, \text{nper}, \text{pv} [, \text{fv} [, \text{type} ] ] ) } \]

Return data type: numeric. The result has a default number format of money.

To find the total amount paid over the duration of the loan, multiply the returned pmt value by nper.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate</td>
<td>The interest rate per period.</td>
</tr>
<tr>
<td>nper</td>
<td>The total number of payment periods in an annuity.</td>
</tr>
<tr>
<td>pmt</td>
<td>The payment made each period. It cannot change over the life of the annuity. If pmt is omitted, the pv argument must be included. A payment is stated as a negative number, for example, -20.</td>
</tr>
<tr>
<td>pv</td>
<td>The present value, or lump-sum amount, that a series of future payments is worth right now. If pv is omitted, it is assumed to be 0 (zero) and the pmt argument must be included.</td>
</tr>
<tr>
<td>fv</td>
<td>The future value, or cash balance, you want to attain after the last payment is made. If fv is omitted, it is assumed to be 0.</td>
</tr>
<tr>
<td>type</td>
<td>Should be 0 if payments are due at the end of the period and 1 if payments are due at the beginning of the period. If type is omitted, it is assumed to be 0.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following formula returns the monthly payment on a $20,000 loan at an annual rate of 10 percent, that must be paid off in 8 months: [ \text{Pmt}(0.1/12, 8, 20000) ]</td>
<td>Returns - $2,594.66</td>
</tr>
<tr>
<td>For the same loan, if payment is due at the beginning of the period, the payment is: [ \text{Pmt}(0.1/12, 8, 20000, 0, 1) ]</td>
<td>Returns - $2,573.21</td>
</tr>
</tbody>
</table>

PV

This function returns the present value of an investment. The result has a default number format of money.

\[ \text{PV}(\text{rate}, \text{nper}, \text{pmt} [, \text{fv} [, \text{type} ] ] ) } \]

Return data type: numeric. The result has a default number format of money.
The present value is the total amount that a series of future payments is worth right now. For example, when borrowing money, the loan amount is the present value to the lender.

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate</td>
<td>The interest rate per period.</td>
</tr>
<tr>
<td>nper</td>
<td>The total number of payment periods in an annuity.</td>
</tr>
<tr>
<td>pmt</td>
<td>The payment made each period. It cannot change over the life of the annuity. If pmt is omitted, the pv argument must be included. A payment is stated as a negative number, for example, -20.</td>
</tr>
<tr>
<td>pv</td>
<td>The present value, or lump-sum amount, that a series of future payments is worth right now. If pv is omitted, it is assumed to be 0 (zero) and the pmt argument must be included.</td>
</tr>
<tr>
<td>fv</td>
<td>The future value, or cash balance, you want to attain after the last payment is made. If fv is omitted, it is assumed to be 0.</td>
</tr>
<tr>
<td>type</td>
<td>Should be 0 if payments are due at the end of the period and 1 if payments are due at the beginning of the period. If type is omitted, it is assumed to be 0.</td>
</tr>
</tbody>
</table>

**Examples and results:**

**Example** | **Result** |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PV(0.07/12,12*5,-100,0,0)</td>
<td>Returns $5,050.20</td>
</tr>
</tbody>
</table>

**Rate**

This function returns the interest rate per period on annuity. The result has a default number format of Fix two decimals and %.

**Syntax:**

```
Rate(nper, pmt, pv [,fv [,type ]])
```

**Return data type:** numeric.

The rate is calculated by iteration and can have zero or more solutions. If the successive results of rate do not converge, a NULL value will be returned.

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate</td>
<td>The interest rate per period.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nper</td>
<td>The total number of payment periods in an annuity.</td>
</tr>
<tr>
<td>pmt</td>
<td>The payment made each period. It cannot change over the life of the annuity. If pmt is omitted, the pv argument must be included. A payment is stated as a negative number, for example, -20.</td>
</tr>
<tr>
<td>pv</td>
<td>The present value, or lump-sum amount, that a series of future payments is worth right now. If pv is omitted, it is assumed to be 0 (zero) and the pmt argument must be included.</td>
</tr>
<tr>
<td>fv</td>
<td>The future value, or cash balance, you want to attain after the last payment is made. If fv is omitted, it is assumed to be 0.</td>
</tr>
<tr>
<td>type</td>
<td>Should be 0 if payments are due at the end of the period and 1 if payments are due at the beginning of the period. If type is omitted, it is assumed to be 0.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the interest rate of a five-year $10,000 annuity loan with monthly payments of $300?</td>
<td>Returns 2.00%</td>
</tr>
<tr>
<td>Rate(60,-300,10000)</td>
<td></td>
</tr>
</tbody>
</table>

5.10 Formatting functions

The formatting functions determine the display format of fields or expressions. With these functions it is possible to set decimal separator, thousands separator, and so on. The functions can be used both in data load scripts and chart expressions.

For reasons of clarity, all number representations are given with decimal point as decimal separator.

Formatting functions overview

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

Date

The date function formats the expression as a date according to the given format-code string.

Date (expression [ , format-code ])

Dual

With the dual function it is possible to create arbitrary combinations of a number and a string.

Dual ( s , x )
## Functions in scripts and chart expressions

### Interval
This script function formats the expression as a time interval according to the string given as a **format-code**. If the format code is omitted, the time format set in the operating system is used.

```plaintext
Interval (expression [ , format-code ])
```

### Money
The money function formats the expression numerically according to the string given as **format-code**. Decimal separator and thousands separator can be set as third and fourth parameters. If the parameters 2-4 are omitted, the number format that is set in the operating system will be used.

```plaintext
Money (expression [ , format-code [ , decimal-sep [ , thousands-sep ] ] ])
```

### Num
This script function formats the expression numerically according to the string given as **format-code**. Decimal separator and thousands separator can be set as third and fourth parameters. If the parameters 2-4 are omitted, the number format set in the operating system is used.

```plaintext
Num (expression [ , format-code [ , decimal-sep [ , thousands-sep ] ] ])
```

### Time
The time function formats the expression as time according to the string given as format-code. If the format code is omitted, the time format set in the operating system is used.

```plaintext
Time (expression [ , format-code ])
```

### Timestamp
This function formats the expression as a date and time according to the string given as **format-code**. If the format code is omitted, the date and time formats set in the operating system are used.

```plaintext
Timestamp (expression [ , format-code ])
```

### Date
The date function formats the expression as a date according to the given **format-code** string.

**Syntax:**

```plaintext
Date (expression [ , format-code ])
```

Another way to describe it, is to look at it as a number to string conversion. The function takes the numeric value of the expression and generates a string representing the date according to the format code. The function returns a dual value with both the string and the number.

**Arguments:**
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>format-code</td>
<td>String describing the format of the resulting string. If the format code is omitted, the date format set in the operating system is used.</td>
</tr>
</tbody>
</table>

Examples and results:
The examples below assume the two following operating system settings:

<table>
<thead>
<tr>
<th></th>
<th>Default setting 1</th>
<th>Default setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date format</td>
<td>YY-MM-DD</td>
<td>M/D/YY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Results</th>
<th>Setting 1</th>
<th>Setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date( A ) where A=35648</td>
<td>String: 97-08-06</td>
<td>8/6/97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number: 35648</td>
<td>35648</td>
<td></td>
</tr>
<tr>
<td>Date( A , 'YYYY.MM.DD' ) where A=35648</td>
<td>String: 97-08-06</td>
<td>8/6/97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number: 35648</td>
<td>35648</td>
<td></td>
</tr>
<tr>
<td>Date( A , 'DD.MM.YY' ) where A=35648.375</td>
<td>String: 06.08.1997</td>
<td>06.08.1997</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number: 35648.375</td>
<td>35648.375</td>
<td></td>
</tr>
<tr>
<td>Date( A , 'YY.MM.DD' ) where A=8/6/97</td>
<td>String: NULL (nothing)</td>
<td>97.08.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number: NULL</td>
<td>35648</td>
<td></td>
</tr>
</tbody>
</table>

**Dual**

With the dual function it is possible to create arbitrary combinations of a number and a string.

**Syntax:**

`Dual( s , x )`

Forced association of an arbitrary string representation s with a given number representation x.

In Qlik Sense, all field values are potentially dual values. This means that the field values can have both a numeric value and a textual value. An example is a date that could have a numeric value of 40908 and the textual representation '2011-12-31'.

When several data items read into one field have different string representations but the same valid number representation, they will all share the first string representation encountered.

*The dual function is typically used early in the script, before other data is read into the field concerned, in order to create that first string representation, which will be shown in filter panes.*
Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual('Q' &amp; Ceil(Month(Date)/3), Ceil(Month(Date)/3)) as Quarter</td>
<td>This field definition will create a field Quarter with the textual values 'Q1' to 'Q4' and at the same time assign the numeric values 1 to 4.</td>
</tr>
<tr>
<td>Dual(WeekYear(Date) &amp; '-W' &amp; WeekStart(Date), YearWeek(Date)) as YearWeek</td>
<td>This field definition will create a field YearWeek with textual values of the form '2012-W22' and at the same time assign a numeric value corresponding to the date number of the first day of the week, e.g. 41057.</td>
</tr>
</tbody>
</table>

Interval

This script function formats the expression as a time interval according to the string given as a format-code. If the format code is omitted, the time format set in the operating system is used.

Syntax:

```
Interval(expression [, format-code ])
```

Intervals may be formatted as a time, as days or as a combination of days, hours, minutes, seconds and fractions of seconds.

Examples and results:

The examples below assume the following operating system settings:

**Short date format:** YY-MM-DD

**Time format:** hh:mm:ss

**Number decimal separator:** .

<table>
<thead>
<tr>
<th>Example</th>
<th>String</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval( A ) where A=0.37</td>
<td>09:00:00</td>
<td>0.375</td>
</tr>
<tr>
<td>Interval( A ) where A=1.375</td>
<td>33:00:00</td>
<td>1.375</td>
</tr>
<tr>
<td>Interval( A, 'D hh:mm' ) where A=1.375</td>
<td>1 09:00</td>
<td>1.375</td>
</tr>
<tr>
<td>Interval( A-B, 'D hh:mm' ) where A=97-08-06 09:00:00 and B=96-08-06 00:00:00</td>
<td>365 09:00</td>
<td>365.375</td>
</tr>
</tbody>
</table>

Num

This script function formats the expression numerically according to the string given as format-code. Decimal separator and thousands separator can be set as third and fourth parameters. If the parameters 2-4 are omitted, the number format set in the operating system is used.
5  Functions in scripts and chart expressions

Syntax:

\[
\text{Num}(\text{expression} [, \text{format-code} [, \text{decimal-sep} [, \text{thousands-sep}]]])
\]

Examples and results:
The examples below assume the following operating system settings:

<table>
<thead>
<tr>
<th>Default setting 1</th>
<th>Default setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number format</td>
<td># ###0.,#</td>
</tr>
<tr>
<td></td>
<td>#,##0.#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Results</th>
<th>Setting 1</th>
<th>Setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Num}(A, '0.0')) where A=35648.375</td>
<td>String:</td>
<td>35 648 375</td>
<td>35648.375</td>
</tr>
<tr>
<td></td>
<td>Number:</td>
<td>35648375</td>
<td>35648.375</td>
</tr>
<tr>
<td>(\text{Num}(A, '#,##0.#', '.', ',')) where A=35648</td>
<td>String:</td>
<td>35,648.00</td>
<td>35,648.00</td>
</tr>
<tr>
<td></td>
<td>Number:</td>
<td>35648</td>
<td>35648</td>
</tr>
<tr>
<td>(\text{Num}(\pi(), '0.00'))</td>
<td>String:</td>
<td>3.14</td>
<td>003</td>
</tr>
<tr>
<td></td>
<td>Number:</td>
<td>3.141592653</td>
<td>3.141592653</td>
</tr>
</tbody>
</table>

Money

The \text{money} function formats the \text{expression} numerically according to the string given as \text{format-code}.
Decimal separator and thousands separator can be set as third and fourth parameters. If the parameters 2-4 are omitted, the number format that is set in the operating system will be used.

Syntax:

\[
\text{Money}(\text{expression} [, \text{format-code} [, \text{decimal-sep} [, \text{thousands-sep}]]])
\]

Examples and results:
The examples below assume the following operating system settings:

<table>
<thead>
<tr>
<th>Default setting 1</th>
<th>Default setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Money format</td>
<td>kr # ##0,00</td>
</tr>
<tr>
<td></td>
<td>$ #,##0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Results</th>
<th>Setting 1</th>
<th>Setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Money}(A)) where A=35648</td>
<td>String:</td>
<td>kr 35 648,00</td>
<td>$ 35,648.00</td>
</tr>
<tr>
<td></td>
<td>Number:</td>
<td>35648.00</td>
<td>35648.00</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Results</th>
<th>Setting 1</th>
<th>Setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Money( A, '#,##0 ¥', '.', ',' ) where A=3564800</td>
<td>String: 3,564,800 ¥</td>
<td>3,564,800 ¥</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number: 3564800</td>
<td>3564800</td>
<td></td>
</tr>
</tbody>
</table>

Time

The time function formats the expression as time according to the string given as format-code. If the format code is omitted, the time format set in the operating system is used.

Syntax:

```
Time( expression [, format-code ])
```

Examples and results:
The examples below assume the following operating system settings:

<table>
<thead>
<tr>
<th>Default setting 1</th>
<th>Default setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time format</td>
<td>hh:mm:ss</td>
</tr>
<tr>
<td></td>
<td>hh.mm.ss</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Results</th>
<th>Setting 1</th>
<th>Setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time( A ) where A=0.375</td>
<td>String: 09:00:00</td>
<td>09.00.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number: 0.375</td>
<td>0.375</td>
<td></td>
</tr>
<tr>
<td>Time( A ) where A=35648.375</td>
<td>String: 09:00:00</td>
<td>09.00.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number: 35648.375</td>
<td>35648.375</td>
<td></td>
</tr>
<tr>
<td>Time( A, 'hh-mm' ) where A=0.99999</td>
<td>String: 23-59</td>
<td>23-59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number: 0.99999</td>
<td>0.99999</td>
<td></td>
</tr>
</tbody>
</table>

Timestamp

This function formats the expression as a date and time according to the string given as format-code. If the format code is omitted, the date and time formats set in the operating system are used.

Syntax:

```
Timestamp(expression [, format-code ])
```

Examples and results:
The examples below assume the following operating system settings:
Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Default setting 1</th>
<th>Default setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>YY-MM-DD</td>
<td>M/D/YY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Results</th>
<th>Setting 1</th>
<th>Setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp( A ) where A=35648.375</td>
<td>String: 97-08-06 09:00:00</td>
<td>8/6/97 09:00:00</td>
<td></td>
</tr>
<tr>
<td>String: 35648.375</td>
<td>Number: 35648.375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timestamp( A,'YYYY-MM-DD hh.mm') where A=35648</td>
<td>String: 1997-08-06 00.00</td>
<td>1997-08-06 00.00</td>
<td></td>
</tr>
<tr>
<td>String: 35648</td>
<td>Number: 35648</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.11 General numeric functions

In these general numeric functions, the arguments are expressions where x should be interpreted as a real valued number. All functions can be used in both data load scripts and chart expressions.

General numeric functions overview

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

bitcount

`BitCount()` finds how many bits in the binary equivalent of a number are set to 1. That is, the function returns the number of set bits in `integer_number`, where `integer_number` is interpreted as a signed 32-bit integer.

```plaintext
BitCount(integer_number)
```

div

`Div()` returns the integer part of the arithmetic division of the first argument by the second argument. Both parameters are interpreted as real numbers, that is, they do not have to be integers.

```plaintext
Div(integer_number1, integer_number2)
```

fabs

`Fabs()` returns the absolute value of x. The result is a positive number.

```plaintext
Fabs(x)
```

fact

`Fact()` returns the factorial of a positive integer x.

```plaintext
Fact(x)
```

frac

`Frac()` returns the fraction part of x.

```plaintext
Frac(x)
```
5 Functions in scripts and chart expressions

sign
Sign() returns 1, 0 or -1 depending on whether x is a positive number, 0, or a negative number.

Combination and permutation functions

combin
Combin() returns the number of combinations of q elements that can be picked from a set of p items. As represented by the formula: combin(p, q) = p! / q!(p-q)! The order in which the items are selected is insignificant.

Permut() returns the number of permutations of q elements that can be selected from a set of p items. As represented by the formula: permut(p, q) = (p)! / (p - q)! The order in which the items are selected is significant.

Modulo functions

fmod
fmod() is a generalized modulo function that returns the remainder part of the integer division of the first argument (the dividend) by the second argument (the divisor). The result is a real number. Both arguments are interpreted as real numbers, that is, they do not have to be integers.

mod
Mod() is a mathematical modulo function that returns the non-negative remainder of an integer division. The first argument is the dividend, the second argument is the divisor, Both arguments must be integer values.

Parity functions

even
Even() returns True (-1), if integer_number is an even integer or zero. It returns False (0), if integer_number is an odd integer, and NULL if integer_number is not an integer.

odd
Odd() returns True (-1), if integer_number is an odd integer or zero. It returns False (0), if integer_number is an even integer, and NULL if integer_number is not an integer.
Rounding functions

ceil

Ceil() rounds up a number to the nearest multiple of the specified step interval. The result is increased by the value of offset, if one is specified, or reduced if offset is negative.

Ceil(x[, step[, offset]])

floor

Floor() rounds down a number to the nearest multiple of the specified step interval. The result is increased by the value of offset, if one is specified, or reduced if offset is negative.

Floor(x[, step[, offset]])

round

Round() returns the result of rounding x up or down to the nearest multiple of step. The result is increased by the value of offset, if one is specified, or reduced if offset is negative.

Round ( x [ , base [ , offset ]])

BitCount

BitCount() finds how many bits in the binary equivalent of a number are set to 1. That is, the function returns the number of set bits in integer_number, where integer_number is interpreted as a signed 32-bit integer.

Syntax:

BitCount(integer_number)

Return data type: integer

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>BitCount (3 )</td>
<td>3 is binary 101, therefore this returns 2</td>
</tr>
<tr>
<td>BitCount (-1)</td>
<td>-1 is 64 ones in binary, therefore this returns 64</td>
</tr>
</tbody>
</table>

Ceil

Ceil() rounds up a number to the nearest multiple of the specified step interval. The result is increased by the value of offset, if one is specified, or reduced if offset is negative.

Compare with the floor function, which rounds input numbers down.

Syntax:

Ceil(x[, step[, offset]])

Return data type: integer
5  Functions in scripts and chart expressions

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>ceil( 2.4 )</td>
<td>Returns 3</td>
</tr>
<tr>
<td>ceil( 2.6 )</td>
<td>Returns 3</td>
</tr>
<tr>
<td>ceil( 3.88 , 0.1 )</td>
<td>Returns 3.9</td>
</tr>
<tr>
<td>ceil( 3.88 , 5 )</td>
<td>Returns 5</td>
</tr>
<tr>
<td>ceil( 1.1 , 1 )</td>
<td>Returns 2</td>
</tr>
<tr>
<td>ceil( 1.1 , 1 , 0.5 )</td>
<td>Returns 1.5</td>
</tr>
<tr>
<td>ceil( 1.1 , 1 , -0.01)</td>
<td>Returns 1.99</td>
</tr>
</tbody>
</table>

Combin

Combin() returns the number of combinations of q elements that can be picked from a set of p items. As represented by the formula: \( \text{combin}(p,q) = \frac{p!}{q!(p-q)!} \) The order in which the items are selected is insignificant.

Syntax:

Combin(p, q)

Return data type: integer

Limitations:

Non-integer items will be truncated.

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many combinations of 7 numbers can be picked from a total of 35 lottery numbers?</td>
<td>Returns 6,724,520</td>
</tr>
<tr>
<td>combin( 35,7 )</td>
<td></td>
</tr>
</tbody>
</table>

Div

Div() returns the integer part of the arithmetic division of the first argument by the second argument. Both parameters are interpreted as real numbers, that is, they do not have to be integers.

Syntax:

Div(integer_number1, integer_number2)

Return data type: integer
5 Functions in scripts and chart expressions

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Div( 7,2 )</td>
<td>Returns 3</td>
</tr>
<tr>
<td>Div( 7.1,2.3 )</td>
<td>Returns 3</td>
</tr>
<tr>
<td>Div( 9,3 )</td>
<td>Returns 3</td>
</tr>
<tr>
<td>Div( -4,3 )</td>
<td>Returns -1</td>
</tr>
<tr>
<td>Div( 4,-3 )</td>
<td>Returns -1</td>
</tr>
<tr>
<td>Div( -4,-3 )</td>
<td>Returns 1</td>
</tr>
</tbody>
</table>

Even

Even() returns True (-1), if integer_number is an even integer or zero. It returns False (0), if integer_number is an odd integer, and NULL if integer_number is not an integer.

Syntax:

Even(integer_number)

Return data type: Boolean

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Even( 3 )</td>
<td>Returns 0, False</td>
</tr>
<tr>
<td>Even( 2 * 10 )</td>
<td>Returns -1, True</td>
</tr>
<tr>
<td>Even( 3.14 )</td>
<td>Returns NULL</td>
</tr>
</tbody>
</table>

Fabs

Fabs() returns the absolute value of x. The result is a positive number.

Syntax:

fabs(x)

Return data type: numeric

Examples and results:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>fabs( 2.4 )</td>
<td>Returns 2.4</td>
</tr>
<tr>
<td>fabs( -3.8 )</td>
<td>Returns 3.8</td>
</tr>
</tbody>
</table>

**Fact**

Fact() returns the factorial of a positive integer x.

**Syntax:**

```
Fact(x)
```

**Return data type:** integer

**Limitations:**

If the number x is not an integer, it will be truncated. Non-positive numbers will return NULL.

**Examples and results:**

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fact( 1 )</td>
<td>Returns 1</td>
</tr>
<tr>
<td>Fact( 5 )</td>
<td>Returns 120 (1 * 2 * 3 * 4 * 5 = 120 )</td>
</tr>
<tr>
<td>Fact(-5)</td>
<td>Returns NULL</td>
</tr>
</tbody>
</table>

**Floor**

Floor() rounds down a number to the nearest multiple of the specified step interval. The result is decreased by the value of offset, if one is specified, or increased if offset is negative.

Compare with the ceil function, which rounds input numbers up.

**Syntax:**

```
Floor(x[, step[, offset]])
```

**Return data type:** numeric

**Examples and results:**

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor( 2,4 )</td>
<td>Returns 0</td>
</tr>
<tr>
<td>Floor( 4,2 )</td>
<td>Returns 4</td>
</tr>
</tbody>
</table>
## 5 Functions in scripts and chart expressions

### Examples

<table>
<thead>
<tr>
<th>Functions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor( 3.88 , 0.1 )</td>
<td>Returns 3.8</td>
</tr>
<tr>
<td>Floor( 3.88 , 5 )</td>
<td>Returns 0</td>
</tr>
<tr>
<td>Floor( 1.1 , 1 )</td>
<td>Returns 1</td>
</tr>
<tr>
<td>Floor( 1.1 , 1 , 0.5 )</td>
<td>Returns 0.5</td>
</tr>
</tbody>
</table>

### Fmod

`fmod()` is a generalized modulo function that returns the remainder part of the integer division of the first argument (the dividend) by the second argument (the divisor). The result is a real number. Both arguments are interpreted as real numbers, that is, they do not have to be integers.

**Syntax:**

```
fmod(a, b)
```

**Return data type:** numeric

### Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>fmod( 7,2 )</td>
<td>Returns 1</td>
</tr>
<tr>
<td>fmod( 7.5,2 )</td>
<td>Returns 1.5</td>
</tr>
<tr>
<td>fmod( 9,3 )</td>
<td>Returns 0</td>
</tr>
<tr>
<td>fmod( -4,3 )</td>
<td>Returns -1</td>
</tr>
<tr>
<td>fmod( 4,-3 )</td>
<td>Returns 1</td>
</tr>
<tr>
<td>fmod( -4,-3 )</td>
<td>Returns -1</td>
</tr>
</tbody>
</table>

### Frac

`Frac()` returns the fraction part of `x`.

The fraction is defined in such a way that `Frac(x) + Floor(x) = x`. In simple terms this means that the fractional part of a positive number is the difference between the number (x) and the integer that precedes it.

For example: The fractional part of 11.43 = 11.43 - 11 = 0.43

For a negative number, say -1.4, `Floor(-1.4) = -2`, which produces the following result:

The fractional part of -1.4 = 1.4 - (-2) = -1.4 + 2 = 0.6

**Syntax:**

```
Frac(x)
```

**Return data type:** numeric
Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac( 11.43 )</td>
<td>Returns 0.43</td>
</tr>
<tr>
<td>Frac( -1.4 )</td>
<td>Returns 0.6</td>
</tr>
</tbody>
</table>

**Mod**

Mod() is a mathematical modulo function that returns the non-negative remainder of an integer division. The first argument is the dividend, the second argument is the divisor. Both arguments must be integer values.

Syntax:

```
Mod(integer_number1, integer_number2)
```

Return data type: integer

Limitations:

- integer_number2 must be greater than 0.

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod( 7,2 )</td>
<td>Returns 1</td>
</tr>
<tr>
<td>Mod( 7.5,2 )</td>
<td>Returns NULL</td>
</tr>
<tr>
<td>Mod( 9,3 )</td>
<td>Returns 0</td>
</tr>
<tr>
<td>Mod( -4,3 )</td>
<td>Returns 2</td>
</tr>
<tr>
<td>Mod( 4,-3 )</td>
<td>Returns NULL</td>
</tr>
<tr>
<td>Mod( -4,-3 )</td>
<td>Returns NULL</td>
</tr>
</tbody>
</table>

**Odd**

Odd() returns True (-1), if integer_number is an odd integer or zero. It returns False (0), if integer_number is an even integer, and NULL if integer_number is not an integer.

Syntax:

```
Odd(integer_number)
```

Return data type: Boolean

Examples and results:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>odd( 3 )</code></td>
<td>Returns -1, True</td>
</tr>
<tr>
<td><code>odd( 2 * 10 )</code></td>
<td>Returns 0, False</td>
</tr>
<tr>
<td><code>odd( 3.14 )</code></td>
<td>Returns NULL</td>
</tr>
</tbody>
</table>

**Permut**

`Permut()` returns the number of permutations of q elements that can be selected from a set of p items. As represented by the formula: \( \text{Permut}(p, q) = \frac{(p)!}{(p - q)!} \) The order in which the items are selected is significant.

**Syntax:**

```
Permut(p, q)
```

**Return data type:** integer

**Limitations:**

Non-integer arguments will be truncated.

**Examples and results:**

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>In how many ways could the gold, silver and bronze medals be distributed after a 100 m final with 8 participants?</td>
<td>Returns 336</td>
</tr>
<tr>
<td><code>Permut( 8, 3 )</code></td>
<td></td>
</tr>
</tbody>
</table>

**Round**

`Round()` returns the result of rounding x up or down to the nearest multiple of step. The result is increased by the value of offset, if one is specified, or reduced if offset is negative. The default value of step is 1.

If x is exactly in the middle of an interval, it is rounded upwards.

**Syntax:**

```
Round(x[, step[, offset]])
```

**Return data type:** numeric

**Examples and results:**
## 5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round( 3.8 )</td>
<td>Returns 4</td>
</tr>
<tr>
<td>Round( 3.8, 4 )</td>
<td>Returns 4</td>
</tr>
<tr>
<td>Round( 2.5 )</td>
<td>Returns 3. Rounded up because 2.5 is exactly half of the default step interval.</td>
</tr>
<tr>
<td>Round( 2, 4 )</td>
<td>Returns 4. Rounded up because 2 is exactly half of the step interval of 4.</td>
</tr>
<tr>
<td>Round( 2, 6 )</td>
<td>Returns 0. Rounded down because 2 is less than half of the step interval of 6.</td>
</tr>
<tr>
<td>Round( 3.88, 0.1 )</td>
<td>Returns 3.9</td>
</tr>
<tr>
<td>Round( 3.88, 5 )</td>
<td>Returns 5</td>
</tr>
<tr>
<td>Round( 1.1, 1, 0.5 )</td>
<td>Returns 1.5</td>
</tr>
</tbody>
</table>

### Sign

**Sign()** returns 1, 0 or -1 depending on whether `x` is a positive number, 0, or a negative number.

**Syntax:**

```
Sign(x)
```

**Return data type:** numeric

**Limitations:**

If no numeric value is found, NULL is returned.

**Examples and results:**

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>sign( 66 )</td>
<td>Returns 1</td>
</tr>
<tr>
<td>sign( 0 )</td>
<td>Returns 0</td>
</tr>
<tr>
<td>sign( -234 )</td>
<td>Returns -1</td>
</tr>
</tbody>
</table>

### 5.12 Geographical functions

These functions are used to handle geographical data in map visualizations.

**Geographical functions overview**

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.
Parameters used in geographical functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Geometry</strong></td>
<td>This can be any of the following:</td>
</tr>
<tr>
<td></td>
<td>• a point (latitude, longitude)</td>
</tr>
<tr>
<td></td>
<td>• an area</td>
</tr>
<tr>
<td></td>
<td>The reference should be to a field containing the geometry representation.</td>
</tr>
<tr>
<td><strong>Projection</strong></td>
<td>With Mercator projection you can represent maps in square format, correcting for the distortion created by stretching.</td>
</tr>
<tr>
<td></td>
<td>This can be any of the following:</td>
</tr>
<tr>
<td></td>
<td>• 'unit' (default) - projection is 1:1</td>
</tr>
<tr>
<td></td>
<td>• 'mercator'</td>
</tr>
</tbody>
</table>

**GeoAggrGeometry**
This function can be used to aggregate a number of areas into a larger area, for example aggregating a number of sub-regions to a region.

```
GeoAggrGeometry(geometry)
```

**GeoBoundingBox**
This function can be used in scripts to aggregate a geometry into an area and calculate the smallest GeoBoundingBox that contain all coordinates.

A GeoBoundingBox is represented as a list of four values, left, right, top, bottom.

```
GeoBoundingBox(geometry)
```

**GeoCountVertex**
This function can be used to get a count of how many vertices a polygon geometry contains.

```
GeoCountVertex(geometry)
```

**GeoGetBoundingBox**
This function can be used in scripts and chart expressions to calculate the smallest GeoBoundingBox that contain all coordinates of a geometry.

A GeoBoundingBox is represented as a list of four values, left, right, top, bottom.

```
GeoGetBoundingBox(geometry)
```

**GeoGetPolygonCenter**
This function can be used in scripts and chart expressions to calculate and return the center point of a geometry.

```
GeoGetPolygonCenter(geometry)
```

**GeoInvProjectGeometry**
This function can be used in scripts to aggregate a geometry into an area and apply the inverse of a projection.

\[ \text{GeoInvProjectGeometry}(\text{projection, geometry}) \]

**GeoMakePoint**
This function can be used in scripts and chart expressions to create and tag a Point with latitude and longitude.

\[ \text{GeoMakePoint}(\text{latitude, longitude}) \]

**GeoProject**
This function can be used in scripts and chart expressions to apply a projection to a geometry.

\[ \text{GeoProject}(\text{projection, geometry}) \]

**GeoProjectGeometry**
This function can be used in scripts to aggregate a geometry into an area and apply a projection.

\[ \text{GeoProjectGeometry}(\text{projection, geometry}) \]

**GeoReduceGeometry**
This function can be used in scripts to aggregate a geometry into an area.

\[ \text{GeoReduceGeometry}(\text{geometry}) \]

### 5.13 Interpretation functions

The interpretation functions interpret the contents of fields or expressions. With these functions it is possible to state the data type, decimal separator, thousands separator etc. used. All functions can be used in both data load scripts and chart expressions.

If no interpretation functions are used, Qlik Sense interprets the data as a mix of numbers, dates, times, time stamps and strings, using the default settings for number format, date format and time format defined by script variables and by the operating system.

> For reasons of clarity, all number representations are given with decimal point as decimal separator.

**Interpretation functions overview**

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

**Date#**
This function evaluates the expression as a date according to the string given as format-code. If the format...
5 Functions in scripts and chart expressions

code is omitted, the default date format set in the operating system is used.

### Date#

Date# (page 492) (expression [ , format-code ])

### Interval#

This function evaluates the expression as a time interval according to the string given as a format-code. If the format code is omitted, the time format set in the operating system is used.

Interval# (page 493) (expression [ , format-code ])

### Money#

This function evaluates the expression numerically according to the string given as format-code. Decimal separator and thousands separator can be set as third and fourth parameters. If the parameters 2-4 are omitted, the default number format set by script variables or in the operating system is used.

Money# (page 494) (expression [ , format-code [ , decimal-sep [ , thousands-sep ] ] ])

### Num#

This function evaluates the expression numerically according to the string given as format-code. Decimal separator and thousands separator can be set as third and fourth parameters. If the parameters 2-4 are omitted, the default number format set by script variables or in the operating system is used.

Num# (page 494) (expression [ , format-code [ , decimal-sep [ , thousands-sep ] ] ])

### Text

The text function forces the expression to be treated as text, even if a numeric interpretation is possible.

Text (page 495) (expression)

### Time#

The time# function evaluates the expression as time according to the string given as format-code. If the format code is omitted, the default time format set in the operating system is used.

Time# (page 495) (expression [ , format-code ])

### Timestamp#

The timestamp# function evaluates the expression as a date and time according to the string given as format-code. If the format code is omitted, the default date and time formats set in the operating system are used.

Timestamp# (page 496) (expression [ , format-code ])

### Date#

This function evaluates the expression as a date according to the string given as format-code. If the format code is omitted, the default date format set in the operating system is used.

Syntax:
5  Functions in scripts and chart expressions

Date#(expression [ , format-code ])

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>format-code</td>
<td>String describing the format of the resulting string. If the format code is omitted, the date format set in the operating system is used.</td>
</tr>
</tbody>
</table>

Examples and results:
The examples below assume the two following operating system settings:

<table>
<thead>
<tr>
<th></th>
<th>Default setting 1</th>
<th>Default setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date format</td>
<td>YY-MM-DD</td>
<td>M/DD/YY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Results</th>
<th>Result with Setting 1</th>
<th>Result with Setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date#( A ) where A=8/6/97</td>
<td>String: 8/6/97</td>
<td>8/6/97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number: -</td>
<td></td>
<td>35648</td>
</tr>
<tr>
<td>Date#( A, 'YYYY.MM.DD' ) where A=1997.08.06</td>
<td>String: 1997.08.08</td>
<td></td>
<td>1997.08.06</td>
</tr>
<tr>
<td></td>
<td>Number: 35648</td>
<td></td>
<td>35648</td>
</tr>
</tbody>
</table>

Interval#

This function evaluates the expression as a time interval according to the string given as a format-code. If the format code is omitted, the time format set in the operating system is used.

Syntax:

Interval#(expression [ , format-code ])

The interval# function generally behaves just like the time# function but while times can never be greater than 23:59:59 (numeric value 0.99999) or smaller than 00:00:00 (numeric value 0.00000) an interval may have any value.

Examples and results:
The examples below assume the following operating system settings:

<table>
<thead>
<tr>
<th>Short date format:</th>
<th>YY-MM-DD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time format:</td>
<td>hh:mm:ss</td>
</tr>
<tr>
<td>Number decimal separator:</td>
<td>.</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval#( A, 'D hh:mm' ) where A=1 09:00</td>
<td></td>
</tr>
<tr>
<td>Interval#( A-B ) where A=97-08-06 09:00:00 and B=97-08-05 00:00:00</td>
<td></td>
</tr>
</tbody>
</table>

**Money#**

This function evaluates the expression numerically according to the string given as format-code. Decimal separator and thousands separator can be set as third and fourth parameters. If the parameters 2-4 are omitted, the default number format set by script variables or in the operating system is used.

**Syntax:**

\[
\text{Money#(expression [ , format-code [ , decimal-sep [ , thousands-sep ] ] ])}
\]

The money# function generally behaves just like the num# function but takes its default values for decimal and thousand separator from the script variables for money format or the system settings for currency.

**Examples and results:**

The examples below assume the two following operating system settings:

<table>
<thead>
<tr>
<th></th>
<th>Default setting 1</th>
<th>Default setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Money format</td>
<td>kr # ##0.00</td>
<td>$ #,##0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Results</th>
<th>Setting 1</th>
<th>Setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Money#(  , '# #0,00 kr' ) where A=35 648,37 kr</td>
<td>String: 35 648.37 kr</td>
<td>35 648.37</td>
<td>35 648.37</td>
</tr>
<tr>
<td></td>
<td>Number: 35 648.37</td>
<td>35 648.37</td>
<td>35 648.37</td>
</tr>
</tbody>
</table>

**Num#**

This function evaluates the expression numerically according to the string given as format-code. Decimal separator and thousands separator can be set as third and fourth parameters. If the parameters 2-4 are omitted, the default number format set by script variables or in the operating system is used.

**Syntax:**

\[
\text{Num#(expression [ , format-code[ , decimal-sep [ , thousands-sep] ] ])}
\]

**Examples and results:**
The examples below assume the two following operating system settings:

<table>
<thead>
<tr>
<th></th>
<th>Default setting 1</th>
<th>Default setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number format</td>
<td># ##0.#</td>
<td>.##0.#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Results</th>
<th>Setting 1</th>
<th>Setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number:</td>
<td>-</td>
<td>35648.375</td>
</tr>
<tr>
<td></td>
<td>Number:</td>
<td>35648.375</td>
<td>35648.375</td>
</tr>
<tr>
<td>Num#( A, '.','','.','.' ) where A=35648.375</td>
<td>String:</td>
<td>35648.375</td>
<td>35648.375</td>
</tr>
<tr>
<td></td>
<td>Number:</td>
<td>35648375</td>
<td>35648375</td>
</tr>
<tr>
<td>Num#( A, 'abc#,’ ) where A=abc123,4</td>
<td>String:</td>
<td>abc123,4</td>
<td>abc123,4</td>
</tr>
<tr>
<td></td>
<td>Number:</td>
<td>123.4</td>
<td>1234</td>
</tr>
</tbody>
</table>

**Text**

The **text** function forces the expression to be treated as text, even if a numeric interpretation is possible.

**Syntax:**

\[
\text{(expression )}
\]

**Examples and results:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text( A ) where A=1234</td>
<td>String: 1234</td>
</tr>
<tr>
<td></td>
<td>Number: -</td>
</tr>
<tr>
<td>Text( pi( ) )</td>
<td>String: 3.1415926535898</td>
</tr>
<tr>
<td></td>
<td>Number: -</td>
</tr>
</tbody>
</table>

**Time#**

The **time#** function evaluates the **expression** as time according to the string given as **format-code**. If the format code is omitted, the default time format set in the operating system is used.

**Syntax:**

\[
\text{time#(expression [ , format-code ])}
\]

**Examples and results:**
5 Functions in scripts and chart expressions

The examples below assume the two following operating system settings:

<table>
<thead>
<tr>
<th>Time format</th>
<th>Default setting 1</th>
<th>Default setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>hh:mm:ss</td>
<td>hh.mm.ss</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Results</th>
<th>Setting 1</th>
<th>Setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>time(A) where A=09:00:00</td>
<td>String: 09:00:00</td>
<td>09:00:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number: 0.375</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>time(A, 'hh.mm') where A=09.00</td>
<td>String: 09.00</td>
<td>09.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number: 0.375</td>
<td>0.375</td>
<td>0.375</td>
</tr>
</tbody>
</table>

Timestamp#

The timestamp# function evaluates the expression as a date and time according to the string given as format-code. If the format code is omitted, the default date and time formats set in the operating system are used.

Syntax:

\[
\text{timestamp}#(\text{expression }\mid\text{ format-code })
\]

Examples and results:
The examples below assume the two following operating system settings:

<table>
<thead>
<tr>
<th>Date format</th>
<th>Default setting 1</th>
<th>Default setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>YY-MM-DD</td>
<td>M/D/YY</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time format</th>
<th>Default setting 1</th>
<th>Default setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>hh:mm:ss</td>
<td>hh:mm:ss</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Results</th>
<th>Setting 1</th>
<th>Setting 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp(A) where A=8/6/97 09:00:00</td>
<td>String: 8/6/97 09:00:00</td>
<td>8/6/97 09:00:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number: -</td>
<td>-</td>
<td>35648.375</td>
</tr>
<tr>
<td>timestamp(A, 'YYYY-MM-DD hh_mm') where A=8/6/97 09_00</td>
<td>String: 1997-08-06 09_00</td>
<td>1997-08-06 09_00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number: 35648.375</td>
<td>35648.375</td>
<td></td>
</tr>
</tbody>
</table>

5.14 Inter-record functions

Inter-record functions are used:
5 Functions in scripts and chart expressions

- In the data load script, when a value from previously loaded records of data is needed for the evaluation of the current record.
- In a chart expression, when another value from the data set of a visualization is needed.

**Sorting on y-values in charts or sorting by expression columns in straight tables is not allowed when chart inter-record functions are used in any of the chart's expressions. These sort alternatives are therefore automatically disabled.**

Suppression of zero values is automatically disabled when these functions are used.

**Row functions**

These functions can only be used in chart expressions.

**Above**

Above() evaluates an expression at a row above the current row within a column segment in a table. The row for which it is calculated depends on the value of offset, if present, the default being the row directly above.

For charts other than tables, **Above()** evaluates for the row above the current row in the chart's straight table equivalent.

```
Above = chart function([TOTAL [<fld:{,fld}>]] expr [, offset [,count]])
```

**Below**

Below() evaluates an expression at a row below the current row within a column segment in a table. The row for which it is calculated depends on the value of offset, if present, the default being the row directly below.

For charts other than tables, **Below()** evaluates for the row below the current column in the chart's straight table equivalent.

```
Below = chart function([TOTAL[<fld:{,fld}>]] expression [, offset [,count ]])
```

**Bottom**

Bottom() evaluates an expression at the last (bottom) row of a column segment in a table. The row for which it is calculated depends on the value of offset, if present, the default being the bottom row. For charts other than tables, the evaluation is made on the last row of the current column in the chart's straight table equivalent.

```
Bottom = chart function([TOTAL[<fld:{,fld}>]] expr [, offset [,count ]])
```

**Top**

Top() evaluates an expression at the first (top) row of a column segment in a table. The row for which it is calculated depends on the value of offset, if present, the default being the top row. For charts other than tables, the **Top()** evaluation is made on the first row of the current column in the chart's straight table equivalent.

```
Top = chart function([TOTAL [<fld:{,fld}>]] expr [, offset [,count ]])
```

**NoOfRows**
5 Functions in scripts and chart expressions

NoOfRows() returns the number of rows in the current column segment in a table. For bitmap charts, NoOfRows() returns the number of rows in the chart's straight table equivalent.

| NoOfRows - chart function([TOTAL]) |

Column functions
These functions can only be used in chart expressions.
Column
Column() returns the value found in the column corresponding to ColumnNo in a straight table, disregarding dimensions. For example Column(2) returns the value of the second measure column.

| Column - chart function(ColumnNo) |

Dimensionality
Dimensionality() returns the number of dimensions for the current row. In the case of pivot tables, the function returns the total number of dimension columns that have non-aggregation content, that is, do not contain partial sums or collapsed aggregates.

| Dimensionality - chart function () |

Secondarydimensionality
Secondarydimensionality() returns the number of dimension pivot table rows that have non-aggregation content, that is, do not contain partial sums or collapsed aggregates. This function is the equivalent of the dimensionality() function for horizontal pivot table dimensions.

| Secondarydimensionality () |

Field functions
FieldIndex
FieldIndex() returns the position of the field value value in the field field_name (by load order).

| FieldIndex(field_name , value) |

FieldValue
FieldValue() returns the value found in position elem_no of the field field_name (by load order).

| FieldValue(field_name , elem_no) |

FieldValueCount
FieldValueCount() is an integer function that finds the number of distinct values in a field.

| FieldValueCount(field_name) |

Pivot table functions
These functions can only be used in chart expressions.
After
After() returns the value of an expression evaluated with a pivot table's dimension values as they appear in
the column after the current column within a row segment in the pivot table.

**After - chart function([TOTAL] expression [ , offset [,n]])**

Before

**Before()** returns the value of an expression evaluated with a pivot table's dimension values as they appear in the column before the current column within a row segment in the pivot table.

**Before - chart function([TOTAL] expression [ , offset [,n]])**

First

**First()** returns the value of an expression evaluated with a pivot table's dimension values as they appear in the first column of the current row segment in the pivot table. This function returns NULL in all chart types except pivot tables.

**First - chart function([TOTAL] expression [ , offset [,n]])**

Last

**Last()** returns the value of an expression evaluated with a pivot table's dimension values as they appear in the last column of the current row segment in the pivot table. This function returns NULL in all chart types except pivot tables.

**Last - chart function([TOTAL] expression [ , offset [,n]])**

**ColumnNo**

**ColumnNo()** returns the number of the current column within the current row segment in a pivot table. The first column is number 1.

**ColumnNo - chart function([TOTAL])**

**NoOfColumns**

**NoOfColumns()** returns the number of columns in the current row segment in a pivot table.

**NoOfColumns - chart function([TOTAL])**

**Inter-record functions in the data load script**

**Exists**

**Exists()** determines whether a specific field value has already been loaded into the field in the data load script. The function returns TRUE or FALSE, so can be used in the where clause of a LOAD statement or an IF statement.

**Exists (field [ , expression ]**

**LookUp**

**LookUp()** looks into a table that is already loaded and returns the value of field_name corresponding to the first occurrence of the value match_field_value in the field match_field_name. The table can be the current table or another table previously loaded.
5 Functions in scripts and chart expressions

**LookUp** *(fieldname, matchfieldname, matchfieldvalue [, tablename]*)

**Peek**
**Peek()** finds the value of a field in a table for a row that has already been loaded or that exists in internal memory. The row number can be specified, as can the table.

**Peek** *(fieldname [, row [, tablename ]]*

**Previous**
**Previous()** finds the value of the **expr** expression using data from the previous input record that has not been discarded because of a **where** clause. In the first record of an internal table, the function will return NULL.

**Previous** *(expression )*

See also:

- Range functions (page 544)

Above - chart function

**Above()** evaluates an expression at a row above the current row within a column segment in a table. The row for which it is calculated depends on the value of **offset**, if present, the default being the row directly above. For charts other than tables, **Above()** evaluates for the row above the current row in the chart's straight table equivalent.

**Syntax:**

**Above** ([TOTAL] expr [ , offset [,count]])

**Return data type:** dual

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>offset</td>
<td>Specifying an <strong>offset</strong>, greater than 0, moves the evaluation of the expression n rows further up from the current row.</td>
</tr>
<tr>
<td></td>
<td>Specifying an offset of 0 will evaluate the expression on the current row.</td>
</tr>
<tr>
<td></td>
<td>Specifying a negative offset number makes the <strong>Above</strong> function work like the <strong>Below</strong> function with the corresponding positive offset number.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>By specifying a third argument <code>count</code> greater than 1, the function will return a range of <code>count</code> values, one for each of <code>count</code> table rows counting upwards from the original cell. In this form, the function can be used as an argument to any of the special range functions. <em>Range functions (page 544)</em></td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the table is one-dimensional or if the qualifier <code>TOTAL</code> is used as argument, the current column segment is always equal to the entire column.</td>
</tr>
</tbody>
</table>

On the first row of a column segment, a NULL value is returned, as there is no row above it.

---

**A column segment is defined as a consecutive subset of cells having the same values for the dimensions in the current sort order. Inter-record chart functions are computed in the column segment excluding the right-most dimension in the equivalent straight table chart. If there is only one dimension in the chart, or if the TOTAL qualifier is specified, the expression evaluates across full table.**

---

**If the table or table equivalent has multiple vertical dimensions, the current column segment will include only rows with the same values as the current row in all dimension columns, except for the column showing the last dimension in the inter-field sort order.**

---

<table>
<thead>
<tr>
<th>Limitations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursive calls will return NULL.</td>
</tr>
</tbody>
</table>

**Examples and results:**

**Example 1:**

<table>
<thead>
<tr>
<th>Customer</th>
<th><code>Sum([Sales])</code></th>
<th><code>Above(Sum([Sales]))</code></th>
<th><code>Sum([Sales]) + Above(Sum([Sales]))</code></th>
<th><code>Above offset 3</code></th>
<th><code>Higher?</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>587</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Betzab</td>
<td>539</td>
<td>587</td>
<td>1126</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Canutilty</td>
<td>683</td>
<td>539</td>
<td>1222</td>
<td>-</td>
<td>Higher</td>
</tr>
<tr>
<td>Divaclo</td>
<td>757</td>
<td>683</td>
<td>1448</td>
<td>-</td>
<td>1344 Higher</td>
</tr>
</tbody>
</table>

The table visualization for Example 1.

In the screenshot of the table shown in this example, the table visualization is created from the dimension `Customer` and the measures: `Sum(Sales)` and `Above(Sum(Sales))`. 
5 Functions in scripts and chart expressions

The column Above(Sum(Sales)) returns NULL for the Customer row containing Astrida, because there is no row above it. The result for the row Betacab shows the value of Sum(Sales) for Astrida, the result for Canutility shows the value for Sum(Sales) for Betacab, and so on.

For the column labeled Sum(Sales)+Above(Sum(Sales)), the row for Betacab shows the result of the addition of the Sum(Sales) values for the rows Betacab + Astrida (539+587). The result for the row Canutility shows the result of the addition of Sum(Sales) values for Canutility + Betacab (683+539).

The measure labeled Above offset 3 created using the expression Sum(Sales)+Above(Sum(Sales), 3) has the argument offset, set to 3, and has the effect of taking the value in the row three rows above the current row. It adds the Sum(Sales) value for the current Customer to the value for the Customer three rows above. The values returned for the first three Customer rows are null.

The table also shows more complex measures: one created from Sum(Sales)+Above(Sum(Sales)) and one labeled Higher?, which is created from IF(Sum(Sales)>Above(Sum(Sales)), 'Higher').

**Example 2:**

In the screenshots of tables shown in this example, more dimensions have been added to the visualizations: Month and Product. For charts with more than one dimension, the results of expressions containing the Above, Below, Top, and Bottom functions depend on the order in which the column dimensions are sorted by Qlik Sense. Qlik Sense evaluates the functions based on the column segments that result from the dimension that is sorted last. The column sort order is controlled in the properties panel under Sorting and is not necessarily the order in which the columns appear in a table.

In the following screenshot of table visualization for Example 2, the last-sorted dimension is Month, so the Above function evaluates based on months. There is a series of results for each Product value for each month (Jan to Aug) - a column segment. This is followed by a series for the next column segment: for each Month for the next Product. There will be a column segment for each Customer value for each Product.
5 Functions in scripts and chart expressions

The table visualization for Example 2.

Example 3:

In the screenshot of table visualization for Example 3, the last sorted dimension is Product. This is done by moving the dimension Product to position 3 in the Sorting tab in the properties panel. The Above function is evaluated for each Product, and because there are only two products, AA and BB, there is only one non-null result in each series. In row BB for the month Jan, the value for Above(Sum(Sales)), is 46. For row AA, the value is null. The value in each row AA for any month will always be null, as there is no value of Product above AA. The second series is evaluated on AA and BB for the month Feb, for the Customer value, Astrida. When all the months have been evaluated for Astrida, the sequence is repeated for the second Customer Betacab, and so on.

The table visualization for Example 3.
### Example 4:

The **Above** function can be used as input to the range functions. For example: `RangeAvg(Above(Sum(Sales),1,3))`.

<table>
<thead>
<tr>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the arguments for the <strong>Above()</strong> function, offset is set to 1 and count is set to 3. The function finds the results of the expression <code>Sum(Sales)</code> on the three rows immediately above the current row in the column segment (where there is a row). These three values are used as input to the <code>RangeAvg()</code> function, which finds the average of the values in the supplied range of numbers. A table with <strong>Customer</strong> as dimension gives the following results for the <code>RangeAvg()</code> expression.</td>
</tr>
<tr>
<td>Astrida</td>
</tr>
<tr>
<td>Betacab</td>
</tr>
<tr>
<td>Canutility</td>
</tr>
<tr>
<td>Divadip</td>
</tr>
</tbody>
</table>

### Data used in examples:

```plaintext
Monthnames:
LOAD * INLINE [
    Month, Monthnumber
    Jan, 1
    Feb, 2
    Mar, 3
    Apr, 4
    May, 5
    Jun, 6
    Jul, 7
    Aug, 8
    Sep, 9
    Oct, 10
    Nov, 11
    Dec, 12
];
Sales2013:
crosstable (Month, Sales) LOAD * inline [
    Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec
    Astrida|46|60|70|13|78|20|45|65|78|12|78|22
    Betacab|65|56|22|79|12|56|45|24|32|78|55|15
    Canutility|77|68|34|91|24|68|57|36|44|90|67|27
    Divadip|57|36|44|90|67|27|57|68|47|90|80|94
] (delimiter is '|');
```

To get the months to sort in the correct order, when you create your visualizations, go to the **Sorting** section of the properties panel, select **Month** and mark the checkbox **Sort by expression**. In the expression box write `Monthnumber`.

### See also:

- **Below - chart function (page 505)**
5  Functions in scripts and chart expressions

- Bottom - chart function (page 508)
- Top - chart function (page 528)
- RangeAvg (page 547)

Below - chart function

Below() evaluates an expression at a row below the current row within a column segment in a table. The row for which it is calculated depends on the value of offset, if present, the default being the row directly below. For charts other than tables, Below() evaluates for the row below the current column in the chart's straight table equivalent.

Syntax:

```
Below([TOTAL] expression [, offset [,count ]])
```

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>offset</td>
<td>Specifying an offset, greater than 1 moves the evaluation of the expression n rows further down from the current row. Specifying an offset of 0 will evaluate the expression on the current row. Specifying a negative offset number makes the Below function work like the Above function with the corresponding positive offset number.</td>
</tr>
<tr>
<td>count</td>
<td>By specifying a third parameter count greater than 1, the function will return a range of count values, one for each of count table rows counting downwards from the original cell. In this form, the function can be used as an argument to any of the special range functions. Range functions (page 544)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current column segment is always equal to the entire column.</td>
</tr>
</tbody>
</table>

On the last row of a column segment, a NULL value is returned, as there is no row below it.

A column segment is defined as a consecutive subset of cells having the same values for the dimensions in the current sort order. Inter-record chart functions are computed in the column segment excluding the right-most dimension in the equivalent straight table chart. If there is only one dimension in the chart, or if the TOTAL qualifier is specified, the expression evaluates across full table.
If the table or table equivalent has multiple vertical dimensions, the current column segment will include only rows with the same values as the current row in all dimension columns, except for the column showing the last dimension in the inter-field sort order.

Limitations:

Recursive calls will return NULL.

Examples and results:

Example 1:

<table>
<thead>
<tr>
<th>Customer</th>
<th>Sum(Sales)</th>
<th>Below(Sum(Sales))</th>
<th>Sum(Sales)+Below(Sum(Sales))</th>
<th>Below + Offset 3</th>
<th>Higher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>2566</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Betacab</td>
<td>539</td>
<td>539</td>
<td>1126</td>
<td>1344</td>
<td>Higher</td>
</tr>
<tr>
<td>Canutility</td>
<td>683</td>
<td>683</td>
<td>1222</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Divadip</td>
<td>757</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The table visualization for Example 1.

In the table shown in screenshot for Example 1, the table visualization is created from the dimension Customer and the measures: Sum(Sales) and Below(Sum(Sales)).

The column Below(Sum(Sales)) returns NULL for the Customer row containing Divadip, because there is no row below it. The result for the row Canutility shows the value of Sum(Sales) for Divadip, the result for Betacab shows the value for Sum(Sales) for Canutility, and so on.

The table also shows more complex measures, which you can see in the columns labeled: Sum(Sales)+Below(Sum(Sales)), Below + Offset 3, and Higher?. These expressions work as described in the following paragraphs.

For the column labeled Sum(Sales)+Below(Sum(Sales)), the row for Astrida shows the result of the addition of the Sum(Sales) values for the rows Betacab + Astrida (539+587). The result for the row Betacab shows the result of the addition of Sum(Sales) values for Canutility + Betacab (539+683).

The measure labeled Below + Offset 3 created using the expression Sum(Sales)+Below(Sum(Sales)), 3) has the argument offset, set to 3, and has the effect of taking the value in the row three rows below the current row. It adds the Sum(Sales) value for the current Customer to the value from the Customer three rows below. The values for the lowest three Customer rows are null.

The measure labeled Higher? is created from the expression: IF(Sum(Sales)>Below(Sum(Sales)), 'Higher'). This compares the values of the current row in the measure Sum(Sales) with the row below it. If the current row is a greater value, the text "Higher" is output.
5 Functions in scripts and chart expressions

This function can also be used in charts other than tables, for example bar charts.

For other chart types, convert the chart to the straight table equivalent so you can easily interpret which row the function relates to.

For charts with more than one dimension, the results of expressions containing the **Above**, **Below**, **Top**, and **Bottom** functions depend on the order in which the column dimensions are sorted by Qlik Sense. Qlik Sense evaluates the functions based on the column segments that result from the dimension that is sorted last. The column sort order is controlled in the properties panel under **Sorting** and is not necessarily the order in which the columns appear in a table. Please refer to Example: 2 in the **Above** function for further details.

### Example 2:

<table>
<thead>
<tr>
<th>The <strong>Below</strong> function can be used as input to the range functions. For example: <code>RangeAvg(Below(Sum(sales),1,3))</code></th>
<th>In the arguments for the <strong>Below()</strong> function, offset is set to 1 and count is set to 3. The function finds the results of the expression <code>Sum(Sales)</code> on the three rows immediately below the current row in the column segment (where there is a row). These three values are used as input to the <code>RangeAvg()</code> function, which finds the average of the values in the supplied range of numbers. A table with <strong>Customer</strong> as dimension gives the following results for the <code>RangeAvg()</code> expression.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>659.67</td>
</tr>
<tr>
<td>Betacab</td>
<td>720</td>
</tr>
<tr>
<td>Canutility</td>
<td>757</td>
</tr>
<tr>
<td>Divadip:</td>
<td>-</td>
</tr>
</tbody>
</table>

### Data used in examples:

```plaintext
Monthnames:
LOAD * INLINE [    
Month, Monthnumber
Jan, 1
Feb, 2
Mar, 3
Apr, 4
May, 5
Jun, 6
Jul, 7
Aug, 8
Sep, 9
Oct, 10
Nov, 11
Dec, 12
];
```
5 Functions in scripts and chart expressions

Sales2013:
crosstable (Month, Sales) LOAD * inline [
Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec
Astrida|46|60|70|13|78|20|45|65|78|12|78|22
Betacab|65|56|22|79|12|56|45|24|32|78|55|15
Canutility|77|68|34|91|24|68|57|36|44|90|67|27
Divadip|57|36|44|90|67|27|57|68|47|90|80|94
] (delimiter is '|');

To get the months to sort in the correct order, when you create your visualizations, go to the Sorting section of the properties panel, select Month and mark the checkbox Sort by expression. In the expression box write Monthnumber.

See also:
- Above - chart function (page 500)
- Bottom - chart function (page 508)
- Top - chart function (page 528)
- RangeAvg (page 547)

Bottom - chart function

**Bottom**() evaluates an expression at the last (bottom) row of a column segment in a table. The row for which it is calculated depends on the value of offset, if present, the default being the bottom row. For charts other than tables, the evaluation is made on the last row of the current column in the chart's straight table equivalent.

Syntax:

```
Bottom([TOTAL] expr [, offset [,count ]])
```

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>offset</td>
<td>Specifying an offset greater than 1 moves the evaluation of the expression up n rows above the bottom row.</td>
</tr>
</tbody>
</table>

Specifying a negative offset number makes the **Bottom** function work like the **Top** function with the corresponding positive offset number.
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>By specifying a third parameter count greater than 1, the function will return not one but a range of count values, one for each of the last count rows of the current column segment. In this form, the function can be used as an argument to any of the special range functions. Range functions (page 544)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current column segment is always equal to the entire column.</td>
</tr>
</tbody>
</table>

**A column segment is defined as a consecutive subset of cells having the same values for the dimensions in the current sort order. Inter-record chart functions are computed in the column segment excluding the right-most dimension in the equivalent straight table chart. If there is only one dimension in the chart, or if the TOTAL qualifier is specified, the expression evaluates across full table.**

**If the table or table equivalent has multiple vertical dimensions, the current column segment will include only rows with the same values as the current row in all dimension columns, except for the column showing the last dimension in the inter-field sort order.**

**Limitations:**

Recursive calls will return NULL.

**Examples and results:**

**Example: 1**

<table>
<thead>
<tr>
<th>Customer</th>
<th>Sum([Sales])</th>
<th>Bottom(Sum([Sales]))</th>
<th>Sum(Sum([Sales])×Bottom(Sum([Sales])))</th>
<th>Bottom offset3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>587</td>
<td>757</td>
<td>1344</td>
<td>1126</td>
</tr>
<tr>
<td>Betacab</td>
<td>539</td>
<td>757</td>
<td>1206</td>
<td>1078</td>
</tr>
<tr>
<td>Canutility</td>
<td>683</td>
<td>757</td>
<td>1460</td>
<td>1222</td>
</tr>
<tr>
<td>Divadip</td>
<td>757</td>
<td>757</td>
<td>1514</td>
<td>1296</td>
</tr>
</tbody>
</table>

The table visualization for Example 1.

In the screenshot of the table shown in this example, the table visualization is created from the dimension Customer and the measures: Sum(Sales) and Bottom(Sum(Sales)).

The column Bottom(Sum(Sales)) returns 757 for the all rows because this is the value of the bottom row: Divadip.
Functions in scripts and chart expressions

The table also shows more complex measures: one created from `Sum(Sales)+Bottom(Sum(Sales))` and one labeled **Bottom offset 3**, which is created using the expression `Sum(Sales)+Bottom(Sum(Sales), 3)` and has the argument **offset** set to 3. It adds the `Sum(Sales)` value for the current row to the value from the third row from the bottom row, that is, the current row plus the value for **Betacab**.

**Example: 2**

In the screenshots of tables shown in this example, more dimensions have been added to the visualizations: **Month** and **Product**. For charts with more than one dimension, the results of expressions containing the **Above**, **Below**, **Top**, and **Bottom** functions depend on the order in which the column dimensions are sorted by Qlik Sense. Qlik Sense evaluates the functions based on the column segments that result from the dimension that is sorted last. The column sort order is controlled in the properties panel under **Sorting** and is not necessarily the order in which the columns appear in a table.

In the first table, the expression is evaluated based on **Month**, and in the second table it is evaluated based on **Product**. The measure **End value** contains the expression `Bottom(Sum(Sales))`. The bottom row for **Month** is **Dec**, and the value for **Dec** both the values of **Product** shown in the screenshot is **22**. (Some rows have been edited out of the screenshot to save space.)

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>Month</th>
<th>Sum(Sales)</th>
<th>End value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Jan</td>
<td>40</td>
<td>22</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Feb</td>
<td>60</td>
<td>22</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Mar</td>
<td>70</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2566</td>
<td>-</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Sep</td>
<td>78</td>
<td>22</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Oct</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Nov</td>
<td>78</td>
<td>22</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Dec</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>Jan</td>
<td>46</td>
<td>22</td>
</tr>
</tbody>
</table>

*First table for Example 2. The value of Bottom for the End value measure based on Month (Dec).*
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>Month</th>
<th>Sum(Sales)</th>
<th>Endvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Jan</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>Jan</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Feb</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>Feb</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Mar</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>Mar</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Apr</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>Apr</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

Second table for Example 2. The value of Bottom for the End value measure based on Product (BB for Astrida).

Please refer to Example: 2 in the Above function for further details.

**Example: 3**

The **Bottom** function can be used as input to the range functions. For example: RangeAvg(Bottom(Sum(Sales),1,3)).

**Result**

In the arguments for the Bottom() function, offset is set to 1 and count is set to 3. The function finds the results of the expression Sum(Sales) on the three rows starting with the row above the bottom row in the column segment (because offset=1), and the two rows above that (where there is a row). These three values are used as input to the RangeAvg() function, which finds the average of the values in the supplied range of numbers.

A table with **Customer** as dimension gives the following results for the RangeAvg() expression.

<table>
<thead>
<tr>
<th>Customer</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>659.67</td>
</tr>
<tr>
<td>Betacab</td>
<td>659.67</td>
</tr>
<tr>
<td>Canutility</td>
<td>659.67</td>
</tr>
<tr>
<td>Divadip:</td>
<td>659.67</td>
</tr>
</tbody>
</table>

Monthnames:

```sql
LOAD * INLINE [
  Month, Monthnumber
  Jan, 1
  Feb, 2
  Mar, 3
  Apr, 4
  May, 5
  Jun, 6
  Jul, 7
  Aug, 8
  Sep, 9
  Oct, 10
];
```
Functions in scripts and chart expressions

Nov, 11
Dec, 12

Sales2013:
crosstable (Month, Sales) LOAD *
inline 
Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec
Astrida|46|60|70|13|78|20|45|65|78|12|78|22
Betacab|65|56|22|79|12|56|45|24|32|78|55|15
Canutility|77|68|34|91|24|68|57|36|44|90|67|27
Divadip|57|36|44|90|67|27|57|68|47|90|80|94
] (delimiter is '|');

To get the months to sort in the correct order, when you create your visualizations, go to the Sorting section of the properties panel, select Month and mark the checkbox Sort by expression. In the expression box write Monthnumber.

See also:

- Top - chart function (page 528)

Column - chart function

Column() returns the value found in the column corresponding to ColumnNo in a straight table, disregarding dimensions. For example Column(2) returns the value of the second measure column.

Syntax:

```
Column(ColumnNo)
```

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ColumnNo</td>
<td>Column number of a column in the table containing a measure.</td>
</tr>
</tbody>
</table>

The Column() function disregards dimension columns.

Limitations:

If ColumnNo references a column for which there is no measure, a NULL value is returned.

Recursive calls will return NULL.

Examples and results:

Example: Percentage total sales
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>UnitPrice</th>
<th>UnitSales</th>
<th>Order Value</th>
<th>Total Sales Value</th>
<th>% Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AA</td>
<td>15</td>
<td>10</td>
<td>150</td>
<td>505</td>
<td>29.70</td>
</tr>
<tr>
<td>A</td>
<td>AA</td>
<td>16</td>
<td>4</td>
<td>64</td>
<td>505</td>
<td>12.67</td>
</tr>
<tr>
<td>A</td>
<td>BB</td>
<td>9</td>
<td>9</td>
<td>81</td>
<td>505</td>
<td>16.04</td>
</tr>
<tr>
<td>B</td>
<td>BB</td>
<td>10</td>
<td>5</td>
<td>50</td>
<td>505</td>
<td>9.90</td>
</tr>
<tr>
<td>B</td>
<td>CC</td>
<td>20</td>
<td>2</td>
<td>40</td>
<td>505</td>
<td>7.92</td>
</tr>
<tr>
<td>B</td>
<td>DD</td>
<td>25</td>
<td>-</td>
<td>0</td>
<td>505</td>
<td>0.00</td>
</tr>
<tr>
<td>C</td>
<td>AA</td>
<td>15</td>
<td>8</td>
<td>120</td>
<td>505</td>
<td>23.76</td>
</tr>
<tr>
<td>C</td>
<td>CC</td>
<td>19</td>
<td>-</td>
<td>0</td>
<td>505</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Example: Percentage of sales for selected customer

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>UnitPrice</th>
<th>UnitSales</th>
<th>Order Value</th>
<th>Total Sales Value</th>
<th>% Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AA</td>
<td>15</td>
<td>10</td>
<td>150</td>
<td>295</td>
<td>50.85</td>
</tr>
<tr>
<td>A</td>
<td>AA</td>
<td>16</td>
<td>4</td>
<td>64</td>
<td>295</td>
<td>21.69</td>
</tr>
<tr>
<td>A</td>
<td>BB</td>
<td>9</td>
<td>9</td>
<td>81</td>
<td>295</td>
<td>27.46</td>
</tr>
</tbody>
</table>

**Examples**

- Order Value is added to the table as a measure with the expression: `Sum(UnitPrice*UnitSales)`.
- Total Sales Value is added as a measure with the expression: `Sum(TOTAL UnitPrice*UnitSales)`.
- % Sales is added as a measure with the expression: `100*Column(1)/Column(2)`.

**Results**

- The result of Column(1) is taken from the column Order Value, because this is the first measure column.
- The result of Column(2) is taken from Total Sales Value, because this is the second measure column.
- See the results in the column % Sales in the example Percentage total sales (page 512).

The selection changes the Total Sales Value, and therefore the %Sales. See the example Percentage of sales for selected customer (page 513).

Data used in examples:

```
ProductData:
LOAD * inline [
Customer|Product|UnitSales|UnitPrice
Astrida|AA|16
Astrida|AA|10|15]
```
Astrida|BB|9|9
Betacab|BB|5|10
Betacab|CC|2|20
Betacab|DD|25
Canutility|AA|8|15
Canutility|CC|19
]
(delimiter is '|');

Dimensionality - chart function

Dimensionality() returns the number of dimensions for the current row. In the case of pivot tables, the function returns the total number of dimension columns that have non-aggregation content, that is, do not contain partial sums or collapsed aggregates.

Syntax:

<table>
<thead>
<tr>
<th>Dimensionality ( )</th>
</tr>
</thead>
</table>

Return data type: integer

Limitations:

This function is only available in charts. The number of dimensions in all rows, except the total which will be 0, will be returned. For all chart types, except pivot table it will return the number of dimensions in all rows except the total, which will be 0.

Example:

A typical use for dimensionality is when you want to make a calculation only if there is a value present for a dimension.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
</table>
| For a table containing the dimension UnitSales, you might only want to indicate an invoice is sent:  
 IF(Dimensionality()=3, "Invoiced"). |        |

Exists

Exists() determines whether a specific field value has already been loaded into the field in the data load script. The function returns TRUE or FALSE, so can be used in the where clause of a LOAD statement or an IF statement.

Syntax:

| Exists(field_name [, expr] ) |

Return data type: Boolean

Arguments:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>field_name</td>
<td>A name or a string expression evaluating to a field name to be searched for. The field must exist in the data loaded so far by the script.</td>
</tr>
<tr>
<td>expr</td>
<td>An expression evaluating to the field value to look for in the field specified in field-name. If omitted, the current record's value in the specified field is assumed.</td>
</tr>
</tbody>
</table>

Examples and results:

**Example** | **Result**
--- | ---
Exists (Employee) | Returns -1 (True) if the value of the field Employee in the current record already exists in any previously read record containing that field.
Exists(Employee, 'Bill') | Returns -1 (True) if the field value 'Bill' is found in the current content of the field Employee.

The statements Exists (Employee, Employee) and Exists (Employee) are equivalent.

Employees:
```sql
LOAD * inline [Employee|ID|Salary
Bill|001|20000
John|002|30000
Steve|003|35000
] (delimiter is '|');
```

Citizens:
```sql
LOAD * inline [Name|Address
Bill|New York
Mary|London
Steve|Chicago
Lucy|Paris
John|Miami
] (delimiter is '|');
```

EmployeeAddresses:
```sql
Load Name as Employee, Address Resident Citizens where Exists (Employee, Name);
```

Drop Tables Employees, Citizens;

This results in a table called EmployeeAddresses in the data model, which can be viewed as a table visualization using the dimensions Employee and Address.

The where clause: where Exists (Employee, Name), means only the names from the table Citizens that are also in Employees are loaded into the new table. The Drop statement removes the temporary tables Employees and Citizens to avoid confusion.

Employee | Address
--- | ---
Bill | New York
John | Miami
Steve | Chicago
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacing the statement in the sample data in the previous example that builds the table EmployeeAddresses with the following, using where not Exists.</td>
<td>The where clause includes not: where not Exists (Employee, Name), means only the names from the table Citizens that are not in Employees are loaded into the new table.</td>
</tr>
<tr>
<td>NoneEmployee: Load Name as Employee, Address Resident Citizens where not Exists (Employee, Name);</td>
<td>Employee</td>
</tr>
<tr>
<td>Mary</td>
<td>London</td>
</tr>
<tr>
<td>Lucy</td>
<td>Paris</td>
</tr>
</tbody>
</table>

Data used in example:

Employees: LOAD * inline [
Employee|ID|Salary
Bill|001|20000
John|002|30000
Steve|003|35000
] (delimiter is '|');

Citizens: Load * inline [
Name|Address
Bill|New York
Mary|London
Steve|Chicago
Lucy|Paris
John|Miami
] (delimiter is '|');

EmployeeAddresses: Load Name as Employee, Address Resident Citizens where Exists (Employee, Name);

Drop Tables Employees, Citizens;

FieldIndex

FieldIndex() returns the position of the field value value in the field field_name (by load order).

Syntax:

FieldIndex(field_name , value)

Return data type: integer

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>field_name</td>
<td>Name of the field for which the index is required. Must be given as a string value. This means that the field name must be enclosed by single quotes.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The value of the field <strong>field_name</strong>.</td>
</tr>
</tbody>
</table>

**Limitations:**

If **value** cannot be found among the field values of the field **field_name**, 0 is returned.

**Examples and results:**

The following example uses two fields: **First name** and **Initials**.

**First name** | **Initials**
---|---
John | JA
Sue | SB
Mark | MC
Peter | PD
Jane | JE
Peter | PF

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chart function, as measure in a table</td>
<td>1, because 'John' appears first in the load order of the <strong>First name</strong> field. Note that in a filter pane <strong>John</strong> would appear as number 2 from the top as it's sorted alphabetically and not as in the load order.</td>
</tr>
</tbody>
</table>

**FieldIndex ('First name','John')**

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Script function, as dimension in a table</td>
<td>4, because <strong>FieldIndex()</strong> returns only one value, that is the first occurrence in the load order.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given the table <strong>Initials</strong> is loaded, as in the sample data:</td>
<td>MyJohnPos=1, because 'John' appears first in the load order of the <strong>First name</strong> field. Note that in a filter pane <strong>John</strong> would appear as number 2 from the top as it's sorted alphabetically and not as in the load order.</td>
</tr>
</tbody>
</table>

**John1:**  
Load FieldIndex('First name','John') as MyJohnPos  
Resident Initials;
### Examples

<table>
<thead>
<tr>
<th>Functions in scripts and chart expressions</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given the table <code>Initials</code> is loaded, as in the sample data:</td>
<td>MyPeterPos=4, because <code>FieldIndex()</code> returns only one value, that is the first occurrence in the load order.</td>
</tr>
<tr>
<td>Peter1:</td>
<td></td>
</tr>
<tr>
<td>Load FieldIndex('First name','Peter') as MyPeterPos Resident Initials;</td>
<td></td>
</tr>
</tbody>
</table>

### Data used in example:

```
Initials:
LOAD * inline [ 
"First name"|Initials|"Has cellphone"
John|JA|Yes
Sue|SB|Yes
Mark|MC |No
Peter|PD|No
Jane|JE|Yes
Peter|PF|Yes ] (delimiter is '|');
```

```
John1:                      
Load FieldIndex('First name','John') as MyJohnPos Resident Initials;
```

```
Peter1:                      
Load FieldIndex('First name','Peter') as MyPeterPos Resident Initials;
```

### FieldValue

`FieldValue()` returns the value found in position `elem_no` of the field `field_name` (by load order).

**Syntax:**

```
FieldValue(field_name , elem_no)
```

**Return data type:** dual

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>field_name</td>
<td>Name of the field for which the value is required. Must be given as a string value. This means that the field name must be enclosed by single quotes.</td>
</tr>
<tr>
<td>elem_no</td>
<td>The position (element) number of the field, following the load order, that the value is returned for.</td>
</tr>
</tbody>
</table>

**Limitations:**

If `elem_no` is larger than the number of field values, NULL is returned.
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>First name</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>JA</td>
</tr>
<tr>
<td>Sue</td>
<td>SB</td>
</tr>
<tr>
<td>Mark</td>
<td>MC</td>
</tr>
<tr>
<td>Peter</td>
<td>PD</td>
</tr>
<tr>
<td>Jane</td>
<td>JE</td>
</tr>
<tr>
<td>Peter</td>
<td>PF</td>
</tr>
</tbody>
</table>

Examples and results:

The following example uses two fields: **First name** and **Initials**.

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chart function, as measure in a table</td>
<td>John, because John appears first in the load order of the <strong>First name</strong> field. Note that in a filter pane <strong>John</strong> would appear as number 2 from the top, after <strong>Jane</strong>, as it’s sorted alphabetically and not as in the load order.</td>
</tr>
<tr>
<td>FieldValue('First name',1)</td>
<td>John, because John appears first in the load order of the <strong>First name</strong> field.</td>
</tr>
<tr>
<td>FieldValue('First name',7)</td>
<td>NULL, because there are only 6 values in the <strong>First name</strong> field.</td>
</tr>
<tr>
<td>Script function, as dimension in a table</td>
<td><strong>MyPos1=John</strong>, because 'John' appears first in the load order of the <strong>First name</strong> field.</td>
</tr>
<tr>
<td>Given the table <strong>Initials</strong> is loaded, as in the sample data:</td>
<td><strong>MyPos1=John</strong>, because 'John' appears first in the load order of the <strong>First name</strong> field.</td>
</tr>
<tr>
<td>John1: Load FieldValue('First name',1) as MyPos1 Resident Initials;</td>
<td><strong>MyPos2=(Null)</strong>, because there are only 6 values in the <strong>First name</strong> field.</td>
</tr>
<tr>
<td>Given the table <strong>Initials</strong> is loaded, as in the sample data:</td>
<td><strong>MyPos2=(Null)</strong>, because there are only 6 values in the <strong>First name</strong> field.</td>
</tr>
<tr>
<td>Peter1: Load FieldValue('First name',7) as MyPos2 Resident Initials;</td>
<td><strong>MyPos2=(Null)</strong>, because there are only 6 values in the <strong>First name</strong> field.</td>
</tr>
</tbody>
</table>

Data used in example:

**Initials:**

```sql
LOAD * inline [ "First name"|Initials|"Has cellphone"
```
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>John</th>
<th>JA</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sue</td>
<td>SB</td>
<td>Yes</td>
</tr>
<tr>
<td>Mark</td>
<td>MC</td>
<td>No</td>
</tr>
<tr>
<td>Peter</td>
<td>PD</td>
<td>No</td>
</tr>
<tr>
<td>Jane</td>
<td>JE</td>
<td>Yes</td>
</tr>
<tr>
<td>Peter</td>
<td>PF</td>
<td>Yes</td>
</tr>
</tbody>
</table>

(delimiter is '|');

John1:
Load FieldValue('First name',1) as MyPos1
Resident Initials;

Peter1:
Load FieldValue('First name',7) as MyPos2
Resident Initials;

**FieldValueCount**

**FieldValueCount()** is an integer function that finds the number of distinct values in a field.

**Syntax:**

```plaintext
FieldValueCount(field_name)
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>field_name</td>
<td>Name of the field for which the value is required. Must be given as a string value. This means that the field name must be enclosed by single quotes.</td>
</tr>
</tbody>
</table>

**Examples and results:**

The following example uses two fields: **First name** and **Initials**.

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chart function, as measure in a table</td>
<td></td>
</tr>
<tr>
<td>FieldValueCount('First name')</td>
<td>5 as <strong>Peter</strong> appears twice.</td>
</tr>
<tr>
<td>FieldValueCount('Initials')</td>
<td>6 as <strong>Initials</strong> only has distinct values.</td>
</tr>
<tr>
<td>Script function, as dimension in a table</td>
<td></td>
</tr>
<tr>
<td>Given the table <strong>Initials</strong> is loaded, as in the sample data:</td>
<td>MyFieldCount1=5, because 'John' appears twice.</td>
</tr>
<tr>
<td>John1: Load FieldValueCount('First name') as MyFieldCount1</td>
<td></td>
</tr>
<tr>
<td>Resident Initials;</td>
<td></td>
</tr>
</tbody>
</table>

Script Syntax and Chart Functions Guide - Qlik Sense, 1.1 520
5 Functions in scripts and chart expressions

**Examples**

<table>
<thead>
<tr>
<th>Data used in example:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>First name</strong></td>
</tr>
<tr>
<td>John</td>
</tr>
<tr>
<td>Sue</td>
</tr>
<tr>
<td>Mark</td>
</tr>
<tr>
<td>Peter</td>
</tr>
<tr>
<td>Jane</td>
</tr>
<tr>
<td>Peter</td>
</tr>
</tbody>
</table>

**Results**

<table>
<thead>
<tr>
<th>Given the table <strong>Initials</strong> is loaded, as in the sample data:</th>
</tr>
</thead>
<tbody>
<tr>
<td>John1: Load FieldValueCount('Initials') as MyInitialsCount1;</td>
</tr>
<tr>
<td>Resident Initials;</td>
</tr>
<tr>
<td>MyFieldCount1=6, because 'Initials' only has distinct values.</td>
</tr>
</tbody>
</table>

**LookUp**

`LookUp()` looks into a table that is already loaded and returns the value of `field_name` corresponding to the first occurrence of the value `match_field_value` in the field `match_field_name`. The table can be the current table or another table previously loaded.

**Syntax:**
5 Functions in scripts and chart expressions

lookup(field_name, match_field_name, match_field_value [, table_name])

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>field_name</td>
<td>Name of the field for which the return value is required. Input value must be given as a string (for example, quoted literals).</td>
</tr>
<tr>
<td>match_field_name</td>
<td>Name of the field to look up match_field_value in. Input value must be given as a string (for example, quoted literals).</td>
</tr>
<tr>
<td>match_field_value</td>
<td>Value to look up in match_field_name field.</td>
</tr>
<tr>
<td>table_name</td>
<td>Name of the table in which to look up the value. Input value must be given as a string (for example quoted literals). If table_name is omitted the current table is assumed.</td>
</tr>
</tbody>
</table>

Arguments without quotes refer to the current table. To refer to other tables, enclose an argument in single quotes.

Limitations:

The order in which the search is made is the load order, unless the table is the result of complex operations such as joins, in which case, the order is not well defined. Both field_name and match_field_name must be fields in the same table, specified by table_name.

If no match is found, NULL is returned.

Examples and results:
The sample data uses the `Lookup()` function in the following form:

```
Lookup('Category', 'ProductID', ProductID, 'ProductList')
```

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

| ProductList: |
| Load * Inline [ |
| ProductID|Product|Category|Price |
| 1|AA|1|1 |
| 2|BB|1|3 |
| 3|CC|2|8 |
| 4|DD|3|2 |
| ] (delimiter is '|'); |

| OrderData: |
| Load *, Lookup('Category', 'ProductID', ProductID, 'ProductList') as CategoryID Inline [ |
| InvoiceID|CustomerID|ProductID|Units |
| 1|Astrida|1|8 |
| 1|Astrida|2|6 |
| 2|Betacab|3|10 |
| 3|Divadip|3|5 |
| 4|Divadip|4|10 |
| ] (delimiter is '|'); |

| Drop Table ProductList |

The `ProductList` table is loaded first.

The `Lookup()` function is used to build the `OrderData` table. It specifies the third argument as `ProductID`. This is the field for which the value is to be looked up in the second argument `ProductID` in the `ProductList`, as denoted by the enclosing single quotes.

The function returns the value for `Category` (in the `ProductList` table), loaded as `CategoryID`.

The `drop` statement deletes the `ProductList` table from the data model, because it is not required, which leaves the `OrderData` table with the following result:

<table>
<thead>
<tr>
<th>ProductID</th>
<th>InvoiceID</th>
<th>CustomerID</th>
<th>Units</th>
<th>CategoryID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Astrida</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Astrida</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Betacab</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Divadip</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Divadip</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

The `Lookup()` function is flexible and can access any previously loaded table. However, it is slow compared with the `Applymap()` function.

### See also:

- "ApplyMap (page 538)"

### NoOfRows - chart function

`NoOfRows()` returns the number of rows in the current column segment in a table. For bitmap charts, `NoOfRows()` returns the number of rows in the chart's straight table equivalent.
If the table or table equivalent has multiple vertical dimensions, the current column segment will include only rows with the same values as the current row in all dimension columns, except for the column showing the last dimension in the inter-field sort order.

Syntax:

```
NoOfRows ([TOTAL])
```

Return data type: integer

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current column segment is always equal to the entire column.</td>
</tr>
</tbody>
</table>

Example:

```
if (RowNo() = NoOfRows(), 0, Above( sum( Sales )))
```

See also:

- `RowNo - chart function (page 346)`

**Peek**

Peek() finds the value of a field in a table for a row that has already been loaded or that exists in internal memory. The row number can be specified, as can the table.

Syntax:

```
Peek(field_name[, row_no[, table_name ] ] )
```

Return data type: dual

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>field_name</td>
<td>Name of the field for which the return value is required. Input value must be given as a string (for example, quoted literals).</td>
</tr>
<tr>
<td>row_no</td>
<td>The row in the table that specifies the field required. Can be an expression, but must resolve to an integer. 0 denotes the first record, 1 the second, and so on. Negative numbers indicate order from the end of the table. -1 denotes the last record read. If no row is stated, -1 is assumed.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>table_name</td>
<td>A table label without the ending colon. If no table_name is stated, the current table is assumed. If used outside the LOAD statement or referring to another table, the table_name must be included.</td>
</tr>
</tbody>
</table>

Limitations:

In the first record of an internal table, the function returns NULL.

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
</table>
| Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result. EmployeeDates:
Load = Inline [
EmployeeCode|StartDate|EndDate
101|02/11/2010|23/06/2012
102|01/11/2011|30/11/2013
103|02/01/2012|
104|02/01/2012|31/03/2012
105|01/04/2012|31/01/2013
106|02/11/2013|
] (delimiter is '|');

FirstEmployee:
Load EmployeeCode, Peek(EmployeeCode,0)
As EmpCode
Resident EmployeeDates;

EmpCode = 101, because Peek(EmployeeCode,0) returns the first value of EmployeeCode in the table EmployeeDates.

Substituting the value of the argument row_no returns the values of other rows in the table, as follows:

Peek(EmployeeCode,2) returns the third value in the table: 102.

However, note that without specifying the table as the third argument table_no, the function references the current (in this case, internal) table. The result of Peek(EmployeeCode,-2) is multiple values:

<table>
<thead>
<tr>
<th>EmployeeCode</th>
<th>EmpCode</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>-</td>
</tr>
<tr>
<td>102</td>
<td>-</td>
</tr>
<tr>
<td>103</td>
<td>101</td>
</tr>
<tr>
<td>104</td>
<td>102</td>
</tr>
<tr>
<td>105</td>
<td>103</td>
</tr>
<tr>
<td>106</td>
<td>104</td>
</tr>
</tbody>
</table>

FirstEmployee:
Load EmployeeCode, Peek(EmployeeCode,-2,'EmployeeDates') As EmpCode
Resident EmployeeDates;

By specifying the argument table_no as 'EmployeeDates', the function returns the second-to-last value of EmployeeCode in the table EmployeeDates: 105.
### Example

The `Peek()` function can be used to reference data that is not yet loaded.

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

```
#T1:
LOAD * inline [
ID, Value
1|3
1|4
1|6
3|7
3|8
2|1
2|11
5|2
5|78
5|13
] (delimiter is '|');

#T2:
LOAD *
 IF(ID=Peek(ID), Peek(List) &','&Value,Value) AS List
RESIDENT T1
ORDER BY ID5 ASC;
DROP TABLE T1;
```

### Result

Create a table in a sheet in your app with **ID**, **List**, and **Value** as the dimensions.

<table>
<thead>
<tr>
<th>ID</th>
<th>List</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>6,3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>6,3,4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>11,10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>11,10,1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>8,7</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>13,2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>13,2,78</td>
<td>78</td>
</tr>
</tbody>
</table>

The **IF()** statement is built from the temporary table T1. **Peek(ID)** references the field ID in the previous row in the current table T2. **Peek(List)** references the field List in the previous row in the table T2, currently being built as the expression is evaluated.

The statement is evaluated as follows:
If the current value of ID is the same as the previous value of ID, then write the value of Peek(List) concatenated with the current value of Value. Otherwise, write the current value of Value only.

If Peek(List) already contains a concatenated result, the new result of Peek(List) will be concatenated to it.

---

**Note the Order by clause.** This specifies how the table is ordered (by ID in ascending order). Without this, the **Peek()** function will use whatever arbitrary ordering the internal table has, which can lead to unpredictable results.
# 5 Functions in scripts and chart expressions

## Previous

`Previous()` finds the value of the `expr` expression using data from the previous input record that has not been discarded because of a `where` clause. In the first record of an internal table, the function will return NULL.

### Syntax:

```
Previous(expr)
```

### Return data type: dual

### Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>expr</code></td>
<td>The expression or field containing the data to be measured. The expression can contain nested <code>previous()</code> functions in order to access records further back. Data are fetched directly from the input source, making it possible to refer also to fields that have not been loaded into Qlik Sense, that is, even if they have not been stored in its associative database.</td>
</tr>
</tbody>
</table>

### Limitations:

In the first record of an internal table, the function returns NULL.

### Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.
### Example

```
Sales2013:
Load *,* , (Sales - Previous(Sales)) as Increase
Month|Sales
1|12
2|13
3|15
4|17
5|21
6|21
7|22
8|23
9|32
10|35
11|40
12|41
) (delimiter is '|')
```

### Result

By using the `Previous()` function in the `Load` statement, we can compare the current value of Sales with the preceding value, and use it in a third field, `Increase`.

<table>
<thead>
<tr>
<th>Month</th>
<th>Sales</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>35</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>41</td>
<td>1</td>
</tr>
</tbody>
</table>

---

### Top - chart function

The `Top()` function evaluates an expression at the first (top) row of a column segment in a table. The row for which it is calculated depends on the value of `offset`, if present, the default being the top row. For charts other than tables, the `Top()` function is evaluated on the first row of the current column in the chart's straight table equivalent.

**Syntax:**

```
Top([TOTAL] expr [, offset [,count ]])
```

**Return data type:** dual

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>offset</td>
<td>Specifying an <code>offset</code> of n, greater than 1, moves the evaluation of the expression down n rows below the top row. Specifying a negative offset number makes the <code>Top</code> function work like the <code>Bottom</code> function with the corresponding positive offset number.</td>
</tr>
</tbody>
</table>
### 5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>By specifying a third parameter <code>count</code> greater than 1, the function will return a range of <code>count</code> values, one for each of the last <code>count</code> rows of the current column segment. In this form, the function can be used as an argument to any of the special range functions. <em>Range functions (page 544)</em></td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the table is one-dimensional or if the qualifier <code>TOTAL</code> is used as argument, the current column segment is always equal to the entire column.</td>
</tr>
</tbody>
</table>

A column segment is defined as a consecutive subset of cells having the same values for the dimensions in the current sort order. Inter-record chart functions are computed in the column segment excluding the right-most dimension in the equivalent straight table chart. If there is only one dimension in the chart, or if the TOTAL qualifier is specified, the expression evaluates across full table.

If the table or table equivalent has multiple vertical dimensions, the current column segment will include only rows with the same values as the current row in all dimension columns, except for the column showing the last dimension in the inter-field sort order.

**Limitations:**

Recursive calls will return NULL.

**Examples and results:**

**Example: 1**

In the screenshot of the table shown in this example, the table visualization is created from the dimension `Customer` and the measures: `Sum(Sales)` and `Top(Sum(Sales))`.

The column `Top(Sum(Sales))` returns 587 for all rows because this is the value of the top row: Astrida.
5 Functions in scripts and chart expressions

The table also shows more complex measures: one created from \( \text{Sum}(\text{Sales}) + \text{Top}(\text{Sum}(\text{Sales})) \) and one labeled Top offset 3, which is created using the expression \( \text{Sum}(\text{Sales}) + \text{Top}(\text{Sum}(\text{Sales}), 3) \) and has the argument offset set to 3. It adds the \( \text{Sum}(\text{Sales}) \) value for the current row to the value from the third row from the top row, that is, the current row plus the value for Canutility.

Example: 2

In the screenshots of tables shown in this example, more dimensions have been added to the visualizations: Month and Product. For charts with more than one dimension, the results of expressions containing the Above, Below, Top, and Bottom functions depend on the order in which the column dimensions are sorted by Qlik Sense. Qlik Sense evaluates the functions based on the column segments that result from the dimension that is sorted last. The column sort order is controlled in the properties panel under Sorting and is not necessarily the order in which the columns appear in a table.

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>Month</th>
<th>Sum(Sales)</th>
<th>First value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Jan</td>
<td>2566</td>
<td></td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Feb</td>
<td>60</td>
<td>46</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Mar</td>
<td>70</td>
<td>46</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Apr</td>
<td>13</td>
<td>46</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>May</td>
<td>78</td>
<td>46</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Jun</td>
<td>20</td>
<td>46</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Jul</td>
<td>45</td>
<td>46</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Aug</td>
<td>65</td>
<td>46</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Sep</td>
<td>78</td>
<td>46</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Oct</td>
<td>12</td>
<td>46</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Nov</td>
<td>78</td>
<td>46</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Dec</td>
<td>22</td>
<td>46</td>
</tr>
</tbody>
</table>

First table for Example 2. The value of Top for the First value measure based on Month (Jan).
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>Month</th>
<th>Sum(Sales)</th>
<th>First value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Jan</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>Jan</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Feb</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>Feb</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Mar</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>Mar</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Astrida</td>
<td>AA</td>
<td>Apr</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Astrida</td>
<td>BB</td>
<td>Apr</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

Second table for Example 2. The value of Top for the First value measure based on Product (AA for Astrida).

Please refer to Example: 2 in the **Above** function for further details.

<table>
<thead>
<tr>
<th><strong>Example: 3</strong></th>
<th><strong>Result</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>The <strong>Top</strong> function can be used as input to the range functions. For example: RangeAvg (Top(Sum(Sales),1,3)).</td>
<td>In the arguments for the <strong>Top()</strong> function, offset is set to 1 and count is set to 3. The function finds the results of the expression <strong>Sum(Sales)</strong> on the three rows starting with the row below the bottom row in the column segment (because the offset=1), and the two rows below that (where there is a row). These three values are used as input to the RangeAvg() function, which finds the average of the values in the supplied range of numbers.</td>
</tr>
<tr>
<td>A table with <strong>Customer</strong> as dimension gives the following results for the RangeAvg() expression.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Customer</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrida</td>
<td>603</td>
</tr>
<tr>
<td>Betacab</td>
<td>603</td>
</tr>
<tr>
<td>Canutility</td>
<td>603</td>
</tr>
<tr>
<td>Divadip:</td>
<td>603</td>
</tr>
</tbody>
</table>

**Monthnames:**
LOAD ¤ INLINE [ 
Month, Monthnumber
Jan, 1
Feb, 2
Mar, 3
Apr, 4
May, 5
Jun, 6
Jul, 7
Aug, 8
Sep, 9
Oct, 10

Script Syntax and Chart Functions Guide - Qlik Sense, 1.1
Functions in scripts and chart expressions

Nov, 11
Dec, 12

Sales2013:
crosstable (Month, Sales) LOAD * inline [
Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec
Astrida|46|60|70|13|78|20|45|65|78|12|78|22
Betacab|65|56|22|79|12|56|45|24|32|78|55|15
Canutility|77|68|34|91|24|68|57|36|44|90|67|27
Divadip|57|36|44|90|67|27|57|68|47|90|80|94
] (delimiter is '|');

To get the months to sort in the correct order, when you create your visualizations, go to the Sorting section of the properties panel, select Month and mark the checkbox Sort by expression. In the expression box write Monthnumber.

See also:

- Bottom - chart function (page 508)
- Above - chart function (page 500)
- Sum - chart function (page 166)
- RangeAvg (page 547)
- Range functions (page 544)

Secondarydimensionality

Secondarydimensionality() returns the number of dimension pivot table rows that have non-aggregation content, that is, do not contain partial sums or collapsed aggregates. This function is the equivalent of the dimensionality() function for horizontal pivot table dimensions.

Syntax:

```
secondarydimensionality ( )
```

The secondarydimensionality function always returns 0 when used outside of pivot tables.

After - chart function

After() returns the value of an expression evaluated with a pivot table’s dimension values as they appear in the column after the current column within a row segment in the pivot table.

Syntax:

```
after([ total ] expression [, offset [,n ]])
```
Functions in scripts and chart expressions

This function returns NULL in all chart types except pivot tables.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expression</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>offset</td>
<td>Specifying an offset, greater than 1 moves the evaluation of the expression n rows further to the right from the current row. Specifying an offset of 0 will evaluate the expression on the current row. Specifying a negative offset number makes the After function work like the Before function with the corresponding positive offset number.</td>
</tr>
<tr>
<td>n</td>
<td>By specifying a third parameter n greater than 1, the function will return a range of n values, one for each of n table rows counting to the right from the original cell.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current column segment is always equal to the entire column.</td>
</tr>
</tbody>
</table>

On the last column of a row segment a NULL value will be returned, as there is no column after this one.

If the pivot table has multiple horizontal dimensions, the current row segment will include only columns with the same values as the current column in all dimension rows except for the row showing the last horizontal dimension of the inter-field sort order. The inter-field sort order for horizontal dimensions in pivot tables is defined simply by the order of the dimensions from top to bottom.

Example:

```
after( sum( Sales ))
after( sum( Sales ), 2 )
after( total sum( Sales ))
rangeavg (after(sum(x),1,3)) returns an average of the three results of the sum(x) function evaluated in the three columns immediately to the right of the current column.
```

Before - chart function

Before() returns the value of an expression evaluated with a pivot table's dimension values as they appear in the column before the current column within a row segment in the pivot table.

Syntax:

```
before([ total ] expression [ , offset [,n ]])
```

This function returns NULL in all chart types except pivot tables.
5  Functions in scripts and chart expressions

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expression</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>offset</td>
<td>Specifying an offset, greater than 1 moves the evaluation of the expression n rows further to the left from the current row.</td>
</tr>
<tr>
<td>offset</td>
<td>Specifying an offset of 0 will evaluate the expression on the current row.</td>
</tr>
<tr>
<td>offset</td>
<td>Specifying a negative offset number makes the Before function work like the After function with the corresponding positive offset number.</td>
</tr>
<tr>
<td>n</td>
<td>By specifying a third parameter n greater than 1, the function will return a range of n values, one for each of n table rows counting to the left from the original cell.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current column segment is always equal to the entire column.</td>
</tr>
</tbody>
</table>

On the first column of a row segment a NULL value will be returned, as there is no column before this one.

If the pivot table has multiple horizontal dimensions, the current row segment will include only columns with the same values as the current column in all dimension rows except for the row showing the last horizontal dimension of the inter-field sort order. The inter-field sort order for horizontal dimensions in pivot tables is defined simply by the order of the dimensions from top to bottom.

Examples:

```
before( sum( Sales ))
before( sum( Sales ), 2 )
before( total sum( Sales ))
rangeavg (before(sum(x),1,3)) returns an average of the three results of the sum(x) function evaluated in the three columns immediately to the left of the current column.
```

First - chart function

First() returns the value of an expression evaluated with a pivot table's dimension values as they appear in the first column of the current row segment in the pivot table. This function returns NULL in all chart types except pivot tables.

Syntax:

```
first([ total ] expression [ , offset [,n ]])
```

Arguments:
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expression</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>offset</td>
<td>Specifying an offset, greater than 1 moves the evaluation of the expression n rows further to the right from the current row. Specifying an offset of 0 will evaluate the expression on the current row. Specifying a negative offset number makes the First function work like the Last function with the corresponding positive offset number.</td>
</tr>
<tr>
<td>n</td>
<td>By specifying a third parameter n greater than 1, the function will return a range of n values, one for each of n table rows counting to the right from the original cell.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current column segment is always equal to the entire column.</td>
</tr>
</tbody>
</table>

If the pivot table has multiple horizontal dimensions, the current row segment will include only columns with the same values as the current column in all dimension rows except for the row showing the last horizontal dimension of the inter-field sort order. The inter-field sort order for horizontal dimensions in pivot tables is defined simply by the order of the dimensions from top to bottom.

**Examples:**

```
first( sum( Sales ))
first( sum( Sales ), 2 )
first( total sum( Sales )
rangeavg (first(sum(x),1,5)) returns an average of the results of the sum(x) function evaluated on the five leftmost columns of the current row segment.
```

**Last - chart function**

**Last()** returns the value of an expression evaluated with a pivot table’s dimension values as they appear in the last column of the current row segment in the pivot table. This function returns NULL in all chart types except pivot tables.

**Syntax:**

```
last([ total ] expression [, offset [,n ]])
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expression</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
</tbody>
</table>
### Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>offset</td>
<td>Specifying an offset, greater than 1 moves the evaluation of the expression n rows further to the left from the current row. Specifying an offset of 0 will evaluate the expression on the current row. Specifying a negative offset number makes the First function work like the Last function with the corresponding positive offset number.</td>
</tr>
<tr>
<td>n</td>
<td>By specifying a third parameter n greater than 1, the function will return a range of n values, one for each of n table rows counting to the left from the original cell.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current column segment is always equal to the entire column.</td>
</tr>
</tbody>
</table>

If the pivot table has multiple horizontal dimensions, the current row segment will include only columns with the same values as the current column in all dimension rows except for the row showing the last horizontal dimension of the inter-field sort order. The inter-field sort order for horizontal dimensions in pivot tables is defined simply by the order of the dimensions from top to bottom.

**Example:**

```plaintext
last( sum( Sales ))
last( sum( Sales ), 2 )
last( total sum( Sales )
rangeavg (last(sum(x),1,5)) returns an average of the results of the sum(x) function evaluated on the five rightmost columns of the current row segment.
```

**ColumnNo - chart function**

`ColumnNo()` returns the number of the current column within the current row segment in a pivot table. The first column is number 1.

**Syntax:**

`ColumnNo([total])`

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current column segment is always equal to the entire column.</td>
</tr>
</tbody>
</table>

If the pivot table has multiple horizontal dimensions, the current row segment will include only columns with the same values as the current column in all dimension rows except for the row showing the last horizontal dimension of the inter-field sort order. The inter-field sort order for horizontal dimensions in pivot tables is defined simply by the order of the dimensions from top to bottom.
5 Functions in scripts and chart expressions

Example:

```
if( ColumnNo() =1, 0, sum( Sales ) / before( sum( Sales )))
```

NoOfColumns - chart function

NoOfColumns() returns the number of columns in the current row segment in a pivot table.

Syntax:

```
NoOfColumns([total])
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>If the table is one-dimensional or if the qualifier TOTAL is used as argument, the current column segment is always equal to the entire column.</td>
</tr>
</tbody>
</table>

If the pivot table has multiple horizontal dimensions, the current row segment will include only columns with the same values as the current column in all dimension rows except for the row showing the last dimension in the inter-field sort order. The inter-field sort order for horizontal dimensions in pivot tables is defined simply by the order of the dimensions from top to bottom.

Example:

```
if( ColumnNo() = NoOfColumns(), 0, after( sum( Sales )))
```

5.15 Logical functions

This section describes functions handling logical operations. All functions can be used in both the data load script and in chart expressions.

IsNum

Returns -1 (True) if the expression can be interpreted as a number, otherwise 0 (False).

```
IsNum( expr )
```

IsText

Returns -1 (True) if the expression has a text representation, otherwise 0 (False).

```
IsText( expr )
```

Both IsNum and IsText return 0 if the expression is NULL.
5 Functions in scripts and chart expressions

The following example loads an inline table with mixed text and numerical values, and adds two fields to check if the value is a numerical value, respectively a text value.

```plaintext
Load *, IsNum(Value), IsText(Value)
Inline [
  Value
  23
  Green
  Blue
  12
  33Red];
```

The resulting table looks like this:

<table>
<thead>
<tr>
<th>Value</th>
<th>IsNum(Value)</th>
<th>IsText(Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>Green</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Blue</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>12</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>33Red</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

### 5.16 Mapping functions

This section describes functions for handling mapping tables. A mapping table can be used to replace field values or field names during script execution.

Mapping functions can only be used in the data load script.

**Mapping functions overview**

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

**ApplyMap**

The `ApplyMap` script function is used for mapping any expression to a previously loaded mapping table.

```plaintext
ApplyMap ('mapname', expr [, defaultexpr ])
```

**MapSubString**

The `MapSubString` script function is used to map parts of any expression to a previously loaded mapping table. The mapping is case sensitive and non-iterative, and substrings are mapped from left to right.

```plaintext
MapSubString ('mapname', expr)
```

**ApplyMap**

The `ApplyMap` script function is used for mapping any expression to a previously loaded mapping table.
5 Functions in scripts and chart expressions

Syntax:

```
ApplyMap('map_name', expression [ , default_mapping ])
```

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>map_name</td>
<td>The name of a mapping table that has previously been created through the mapping load or the mapping select statement. Its name must be enclosed by single, straight quotation marks.</td>
</tr>
<tr>
<td>expression</td>
<td>The expression, the result of which should be mapped.</td>
</tr>
<tr>
<td>default_mapping</td>
<td>If stated, this value will be used as a default value if the mapping table does not contain a matching value for expression. If not stated, the value of expression will be returned as is.</td>
</tr>
</tbody>
</table>

Example:

In this example we load a list of salespersons with a country code representing their country of residence. We use a table mapping a country code to a country to replace the country code with the country name. Only three countries are defined in the mapping table, other country codes are mapped to 'Rest of the world'.

```
// Load mapping table of country codes:
map1:
mapping LOAD *
Inline [ CC, Country
Sw, Sweden
Dk, Denmark
No, Norway
];
// Load list of salesmen, mapping country code to country
// If the country code is not in the mapping table, put Rest of the world
Salespersons:
LOAD *
ApplyMap('map1', CC,'Rest of the world') AS Country
Inline [ CC, Salesperson
Sw, John
Sw, Mary
Sw, Per
Dk, Preben
Dk, Ole
No, Ole
Sf, Risttu
];
// We don't need the CC code anymore
Drop Field 'CC';
The resulting table looks like this:
```
MapSubstring

The **MapSubstring** script function is used to map parts of any expression to a previously loaded mapping table. The mapping is case sensitive and non-iterative, and substrings are mapped from left to right.

**Syntax:**

```
MapSubstring('map_name', expression)
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>map_name</td>
<td>The name of a mapping table previously read by a <strong>mapping load</strong> or a <strong>mapping select</strong> statement. The name must be enclosed by single straight quotation marks.</td>
</tr>
<tr>
<td>expression</td>
<td>The expression whose result is to be mapped by substrings.</td>
</tr>
</tbody>
</table>

**Example:**

In this example we load a list of product models. Each model has a set of attributes that are described by a composite code. Using the mapping table with MapSubstring, we can expand the attribute codes to a description.

```plaintext
map2:
mapping LOAD *
Inline [ 
AttCode, Attribute
R, Red
Y, Yellow
B, Blue
C, Cotton
P, Polyester
S, Small
M, Medium
L, Large
]
;```
Productmodels:
LOAD *
MapSubString('map2', AttCode) as Description
Inline [
Model, AttCode
Twixie, R C S
Boomer, B P L
Raven, Y P M
Seedling, R C L
SeedlingPlus, R C L with hood
Younger, B C with patch
MultiStripe, R Y B C S/M/L
]
// We don't need the AttCode anymore
Drop Field 'AttCode';

The resulting table looks like this:

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twixie</td>
<td>Red Cotton Small</td>
</tr>
<tr>
<td>Boomer</td>
<td>Blue Polyester Large</td>
</tr>
<tr>
<td>Raven</td>
<td>Yellow Polyester Medium</td>
</tr>
<tr>
<td>Seedling</td>
<td>Red Cotton Large</td>
</tr>
<tr>
<td>SeedlingPlus</td>
<td>Red Cotton Large with hood</td>
</tr>
<tr>
<td>Younger</td>
<td>Blue Cotton with patch</td>
</tr>
<tr>
<td>MultiStripe</td>
<td>Red Yellow Blue Cotton Small/Medium/Large</td>
</tr>
</tbody>
</table>

5.17 Mathematical functions

This section describes functions for mathematical constants and Boolean values. These functions do not have any parameters, but the parentheses are still required.

All functions can be used in both the data load script and in chart expressions.

\( e \)

The function returns the base of the natural logarithms, \( e (2.71828\ldots) \).

\( e() \)

\( false \)

The function returns a dual value with text value 'False' and numeric value 0, which can be used as logical false in expressions.

\( false() \)

\( pi \)
5 Functions in scripts and chart expressions

The function returns the value of π (3.14159…).

\( \text{pi()} \)

**rand**
The function returns a random number between 0 and 1. This can be used to create sample data.

\( \text{rand()} \)

**Example:**

This example script creates a table of 1000 records with randomly selected upper case characters, that is, ASCII characters in the range 65 to 91 (65+26).

\[
\text{Load}
\begin{align*}
\quad \text{Chr(Floor(rand() * 26) + 65)} & \text{ as UCaseChar}, \\
\quad \text{RecNo() as ID} \\
\quad \text{Autogenerate 1000;}
\end{align*}
\]

**true**
The function returns a dual value with text value 'True' and numeric value -1, which can be used as logical true in expressions.

\( \text{true()} \)

### 5.18 NULL functions

This section describes functions for returning or detecting NULL values.

All functions can be used in both the data load script and in chart expressions.

**NULL functions overview**

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

**Null**
The **Null** function returns a NULL value.

\( \text{NULL()} \)

**IsNull**
The **IsNull** function tests if the value of an expression is NULL and if so, returns -1 (True), otherwise 0 (False).

\( \text{IsNull(expr)} \)
5 Functions in scripts and chart expressions

IsNull
The **IsNull** function tests if the value of an expression is NULL and if so, returns -1 (True), otherwise 0 (False).

**Syntax:**

```
IsNull(expr)
```

*A string with length zero is not considered as a NULL and will cause IsNull to return False.*

**Example: Data load script**

In this example, an inline table with four rows is loaded, where the first three lines contain either nothing, - or 'NULL' in the Value column. We convert these values to true NULL value representations with the middle preceding `LOAD` using the **Null** function.

The first preceding `LOAD` adds a field checking if the value is NULL, using the **IsNull** function.

**NullsDetectedAndConverted:**

```
LOAD *,
If(IsNull(ValueNullConv), 'T', 'F') as IsItNull;

LOAD *
If(len(trim(Value))= 0 or Value='NULL' or Value='-', Null(), Value ) as ValueNullConv;

LOAD * Inline
[ID, Value
0,
1,NULL
2,-
3,Value];
```

This is the resulting table. In the ValueNullConv column, the NULL values are represented by -.

<table>
<thead>
<tr>
<th>ID</th>
<th>Value</th>
<th>ValueNullConv</th>
<th>IsItNull</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>NULL</td>
<td>-</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>Value</td>
<td>Value</td>
<td>F</td>
</tr>
</tbody>
</table>

**NULL**
The **Null** function returns a NULL value.

**Syntax:**
Functions in scripts and chart expressions

### Null( )

**Example: Data load script**

In this example, an inline table with four rows is loaded, where the first three lines contain either nothing, - or 'NULL'in the Value column. We want to convert these values to true NULL value representations.

The middle preceding **LOAD** performs the conversion using the **Null** function.

The first preceding **LOAD** adds a field checking if the value is NULL, just for illustration purposes in this example.

NullsDetectedAndConverted:

```
LOAD *
If(IsNull(ValueNullConv), 'T', 'F') as IsItNull;
```

```
LOAD *
If(len(trim(value))= 0 or Value='NULL' or Value='-', Null(), Value ) as ValueNullConv;
```

```
LOAD * Inline
[ID, value
0, 1,NULL
2,-
3,Value];
```

This is the resulting table. In the ValueNullConv column, the NULL values are represented by -.

<table>
<thead>
<tr>
<th>ID</th>
<th>Value</th>
<th>ValueNullConv</th>
<th>IsItNull</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>NULL</td>
<td>-</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>Value</td>
<td>Value</td>
<td>F</td>
</tr>
</tbody>
</table>

### 5.19 Range functions

The range functions are functions that take an array of values and produce a single value as a result. All range functions can be used in both the data load script and in chart expressions.

For example, in a visualization, a range function can calculate a single value from an inter-record array. In the data load script, a range function can calculate a single value from an array of values in an internal table.

---

*Range functions replace the following general numeric functions: numsum, numavg, numcount, nummin and nummax, which should now be regarded as obsolete.*
5  Functions in scripts and chart expressions

Basic range functions

RangeMax

RangeMax() returns the highest numeric values found within the expression or field.

```
RangeMax(first_expr[, Expression])
```

RangeMaxString

RangeMaxString() returns the last value in the text sort order that it finds in the expression or field.

```
RangeMaxString(first_expr[, Expression])
```

RangeMin

RangeMin() returns the lowest numeric values found within the expression or field.

```
RangeMin(first_expr[, Expression])
```

RangeMinString

RangeMinString() returns the first value in the text sort order that it finds in the expression or field.

```
RangeMinString(first_expr[, Expression])
```

RangeMode

RangeMode() finds the most commonly occurring value (mode value) in the expression or field.

```
RangeMode(first_expr[, Expression])
```

RangeOnly

RangeOnly() is a dual function that returns a value if the expression evaluates to one unique value. If this is not the case then NULL is returned.

```
RangeOnly(first_expr[, Expression])
```

RangeSum

RangeSum() returns the sum of a range of values. All non-numeric values are treated as 0, unlike the + operator.

```
RangeSum(first_expr[, Expression])
```

Counter range functions

RangeCount

RangeCount() returns the number of values, text and numeric, found within the specified range or expression.

```
RangeCount(first_expr[, Expression])
```

RangeMissingCount

RangeMissingCount() finds the number of non-numeric values (including NULL) in the expression or field.
### Functions in scripts and chart expressions

- **RangeMissingCount**(*first_expr[, Expression]*)
  - This function finds the number of NULL values in the expression or field.

- **RangeNullCount**
  - **RangeNullCount()** finds the number of NULL values in the expression or field.

- **RangeNumericCount**(*first_expr[, Expression]*)
  - **RangeNumericCount()** finds the number of numeric values in an expression or field.

- **RangeTextCount**(*first_expr[, Expression]*)
  - **RangeTextCount()** returns the number of text values in an expression or field.

### Statistical range functions

- **RangeAvg**
  - **RangeAvg()** returns the average of a range. Input to the function can be either a range of values or an expression.

- **RangeCorrel**(*x_values, y_values[, Expression]*)
  - **RangeCorrel()** returns the correlation coefficient for two sets of data. The correlation coefficient is a measure of the relationship between the data sets.

- **RangeFractile**(*fractile, first_expr[, Expression]*)
  - **RangeFractile()** returns the value that corresponds to the n-th quantile of a range of numbers.

- **RangeKurtosis**(*first_expr[, Expression]*)
  - **RangeKurtosis()** returns the value that corresponds to the kurtosis of a range of numbers.

- **RangeSkew**(*first_expr[, Expression]*)
  - **RangeSkew()** returns the value corresponding to the skewness of a range of numbers.

- **RangeStdev**(*expr1[, Expression]*)
  - **RangeStdev()** finds the standard deviation of a range of numbers.
Financial range functions

RangeIRR

RangeIRR() returns the internal rate of return for a series of cash flows represented by the numbers in values.

\[
\text{RangeIRR} \ (value[, \ value][, \ Expression])
\]

RangeNPV

RangeNPV() returns the net present value of an investment based on a discount rate and a series of future payments (negative values) and incomes (positive values). The result has a default number format of money.

\[
\text{RangeNPV} \ (discount\_rate, \ value[, \ value][, \ Expression])
\]

RangeXIRR

RangeXIRR() returns the internal rate of return for a schedule of cash flows that is not necessarily periodic. To calculate the internal rate of return for a series of periodic cash flows, use the RangeIRR function.

\[
\text{RangeXIRR} \ (values, \ dates[, \ Expression])
\]

RangeXNPV

RangeXNPV() returns the net present value for a schedule of cash flows that is not necessarily periodic. The result has a default number format of money. To calculate the net present value for a series of periodic cash flows, use the RangeNPV function.

\[
\text{RangeXNPV} \ (discount\_rate, \ values, \ dates[, \ Expression])
\]

See also:

- Inter-record functions (page 496)

RangeAvg

RangeAvg() returns the average of a range. Input to the function can be either a range of values or an expression.

Syntax:

\[
\text{RangeAvg} \ (first\_expr[, \ Expression])
\]

Return data type: numeric

Arguments:

The argument expressions of this function may contain inter-record functions with a third optional parameter, which in themselves return a range of values.
### 5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

**Limitations:**

If no numeric value is found, NULL is returned.

**Examples and results:**

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RangeAvg (1,2,4)</td>
<td>Returns 2.33333333</td>
</tr>
<tr>
<td>RangeAvg (1,'xyz')</td>
<td>Returns 1</td>
</tr>
<tr>
<td>RangeAvg (null( ), 'abc')</td>
<td>Returns NULL</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

```qlik
RangeTab3:
LOAD recno() as RangeID, RangeAvg(Field1,Field2,Field3) as MyRangeAvg
INLINE [
  Field1, Field2, Field3
  10,5,6
  2,3,7
  8,2,8
  18,11,9
  5,5,9
  9,4,2
];
```

The resulting table shows the returned values of MyRangeAvg for each of the records in the table.

<table>
<thead>
<tr>
<th>RangeID</th>
<th>MyRangeAvg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>12.666</td>
</tr>
<tr>
<td>5</td>
<td>6.333</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

**Example with expression:**

```qlik
RangeAvg (Above(MyField),0,3))
```

Returns a sliding average of the result of the range of three values of MyField calculated on the current row and two rows above the current row. By specifying the third argument as 3, the Above() function returns three values, where there are sufficient rows above, which are taken as input to the RangeAvg() function.

**Data used in examples:**

*Disable sorting of MyField to ensure that example works as expected.*
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>MyField</th>
<th>RangeAvg (Above (MyField,0,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>6.6666666667</td>
</tr>
<tr>
<td>18</td>
<td>9.333333333</td>
</tr>
<tr>
<td>5</td>
<td>10.333333333</td>
</tr>
<tr>
<td>9</td>
<td>10.6666666667</td>
</tr>
</tbody>
</table>

Because this is the top row, the range consists of one value only.

There is only one row above this row, so the range is: 10,2.

The equivalent to RangeAvg(10,2,8)

RangeCorrel

RangeCorrel() returns the correlation coefficient for two sets of data. The correlation coefficient is a measure of the relationship between the data sets.

Syntax:

```plaintext
RangeCorrel(x_values , y_values[, Expression])
```

Return data type: numeric

If you provide values manually, enter them as (x,y) pairs. For example, to evaluate two series of data, array 1 and array 2, where the array 1 = 2,6,9 and array 2 = 3,8,4 you would write `RangeCorrel(2,3,6,8,9,4)` which returns 0.269.

Arguments:
### Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-value, y-value</td>
<td>Each value represents a single value or a range of values as returned by an inter-record functions with a third optional parameter. Each value or range of values must correspond to an x-value or a range of y-values.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

**Limitations:**

The function needs at least two pairs of coordinates to be calculated.

Text values, NULL values and missing values are disregarded.

**Examples and results:**

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>RangeCorrel (2,3,6,8,9,4)</code></td>
<td>Returns 0.269</td>
</tr>
</tbody>
</table>

**See also:**

- Correl - chart function (page 204)

### RangeCount

**RangeCount()** returns the number of values, text and numeric, found within the specified range or expression.

**Syntax:**

```
RangeCount(first_expr[, Expression])
```

**Return data type:** integer

**Arguments:**

The argument expressions of this function may contain inter-record functions with a third optional parameter, which in themselves return a range of values.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

**Limitations:**

NULL values are not counted.
5 Functions in scripts and chart expressions

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RangeCount (1,2,4)</td>
<td>Returns 3</td>
</tr>
<tr>
<td>RangeCount (2,'xyz')</td>
<td>Returns 2</td>
</tr>
<tr>
<td>RangeCount (null())</td>
<td>Returns 0</td>
</tr>
<tr>
<td>RangeCount (2,'xyz', null())</td>
<td>Returns 2</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

RangeTab3:
LOAD recno() as RangeID, RangeCount(Field1,Field2,Field3) as MyRangeCount INLINE [ Field1, Field2, Field3 10,5,6 2,3,7 8,2,8 18,11,9 5,5,9 9,4,2 ];

The resulting table shows the returned values of MyRangeCount for each of the records in the table.

<table>
<thead>
<tr>
<th>RangeID</th>
<th>MyRangeCount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Example with expression:

RangeCount (Above(MyField,1,3))

Returns the number of values contained in the three results of MyField. By specifying the second and third arguments of the Above() function as 3, it returns the values from the three fields above the current row, where there are sufficient rows, which are taken as input to the RangeSum() function.

Data used in examples:

<table>
<thead>
<tr>
<th>MyField</th>
<th>RangeCount(Above(MyField,1,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

Data used in examples:
RangeTab:
LOAD * INLINE [
MyField
10
2
8
18
5
9
] ;

See also:

- Count - chart function (page 170)

RangeFractile

RangeFractile() returns the value that corresponds to the n-th fractile (quantile) of a range of numbers.

ℹ️ RangeFractile() uses linear interpolation between closest ranks when calculating the fractile.

Syntax:

RangeFractile(fractile, first_expr[, Expression])

Return data type: numeric

Arguments:

The argument expressions of this function may contain inter-record functions with a third optional parameter, which in themselves return a range of values.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fractile</td>
<td>A number between 0 and 1 corresponding to the fractile (quantile expressed as a fraction) to be calculated.</td>
</tr>
<tr>
<td>first_expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the example script to your app and run it. Then add, at least, the</td>
<td>The resulting table shows the returned values of MyRangeFrac for each of the</td>
</tr>
<tr>
<td>fields listed in the results column to a sheet in your app to see the result.</td>
<td>records in the table.</td>
</tr>
</tbody>
</table>

RangeTab:
LOAD recno() as RangeID, RangeFractile (0.5,Field1,Field2,Field3) as MyRangeFrac INLINE [
Field1, Field2, Field3
10,5,6
2,3,7
8,2,8
18,11,9
5,5,9
9,4,2
];

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RangeFractile (0.24,1,2,4,6)</td>
<td>Returns 1.72</td>
</tr>
<tr>
<td>RangeFractile(0.5,1,2,3,4,6)</td>
<td>Returns 3</td>
</tr>
<tr>
<td>RangeFractile (0.5,1,2,5,6)</td>
<td>Returns 3.5</td>
</tr>
</tbody>
</table>

Example with expression:

RangeFractile (0.5, Above(Sum(MyField),0,3))

In this example, the inter-record function Above() contains the optional offset and count arguments. This produces a range of results that can be used as input to the any of the range functions. In this case, Above(Sum(MyField),0,3) returns the values of MyField for the current row and the two rows above. These values provide the input to the RangeFractile() function. So, for the bottom row in the table below, this is the equivalent of RangeFractile(0.5, 3,4,6), that is, calculating the 0.5 fractile for the series 3, 4, and 6. The first two rows in the table below, the number of values in the range is reduced accordingly, where there no rows above the current row. Similar results are produced for other inter-record functions.

Data used in examples:

<table>
<thead>
<tr>
<th>MyField</th>
<th>RangeFractile(0.5, Above(Sum(MyField),0,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Example with expression:

RangeFractile (0.5, Above(Sum(MyField),0,3))

In this example, the inter-record function Above() contains the optional offset and count arguments. This produces a range of results that can be used as input to the any of the range functions. In this case, Above(Sum(MyField),0,3) returns the values of MyField for the current row and the two rows above. These values provide the input to the RangeFractile() function. So, for the bottom row in the table below, this is the equivalent of RangeFractile(0.5, 3,4,6), that is, calculating the 0.5 fractile for the series 3, 4, and 6. The first two rows in the table below, the number of values in the range is reduced accordingly, where there no rows above the current row. Similar results are produced for other inter-record functions.

Data used in examples:

<table>
<thead>
<tr>
<th>MyField</th>
<th>RangeFractile(0.5, Above(Sum(MyField),0,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>MyField</th>
<th>RangeFractile(0.5, Above(Sum(MyField),0,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Data used in examples:

RangeTab:
```
LOAD * INLINE [
  MyField
  1
  2
  3
  4
  5
  6
];
```

See also:

- Above - chart function (page 500)
- Fractile - chart function (page 207)

**RangeIRR**

*RangeIRR*(value[, value][, Expression]) returns the internal rate of return for a series of cash flows represented by the numbers in values.

These cash flows do not have to be even, as they would be for an annuity. However, the cash flows must occur at regular intervals, such as monthly or annually. The internal rate of return is the interest rate received for an investment consisting of payments (negative values) and income (positive values) that occur at regular periods.

**Syntax:**

```
RangeIRR(value[, value][, Expression])
```

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>A single value or a range of values as returned by an inter record function with a third optional parameter. The function needs at least one positive and one negative value to be calculated.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

Limitations:

Text values, NULL values and missing values are disregarded.

### Examples

| RangeIRR(-70000,120000,150000,180000,210000,26000) | Returns 0.0866 |
| Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result. |

```sql
RangeTab3:
LOAD #,
recno() as RangeID,
RangeIRR(Field1,Field2,Field3) as RangeIRR;
LOAD # INLINE [
Field1|Field2|Field3
-10000|5000|6000
-2000|NULL|7000
-8000|'abc'|8000
-1800|11000|9000
-5000|5000|9000
-9000|4000|2000
] (delimiter is '|');
```

The resulting table shows the returned values of RangeIRR for each of the records in the table.

<table>
<thead>
<tr>
<th>RangeID</th>
<th>RangelRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.000</td>
</tr>
<tr>
<td>2</td>
<td>0.8708</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>5.8419</td>
</tr>
<tr>
<td>5</td>
<td>0.9318</td>
</tr>
<tr>
<td>6</td>
<td>-0.2566</td>
</tr>
</tbody>
</table>

See also:

- Inter-record functions (page 496)

### RangeKurtosis

**RangeKurtosis()** returns the value that corresponds to the kurtosis of a range of numbers.

**Syntax:**

```sql
RangeKurtosis( first_expr[, Expression] )
```

**Return data type:** numeric

**Arguments:**

The argument expressions of this function may contain inter-record functions with a third optional parameter, which in themselves return a range of values.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>
Limitations:

If no numeric value is found, NULL is returned.

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RangeKurtosis (1,2,4,7)</td>
<td>Returns -0.28571428571429</td>
</tr>
</tbody>
</table>

See also:

- Kurtosis - chart function (page 210)

RangeMax

`RangeMax()` returns the highest numeric values found within the expression or field.

Syntax:

```
RangeMax(first_expr[, Expression])
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

Limitations:

If no numeric value is found, NULL is returned.

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RangeMax (1,2,4)</td>
<td>Returns 4</td>
</tr>
<tr>
<td>RangeMax (1,'xyz')</td>
<td>Returns 1</td>
</tr>
<tr>
<td>RangeMax (null(), 'abc')</td>
<td>Returns NULL</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

Examples

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

RangeTab3:
LOAD recno() as RangeID, RangeMax(Field1,Field2,Field3) as MyRangeMax
INLINE [
  Field1, Field2, Field3
  10,5,6
  2,3,7
  8,2,8
  18,11,9
  5,5,9
  9,4,2
];

Example with expression:

RangeMax (Above(MyField,0,3))

Returns the maximum value in the range of three values of MyField calculated on the current row and two rows above the current row. By specifying the third argument as 3, the Above() function returns three values, where there are sufficient rows above, which are taken as input to the RangeMax() function.

Data used in examples:

Disable sorting of MyField to ensure that example works as expected.

<table>
<thead>
<tr>
<th>MyField</th>
<th>RangeMax (Above(Sum(MyField),1,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
</tr>
</tbody>
</table>

Data used in examples:

RangeTab:
LOAD * INLINE [
  MyField
  10
  2
];
5  Functions in scripts and chart expressions

RangeMaxString

RangeMaxString() returns the last value in the text sort order that it finds in the expression or field.

Syntax:

\[
\text{RangeMaxString}(\text{first\_expr[, Expression]})
\]

Return data type: string

Arguments:

The argument expressions of this function may contain inter-record functions with a third optional parameter, which in themselves return a range of values.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RangeMaxString(1,2,4)</td>
<td>Returns 4</td>
</tr>
<tr>
<td>RangeMaxString('xyz','abc')</td>
<td>Returns 'xyz'</td>
</tr>
<tr>
<td>RangeMaxString(5,'abc')</td>
<td>Returns 'abc'</td>
</tr>
<tr>
<td>RangeMaxString(null())</td>
<td>Returns NULL</td>
</tr>
</tbody>
</table>

Example with expression:

RangeMaxString(Above(MaxString(MyField),0,3))

Returns the last (in text sort order) of the three results of the MaxString(MyField) function evaluated on the current row and two rows above the current row.

Data used in examples:

Disable sorting of MyField to ensure that example works as expected.
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>MyField</th>
<th>RangeMaxString(Above(MaxString(MyField),0,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>abc</td>
<td>abc</td>
</tr>
<tr>
<td>8</td>
<td>abc</td>
</tr>
<tr>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td>xyz</td>
<td>xyz</td>
</tr>
<tr>
<td>9</td>
<td>xyz</td>
</tr>
</tbody>
</table>

Data used in examples:

RangeTab:
```
LOAD * INLINE [
MyField 10 'abc' 8 'def' 'xyz' 9 ]
```

See also:
- MaxString - chart function (page 317)

RangeMin

RangeMin() returns the lowest numeric values found within the expression or field.

Syntax:
```
RangeMin(first_expr[,Expression])
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

Limitations:
If no numeric value is found, NULL is returned.
5 Functions in scripts and chart expressions

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RangeMin (1,2,4)</td>
<td>Returns 1</td>
</tr>
<tr>
<td>RangeMin (1,'xyz')</td>
<td>Returns 1</td>
</tr>
<tr>
<td>RangeMin (null(), 'abc')</td>
<td>Returns NULL</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

RangeTab3:
LOAD recno() as RangeID, RangeMin(Field1,Field2,Field3) as MyRangeMin
INLINE [
Field1, Field2, Field3
10,5,6
2,3,7
8,2,8
18,11,9
5,5,9
9,4,2
];

The resulting table shows the returned values of MyRangeMin for each of the records in the table.

<table>
<thead>
<tr>
<th>RangeID</th>
<th>MyRangeMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Example with expression:

RangeMin (Above(MyField,0,3))

Returns the minimum value in the range of three values of MyField calculated on the current row and two rows above the current row. By specifying the third argument as 3, the Above() function returns three values, where there are sufficient rows above, which are taken as input to the RangeMin() function.

Data used in examples:

<table>
<thead>
<tr>
<th>MyField</th>
<th>RangeMin(Above(MyField,0,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>
Functions in scripts and chart expressions

Data used in examples:

RangeTab:
LOAD * INLINE [
MyField
10
2
8
18
5
9
];

See also:

Min - chart function (page 157)

RangeMinString

RangeMinString() returns the first value in the text sort order that it finds in the expression or field.

Syntax:

RangeMinString(first_expr[, Expression])

Return data type: string

Arguments:

The argument expressions of this function may contain inter-record functions with a third optional parameter, which in themselves return a range of values.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RangeMinString (1,2,4)</td>
<td>Returns 1</td>
</tr>
<tr>
<td>RangeMinString ('xyz','abc')</td>
<td>Returns 'abc'</td>
</tr>
<tr>
<td>RangeMinString (5,'abc')</td>
<td>Returns 5</td>
</tr>
<tr>
<td>RangeMinString (null())</td>
<td>Returns NULL</td>
</tr>
</tbody>
</table>

Example with expression:

RangeMinString (Above(MinString(MyField),0,3))
5 Functions in scripts and chart expressions

Returns the first (in text sort order) of the three results of the \texttt{MinString(MyField)} function evaluated on the current row and two rows above the current row.

\textbf{Data used in examples:}

\begin{verbatim}
  Disable sorting of MyField to ensure that example works as expected.
\end{verbatim}

<table>
<thead>
<tr>
<th>MyField</th>
<th>RangeMinString(Above(MinString(MyField),0,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>abc</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>def</td>
<td>8</td>
</tr>
<tr>
<td>xyz</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

\textbf{Data used in examples:}

\begin{verbatim}
RangeTab:
LOAD * INLINE [
MyField
10
 'abc'
 8
 'def'
 'xyz'
 9
];
\end{verbatim}

\textbf{See also:}

- MinString - chart function (page 320)

\textbf{RangeMissingCount}

\texttt{RangeMissingCount()} finds the number of non-numeric values (including NULL) in the expression or field.

\textbf{Syntax:}

\begin{verbatim}
RangeMissingCount(first_expr[, Expression])
\end{verbatim}

\textbf{Return data type:} integer

\textbf{Arguments:}
5 Functions in scripts and chart expressions

The argument expressions of this function may contain inter-record functions with a third optional parameter, which in themselves return a range of values.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RangeMissingCount (1,2,4)</td>
<td>Returns 0</td>
</tr>
<tr>
<td>RangeMissingCount (5,'abc')</td>
<td>Returns 1</td>
</tr>
<tr>
<td>RangeMissingCount (null( ))</td>
<td>Returns 1</td>
</tr>
</tbody>
</table>

Example with expression:

RangeMissingCount (Above(MinString(MyField),0,3))

Returns the number of non-numeric values in the three results of the MinString(MyField) function evaluated on the current row and two rows above the current row.

Data used in examples:

Disable sorting of MyField to ensure that example works as expected.

<table>
<thead>
<tr>
<th>MyField</th>
<th>RangeMissingCount(Above(MinString(MyField),0,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Returns 2 because there are no rows above this row so 2 of the 3 values are missing.</td>
</tr>
<tr>
<td>2</td>
<td>Returns 2 because there is only 1 row above the current row and the current row is non-numeric ('abc').</td>
</tr>
<tr>
<td>1</td>
<td>Returns 1 because 1 of the 3 rows includes a non-numeric ('abc').</td>
</tr>
<tr>
<td>2</td>
<td>Returns 2 because 2 of the 3 rows include non-numeric values ('def' and 'abc').</td>
</tr>
<tr>
<td>2</td>
<td>Returns 2 because 2 of the 3 rows include non-numeric values ('xyz' and 'def').</td>
</tr>
<tr>
<td>2</td>
<td>Returns 2 because 2 of the 3 rows include non-numeric values ('xyz' and 'def').</td>
</tr>
</tbody>
</table>

Data used in examples:

RangeTab:
LOAD * INLINE [
MyField
10 'abc'
]
See also:

- MissingCount - chart function (page 173)

**RangeMode**

`RangeMode()` finds the most commonly occurring value (mode value) in the expression or field.

**Syntax:**

```
RangeMode(first_expr , Expression)
```

**Return data type:** numeric

**Arguments:**

The argument expressions of this function may contain inter-record functions with a third optional parameter, which in themselves return a range of values.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

**Limitations:**

If more than one value shares the highest frequency, NULL is returned.

**Examples and results:**

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>RangeMode (1,2,9,2,4)</code></td>
<td>Returns 2</td>
</tr>
<tr>
<td><code>RangeMode ('a',4,'a',4)</code></td>
<td>Returns NULL</td>
</tr>
<tr>
<td><code>RangeMode (null( ))</code></td>
<td>Returns NULL</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.</td>
<td>The resulting table shows the returned values of MyRangeMode for each of the records in the table.</td>
</tr>
</tbody>
</table>

```
RangeTab3:
LOAD recno() as RangeID, RangeMax(Field1,Field2,Field3) as MyRangeMode
INLINE [Field1, Field2, Field3
 10,5,6
 2,3,7
 8,2,8
 18,11,9
 5,5,9
 9,4,2
];
```

<table>
<thead>
<tr>
<th>RangeID</th>
<th>MyRangeMode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
</tr>
</tbody>
</table>

**Example with expression:**

```
RangeMode(Above(MyField,0,3))
```

Returns the most commonly occurring value in the three results of MyField evaluated on the current row and two rows above the current row. By specifying the third argument as 3, the `Above()` function returns three values, where there are sufficient rows above, which are taken as input to the `RangeMode()` function.

**Data used in example:**

```
RangeTab:
LOAD * INLINE [
MyField
 10
 2
 8
 18
 5
 9
];
```

*Disable sorting of MyField to ensure that example works as expected.*

<table>
<thead>
<tr>
<th>MyField</th>
<th>RangeMode(Above(MyField,0,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Returns 10 because there are no rows above so the single value is the most commonly occurring.</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>MyField</th>
<th>RangeMode(Above(MyField,0,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
</tr>
</tbody>
</table>

See also:

- Mode - chart function (page 160)

RangeNPV

RangeNPV() returns the net present value of an investment based on a discount rate and a series of future payments (negative values) and incomes (positive values). The result has a default number format of money.

Syntax:

```
RangeNPV(discount_rate, value[,value][, Expression])
```

Return data type: numeric

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>discount_rate</td>
<td>The interest rate per period.</td>
</tr>
<tr>
<td>value</td>
<td>A payment or income occurring at the end of each period. Each value may be a single value or a range of values as returned by an inter-record function with a third optional parameter.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

Limitations:

Text values, NULL values and missing values are disregarded.

Examples

```
RangeNPV(0.1, -10000, 3000, 4200, 6800)
```

Results

Returns 1188.44
5 Functions in scripts and chart expressions

Examples

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

```
RangeTab3:
LOAD *,
recno() as RangeID,
RangeNPV(Field1,Field2,Field3) as RangeNPV;
LOAD * INLINE [
Field1|Field2|Field3
10|5|6000
2|NULL|7000
8|"abc"|8000
18|11|9000
5|5|9000
9|4|2000
] (delimiter is '|');
```

Results

The resulting table shows the returned values of RangeNPV for each of the records in the table.

<table>
<thead>
<tr>
<th>RangeID</th>
<th>RangeNPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$-49.13</td>
</tr>
<tr>
<td>2</td>
<td>$777.78</td>
</tr>
<tr>
<td>3</td>
<td>$98.77</td>
</tr>
<tr>
<td>4</td>
<td>$25.51</td>
</tr>
<tr>
<td>5</td>
<td>$250.83</td>
</tr>
<tr>
<td>6</td>
<td>$20.40</td>
</tr>
</tbody>
</table>

See also:

- Inter-record functions (page 496)

RangeNullCount

RangeNullCount() finds the number of NULL values in the expression or field.

Syntax:

```
RangeNullCount(firstexpr [, Expression])
```

Return data type: integer

Arguments:

The argument expressions of this function may contain inter-record functions with a third optional parameter, which in themselves return a range of values.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

Examples and results:
### Functions in scripts and chart expressions

#### Examples

<table>
<thead>
<tr>
<th>Function</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RangeNullCount(1,2,4)</td>
<td>Returns 0</td>
</tr>
<tr>
<td>RangeNullCount(5,'abc')</td>
<td>Returns 0</td>
</tr>
<tr>
<td>RangeNullCount(null(), null())</td>
<td>Returns 2</td>
</tr>
</tbody>
</table>

**Example with expression:**

RangeNullCount(Above(Sum(MyField),0,3))

Returns the number of NULL values in the three results of the **Sum(MyField)** function evaluated on the current row and two rows above the current row.

**Data used in examples:**

<table>
<thead>
<tr>
<th>MyField</th>
<th>RangeNullCount(Above(Sum(MyField),0,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Returns 2 because there are no rows above this row so 2 of the 3 values are missing (=NULL).</td>
</tr>
<tr>
<td>'abc'</td>
<td>Returns 1 because there is only one row above the current row, so one of the three values is missing (=NULL).</td>
</tr>
<tr>
<td>8</td>
<td>Returns 0 because none of the three rows is a NULL value.</td>
</tr>
<tr>
<td>null</td>
<td>Returns 1 because the current row is a NULL value.</td>
</tr>
<tr>
<td>'xyz'</td>
<td>Returns 1 because the row above is a NULL value.</td>
</tr>
<tr>
<td>9</td>
<td>Returns 1 because the value two rows above the current row is a NULL value.</td>
</tr>
</tbody>
</table>

Data used in examples:

RangeTab:

```plaintext
LOAD = INLINE [
    MyField
    10
    'abc'
    8
    null()
    'xyz'
    9
    ];
```

**See also:**

- **NullCount - chart function (page 176)**
RangeNumericCount

RangeNumericCount() finds the number of numeric values in an expression or field.

Syntax:

RangeNumericCount(first_expr[, Expression])

Return data type: integer

Arguments:

The argument expressions of this function may contain inter-record functions with a third optional parameter, which in themselves return a range of values.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RangeNumericCount(1,2,4)</td>
<td>Returns 3</td>
</tr>
<tr>
<td>RangeNumericCount(5,'abc')</td>
<td>Returns 1</td>
</tr>
<tr>
<td>RangeNumericCount(null())</td>
<td>Returns 0</td>
</tr>
</tbody>
</table>

Example with expression:

RangeNumericCount (Above(MaxString(MyField),0,3))

Returns the number of numeric values in the three results of the MaxString(MyField) function evaluated on the current row and two rows above the current row.

Data used in examples:

Disable sorting of MyField to ensure that example works as expected.

<table>
<thead>
<tr>
<th>MyField</th>
<th>RangeNumericCount(Above(MaxString(MyField),0,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>abc</td>
<td>1</td>
</tr>
</tbody>
</table>
Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>MyField</th>
<th>RangeNumericCount(Above(MaxString(MyField),0,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>def</td>
<td>1</td>
</tr>
<tr>
<td>xyz</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

See also:

- NumericCount - chart function (page 178)

RangeOnly

RangeOnly() is a dual function that returns a value if the expression evaluates to one unique value. If this is not the case then NULL is returned.

Syntax:

```
RangeOnly(first_expr[, Expression])
```

Return data type: dual

Arguments:

The argument expressions of this function may contain inter-record functions with a third optional parameter, which in themselves return a range of values.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RangeOnly (1,2,4)</td>
<td>Returns NULL</td>
</tr>
<tr>
<td>RangeOnly (5,'abc')</td>
<td>Returns NULL</td>
</tr>
<tr>
<td>RangeOnly (null() , 'abc')</td>
<td>Returns 'abc'</td>
</tr>
<tr>
<td>RangeOnly(10,10,10)</td>
<td>Returns 10</td>
</tr>
</tbody>
</table>
See also:

- Only - chart function (page 163)

**RangeSkew**

*RangeSkew()* returns the value corresponding to the skewness of a range of numbers.

**Syntax:**

```
RangeSkew(first_expr[, Expression])
```

**Return data type:** numeric

**Arguments:**

The argument expressions of this function may contain inter-record functions with a third optional parameter, which in themselves return a range of values.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

**Limitations:**

If no numeric value is found, NULL is returned.

**Examples and results:**

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>rangeskew (1,2,4)</td>
<td>Returns 0.93521952958283</td>
</tr>
<tr>
<td>rangeskew (above (SalesValue,0,3))</td>
<td>Returns a sliding skewness of the range of three values returned from the above() function calculated on the current row and the two rows above the current row.</td>
</tr>
</tbody>
</table>

**Data used in example:**

<table>
<thead>
<tr>
<th>CustID</th>
<th>RangeSkew(Above(SalesValue,0,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-20</td>
<td>-,-,0.5676,0.8455,1.0127,-0.8741,1.7243,-1.7186,1.5518,1.4332,0,1.1066,1.3458,1.5636,1.5439,0.6952,-0.3766</td>
</tr>
</tbody>
</table>

`SalesTable:
LOAD recno() as CustID," inline [SalesValue`
5 Functions in scripts and chart expressions

See also:

- *Skew - chart function* (page 235)

RangeStdev

**RangeStdev()** finds the standard deviation of a range of numbers.

**Syntax:**

```
RangeStdev(first_expr[, Expression])
```

**Return data type:** numeric

**Arguments:**

The argument expressions of this function may contain inter-record functions with a third optional parameter, which in themselves return a range of values.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

**Limitations:**

If no numeric value is found, NULL is returned.

**Examples and results:**
5  Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>RangeStdev(1,2,4)</code></td>
<td>Returns <code>1.5275252316519</code></td>
</tr>
<tr>
<td><code>RangeStdev(null)</code></td>
<td>Returns NULL</td>
</tr>
<tr>
<td><code>RangeStdev(above(SalesValue),0,3))</code></td>
<td>Returns a sliding standard of the range of three values returned from the above() function calculated on the current row and the two rows above the current row.</td>
</tr>
</tbody>
</table>

Data used in example:

<table>
<thead>
<tr>
<th>CustID</th>
<th>RangeStdev(SalesValue, 0,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-20</td>
<td>-43.841, 34.192, 18.771, 20.953, 41.138, 47.655, 36.116, 32.716, 25.325, 38,000, 27.737, 35.553, 33.650, 42.532, 33.858, 32.146, 25.239, 35.595</td>
</tr>
</tbody>
</table>

SalesTable:

```
LOAD recno() as CustID, * inline [SalesValue
101
163
126
139
167
86
83
22
32
70
108
124
176
113
95
32
42
92
61
21
] ;
```

See also:

- `Stdev - chart function (page 238)`

RangeSum

`RangeSum()` returns the sum of a range of values. All non-numeric values are treated as 0, unlike the `+` operator.

Syntax:
5  Functions in scripts and chart expressions

**RangeSum(first_expr[, Expression])**

Return data type: numeric

Arguments:

The argument expressions of this function may contain inter-record functions with a third optional parameter, which in themselves return a range of values.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

Limitations:

The RangeSum function treats all non-numeric values as 0, unlike the + operator.

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RangeSum (1,2,4)</td>
<td>Returns 7</td>
</tr>
<tr>
<td>RangeSum (5,'abc')</td>
<td>Returns 5</td>
</tr>
<tr>
<td>RangeSum (null( ))</td>
<td>Returns 0</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

RangeTab3:
LOAD recno() as RangeID, Rangesum(Field1,Field2,Field3) as MyRangeSum
INLINE [
Field1, Field2, Field3
10,5,6
2,3,7
8,2,8
18,11,9
5,5,9
9,4,2
];

The resulting table shows the returned values of MyRangeSum for each of the records in the table.

<table>
<thead>
<tr>
<th>RangeID</th>
<th>MyRangeSum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
</tr>
</tbody>
</table>

Example with expression:

RangeSum (Above(MyField,0,3))
Functions in scripts and chart expressions

Returns the sum of the three values of MyField: from the current row and two rows above the current row. By specifying the third argument as 3, the Above() function returns three values, where there are sufficient rows above, which are taken as input to the RangeSum() function.

Data used in examples:

<table>
<thead>
<tr>
<th>MyField</th>
<th>RangeSum(Above(MyField,0,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
</tr>
</tbody>
</table>

Data used in examples:

RangeTab:
LOAD * INLINE [
MyField
10
2
8
18
5
9
];

See also:

- Sum - chart function (page 166)
- Above - chart function (page 500)

RangeTextCount

RangeTextCount() returns the number of text values in an expression or field.

Syntax:

RangeTextCount(first_expr[, Expression])

Return data type: integer
5  Functions in scripts and chart expressions

Arguments:

The argument expressions of this function may contain inter-record functions with a third optional parameter, which in themselves return a range of values.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first_expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RangeTextCount (1,2,4)</td>
<td>Returns 0</td>
</tr>
<tr>
<td>RangeTextCount (5,'abc')</td>
<td>Returns 1</td>
</tr>
<tr>
<td>RangeTextCount (null())</td>
<td>Returns 0</td>
</tr>
</tbody>
</table>

Example with expression:

RangeTextCount (Above(MaxString(MyField),0,3))

Returns the number of text values within the three results of the MaxString(MyField) function evaluated over the current row and two rows above the current row.

Data used in examples:

Disable sorting of MyField to ensure that example works as expected.

<table>
<thead>
<tr>
<th>MyField</th>
<th>MaxString(MyField)</th>
<th>RangeTextCount(Above(Sum(MyField),0,3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>abc</td>
<td>abc</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>def</td>
<td>def</td>
<td>2</td>
</tr>
<tr>
<td>xyz</td>
<td>xyz</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

Data used in examples:

RangeTab:
LOAD * INLINE [
MyField
Functions in scripts and chart expressions

```
10
'abc'
8
null()
'xyz'
9
]
```

See also:

- TextCount - chart function (page 181)

**RangeXIRR**

*RangeXIRR()* returns the internal rate of return for a schedule of cash flows that is not necessarily periodic.

To calculate the internal rate of return for a series of periodic cash flows, use the *RangeIRR* function.

**Syntax:**

```
RangeXIRR(values, dates[, Expression])
```

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>values</td>
<td>A cash flow or a series of cash flows that correspond to a schedule of payments in dates. Each value may be a single value or a range of values as returned by an inter-record function with a third optional parameter. The series of values must contain at least one positive and one negative value.</td>
</tr>
<tr>
<td>dates</td>
<td>A payment date or a schedule of payment dates that corresponds to the cash flow payments.</td>
</tr>
<tr>
<td>Expression</td>
<td>Optional expressions or fields containing the range of data to be measured.</td>
</tr>
</tbody>
</table>

**Limitations:**

Text values, NULL values and missing values are disregarded.

All payments are discounted based on a 365-day year.

**Examples**

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RangeXIRR(-2500, '2008-01-01', 2750, '2008-09-01')</td>
<td>Returns 0.1532</td>
</tr>
</tbody>
</table>
Functions in scripts and chart expressions

### Examples

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

```plaintext
RangeTab3:
LOAD *, recno() as RangeID,
RangeXIRR(Field1,Field2,Field3) as RangeXIRR;
LOAD * INLINE [
  Field1|Field2|Field3
  10|5|-6000
  2|NULL|7000
  8|'abc'|8000
  18|11|9000
  5|5|9000
  9|4|2000
] (delimiter is '|');
```

The resulting table shows the returned values of RangeXIRR for each of the records in the table.

<table>
<thead>
<tr>
<th>RangeID</th>
<th>RangeXIRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>0.5893</td>
</tr>
<tr>
<td>3</td>
<td>0.5089</td>
</tr>
<tr>
<td>4</td>
<td>0.4476</td>
</tr>
<tr>
<td>5</td>
<td>0.4476</td>
</tr>
<tr>
<td>6</td>
<td>2.5886</td>
</tr>
</tbody>
</table>

### See also:

- `RangeIRR` (page 554)

### RangeXNPV

`RangeXNPV()` returns the net present value for a schedule of cash flows that is not necessarily periodic. The result has a default number format of money. To calculate the net present value for a series of periodic cash flows, use the `RangeNPV` function.

### Syntax:

```plaintext
RangeXNPV(discount_rate, values, dates[, Expression])
```

**Return data type:** numeric

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>discount_rate</td>
<td>The interest rate per period.</td>
</tr>
<tr>
<td>values</td>
<td>A cash flow or a series of cash flows that corresponds to a schedule of payments in dates. Each value may be a single value or a range of values as returned by an inter-record function with a third optional parameter. The series of values must contain at least one positive and one negative value.</td>
</tr>
<tr>
<td>dates</td>
<td>A payment date or a schedule of payment dates that corresponds to the cash flow payments.</td>
</tr>
</tbody>
</table>
5 Functions in scripts and chart expressions

Limitations:

Text values, NULL values and missing values are disregarded.

All payments are discounted based on a 365-day year.

<table>
<thead>
<tr>
<th>Examples</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RangeXNPV(0.1, -2500,'2008-01-01',2750,'2008-09-01')</td>
<td>Returns 80.25</td>
</tr>
</tbody>
</table>

Add the example script to your app and run it. Then add, at least, the fields listed in the results column to a sheet in your app to see the result.

```
RangeTab3:
LOAD *, recno() as RangeID, RangeXNPV(Field1,Field2,Field3) as RangeNPV;
LOAD * INLINE [
  Field1|Field2|Field3
  10|5|6000
  2|NULL|7000
  8|'abc'|8000
  18|11|9000
  5|5|9000
  9|4|2000
] (delimiter is '|');
```

5.20 Ranking functions in charts

These functions can only be used in chart expressions.

Suppression of zero values is automatically disabled when these functions are used. NULL values are disregarded.

Rank

`Rank()` evaluates the rows of the chart in the expression, and for each row, displays the relative position of the value of the dimension evaluated in the expression. When evaluating the expression, the function compares the result with the result of the other rows containing the current column segment and returns the ranking of the current row within the segment.

```
Rank - chart function([TOTAL [<fld (, fld)>]] expr[, mode[, fmt]])
```

HRank

`HRank()` evaluates the expression, and compares the result with the result of the other columns containing the current row segment of a pivot table. The function then returns the ranking of the current column within the segment.

```
HRank - chart function([TOTAL] expr[, mode[, fmt]])
```
Rank - chart function

**Rank()** evaluates the rows of the chart in the expression, and for each row, displays the relative position of the value of the dimension evaluated in the expression. When evaluating the expression, the function compares the result with the result of the other rows containing the current column segment and returns the ranking of the current row within the segment.

For charts other than tables, the current column segment is defined as it appears in the chart's straight table equivalent.

**Syntax:**

```
Rank([TOTAL [<fld[, fld]>]] expr[, mode[, fmt]])
```

**Return data type:** dual

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>mode</td>
<td>Specifies the number representation of the function result.</td>
</tr>
<tr>
<td>fmt</td>
<td>Specifies the text representation of the function result.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the chart is one-dimensional, or if the expression is preceded by the TOTAL qualifier, the function is evaluated across the entire column. If the table or table equivalent has multiple vertical dimensions, the current column segment will include only rows with the same values as the current row in all dimension columns except for the column showing the last dimension in the inter-field sort order. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

The ranking is returned as a dual value, which in the case when each row has a unique ranking, is an integer between 1 and the number of rows in the current column segment.

In the case where several rows share the same ranking, the text and number representation can be controlled with the mode and fmt parameters.

**mode**

The second argument, mode, can take the following values:
5 Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (default)</td>
<td>If all ranks within the sharing group fall on the low side of the middle value of the entire ranking, all rows get the lowest rank within the sharing group. If all ranks within the sharing group fall on the high side of the middle value of the entire ranking, all rows get the highest rank within the sharing group. If ranks within the sharing group span over the middle value of the entire ranking, all rows get the value corresponding to the average of the top and bottom ranking in the entire column segment.</td>
</tr>
<tr>
<td>1</td>
<td>Lowest rank on all rows.</td>
</tr>
<tr>
<td>2</td>
<td>Average rank on all rows.</td>
</tr>
<tr>
<td>3</td>
<td>Highest rank on all rows.</td>
</tr>
<tr>
<td>4</td>
<td>Lowest rank on first row, then incremented by one for each row.</td>
</tr>
</tbody>
</table>

**fmt**

The third argument, fmt, can take the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (default)</td>
<td>Low value - high value on all rows (for example 3 - 4).</td>
</tr>
<tr>
<td>1</td>
<td>Low value on all rows.</td>
</tr>
<tr>
<td>2</td>
<td>Low value on first row, blank on the following rows.</td>
</tr>
</tbody>
</table>

The order of rows for mode 4 and fmt 2 is determined by the sort order of the chart dimensions.

**Examples and results:**

Create two visualizations from the dimensions Product and Sales and another from Product and UnitSales. Add measures as shown in the following table.
### 5 Functions in scripts and chart expressions

#### Examples

| Create a table with the dimensions Customer and Sales and the measure Rank (Sales) | The result depends on the sort order of the dimensions. If the tables is sorted on Customer, the table lists all the values of Sales for Astrida, then Betacab, and so on. The results for Rank(Sales) will show 10 for the Sales value 12, 9 for the Sales value 13, and so on, with the rank value of 1 returned for the Sales value 78. Note that even though there are 12 Sales values, only 11 rows are shown because two values of Sales are the same (78). The next column segment begins with Betacab, for which the first value of Sales in the segment is 12. The rank value of Rank(Sales) for this is given as 11. If the table is sorted on Sales, the column segments consist of the values of Sales and the corresponding Customer. Because there are two Sales values of 12 (for Astrida and Betacab), the value of Rank(Sales) for that column segment is 1-2, for each value of Customer. This is because there are two values of Customer for the Sales value 12. If there had been 4 values, the result would be 1-4, for all rows. This shows what the result looks like for the default value (0) of the argument fmt. |
| Replace the dimension Customer with Product and add the measure Rank (Sales,1,2) | This returns 1 on the first row on each column segment and leaves all other rows blank, because arguments mode and fmt are set to 1 and 2 respectively. |

#### Data used in examples:

**ProductData:**

Load * inline [ Customer|Product|UnitSales|UnitPrice  
Astrida|AA|4|16  
Astrida|AA|10|15  
Astrida|BB|9|9  
Betacab|BB|5|10  
Betacab|CC|2|20  
Betacab|DD|0|25  
Canutility|AA|8|15  
Canutility|CC|0|19  ] (delimiter is '|');

**Sales2013:**

crosstable (Month, Sales) LOAD * inline [  
Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec  
Astrida|46|60|70|13|78|20|45|65|78|12|78|22  
Betacab|65|56|22|79|12|56|45|24|32|78|55|15  
Canutility|77|68|34|91|24|68|57|36|44|90|67|27  
Divadip|57|36|44|90|67|27|57|68|47|90|80|94  ] (delimiter is '|');
5  Functions in scripts and chart expressions

See also:

- Sum - chart function (page 166)

HRank - chart function

HRank() evaluates the expression, and compares the result with the result of the other columns containing the current row segment of a pivot table. The function then returns the ranking of the current column within the segment.

Syntax:

```
HRank([ total ] expression [, mode [, format ] ])
```

Return data type: dual

This function only works in pivot tables. In all other chart types it returns NULL.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expression</td>
<td>The expression or field containing the data to be measured.</td>
</tr>
<tr>
<td>mode</td>
<td>Specifies the number representation of the function result.</td>
</tr>
<tr>
<td>format</td>
<td>Specifies the text representation of the function result.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>If the chart is one-dimensional, or if the expression is preceded by the TOTAL qualifier, the function is evaluated across the entire column. If the table or table equivalent has multiple vertical dimensions, the current column segment will include only rows with the same values as the current row in all dimension columns except for the column showing the last dimension in the inter-field sort order. The TOTAL qualifier may be followed by a list of one or more field names within angle brackets &lt;fld&gt;. These field names should be a subset of the chart dimension variables.</td>
</tr>
</tbody>
</table>

If the pivot table is one-dimensional or if the expression is preceded by the total qualifier, the current row segment is always equal to the entire row. If the pivot table has multiple horizontal dimensions, the current row segment will include only columns with the same values as the current column in all dimension rows except for the row showing the last horizontal dimension of the inter-field sort order.

The ranking is returned as a dual value, which in the case when each column has a unique ranking will be an integer between 1 and the number of columns in the current row segment.
In the case where several columns share the same ranking, the text and number representation can be controlled with the `mode` and `format` arguments.

The second argument, `mode`, specifies the number representation of the function result:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (default)</td>
<td>If all ranks within the sharing group fall on the low side of the middle value of the entire ranking, all columns get the lowest rank within the sharing group. If all ranks within the sharing group fall on the high side of the middle value of the entire ranking, all columns get the highest rank within the sharing group. If ranks within the sharing group span over the middle value of the entire ranking, all rows get the value corresponding to the average of the top and bottom ranking in the entire column segment.</td>
</tr>
<tr>
<td>1</td>
<td>Lowest rank on all columns in the group.</td>
</tr>
<tr>
<td>2</td>
<td>Average rank on all columns in the group.</td>
</tr>
<tr>
<td>3</td>
<td>Highest rank on all columns in the group.</td>
</tr>
<tr>
<td>4</td>
<td>Lowest rank on first column, then incremented by one for each column in the group.</td>
</tr>
</tbody>
</table>

The third argument, `format`, specifies the text representation of the function result:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (default)</td>
<td>Low value &amp;' - &amp;' high value on all columns in the group (for example 3 - 4).</td>
</tr>
<tr>
<td>1</td>
<td>Low value on all columns in the group.</td>
</tr>
<tr>
<td>2</td>
<td>Low value on first column, blank on the following columns in the group.</td>
</tr>
</tbody>
</table>

The order of columns for `mode` 4 and `format` 2 is determined by the sort order of the chart dimensions.

**Examples:**

```
HRank( sum( Sales ))
HRank( sum( Sales ), 2 )
HRank( sum( Sales ), 0, 1 )
```

### 5.21 Statistical distribution functions

The statistical distribution functions described below are all implemented in Qlik Sense using the Cephes library. For references and details on algorithms used, accuracy etc, see [http://www.netlib.org/cephes/](http://www.netlib.org/cephes/). The Cephes function library is used by permission.

All functions can be used in both the data load script and in chart expressions.
Statistical distribution functions overview

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

**CHIDIST**
This function returns the one-tailed probability of the chi2 distribution. The chi2 distribution is associated with a chi2 test.

**CHIDIST (value, degrees_freedom)**

**CHIINV**
This function returns the inverse of the one-tailed probability of the chi2 distribution.

**CHIINV (prob, degrees_freedom)**

**NORMDIST**
This function returns the cumulative normal distribution for the specified mean and standard deviation. If mean = 0 and standard_dev = 1, the function returns the standard normal distribution.

**NORMDIST (value, mean, standard_dev)**

**NORMINV**
This function returns the inverse of the normal cumulative distribution for the specified mean and standard deviation.

**NORMINV (prob, mean, standard_dev)**

**TDIST**
This function returns the probability for the student t-distribution where a numeric value is a calculated value of t for which the probability is to be computed.

**TDIST (value, degrees_freedom, tails)**

**TINV**
This function returns the t-value of the student's t-distribution as a function of the probability and the degrees of freedom.

**TINV (prob, degrees_freedom)**

**FDIST**
This function returns the F-distribution.

**FDIST (value, degrees_freedom1, degrees_freedom2)**

**FINV**
This function returns the inverse of the F-distribution.

**FINV (prob, degrees_freedom1, degrees_freedom2)**
5  Functions in scripts and chart expressions

CHIDIST
This function returns the one-tailed probability of the chi2 distribution. The chi2 distribution is associated with a chi2 test.

Syntax:

CHIDIST (value, degrees_freedom)

This function is related to the CHIINV function in the following way:

If prob = CHIDIST(value, df), then CHIINV(prob, df) = value.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The value at which you want to evaluate the distribution. The value must not be negative.</td>
</tr>
<tr>
<td>degrees_freedom</td>
<td>A positive integer stating the number of degrees of freedom. Both arguments must be numeric, else NULL will be returned.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIDIST(8, 15)</td>
<td>Returns 0.9237827</td>
</tr>
</tbody>
</table>

CHIINV
This function returns the inverse of the one-tailed probability of the chi2 distribution.

Syntax:

CHIINV (prob, degrees_freedom)

This function is related to the CHIDIST function in the following way:

If prob = chidist(value, df), then chiinv(prob, df) = value.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob</td>
<td>A probability associated with the chi2 distribution. It must be a number between 0 and 1.</td>
</tr>
<tr>
<td>degrees_freedom</td>
<td>An integer stating the number of degrees of freedom.</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

Limitations:

All arguments must be numeric, else NULL will be returned.

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIINV(0.9237827, 15)</td>
<td>Returns 8.0000001</td>
</tr>
</tbody>
</table>

FDIST

This function returns the F-distribution.

Syntax:

```
FDIST(value, degrees_freedom1, degrees_freedom2)
```

This function is related to the FINV function in the following way:

If prob = FDIST(value, df1, df2), then FINV(prob, df1, df2) = value.

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The value at which you want to evaluate the distribution. Value must not be</td>
</tr>
<tr>
<td>degrees_freedom1</td>
<td>A positive integer stating the number of numerator degrees of freedom.</td>
</tr>
<tr>
<td>degrees_freedom2</td>
<td>A positive integer stating the number of denominator degrees of freedom.</td>
</tr>
</tbody>
</table>

Limitations:

All arguments must be numeric, else NULL will be returned.

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDIST( 15, 8, 6 )</td>
<td>Returns 0.0019369</td>
</tr>
</tbody>
</table>

FINV

This function returns the inverse of the F-distribution.

Syntax:
5  Functions in scripts and chart expressions

FINV (prob, degrees_freedom1, degrees_freedom2)

This function is related to the FDIST function in the following way:

\[ \text{If } \text{prob} = \text{fdist(value, df1, df2)}, \text{ then } \text{finv(prob, df1, df2)} = \text{value}. \]

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob</td>
<td>A probability associated with the F-distribution and must be a number between 0 and 1.</td>
</tr>
<tr>
<td>degrees_freedom</td>
<td>An integer stating the number of degrees of freedom.</td>
</tr>
</tbody>
</table>

Limitations:

All arguments must be numeric, else NULL will be returned.

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINV(0.0019369, 8, 5)</td>
<td>Returns 15.0000197</td>
</tr>
</tbody>
</table>

NORMDIST

This function returns the cumulative normal distribution for the specified mean and standard deviation. If mean = 0 and standard_dev = 1, the function returns the standard normal distribution.

Syntax:

NORMDIST(value, mean, standard_dev)

This function is related to the NORMINV function in the following way:

\[ \text{If } \text{prob} = \text{normdist(value, m, sd)}, \text{ then } \text{norminv(prob, m, sd)} = \text{value}. \]

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The value at which you want to evaluate the distribution.</td>
</tr>
<tr>
<td>mean</td>
<td>A value stating the arithmetic mean for the distribution.</td>
</tr>
<tr>
<td>standard_dev</td>
<td>A positive value stating the standard deviation of the distribution.</td>
</tr>
</tbody>
</table>

Limitations:
All arguments must be numeric, else NULL will be returned.

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMDIST(0.5, 0, 1)</td>
<td>Returns 0.691462</td>
</tr>
</tbody>
</table>

**NORMINV**

This function returns the inverse of the normal cumulative distribution for the specified mean and standard deviation.

**Syntax:**

```
NORMINV(prob, mean, standard_dev)
```

This function is related to the `NORMDIST` function in the following way:

If \( \text{prob} = \text{NORMDIST}(\text{value}, \text{m}, \text{sd}) \), then \( \text{NORMINV}(\text{prob}, \text{m}, \text{sd}) = \text{value} \).

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob</td>
<td>A probability associated with the normal distribution. It must be a number between 0 and 1.</td>
</tr>
<tr>
<td>mean</td>
<td>A value stating the arithmetic mean for the distribution.</td>
</tr>
<tr>
<td>standard_dev</td>
<td>A positive value stating the standard deviation of the distribution.</td>
</tr>
</tbody>
</table>

**Limitations:**

All arguments must be numeric, else NULL will be returned.

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMINV(0.6914625, 0, 1)</td>
<td>Returns 0.4999717</td>
</tr>
</tbody>
</table>

**TDIST**

This function returns the probability for the student t-distribution where a numeric value is a calculated value of t for which the probability is to be computed.

**Syntax:**

```
TDIST(value, degrees_freedom, tails)
```
This function is related to the **TINV** function in the following way:

\[ \text{If } \text{prob} = \text{tdist}(\text{value, df}, 2), \text{ then } \text{tinv}(\text{prob, df}) = \text{value}. \]

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The value at which you want to evaluate the distribution and must not be negative.</td>
</tr>
<tr>
<td>degrees_freedom</td>
<td>A positive integer stating the number of degrees of freedom.</td>
</tr>
<tr>
<td>tails</td>
<td>Must be either 1 (one-tailed distribution) or 2 (two-tailed distribution).</td>
</tr>
</tbody>
</table>

**Limitations:**

All arguments must be numeric, else NULL will be returned.

**Examples and results:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>tdist(1, 30, 2)</td>
<td>Returns 0.3253086</td>
</tr>
</tbody>
</table>

**TINV**

This function returns the t-value of the student's t-distribution as a function of the probability and the degrees of freedom.

**Syntax:**

\[ \text{TINV (prob, degrees\_freedom)} \]

This function is related to the **TDIST** function in the following way:

\[ \text{If } \text{prob} = \text{tdist}(\text{value, df}, 2), \text{ then } \text{tinv}(\text{prob, df}) = \text{value}. \]

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob</td>
<td>A two-tailed probability associated with the t-distribution. It must be a number between 0 and 1.</td>
</tr>
<tr>
<td>degrees_freedom</td>
<td>An integer stating the number of degrees of freedom.</td>
</tr>
</tbody>
</table>

**Limitations:**

All arguments must be numeric, else NULL will be returned.
5 Functions in scripts and chart expressions

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>TINV(0.3253086, 30 )</td>
<td>Returns 1</td>
</tr>
</tbody>
</table>

5.22 String functions

This section describes functions for handling and manipulating strings. In the functions below, the parameters are expressions where s should be interpreted as a string.

All functions can be used in both the data load script and in chart expressions, except for Evaluate which can only be used in the data load script.

String functions overview

Each function is described further after the overview. You can also click the function name in the syntax to immediately access the details for that specific function.

**ApplyCodepage**

Applies a different codepage to the field or text stated in the expression. The codepage must be in number format.

**ApplyCodepage(text, codepage)**

**Capitalize**

This function returns the string s with all words capitalized.

**Capitalize(s)**

**Chr**

This function returns the ASCII character corresponding to number n. The result is a string.

**Chr(n)**

**Evaluate**

This script function returns the evaluated result of the expression if the text string s can be evaluated as a valid Qlik Sense expression. If s is not a valid expression, NULL is returned.

**Evaluate(s)**

**FindOneOf**

This function returns the position of the n:th occurrence in the string text of any of the characters found in the string characterset. If n is omitted, the position of the first occurrence is returned. If there no matching string is found, 0 is returned.

**FindOneOf(text, characterset [, n])**

**Hash128**
5 Functions in scripts and chart expressions

This function returns a 128-bit hash of the combined input expression values. The result is a string.

\[
\text{Hash128 (expression , expression)}
\]

Hash160
This function returns a 160-bit hash of the combined input expression values. The result is a string.

\[
\text{Hash160 (expression , expression)}
\]

Hash256
This function returns a 256-bit hash of the combined input expression values. The result is a string.

\[
\text{Hash256 (expression , expression )}
\]

Index
This function returns the starting position of the \(n\):th occurrence of substring \(s_2\) in string \(s_1\). If \(n\) is omitted, the first occurrence is assumed. If \(n\) is negative, the search is made starting from the end of string \(s_1\). The result is an integer. The positions in the string are numbered from 1 and up.

\[
\text{Index ( s1 , s2 [ , n] )}
\]

KeepChar
This function returns the string \(s_1\) less all characters not contained in string \(s_2\).

\[
\text{KeepChar (s1 , s2)}
\]

Left
This function returns a string consisting of the first \(n\) characters of \(s\).

\[
\text{Left ( s , n )}
\]

Len
This function returns the length of string \(s\). The result is an integer.

\[
\text{Len ( s )}
\]

Lower
This function forces lower case for all data in the expression.

\[
\text{Lower ( textexpression )}
\]

LTrim
This function returns the string \(s\) trimmed of any leading spaces.

\[
\text{LTrim (s)}
\]

Mid
This function returns the string starting at character \(n_1\) with the length of \(n_2\) characters. If \(n_2\) is omitted, the function returns the rightmost part of the string starting at character \(n_1\). The positions in the string are
numbered from 1 and up.

**Mid** *(s, n1[, n2]*)

This function returns the ASCII number of first character of string *s*. The result is an integer.

**Ord** *(s)*

This function returns the string *s* less all characters contained in string *s2*.

**PurgeChar** *(s1, s2)*

This function forms a string consisting of the string *s* repeated *n* times.

**Repeat** *(s, n)*

This function returns a string after replacing all occurrences of a given substring within the string *s* with another substring. The function is non-recursive and works from left to right.

**Replace** *(s, fromstring, toString)*

This function returns a string consisting of the last *n* characters of *s*.

**Right** *(s, n)*

This function returns the string *s* trimmed of any trailing spaces.

**RTrim** *(s)*

In its three-parameter version, this function returns a given substring from a larger string *s* with delimiter *'delimiter'*. *Index* is an optional integer denoting which of the substrings should be returned. If *index* is omitted when **SubField** is used in a field expression in a LOAD statement, the **SubField** function will cause the LOAD statement to automatically generate one full record of input data for each sub-string that can be found in *s*.

In its two-parameter version, the **SubField** function generates one record for each substring that can be taken from a larger string *s* with the delimiter *'delimiter'*. If several **SubField** functions are used in the same LOAD statement, the Cartesian product of all combinations will be generated.

**SubField** *(s, 'delimiter' [, index]*)

This function returns the number of times the string substring appears within the string text. The result is an
integer. If there is no match, 0 is returned.

**SubStringCount** ( text , substring)

**TextBetween**
This function returns the text between the n:th occurrence of beforetext and the immediately following occurrence of aftertext within the string s.

**TextBetween** (s , beforetext , aftertext [, n ])

**Trim**
This function returns the string s trimmed of any leading and trailing spaces.

**Trim** ( s )

**Upper**
This function forces upper case for all data in the expression.

**Upper** ( textexpression )

**Capitalize**
This function returns the string s with all words capitalized.

**Syntax:**

```
Capitalize( s )
```

**Examples and results:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capitalize ( 'my little pony' )</td>
<td>Returns 'My Little Pony'</td>
</tr>
<tr>
<td>Capitalize ( 'AA bb cc Dd' )</td>
<td>Returns 'Aa Bb Cc Dd'</td>
</tr>
</tbody>
</table>

**Chr**
This function returns the ASCII character corresponding to number n. The result is a string.

**Syntax:**

```
Chr( n )
```

**Examples and results:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chr(65)</td>
<td>Returns the string 'A'</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

Evaluate
This script function returns the evaluated result of the expression if the text string s can be evaluated as a valid Qlik Sense expression. If s is not a valid expression, NULL is returned.

Syntax:
Evaluate( s )

This string function can not be used in chart expressions.

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate ( 5 * 8 )</td>
<td>Returns '40'</td>
</tr>
</tbody>
</table>

FindOneOf
This function returns the position of the n:th occurrence in the string text of any of the characters found in the string characterset. If n is omitted, the position of the first occurrence is returned. If there no matching string is found, 0 is returned.

Syntax:
FindOneOf(text , characterset [ , n])

Argument          | Description                        |
-------------------|------------------------------------|
text               | The original string.               |
characterset       | A set of characters to evaluate.   |
n                   | The number of occurrences of the character to evaluate. |

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>FindOneOf( 'my example text string', 'et%$' )</td>
<td>Returns '4'</td>
</tr>
<tr>
<td>FindOneOf( 'my example text string', 'et%$' , 3)</td>
<td>Returns '12'</td>
</tr>
<tr>
<td>FindOneOf( 'my example text string', '=%&amp;' )</td>
<td>Returns '0'</td>
</tr>
</tbody>
</table>

Hash128
This function returns a 128-bit hash of the combined input expression values. The result is a string.

Syntax:
5  Functions in scripts and chart expressions

Hash128(expression {, expression})

Example:

Hash128( 'abc', 'xyz', '123' )
Hash128( Region, Year, Month )

Hash160
This function returns a 160-bit hash of the combined input expression values. The result is a string.

Syntax:

Hash160(expression {, expression})

Example:

Hash160( Region, Year, Month )

Hash256
This function returns a 256-bit hash of the combined input expression values. The result is a string.

Syntax:

Hash256(expression {, expression} )

Example:

Hash256( Region, Year, Month )

Index
This function returns the starting position of the n:th occurrence of substring s2 in string s1. If n is omitted, the first occurrence is assumed. If n is negative, the search is made starting from the end of string s1. The result is an integer. The positions in the string are numbered from 1 and up.

Syntax:

Index( s1 , s2 [, n] )

Examples and results:
For a more complicated example, see the index function below.
### Functions in scripts and chart expressions

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index('abcdefg', 'cd')</code></td>
<td>Returns 3</td>
</tr>
<tr>
<td><code>Index('abcdefg', 'b', 2)</code></td>
<td>Returns 6</td>
</tr>
<tr>
<td><code>Index('abcdefg', 'b', -2)</code></td>
<td>Returns 2</td>
</tr>
<tr>
<td><code>Left(Date, Index(Date, '-') - 1)</code> where <code>Date = 1997-07-14</code></td>
<td>Returns 1997</td>
</tr>
<tr>
<td><code>Mid(Date, Index(Date, '-', 2) - 2, 2)</code> where <code>Date = 1997-07-14</code></td>
<td>Returns 07</td>
</tr>
</tbody>
</table>

#### KeepChar

This function returns the string `s1` less all characters not contained in string `s2`.

**Syntax:**

```
KeepChar(s1, s2)
```

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>KeepChar('a1b2c3', '123')</code></td>
<td>Returns '123'</td>
</tr>
</tbody>
</table>

#### Left

This function returns a string consisting of the first `n` characters of `s`.

**Syntax:**

```
Left(s, n)
```

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Left('abcdef', 3)</code></td>
<td>Returns 'abc'</td>
</tr>
<tr>
<td><code>Left(Date, 4)</code> where <code>Date = 1997-07-14</code></td>
<td>Returns '1997'</td>
</tr>
</tbody>
</table>

#### See also:

- *Index (page 596)*

#### Len

This function returns the length of string `s`. The result is an integer.
5 Functions in scripts and chart expressions

Syntax:

<table>
<thead>
<tr>
<th>Function</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Len</td>
<td>Len(s)</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Len(Name) where Name = 'Peter'</td>
<td>Returns '5'</td>
</tr>
</tbody>
</table>

Lower

This function forces lower case for all data in the expression.

Syntax:

<table>
<thead>
<tr>
<th>Function</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>Lower(textexpression)</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower('abcD')</td>
<td>Returns 'abcd'</td>
</tr>
</tbody>
</table>

LTrim

This function returns the string s trimmed of any leading spaces.

Syntax:

<table>
<thead>
<tr>
<th>Function</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTrim</td>
<td>LTrim(s)</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTrim( ' abc' )</td>
<td>Returns 'abc'</td>
</tr>
<tr>
<td>LTrim( 'abc ' )</td>
<td>Returns 'abc '</td>
</tr>
</tbody>
</table>

Mid

This function returns the string starting at character n1 with the length of n2 characters. If n2 is omitted, the function returns the rightmost part of the string starting at character n1. The positions in the string are numbered from 1 and up.

Syntax:

<table>
<thead>
<tr>
<th>Function</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid</td>
<td>Mid(s, n1[, n2])</td>
</tr>
</tbody>
</table>
5  Functions in scripts and chart expressions

Examples and results:
For a more complicated example, see the index function.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid('abcdef', 3 )</td>
<td>Returns 'cdef'</td>
</tr>
<tr>
<td>Mid('abcdef', 3, 2 )</td>
<td>Returns 'cd'</td>
</tr>
<tr>
<td>Mid( Date, 3 ) where Date = 970714</td>
<td>Returns '0714'</td>
</tr>
<tr>
<td>Mid( Date, 3, 2 ) where Date = 970714</td>
<td>Returns '07'</td>
</tr>
</tbody>
</table>

See also:

- Index (page 596)

Ord
This function returns the ASCII number of first character of string s. The result is an integer.

Syntax:

ord( s )

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ord('A')</td>
<td>Returns the number '65'</td>
</tr>
</tbody>
</table>

PurgeChar
This function returns the string s1 less all characters contained in string s2.

Syntax:

PurgeChar(s1, s2)

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>PurgeChar( 'a1b2c3','123' )</td>
<td>Returns 'abc'</td>
</tr>
</tbody>
</table>

Repeat
This function forms a string consisting of the string s repeated n times.
Functions in scripts and chart expressions

Syntax:

Repeat( s, n )

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeat(' * ', rating) when rating = 4</td>
<td>Returns '****'</td>
</tr>
</tbody>
</table>

Replace

This function returns a string after replacing all occurrences of a given substring within the string s with another substring. The function is non-recursive and works from left to right.

Syntax:

Replace(s, fromstring, tostring)

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>The original string.</td>
</tr>
<tr>
<td>fromstring</td>
<td>A string which may occur one or more times within string.</td>
</tr>
<tr>
<td>tostring</td>
<td>The string which will replace all occurrences of fromstring within the string.</td>
</tr>
</tbody>
</table>

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace('abccde','cc','xyz')</td>
<td>Returns 'abxyzde'</td>
</tr>
</tbody>
</table>

Right

This function returns a string consisting of the last n characters of s.

Syntax:

Right( s, n )

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right('abcdef', 3)</td>
<td>Returns 'def'</td>
</tr>
<tr>
<td>Right( Date, 2 ) where Date = 1997-07-14</td>
<td>Returns '14'</td>
</tr>
</tbody>
</table>
RTrim
This function returns the string s trimmed of any trailing spaces.

Syntax:
RTrim( s )

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTrim( 'abc' )</td>
<td>Returns 'abc'</td>
</tr>
<tr>
<td>RTrim( 'abc ' )</td>
<td>Returns 'abc'</td>
</tr>
</tbody>
</table>

SubField
In its three-parameter version, this function returns a given substring from a larger string s with delimiter 'delimiter'. Index is an optional integer denoting which of the substrings should be returned. If index is omitted when subfield is used in a field expression in a LOAD statement, the subfield function will cause the LOAD statement to automatically generate one full record of input data for each sub-string that can be found in s.

In its two-parameter version, the subfield function generates one record for each substring that can be taken from a larger string s with the delimiter 'delimiter'. If several subfield functions are used in the same LOAD statement, the Cartesian product of all combinations will be generated.

Syntax:
SubField ( s, 'delimiter' [ , index ] )

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>subField(s, ';' ,2)</td>
<td>Returns 'cde' if S is 'abc;cde;efg'</td>
</tr>
<tr>
<td>subField(s, ';' ,1)</td>
<td>Returns NULL if S is an empty string</td>
</tr>
<tr>
<td>subField(s, ';' ,1)</td>
<td>Returns an empty string if S is ';'</td>
</tr>
</tbody>
</table>

SubStringCount
This function returns the number of times the string substring appears within the string text. The result is an integer. If there is no match, 0 is returned.

Syntax:
SubStringCount( text , substring)
5  Functions in scripts and chart expressions

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>SubStringCount( 'abcdefgdxzy', 'cd')</td>
<td>Returns '2'</td>
</tr>
</tbody>
</table>

TextBetween

This function returns the text between the \( n \)th occurrence of beforetext and the immediately following occurrence of aftertext within the string \( s \).

Syntax:

TextBetween(s, beforetext, aftertext [, n ])

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>TextBetween( '&lt;abc&gt;', '&lt;', '&gt;')</td>
<td>Returns 'abc'</td>
</tr>
<tr>
<td>TextBetween( '&lt;abc&gt;&lt;de&gt;', '&lt;', '&gt;', 2)</td>
<td>Returns 'de'</td>
</tr>
</tbody>
</table>

Trim

This function returns the string \( s \) trimmed of any leading and trailing spaces.

Syntax:

Trim(s)

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trim( ' abc ' )</td>
<td>Returns 'abc'</td>
</tr>
<tr>
<td>Trim( 'abc ' )</td>
<td>Returns 'abc'</td>
</tr>
<tr>
<td>Trim( ' abc ' )</td>
<td>Returns 'abc'</td>
</tr>
</tbody>
</table>

Upper

This function forces upper case for all data in the expression.

Syntax:

Upper( textexpression )
5 Functions in scripts and chart expressions

Examples and results:

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>upper(' abcD')</code></td>
<td>Returns 'ABCD'</td>
</tr>
</tbody>
</table>

5.23 System functions

System functions provide functions for accessing system, device and Qlik Sense app properties.

System functions overview

Some of the functions are described further after the overview. For those functions, you can click the function name in the syntax to immediately access the details for that specific function.

Author()

This function returns a string containing the author property of the current app. It can be used in both the data load script and in a chart expression.

- Author property can not be set in the current version of Qlik Sense. If you migrate a QlikView document, the author property will be retained.

ClientPlatform()

This function returns the user agent string of the client browser. It can be used in both the data load script and in a chart expression.

Example:

```
Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.114 Safari/537.36
```

ComputerName

This function returns a string containing the name of the computer as returned by the operating system. It can be used in both the data load script and in a chart expression.

DocumentName

This function returns a string containing the name of the current Qlik Sense app, without path but with extension. It can be used in both the data load script and in a chart expression.

DocumentPath

This function returns a string containing the full path to the current Qlik Sense app. It can be used in both the data load script and in a chart expression.
5 Functions in scripts and chart expressions

**DocumentPath( )**

*This function is not supported in standard mode.*

**DocumentTitle**
This function returns a string containing the title of the current Qlik Sense app. It can be used in both the data load script and in a chart expression.

**DocumentTitle( )**

**GetCollationLocale**
This script function returns the culture name of the collation locale that is used. If the variable CollationLocale has not been set, the actual user machine locale is returned.

**GetCollationLocale( )**

**GetObjectField**
This function returns the name of the dimension. `Index` is an optional integer denoting which of the used dimensions that should be returned.

**GetObjectField - chart function([[index]])**

**GetRegistryString**
This function returns the value of a key in the Windows registry. It can be used in both the data load script and in a chart expression.

**GetRegistryString(path, key)**

**OSUser**
This function returns a string containing the name of the current user as returned by the operating system. It can be used in both the data load script and in a chart expression.

**OSUser( )**

**ProductVersion**
This function returns the full Qlik Sense version and build number as a string.

**ProductVersion ()**

**ReloadTime**
This function returns a timestamp for when the last data load finished. It can be used in both the data load script and in a chart expression.

**ReloadTime( )**

**StateName**
This chart function returns the state name of the object in which it is used. The Qlik Sense developer can use this function to have dynamic text and colors when an object’s state is changed. It is important to note that this function works on objects only. It cannot be used in a chart expression to determine the state that the expression refers to.

### StateName - chart function()

See also:

- GetFolderPath (page 463)

### GetObjectField - chart function

This function returns the name of the dimension. `Index` is an optional integer denoting which of the used dimensions that should be returned.

#### Syntax:

```plaintext
GetObjectField ([index])
```

#### Example:

```plaintext
GetObjectField(2)
```

### ProductVersion

This function returns the full Qlik Sense version and build number as a string.

#### Syntax:

```plaintext
ProductVersion()
```

### StateName - chart function

This chart function returns the state name of the object in which it is used. The Qlik Sense developer can use this function to have dynamic text and colors when an object’s state is changed. It is important to note that this function works on objects only. It cannot be used in a chart expression to determine the state that the expression refers to.

#### Syntax:

```plaintext
StateName()
```

Alternate states can only be defined and assigned using the Qlik Engine API.

#### Example 1:

Dynamic Text
5 Functions in scripts and chart expressions

= 'Region - ' & if(StateName() = '$', 'Default', StateName())

Example 2:

Dynamic Colors
if(StateName() = 'Group 1', rgb(152, 171, 206),
    if(StateName() = 'Group 2', rgb(187, 200, 179),
        rgb(210, 210, 210)
    )
)

5.24 Table functions

The table functions return information about the data table which is currently being read. If no table name is specified and the function is used within a LOAD statement, the current table is assumed.

All functions can be used in the data load script, while only NoOfRows can be used in a chart expression.

Table functions overview

Some of the functions are described further after the overview. For those functions, you can click the function name in the syntax to immediately access the details for that specific function.

FieldName
The FieldName script function returns the name of the field with the specified number within a previously loaded table. If the function is used within a LOAD statement, it must not reference the table currently being loaded.

FieldName (field_number, table_name)

FieldNumber
The FieldNumber script function returns the number of a specified field within a previously loaded table. If the function is used within a LOAD statement, it must not reference the table currently being loaded.

FieldNumber (field_name, table_name)

NoOfFields
The NoOfFields script function returns the number of fields in a previously loaded table. If the function is used within a LOAD statement, it must not reference the table currently being loaded.

NoOfFields (table_name)

NoOfRows
The NoOfRows function returns the number of rows (records) in a previously loaded table. If the function is used within a LOAD statement, it must not reference the table currently being loaded.

NoOfRows (table_name)
5 Functions in scripts and chart expressions

NoOfTables
This script function returns the number of tables previously loaded.

NoOfTables()

TableName
This script function returns the name of the table with the specified number.

TableName(table_number)

TableName
This script function returns the name of the table with the specified number. The first table has number 0.

TableName(table_number)

Example:

In this example, we want to create a table with information about the tables and fields that have been loaded.

First we load some sample data. This creates the two tables that will be used to illustrate the table functions described in this section.

Characters:
Load Chr(RecNo() + Ord('A') - 1) as Alpha, RecNo() as Num autogenerate 26;

ASCII:
Load
if(RecNo() >= 65 and RecNo() <= 90, RecNo() - 64) as Num,
Chr(RecNo()) as AsciiAlpha,
RecNo() as AsciiNum
autogenerate 255
where (RecNo() >= 32 and RecNo() <= 126) or RecNo() >= 160;

Next, we iterate through the tables that have been loaded, using the NoOfTables function, and then through the fields of each table, using the NoOfFields function, and load information using the table functions.

//Iterate through the loaded tables
For t = 0 to NoOfTables() - 1

//Iterate through the fields of table
For f = 1 to NoOfFields(TableName($t))
    Tables:
        Load
            TableName($t) as Table,
            TableNumber(TableName($t)) as TableNo,
            NoOfRows(TableName($t)) as TableRow,
            FieldName($f, TableName($t)) as TableField,
            FieldNumber(FieldName($f, TableName($t)), TableName($t)) as FieldNo
        Autogenerate 1;
    Next f
Next t;
5  Functions in scripts and chart expressions

The resulting table Tables will look like this:

<table>
<thead>
<tr>
<th>Table</th>
<th>TableNo</th>
<th>TableRows</th>
<th>Field</th>
<th>FieldNo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characters</td>
<td>0</td>
<td>26</td>
<td>Alpha</td>
<td>1</td>
</tr>
<tr>
<td>Characters</td>
<td>0</td>
<td>26</td>
<td>Num</td>
<td>2</td>
</tr>
<tr>
<td>ASCII</td>
<td>1</td>
<td>191</td>
<td>Num</td>
<td>1</td>
</tr>
<tr>
<td>ASCII</td>
<td>1</td>
<td>191</td>
<td>AsciiAlpha</td>
<td>2</td>
</tr>
<tr>
<td>ASCII</td>
<td>1</td>
<td>191</td>
<td>AsciiNum</td>
<td>3</td>
</tr>
</tbody>
</table>

**FieldName**

The **FieldName** script function returns the name of the field with the specified number within a previously loaded table. If the function is used within a **LOAD** statement, it must not reference the table currently being loaded.

**Syntax:**

```
FieldName(field_number ,table_name)
```

**Arguments:**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>field_number</td>
<td>The field number of the field you want to reference.</td>
</tr>
<tr>
<td>table_name</td>
<td>The table containing the field you want to reference.</td>
</tr>
</tbody>
</table>

**Example:**

```
LET a = FieldName(4,'tab1');
```

**FieldNumber**

The **FieldNumber** script function returns the number of a specified field within a previously loaded table. If the function is used within a **LOAD** statement, it must not reference the table currently being loaded.

**Syntax:**

```
FieldNumber(field_name ,table_name)
```

**Argument**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>field_name</td>
<td>The name of the field.</td>
</tr>
<tr>
<td>table_name</td>
<td>The name of the table containing the field.</td>
</tr>
</tbody>
</table>

If the field field_name does not exist in table_name, or table_name does not exist, the function returns 0.
Example:

LET a = FieldNumber('Customer','tab1');

NoOfFields

The NoOfFields script function returns the number of fields in a previously loaded table. If the function is used within a LOAD statement, it must not reference the table currently being loaded.

Syntax:

NoOfFields(table_name)

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>table_name</td>
<td>The name of the table.</td>
</tr>
</tbody>
</table>

Example:

LET a = NoOfFields('tab1');

NoOfRows

The NoOfRows function returns the number of rows (records) in a previously loaded table. If the function is used within a LOAD statement, it must not reference the table currently being loaded.

Syntax:

NoOfRows(table_name)

Arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>table_name</td>
<td>The name of the table.</td>
</tr>
</tbody>
</table>

Example:

LET a = NoOfRows('tab1');

5.25 Trigonometric and hyperbolic functions

This section describes functions for performing trigonometric and hyperbolic operations. In all of the functions, the arguments are expressions resolving to angles measured in radians, where x should be interpreted as a real number.

All angles are measured in radians.
5 Functions in scripts and chart expressions

All functions can be used in both the data load script and in chart expressions.

### cos
Cosine of \( x \). The result is a number between -1 and 1.

```plaintext
cos( x )
```

### acos
Inverse cosine of \( x \). The function is only defined if \(-1 \leq x \leq 1\). The result is a number between 0 and \( \pi \).

```plaintext
acos( x )
```

### sin
Sine of \( x \). The result is a number between -1 and 1.

```plaintext
sin( x )
```

### asin
Inverse sine of \( x \). The function is only defined if \(-1 \leq x \leq 1\). The result is a number between \(-\pi/2\) and \(\pi/2\).

```plaintext
asin( x )
```

### tan
Tangent of \( x \). The result is a real number.

```plaintext
tan( x )
```

### atan
Inverse tangent of \( x \). The result is a number between \(-\pi/2\) and \(\pi/2\).

```plaintext
atan( x )
```

### atan2
Two-dimensional generalization of the inverse tangent function. Returns the angle between the origin and the point represented by the coordinates \( x \) and \( y \). The result is a number between \(-\pi\) and \(+\pi\).

```plaintext
atan2( y, x )
```

### cosh
Hyperbolic cosine of \( x \). The result is a positive real number.

```plaintext
cosh( x )
```

### sinh
Hyperbolic sine of \( x \). The result is a real number.

```plaintext
sinh( x )
```

### tanh
Hyperbolic tangent of \( x \). The result is a real number.
5 Functions in scripts and chart expressions

\[
tanh(x)
\]

**Examples:**

The following script code loads a sample table, and then loads a table containing the calculated trigonometric and hyperbolic operations on the values.

```plaintext
SampleData:
LOAD * Inline
[value
-1
0
1];

Results:
LOAD *
co
\sin(value)
acos(value)
\sinh(value)
tan(value)
atan(value)
atan2(value, value)
cosh(value)
sinh(value)
tanh(value)
RESIDENT SampleData;

Drop Table SampleData;
```
6  File system access restriction

For security reasons, Qlik Sense in standard mode does not support absolute or relative paths in the data load script or functions and variables that expose the file system.

However, since absolute and relative paths were supported in QlikView, it is possible to disable standard mode and use legacy mode in order to reuse QlikView load scripts.

Disabling standard mode can create a security risk by exposing the file system.

Security aspects when connecting to file based ODBC and OLE DB data connections

ODBC and OLE DB data connections using file based drivers will expose the path to the connected data file in the connection string. The path can be exposed when the connection is edited, in the data selection dialog, or in certain SQL queries. This is the case both in standard mode and legacy mode.

If exposing the path to the data file is a concern, it is recommended to connect to the data file using a folder data connection if it is possible.

6.1  Limitations in standard mode

Several statements, variables and functions cannot be used or have limitations in standard mode. Using unsupported statements in the data load script produces an error when the load script runs. Error messages can be found in the script log file. Using unsupported variables and functions does not produce error messages or log file entries, the function returns NULL.

There is no indication that a variable, statement or function is unsupported when you are editing the data load script.

System variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Standard mode</th>
<th>Legacy mode</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floppy</td>
<td>Not supported</td>
<td>Supported</td>
<td>Returns the drive letter of the first floppy drive found, normally a:</td>
</tr>
</tbody>
</table>
### File system access restriction

<table>
<thead>
<tr>
<th>Variable</th>
<th>Standard mode</th>
<th>Legacy mode</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Not supported</td>
<td>Supported</td>
<td>Returns the drive letter of the first CD-ROM drive found. If no CD-ROM is found, then c: is returned.</td>
</tr>
<tr>
<td>QvPath</td>
<td>Not supported</td>
<td>Supported</td>
<td>Returns the browse string to the Qlik Sense executable.</td>
</tr>
<tr>
<td>QvRoot</td>
<td>Not supported</td>
<td>Supported</td>
<td>Returns the root directory of the Qlik Sense executable.</td>
</tr>
<tr>
<td>QvWorkPath</td>
<td>Not supported</td>
<td>Supported</td>
<td>Returns the browse string to the current Qlik Sense app.</td>
</tr>
<tr>
<td>QvWorkRoot</td>
<td>Not supported</td>
<td>Supported</td>
<td>Returns the root directory of the current Qlik Sense app.</td>
</tr>
<tr>
<td>WinPath</td>
<td>Not supported</td>
<td>Supported</td>
<td>Returns the browse string to Windows.</td>
</tr>
<tr>
<td>WinRoot</td>
<td>Not supported</td>
<td>Supported</td>
<td>Returns the root directory of Windows.</td>
</tr>
<tr>
<td>$(include=…)</td>
<td>Supported input: Library connection</td>
<td>Supported input: Library connection or absolute/relative path</td>
<td>The <strong>include</strong> variable specifies a file that contains text that should be included in the script. The entire script can thus be put in a file. This is a user-defined variable.</td>
</tr>
</tbody>
</table>

### Regular script statements

<table>
<thead>
<tr>
<th>Statement</th>
<th>Standard mode</th>
<th>Legacy mode</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>Supported input: Library connection</td>
<td>Supported input: Library connection or absolute/relative path</td>
<td>The <strong>binary</strong> statement is used for loading data from another app.</td>
</tr>
<tr>
<td>Statement</td>
<td>Standard mode</td>
<td>Legacy mode</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Connect</td>
<td>Supported input: Library connection</td>
<td>Supported input: Library connection or absolute/relative path</td>
<td>The <strong>CONNECT</strong> statement is used to define Qlik Sense access to a general database through the OLE DB/ODBC interface. For ODBC, the data source first needs to be specified using the ODBC administrator.</td>
</tr>
<tr>
<td>Directory</td>
<td>With a library connection, this statement has no effect on subsequent script.</td>
<td>Supported input: Library connection or absolute/relative path</td>
<td>The <strong>Directory</strong> statement defines which directory to look in for data files in subsequent <strong>LOAD</strong> statements, until a new <strong>Directory</strong> statement is made.</td>
</tr>
<tr>
<td>Execute</td>
<td>Not supported</td>
<td>Supported input: Library connection or absolute/relative path</td>
<td>The <strong>Execute</strong> statement is used to run other programs while Qlik Sense is loading data. For example, to make conversions that are necessary.</td>
</tr>
<tr>
<td>LOAD from ...</td>
<td>Supported input: Library connection</td>
<td>Supported input: Library connection or absolute/relative path</td>
<td>Returns the browse string to the Qlik Sense executable.</td>
</tr>
<tr>
<td>Store into ...</td>
<td>Supported input: Library connection</td>
<td>Supported input: Library connection or absolute/relative path</td>
<td>Returns the root directory of the Qlik Sense executable.</td>
</tr>
</tbody>
</table>
Script control statements

<table>
<thead>
<tr>
<th>Statement</th>
<th>Standard mode</th>
<th>Legacy mode</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>For each... filelist mask/dirlist mask</td>
<td>Supported input: Library connection</td>
<td>Supported input: Library connection or absolute/relative path</td>
<td>The filelist mask syntax produces a comma separated list of all files in the current directory matching the filelist mask. The dirlist mask syntax produces a comma separated list of all directories in the current directory matching the directory name mask.</td>
</tr>
</tbody>
</table>

File functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Standard mode</th>
<th>Legacy mode</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute()</td>
<td>Supported input: Library connection</td>
<td>Supported input: Library connection or absolute/relative path</td>
<td>Returns the value of the meta tags of different media files as text.</td>
</tr>
<tr>
<td>ConnectString()</td>
<td>Returned output: Library connection name</td>
<td>Library connection name or actual connection, depending on input</td>
<td>Returns the active connect string for ODBC or OLE DB connections.</td>
</tr>
<tr>
<td>FileDir()</td>
<td>Returned output: Library connection</td>
<td>Returned output: Library connection or absolute path, depending on input</td>
<td>The FileDir function returns a string containing the path to the directory of the table file currently being read.</td>
</tr>
<tr>
<td>FilePath()</td>
<td>Returned output: Library connection</td>
<td>Returned output: Library connection or absolute path, depending on input</td>
<td>The FilePath function returns a string containing the full path to the table file currently being read.</td>
</tr>
</tbody>
</table>
## 6 File system access restriction

<table>
<thead>
<tr>
<th>Function</th>
<th>Standard mode</th>
<th>Legacy mode</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FileSize()</strong></td>
<td>Supported input: Library connection</td>
<td>Supported input: Library connection or absolute/relative path</td>
<td>The <code>FileSize</code> function returns an integer containing the size in bytes of the file filename or, if no filename is specified, of the table file currently being read.</td>
</tr>
<tr>
<td><strong>FileTime()</strong></td>
<td>Supported input: Library connection</td>
<td>Supported input: Library connection or absolute/relative path</td>
<td>The <code>FileTime</code> function returns a timestamp for the date and time of the last modification of the file filename. If no filename is specified, the function will refer to the currently read table file.</td>
</tr>
<tr>
<td><strong>GetFolderPath()</strong></td>
<td>Not supported</td>
<td>Returned output: Absolute path</td>
<td>The <code>GetFolderPath</code> function returns the value of the Microsoft Windows SHGetFolderPath function and returns the path. For example, <code>MyMusic</code>. Note that the function does not use the spaces seen in Windows Explorer.</td>
</tr>
<tr>
<td><strong>QvdCreateTime()</strong></td>
<td>Supported input: Library connection</td>
<td>Supported input: Library connection or absolute/relative path</td>
<td>This script function returns the XML-header time stamp from a QVD file, if any is present, otherwise it returns NULL.</td>
</tr>
<tr>
<td><strong>QvdFieldName()</strong></td>
<td>Supported input: Library connection</td>
<td>Supported input: Library connection or absolute/relative path</td>
<td>This script function returns the name of field number <code>fieldno</code>, if it exists in a QVD file (otherwise NULL).</td>
</tr>
</tbody>
</table>
Function | Standard mode | Legacy mode | Definition
---|---|---|---
QvdNoOfFields() | Supported input: Library connection | Supported input: Library connection or absolute/relative path | This script function returns the number of fields in a QVD file.
QvdNoOfRecords() | Supported input: Library connection | Supported input: Library connection or absolute/relative path | This script function returns the number of records currently in a QVD file.
QvdTableName() | Supported input: Library connection | Supported input: Library connection or absolute/relative path | This script function returns the name of the table stored in a QVD file.

System functions

Function | Standard mode | Legacy mode | Definition
---|---|---|---
DocumentPath() | Not supported | Returned output: Absolute path | This function returns a string containing the full path to the current Qlik Sense app.
GetRegistryString() | Not supported | Supported | Returns the value of a named registry key with a given registry path. This function can be used in chart and script alike.

6.2 Disabling standard mode

You can disable standard mode, or in other words, set legacy mode, in order to reuse QlikView load scripts that refer to absolute or relative file paths as well as library connections.

Disabling standard mode can create a security risk by exposing the file system.

Qlik Sense

For Qlik Sense, standard mode can be disabled in QMC using the Standard mode property.

Qlik Sense Desktop

In Qlik Sense Desktop, you can set standard/legacy mode in Settings.ini.
Do the following:

1. Open $C:\{user}\Documents\Qlik\Sense\Settings.ini$ in a text editor.
2. Change $StandardReload=1$ to $StandardReload=0$.
3. Save the file and start Qlik Sense Desktop, which will run in legacy mode.

The available settings for StandardReload are:

- 1 (standard mode)
- 0 (legacy mode)
7 QlikView functions and statements not supported in Qlik Sense

Most functions and statements that can be used in QlikView load scripts and chart expressions are also supported in Qlik Sense, but there are some exceptions, as described here.

7.1 Script statements not supported in Qlik Sense

This list describes QlikView script statements that are not supported in Qlik Sense.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>This command is only relevant during partial reload, which is not supported in Qlik Sense.</td>
</tr>
<tr>
<td>Command</td>
<td>Use SQL instead.</td>
</tr>
<tr>
<td>InputField</td>
<td></td>
</tr>
<tr>
<td>Replace</td>
<td>This command is only relevant during partial reload, which is not supported in Qlik Sense.</td>
</tr>
</tbody>
</table>

7.2 Functions not supported in Qlik Sense

This list describes QlikView script and chart functions that are not supported in Qlik Sense.

- GetCurrentField
- GetExtendedProperty
- Input
- InputAvg
- InputSum
- IsPartialReload
- MsgBox
- NoOfReports
- ReportComment
- ReportId
- ReportName
- ReportNumber
8 Functions and statements not recommended in Qlik Sense

Most functions and statements that can be used in QlikView load scripts and chart expressions are also supported in Qlik Sense, but some of them are not recommended for use in Qlik Sense. For compatibility reasons they will still work as intended, but it is advisable to update the code according to the recommendations in this section, as they may be removed in coming versions.

8.1 Script statements not recommended in Qlik Sense

This list describes QlikView script statements that are not recommended for use in Qlik Sense.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Use SQL instead.</td>
</tr>
<tr>
<td>CustomConnect</td>
<td>Use Custom Connect instead.</td>
</tr>
</tbody>
</table>

8.2 Script statement parameters not recommended in Qlik Sense

This list describes QlikView script statement parameters that are not recommended for use in Qlik Sense.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer</td>
<td>Use Incremental instead of:</td>
</tr>
<tr>
<td></td>
<td>• Inc (not recommended)</td>
</tr>
<tr>
<td></td>
<td>• Incr (not recommended)</td>
</tr>
</tbody>
</table>
8  Functions and statements not recommended in Qlik Sense

LOAD  The following parameter keywords are generated by QlikView file transformation wizards. Functionality is retained when data is reloaded, but Qlik Sense does not provide guided support/wizards for generating the statement with these parameters:

- Bottom
- Cellvalue
- Col
- Colmatch
- Colsplit
- Colxtr
- Compound
- Contain
- Equal
- Every
- Expand
- Filters
- Intarray
- Interpret
- Length
- Longer
- Numerical
- Pos
- Remove
- Rotate
- Row
- Rowcnd
- Shorter
- Start
- Strcnd
- Top
- Transpose
- Unwrap

8.3  Functions not recommended in Qlik Sense

This list describes QlikView script and chart functions that are not recommended for use in Qlik Sense.

<table>
<thead>
<tr>
<th>Function</th>
<th>Recommendation</th>
</tr>
</thead>
</table>

Script Syntax and Chart Functions Guide - Qlik Sense, 1.1
621
8 Functions and statements not recommended in Qlik Sense

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NumAvg</td>
<td>Use Range functions instead.</td>
</tr>
<tr>
<td>NumCount</td>
<td>See: Range functions (page 544)</td>
</tr>
<tr>
<td>NumMax</td>
<td></td>
</tr>
<tr>
<td>NumMin</td>
<td></td>
</tr>
<tr>
<td>NumSum</td>
<td></td>
</tr>
<tr>
<td>QliktechBlue</td>
<td>Use other color functions instead. QliktechBlue() can be replaced by RGB(8, 18, 90) and QliktechGray can be replaced by RGB(158, 148, 137) to get the same colors. See: Color functions (page 325)</td>
</tr>
<tr>
<td>QliktechGray</td>
<td></td>
</tr>
<tr>
<td>QlikViewVersion</td>
<td>Use ProductVersion instead.</td>
</tr>
<tr>
<td></td>
<td>See: ProductVersion (page 605)</td>
</tr>
<tr>
<td>QVUser</td>
<td></td>
</tr>
<tr>
<td>Year2Date</td>
<td>Use YearToDate instead.</td>
</tr>
<tr>
<td>Vrank</td>
<td>Use Rank instead.</td>
</tr>
<tr>
<td>WildMatch5</td>
<td>Use WildMatch instead.</td>
</tr>
</tbody>
</table>

**ALL qualifier**

In QlikView, the **ALL** qualifier may occur before an expression. This is equivalent to using \{1\} TOTAL. In such a case the calculation will be made over all the values of the field in the document, disregarding the chart dimensions and current selections. The same value is always returned regardless of the logical state in the document. If the **ALL** qualifier is used, a set expression cannot be used, since the **ALL** qualifier defines a set by itself. For legacy reasons, the **ALL** qualifier will still work in this version of Qlik Sense, but may be removed in coming versions.